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1. Introduction

High resolution 3D MR images are well suited for automated cartilage segmentation in the
human knee joint. However, volumetric scans such as 3D Double-Echo Steady-State (DESS)
images, are not routinely acquired. Instead, typical clinical knee MR imaging exams involve
acquisition of a series of 2D turbo spin echo (TSE) sequences. TSE images typically have
high in-plane resolution (e.g. 0.4 mm), but large slice thickness (e.g. 3 mm). The cartilage
visualization in the individual 2D TSE images is prone to partial volume artifacts due to
the thick slices and high cartilage curvature, often resulting in cartilage appearing thinner
than it actually is (Figure 1). Consequently, 2D TSE images of the human knee joint are
not well suited for automatic cartilage segmentation. In this work, a patch-based UNet
convolutional neural network is employed for synthesizing artificial 3D DESS scans (Syn-
DESS) from 2D TSE. An automatic segmentation method is then employed to assess the
suitability of the Syn-DESS images for knee cartilage segmentation.

2. Method

2.1. Data

821 examinations (both left and right knees) from 214 subjects from the Osteoarthritis Ini-
tiative1 were used. Sagittally-acquired 3D DESS with water excitation (160 slices, 0.7mm
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slice thickness and 0.37×0.37mm in-plane resolution) was used as the target contrast, sagit-
tal intermediate weighted TSE with fat suppression (37 slices, 3mm slice thickness and
0.36×0.36mm in-plane resolution) were used as input data. Manual segmentations were
available on 88 cases which were used as the testing dataset. The rest was split into train-
ing (80%) and validation (20%). The TSE were rigidly aligned to the DESS and resampled
using BSpline.

2.2. Network

In this work, we use overlapping patches of size 323 voxels with 25% overlap for training,
and patches of size 643 voxels with 25% overlap for inference, a scheme similar to that used
in recent MR super-resolution work (Chaudhari et al., 2018). The intensity of the entire
image was normalized to zero mean and unit variance before patch extraction.
The network was based on the 3D UNet design (Ronneberger et al., 2015). We used 4
encoding levels, doubling the number of channels at each level (starting at 64 for first level).
The loss function was the mean square error (MSE). Training was performed with Adam
optimisation, with an initial learning rate set of 0.001. Batch size was set to 30. Validation
loss was used as an indicator of learning progression. The model was trained for 20 epochs
as the validation loss ceased to improve after this point.
In order to improve the synthesis in the cartilage areas, the model was further trained for
10 epochs using only patches identified as containing cartilage. Doing so ensures that more
emphasize is given to the bone-cartilage and cartilage-cartilage interfaces. The cartilage
voxels were defined using a segmentation mask obtained on the DESS image using previously
validated automated segmentation algorithm (Fripp et al., 2007). Since this segmentation
is only used for training, it is not required at inference time.
The quality of the synthesis was assessed using the Dice similarity coefficient (DSC) between
the manual segmentations and the automatic segmentations computed using the method of
Fripp et al. (2007). It uses active shape models (ASM) for the bone segmentation and a
local intensity search method for subsequent cartilage delineation.

3. Results

Comparisons of the segmentation results using ASM of the TSE and DESS scan, and syn3D-
DESS images with and without the cartilage refinement are presented in Table 1 and illus-
trated in Figure 1.

Cartilage segmentations computed on the TSE had significantly lower (p < 0.0001) DSC
than those computed on the DESS. Using syn-DESS images improved the cartilage volume
segmentation results compared to TSE, with the greatest improvement in the tibia (+0.17,
p < 0.001), followed by the patella (+0.09, p < 0.05) and femur (+0.07, p < 0.001)).

The cartilage refinement significantly improved the DSC in all cartilage plates. The
improvement was significant in both femoral and patellar cartilages (p < 0.0001). In order
to check that the improvement in DSC was not due to the extra training, the base model
was trained for an extra 10 epochs using all patches. The extra training did not significantly
increase the DSC in any of the cartilage plates (results not shown).
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4. Conclusions

We have presented a method for generating synthetic 3D DESS-like images with high res-
olution and favourable contrast characteristics from routine clinical, lower resolution 2D
TSE images of the knee joint. The synthetic images, generated using simultaneous contrast
synthesis and image super-resolution, significantly improved DSC for the all cartilage plates
compared to segmenting the 2D TSE scans directly.

Several convolution network based methods have been recently proposed to directly seg-
ment the DESS images (Ambellan et al., 2019; Zhou et al., 2018) and could be applied to
directly obtain the segmentations from TSE images instead of generating synthetic images.
This would however require a large database of manually segmented data. These segmenta-
tion would need to be performed on the DESS given its better cartilage visualization, and be
co-registered to the TSE, adding an extra level of error, and this would need to be repeated
every time a new sequence is being developed. With this approach, only pairs of the source
sequence and DESS need to be acquired, and any segmentation method developed to work
on DESS can be applied to the resulting synthetic images.

Table 1: Mean DSC for ASM segmentations on the real DESS, real TSE, and syn3D-DESS
images compared to gold standard manual segmentations.

Dataset Femur Tibia Patella
TSE 0.686 0.575 0.544
syn3D-DESS 0.752 0.748 0.632
syn3D-DESS (Cartilage refinement) 0.771 0.755 0.654
DESS 0.804 0.781 0.684

Figure 1: Coronal view on a typical case with DESS, Syn-DESS and BSpline interpolated
TSE scan on the left, and manual(top right) and automatic segmentations (bot-
tom right). Each arrow indicates the same location on the bone-cartilage inter-
face.
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