
Published as a conference paper at ICLR 2019

LEARNABLE EMBEDDING SPACE FOR
EFFICIENT NEURAL ARCHITECTURE COMPRESSION

Shengcao Cao∗
School of EECS
Peking University
Beijing, 100871, China
caoshengcao@pku.edu.cn

Xiaofang Wang∗ & Kris M. Kitani
The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA
{xiaofan2,kkitani}@cs.cmu.edu

ABSTRACT

We propose a method to incrementally learn an embedding space over the domain
of network architectures, to enable the careful selection of architectures for evalu-
ation during compressed architecture search. Given a teacher network, we search
for a compressed network architecture by using Bayesian Optimization (BO) with
a kernel function defined over our proposed embedding space to select architec-
tures for evaluation. We demonstrate that our search algorithm can significantly
outperform various baseline methods, such as random search and reinforcement
learning (Ashok et al., 2018). The compressed architectures found by our method
are also better than the state-of-the-art manually-designed compact architecture
ShuffleNet (Zhang et al., 2018). We also demonstrate that the learned embedding
space can be transferred to new settings for architecture search, such as a larger
teacher network or a teacher network in a different architecture family, without
any training.

1 INTRODUCTION

In many application domains, it is common practice to make use of well-known deep network archi-
tectures (e.g., VGG (Simonyan & Zisserman, 2014), GoogleNet (Szegedy et al., 2015), ResNet (He
et al., 2016)) and to adapt them to a new task without optimizing the architecture for that task.
While this process of transfer learning is surprisingly successful, it often results in over-sized net-
works which have many redundant or unused parameters. Inefficient network architectures can
waste computational resources and over-sized networks can prevent them from being used on em-
bedded systems. There is a pressing need to develop algorithms that can take large networks with
high accuracy as input and compress their size while maintaining similar performance. In this pa-
per, we focus on the task of compressed architecture search – the automatic discovery of compressed
network architectures based on a given large network.

One significant bottleneck of compressed architecture search is the need to repeatedly evaluate
different compressed network architectures, as each evaluation is extremely costly (e.g., back-
propagation to learn the parameters of a single deep network can take several days on a single
GPU). This means that any efficient search algorithm must be judicious when selecting architectures
to evaluate. Learning a good embedding space over the domain of compressed network architec-
tures is important because it can be used to define a distribution on the architecture space that can be
used to generate a priority ordering of architectures for evaluation. To enable the careful selection of
architectures for evaluation, we propose a method to incrementally learn an embedding space over
the domain of network architectures.

In the network compression paradigm, we are given a teacher network and we aim to search for
a compressed network architecture, a student network that contains as few parameters as possible
while maintaining similar performance to the teacher network. We address the task of compressed
architecture search by using Bayesian Optimization (BO) with a kernel function defined over our
proposed embedding space to select architectures for evaluation. As modern neural architectures can
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have multiple layers, multiple branches and multiple skip connections, defining an embedding space
over all architectures is non-trivial. In this work, we propose a method for mapping a diverse range of
discrete architectures to a continuous embedding space through the use of recurrent neural networks.
The learned embedding space allows us to perform BO to efficiently search for compressed student
architectures that are also expected to have high accuracy.

We demonstrate that our search algorithm can significantly outperform various baseline methods,
such as random search and reinforcement learning (Ashok et al., 2018). For example, our search al-
gorithm can compress VGG-19 (Simonyan & Zisserman, 2014) by 8× on CIFAR-100 (Krizhevsky
& Hinton, 2009) while maintaining accuracy on par with the teacher network. The automatically
found compressed architectures can also achieve higher accuracy than the state-of-the-art manually-
designed compact architecture ShuffleNet (Zhang et al., 2018) with a similar size. We also demon-
strate that the learned embedding space can be transferred to new settings for architecture search,
such as a larger teacher network or a teacher network in a different architecture family, without any
training.

Contributions: (1) We propose a novel method to incrementally learn an embedding space over the
domain of network architectures. Based on the learnable embedding space, we present a framework
of searching for compressed network architectures with BO. The learned embedding provides a
feature space over which the kernel function of BO is defined. (2) We propose a set of architecture
operators for generating architectures for search. Operators for modifying the teacher network are:
layer removal, layer shrinkage and skip connection addition. (3) We propose a multiple kernel
strategy to prevent the premature convergence of the search and encourage the search algorithm to
explore more diverse architectures during the search process.

2 RELATED WORK

Computationally Efficient Architecture: There has been great progress in designing computation-
ally efficient network architectures. Representative examples include SqueezeNet (Iandola et al.,
2016), MobileNet (Howard et al., 2017), MobileNetV2 (Sandler et al., 2018), CondenseNet (Huang
et al., 2018) and ShuffleNet (Zhang et al., 2018). Different from them, we aim to develop an algo-
rithm that can automatically search for an efficient network architecture with minimal human efforts
involved in the architecture design.

Neural Architecture Search (NAS): NAS has recently been an active research topic (Zoph & Le,
2016; Zoph et al., 2017; Real et al., 2018; Pham et al., 2018; Liu et al., 2017a;b; 2018; Luo et al.,
2018). Some existing works in NAS are focused on searching for architectures that not only can
achieve high performance but also respect some resource or computation constraints (Ashok et al.,
2018; Tan et al., 2018; Zhou et al., 2018; Dong et al., 2018; Hsu et al., 2018; Elsken et al., 2018a).
NAO (Luo et al., 2018) and our work share the idea of mapping network architectures into a latent
continuous embedding space. But NAO and our work have fundamentally different motivations,
which further lead to different architecture search frameworks. NAO maps network architectures to a
continuous space such that they can perform gradient based optimization to find better architectures.
However, our motivation for learning the embedding space is to find a principled way to define a
kernel function between architectures with complex skip connections and multiple branches.

Our work is also closely related to N2N (Ashok et al., 2018), which searches for a compressed ar-
chitecture based on a given teacher network using reinforcement learning. Our search algorithm is
developed based on Bayesian Optimization (BO), which is different from N2N and many other ex-
isting works. We will compare our approach to other BO based NAS methods in the next paragraph.
Readers can refer to Elsken et al. (2018b) for a more complete literature review of NAS.

Bayesian Optimization (BO): BO is a popular method for hyper-parameter optimization in machine
learning. BO has been used to tune the number of layers and the size of hidden layers (Bergstra
et al., 2011; Swersky et al., 2014), the width of a network (Snoek et al., 2012) or the size of the
filter bank (Bergstra et al., 2013), along with other hyper-parameters, such as the learning rate,
number of iterations. Mendoza et al. (2016), Jenatton et al. (2017) and Zela et al. (2018) also fall
into this category. Our work is also related to Hernández-Lobato et al. (2016), which presents a
Bayesian method for identifying the Pareto set of multi-objective optimization problems and applies
the method to searching for a fast and accurate neural network.
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However, most existing works on BO for NAS only show results on tuning network architectures
where the connections between network layers are fixed, i.e., most of them do not optimize how the
layers are connected to each other. Kandasamy et al. (2018) proposes a distance metric OTMANN
to compare network architectures with complex skip connections and branch layers, based on which
NASBOT is developed, a BO based NAS framework, which can tune how the layers are connected.
Although the OTMANN distance is designed with thoughtful choices, it is defined based on some
empirically identified factors that can influence the performance of a network, rather than the actual
performance of networks. Different from OTMANN, the distance metric (or the embedding) for
network architectures in our algorithm is automatically learned according to the actual performance
of network architectures instead of manually designed.

Our work can also be viewed as carrying out optimization in the latent space of a high dimensional
and structured space, which shares a similar idea with previous literature (Lu et al., 2018; Gómez-
Bombarelli et al., 2018). For example, Lu et al. (2018) presents a new variational auto-encoder to
map kernel combinations produced by a context-free grammar into a continuous latent space.

Deep Kernel Learning: Our work is also related to recent works on deep kernel learning (Wilson
et al., 2016a;b). They aim to learn more expressive kernels by representing the kernel function as
a neural network to incorporate the expressive power of deep networks. The follow-up work (Al-
Shedivat et al., 2017) extends the kernel representation to recurrent networks to model sequential
data. Our work shares a similar motivation with them and tries to learn a kernel function for the
neural architecture domain by leveraging the expressive power of deep networks.

3 APPROACH

In this work, we focus on searching for a compressed network architecture based on a given teacher
network and our goal is to find a network architecture which contains as few parameters as possible
but still can obtain a similar performance to the teacher network. Formally, we aim to solve the
following optimization problem:

x∗ = argmax
x∈X

f(x), (1)

where X denotes the domain of neural architectures and the function f(x) : X 7→ R evaluates how
well the architecture x meets our requirement. We adopt the reward function design in N2N (Ashok
et al., 2018) for the function f , which is defined based on the compression ratio of the architecture
x and its validation performance after being trained on the training set. More details about the exact
form of f are given in Appendix 6.1 due to space constraints.

As evaluating the value of f(x) for a specific architecture x is extremely costly, the algorithm must
judiciously select the architectures to evaluate. To enable the careful selection of architectures for
evaluation, we propose a method to incrementally learn an embedding space over the domain of
network architecture that can be used to generate a priority ordering of architectures for evaluation.
In particular, we develop the search algorithm based on BO with a kernel function defined over
our proposed embedding space. In the following text, we will first introduce the sketch of the BO
algorithm and then explain how the proposed embedding space is used in the loop of BO.

We adopt the Gaussian process (GP) based BO algorithms to maximize the function f(x), which is
one of the most popular algorithms in BO. A GP prior is placed on the function f , parameterized
by a mean function µ(·) : X 7→ R and a covariance function or kernel k(·, ·) : X × X 7→ R. To
search for the solution, we start from an arbitrarily selected architecture x1. At step t, we evaluate
the architecture xt, i.e., obtaining the value of f(xt). Using the t evaluated architectures up to now,
we compute the posterior distribution on the function f :

p (f(x) | f(x1:t)) ∼ N (µt(x), σ
2
t (x)), (2)

where f(x1:t) = [f(x1), . . . , f(xt)] and µt(x) and σ2
t (x) can be computed analytically based on the

GP prior (Williams & Rasmussen, 2006). We then use the posterior distribution to decide the next
architecture to evaluate. In particular, we obtain xt+1 by maximizing the expected improvement
acquisition function EIt(x) : X 7→ R, i.e., xt+1 = argmaxx∈X EIt(x). The expected improvement
function EIt(x) (Mockus & Mockus, 1991) measures the expected improvement over the current
maximum value according to the posterior distribution:

EIt(x) = Et[max(0, f(x)− f∗t )], (3)

3



Published as a conference paper at ICLR 2019

where Et indicates the expectation is taken with respect to the posterior distribution at step t
p (f(x) | f(x1:t)) and f∗t is the maximum value among {f(x1), . . . , f(xt)}. Once obtaining xt+1,
we repeat the above described process until we reach the maximum number of steps. Finally, we
return the best evaluated architecture as the solution.

The main difficulty in realizing the above optimization procedure is the design of the kernel func-
tion k(·, ·) for X and the maximization of the acquisition function EIt(x) over X , since the neural
architecture domain X is discrete and highly complex. To overcome these difficulties, we propose
to learn an embedding space for the neural architecture domain and define the kernel function based
on the learned embedding space. We also propose a search space, a subset of the neural architecture
domain, over which maximizing the acquisition function is feasible and sufficient.

3.1 LEARNABLE EMBEDDING SPACE AND KERNEL FUNCTION

The kernel function, which measures the similarity between network architectures, is fundamental
for selecting the architectures to evaluate during the search process. As modern neural architectures
can have multiple layers, multiple branches and multiple skip connections, comparing two archi-
tectures is non-trivial. Therefore, we propose to map a diverse range of discrete architectures to a
continuous embedding space through the use of recurrent neural networks and then define the kernel
function based on the learned embedding space.

We use h(·; θ) to denote the architecture embedding function that generates an embedding for a
network architecture according to its configuration parameters. θ represents the weights to be learned
in the architecture embedding function. With h(·; θ), we define the kernel function k(x, x′; θ) based
on the RBF kernel:

k(x, x′; θ) = exp

(
−||h(x; θ)− h(x

′; θ)||2

2σ2

)
, (4)

where σ is a hyper-parameter. h(·; θ) represents the proposed learnable embedding space and
k(x, x′; θ) is the learnable kernel function. They are parameterized by the same weights θ. In the
following text, we will first introduce the architecture embedding function h(·; θ) and then describe
how we learn the weights θ during the search process.

The architecture embedding function needs to be flexible enough to handle a diverse range of archi-
tectures that may have multiple layers, multiple branches and multiple skip connections. Therefore
we adopt a Bidirectional LSTM to represent the architecture embedding function, motivated by the
layer removal policy network in N2N (Ashok et al., 2018). The input to the Bi-LSTM is the config-
uration information of each layer in the network, including the layer type, how this layer connects
to other layers, and other attributes. After passing the configuration of each layer to the Bi-LSTM,
we gather all the hidden states, apply average pooling to these hidden states and then apply L2

normalization to the pooled vector to obtain the architecture embedding.

We would like to emphasize that our representation for layer configuration encodes the skip connec-
tions between layers. Skip connections have been proven effective in both human designed network
architectures, such as ResNet (He et al., 2016) and DenseNet (Huang et al., 2017), and automatically
found network architectures (Zoph & Le, 2016). N2N only supports the kind of skip connections
used in ResNet (He et al., 2016) and does not generalize to more complex connections between
layers, where our representation is still applicable. We give the details about our representation for
layer configuration in Appendix 6.2.

The weights of the Bi-LSTM θ, are learned during the search process. The weights θ determine the
architecture embedding function h(·; θ) and the kernel k(·, ·; θ). Further, θ controls the GP prior and
the posterior distribution of the function value conditioned on the observed data points. The posterior
distribution guides the search process and is essential to the performance of our search algorithm.
Our goal is to learn a θ such that the function f is consistent with the GP prior, which will result in
a posterior distribution that accurately characterizes the statistical structure of the function f .

Let D denote the set of evaluated architectures. In step t, D = {x1, . . . , xt}. For any archi-
tecture xi in D, we can compute p (f(xi) | f(D \ xi); θ) based on the GP prior, where \ refers
to the set difference operation, f(xi) is the value obtained by evaluating the architecture xi and
f(D \ xi) = [f(x1), . . . , f(xi−1), f(xi+1) . . . , f(xt)]. p (f(xi) | f(D \ xi); θ) is the posterior
probability of f(xi) conditioned on the other evaluated architectures in D. The higher the value of
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p (f(xi) | f(D \ xi); θ) is, the more accurately the posterior distribution characterizes the statistical
structure of the function f and the more the function f is consistent with the GP prior. Therefore,
we learn θ by minimizing the negative log posterior probability:

L(θ) = − 1

|D|
∑

i:xi∈D
log p (f(xi) | f(D \ xi); θ) . (5)

p (f(xi) | f(D \ xi); θ) is a Gaussian distribution and its mean and covariance matrix can be com-
puted analytically based on k(·, ·; θ). Thus L is differentiable with respect to θ and we can learn the
weights θ using backpropagation.

3.2 ACQUISITION FUNCTION AND SEARCH SPACE

In each optimization step, we obtain the next architecture to evaluate by maximizing the acquisition
function EIt(·) over the neural architecture domain X . On one hand, maximizing EIt(·) over all the
network architectures in X is unnecessary. Since our goal is to search for a compressed architecture
based on the given teacher network, we only need to consider those architectures that are smaller
than the teacher network. On the other hand, maximizing EIt(·) over X is non-trivial. Gradient-
based optimization algorithms cannot be directly applied to optimize EIt(·) as X is discrete. Also,
exhaustive exploration of the whole domain is infeasible. This calls for a search space that covers
the compressed architectures of our interest and easy to explore. Motivated by N2N (Ashok et al.,
2018), we propose a search space for maximizing the acquisition function, which is constrained by
the teacher network, and provides a practical method to explore the search space.

We define the search space based on the teacher network. The search space is constructed by all
the architectures that can be obtained by manipulating the teacher network with the following three
operations: (1) layer removal, (2) layer shrinkage and (3) adding skip connections.

Layer removal and shrinkage: The two operations ensure that we only consider architectures that
are smaller than the given big network. Layer removal refers to removing one or more layers from
the network. Layer shrinkage refers to shrinking the size of layers, in particular, the number of filters
in convolutional layers, as we focus on convolutional networks in this work. Different from N2N,
we do not consider shrinking the kernel size, padding or other configurable variables and we find
that only shrinking the number of filters already yields satisfactory performance.

Adding skip connections: The operation of adding skip connections is employed to increase the
network complexity. N2N (Ashok et al., 2018), which uses reinforcement learning to search for
compressed network architectures, does not support forming skip connections in their action space.
We believe when searching for compressed architectures, adding skip connections to the compressed
network is crucial for it to achieve similar performance to the teacher network and we will show
ablation study results to verify this.

The way we define the search space naturally allows us to explore it by sampling the operations
to manipulate the architecture of the teacher network. To optimize the acquisition function over
the search space, we randomly sample architectures in the search space by randomly sampling the
operations. We then evaluate EIt(·) over the sampled architectures and return the best one as the
solution. We also have tried using evolutionary algorithm to maximize EIt(·) but it yields similar
results with random sampling. So for the sake of simplicity, we use random sampling to maximize
EIt(·). We attribute the good performance of random sampling to the thoughtful design of the opera-
tions to manipulate the teacher network architecture. These operations already favor the compressed
architectures of our interest.

3.3 MULTIPLE KERNEL STRATEGY

We implement the search algorithm with the proposed learnable kernel function but notice that
the highest function value among evaluated architectures stops increasing after a few steps. We
conjecture this is due to that the learned kernel is overfitted to the training samples since we only
evaluate hundreds of architectures in the whole search process. An overfitted kernel may bias the
following sampled architectures for evaluation.

To encourage the search algorithm to explore more diverse architectures, we propose a multiple ker-
nel strategy, motivated by the bagging algorithm, which is usually employed to avoid overfitting. In
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Algorithm 1 Neural Architecture Search with Bayesian Optimization
Input: Number of steps T . Number of kernels K. Teacher network xteacher.
Randomly sample K architectures x11, . . . , x

K
1 from the search space defined based on xteacher.

Initialize the set of evaluated architectures D = ∅.
for t = 1, . . . , T do

Evaluate the K architectures x1t , . . . , x
K
t .

D = D ∪ {x1t , . . . , xKt }.
for k = 1, . . . ,K do

Randomly initialize the weights of kernel k, denoted as θk.
Randomly sample a subset of D, denoted as Dk.
Learn θk on Dk using the objective function in Eq. 5.
Compute the posterior distribution conditioned on the architectures in Dk with kernel k.
Maximize the acquisition function and denote the solution as xkt+1.

end for
end for
Return the best architecture in D as the solution.

bagging, instead of training one single model on the whole dataset, multiple models are trained on
different subsets of the whole dataset. Likewise, in each step of the search process, we train multiple
kernel functions on uniformly sampled subsets of D, the set of all the available evaluated archi-
tectures. Technically, learning multiple kernels refers to learning multiple architecture embedding
spaces, i.e., multiple sets of weights θ. After training the kernels, each kernel is used separately to
compute one posterior distribution and determine one architecture to evaluate in the next step. That
is to say, if we train K kernels in the current step, we will obtain K architectures to evaluate in
the next step. The proposed multiple kernel strategy encourages the search process to explore more
diverse architectures and can help find better architectures than training one single kernel only.

When training kernels, we randomly initialize their weights and learn the weights from the scratch
on subsets of evaluated architectures. We do not learn the weights of the kernel based on the weights
learned in the last step, i.e., fine-tuning the Bi-LSTM from the last step. The training of the Bi-LSTM
is fast since we usually only evaluate hundreds of architectures during the whole search process. A
formal sketch of our search algorithm in shown Algorithm 1.

4 EXPERIMENTS

We first extensively evaluate our algorithm with different teacher architectures and datasets. We then
compare the automatically found compressed architectures to the state-of-the-art manually-designed
compact architecture, ShuffleNet (Zhang et al., 2018). We also evaluate the transfer performance of
the learned embedding space and kernel. We perform ablation study to understand how the number
of kernels K and other design choices in our search algorithm influence the performance. Due to
space constraints, the ablation study is included in Appendix 6.3.

4.1 COMPRESSION EXPERIMENTS

We use two datasets: CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009). CIFAR-10 contains
60K images in 10 classes, with 6K images per class. CIFAR-100 also contains 60K images but in
100 classes, with 600 images per class. Both CIFAR-10 and CIFAR-100 are divided into a training
set with 50K images and a test set with 10K images. We sample 5K images from the training
set as the validation set. We provide results on four architectures as the teacher network: VGG-
19 (Simonyan & Zisserman, 2014), ResNet-18, ResNet-34 (He et al., 2016) and ShuffleNet (Zhang
et al., 2018).

We consider two baselines algorithms for comparison: random search (RS) and a reinforcement
learning based approach, N2N (Ashok et al., 2018). Here we use RS to directly maximize the
compression objective f(x). To be more specific, RS randomly samples architectures in the search
space, then evaluates all of them and returns the best architecture as the optimal solution. In the
following experiments, RS evaluates 160 architectures. For our proposed method, we run 20 archi-
tecture search steps, where each step generates K = 8 architectures for evaluation based on the the
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Table 1: Summary of Compression Results.

CIFAR-100 Accuracy #Params Ratio Times f(x)
VGG-19 Teacher 73.71% 20.09M - - -

Random Search 68.17% 2.83M 0.8593 8.04× 0.9046
±1.28% ±1.05M ±0.0525 ±3.78× ±0.0074

Ours 71.41% 2.61M 0.8699 7.99× 0.9518
±0.75% ±0.61M ±0.0306 ±1.99× ±0.0158

ResNet-18 Teacher 78.68% 11.22M - - -
Random Search 69.86% 1.26M 0.8878 10.10× 0.8752

±1.90% ±0.54M ±0.0477 ±4.33× ±0.0137
N2N 68.01% 2.42M 0.7845 4.64× 0.8242
Ours 73.83% 1.87M 0.8335 6.01× 0.9123

±1.11% ±0.08M ±0.0073 ±0.26× ±0.0151
ResNet-34 Teacher 78.71% 21.33M - - -

Random Search 72.33% 3.61M 0.8308 5.95× 0.8924
±1.53% ±0.35M ±0.0162 ±0.60× ±0.0154

N2N - removal 70.11% 4.25M 0.8008 5.02× 0.8554
Ours - removal 74.05% 3.18M 0.8508 6.88× 0.9192

±0.52% ±0.65M ±0.0307 ±1.31× ±0.0033
Ours 73.68% 2.36M 0.8895 9.08× 0.9246

±0.57% ±0.15M ±0.0069 ±0.59× ±0.0076
ShuffleNet Teacher 71.14% 1.06M - - -

Random Search 64.75% 0.18M 0.8264 6.37× 0.8803
±2.15% ±0.06M ±0.0588 ±2.68× ±0.0152

Ours 68.45% 0.23M 0.7855 4.74× 0.9171
±1.38% ±0.04M ±0.0337 ±0.78× ±0.0088

CIFAR-10 Accuracy #Params Ratio Times f(x)
VGG-19 Teacher 93.91% 20.04M - - -

Random Search 91.76% 2.27M 0.8865 10.54× 0.9628
±0.88% ±1.03M ±0.0515 ±5.83× ±0.0149

N2N 91.64% 0.98M 0.9513 20.53× 0.9735
Ours 92.27% 0.81M 0.9595 25.39× 0.9809

±0.49 % ±0.17M ±0.0084 ±4.85× ±0.0050
ResNet-18 Teacher 95.24% 11.17M - - -

Random Search 92.29% 0.79M 0.9293 14.42× 0.9641
±0.83% ±0.14M ±0.012 ±2.39× ±0.0093

N2N 91.81% 1.00M 0.9099 11.10× 0.9562
Ours 92.99% 0.85M 0.9239 14.44× 0.9701

±1.03% ±0.34M ±0.0302 ±5.05× ±0.0070
ResNet-34 Teacher 95.57% 21.28M - - -

Random Search 92.87% 1.70M 0.9199 12.59× 0.9655
±0.40% ±0.18M ±0.0084 ±1.38× ±0.0046

N2N 92.35% 2.07M 0.9020 10.20× 0.9570
Ours 92.70% 1.32M 0.9379 17.00× 0.9660

±0.74% ±0.35M ±0.0163 ±5.11× ±0.0072
ShuffleNet Teacher 90.87% 0.99M - - -

Random Search 88.25% 0.15M 0.8490 7.38× 0.9471
±0.51% ±0.05M ±0.0529 ±3.24× ±0.0095

Ours 89.36% 0.10M 0.8995 10.43× 0.9729
±1.05% ±0.03M ±0.0284 ±2.54× ±0.0055

K different kernels. This means our proposed method evaluates 160 (20 × 8) architectures in total
during the search process. Note that when evaluating an architecture during the search process, we
only train it for 10 epochs to reduce computation time. So for both RS and our method, we fully
train the top 4 architectures among the 160 evaluated architectures and choose the best one as the
solution. When learning the kernel function parameters, we randomly sample from the set of the
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evaluated architectures with a probability of 0.5 to form the training set for one kernel. The results
of N2N are from the original paper Ashok et al. (2018).

The compression results are summarized in Table 1. For a compressed network x, ‘Ratio’ refers
to the compression ratio of x, which is defined as

(
1− #params(x)

#params(xteacher)

)
. ‘Times’ refers to the ratio

between the size of the teacher network and the size of the compressed network, i.e., #params(xteacher)
#params(x) .

We also show the value of f(x) as an indication of how well each architecture x meets our require-
ment in terms of both the accuracy and the compression ratio. For ‘Random Search’ and ’Ours’, we
run the experiments for three times and report the average results as well as the standard deviation.

We first apply our algorithm to compress three popular network architectures: VGG-19, ResNet-
18 and ResNet-34, and use them as the teacher network. We can see that on both CIFAR-10 and
CIFAR-100, our proposed method consistently finds architectures that can achieve higher value of
f(x) than all baselines. For VGG-19 on CIFAR-100, the architecture found by our algorithm is
8 times smaller than the original teacher network while the accuracy only drops by 2.3%. For
ResNet-18 on CIFAR-100, the architecture found by our algorithm has a little bit more parameters
than that found by RS but has higer accuracy by about 4%. For ResNet-34 on CIFAR-100, the
architecture found by our proposed method has a higher accuracy as the architecture discovered by
RS but only uses about 65% of the number of parameters. Also for ResNet-34 on CIFAR-100, N2N
only provides the results of layer removal, denoted as ‘N2N - removal’. ‘Ours - removal’ refers to
only considering the layer removal operation in the search space for fair comparison. We can see
that ‘Ours - removal’ also significantly outperforms ‘N2N - removal’ in terms of both the accuracy
and the compression ratio.

ShuffleNet is an extremely computation-efficient human-designed CNN architecture (Zhang et al.,
2018). We also have tried to use ShuffleNet as the teacher network and see if we can further optimize
this architecture. As shown in Table 1, our search algorithm successfully compresses ‘ShuffleNet
1× (g = 2)’ by 10.43× and 4.74× on CIFAR-10 and CIFAR-100 respectively and the compressed
architectures can still achieve similar accuracy to the original teacher network. Here ‘1×’ indicates
the number of channels in the teacher ShuffleNet and ‘(g = 2)’ indicates that the number of groups
is 2. Readers can refer to Zhang et al. (2018) for more details about the specific configuration.

4.2 COMPARISON TO SHUFFLENET

We now compare the compressed architectures found by our algorithm to the state-of-the-art
manually-designed compact network architecture ShuffleNet. We vary the number of channels
and the number of groups in ShuffleNet and compare the compressed architectures found by our
proposed method against these different configurations of ShuffleNet. We conduct experiments on
CIFAR-100 and the results are summarized in Table 2. For ’Ours’ in Table 2, we use the mean
results of 3 runs of our method. In Table 2, VGG-19, ResNet-18, ResNet-34 and ShuffleNet refer
to the compressed architectures found by our algorithm based on the corresponding teacher network
and do not refer to the original architecture indicated by the name. The teacher ShuffleNet used in
the experiments is ‘ShuffleNet 1×(g = 2)’ as mentioned above. ‘0.5×(g = 1)’ and so on in Table 2
refer to different configurations of ShuffleNet and we show the accuracy of these original ShuffleNet
in the table. The compressed architectures found based on ResNet-18 and ResNet-34 have a similar
number of parameters with ShuffleNet 1.5× but they can all achieve much higher accuracy than
ShuffleNet 1.5×. The compressed architecture found based on ShuffleNet 1 × (g = 2) can obtain
higher accuracy than ShuffleNet 0.5× while using a similar number of parameters.

4.3 KERNEL TRANSFER

We now study the transferability of the learned embedding space or the learned kernel. We would
like to know to what extent a kernel learned in one setting can be generalized to a new setting.
To be more specific about the kernel transfer, we first learn one kernel or multiple kernels in the
source setting. Then we maximize the acquisition function within the search space in the target
setting and the acquisition function is computed based on the kernel learned in the source setting.
The maximizer of the acquisition function is a compressed architecture for the target setting. We
evaluate this architecture in the target setting and compare it with the architecture found by applying
algorithms directly to the target setting.
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Table 2: Comparison to ShuffleNet on CIFAR-100.

Teacher Accuracy #Params Teacher Accuracy #Params
Ours VGG-19 71.41% 2.61M ResNet-18 73.83% 1.87M

ShuffleNet 68.45% 0.23M ResNet-34 73.68% 2.36M
Configuration Accuracy #Params Configuration Accuracy #Params

ShuffleNet 0.5× (g = 1) 67.71% 0.26M 1.5× (g = 1) 72.43% 2.09M
0.5× (g = 2) 67.54% 0.27M 1.5× (g = 2) 71.41% 2.07M
0.5× (g = 3) 67.23% 0.27M 1.5× (g = 3) 71.05% 2.03M
0.5× (g = 4) 66.83% 0.27M 1.5× (g = 4) 71.86% 1.99M
0.5× (g = 8) 66.74% 0.31M 1.5× (g = 8) 71.04% 2.08M

Table 3: Summary of Kernel Transfer Results.

Method Accuracy Ratio f(x) Method Accuracy Ratio f(x)
(a)→ (b) K = 1 93.13% 0.8717 0.9584 N2N on (b) 92.35% 0.9020 0.9570

K = 8 92.80% 0.9627 0.9697 Ours on (b) 92.70% 0.9379 0.9660
(a)→ (c) K = 1 89.92% 0.9793 0.9571 N2N on (c) 91.64% 0.9513 0.9735

K = 8 92.79% 0.9671 0.9870 Ours on (c) 92.27% 0.9595 0.9809
(a)→ (d) K = 1 68.77% 0.9393 0.8708 N2N on (d) 68.01% 0.7845 0.8242

K = 8 70.93% 0.8586 0.8835 Ours on (d) 73.83% 0.8335 0.9123

We consider the following four settings: (a) ResNet-18 on CIFAR-10, (b) ResNet-34 on CIFAR-10,
(c) VGG-19 on CIFAR-10 and (d) ResNet-18 on CIFAR-100. ‘ResNet-18 on CIFAR-10’ refers
to searching for a compressed architecture with ResNet-18 as the teacher network for the dataset
CIFAR-10 and so on. We first run our search algorithm in setting (a) and transfer the learned kernel
to setting (b), (c) and (d) respectively to see how much the learned kernel can transfer to a larger
teacher network in the same architecture family (this means a larger search space), a different archi-
tecture family (this means a totally different search space) or a harder dataset.

We learn K kernels in the source setting (a) and we transfer all the K kernels to the target setting,
which will result in K compressed architectures for the target setting. We report the best one among
the K architectures. We have triedK = 1 and K = 8 and the results are shown in Table 3. In all the
three transfer scenarios, the learned kernel in the source setting (a) can help find reasonably good
architectures in the target setting without actually training the kernel in the target setting, whose
performance is better than the architecture found by applying N2N directly to the target setting.
These results proves that the learned architecture embedding space or the learned kernel is able to
generalize to new settings for architecture search without any additional training.

5 CONCLUSION

We address the task of searching for a compressed network architecture by using BO. Our proposed
method can find more efficient architectures than all the baselines on CIFAR-10 and CIFAR-100.
Our key contribution is the proposed method to learn an embedding space over the domain of net-
work architectures. We also demonstrate that the learned embedding space can be transferred to
new settings for architecture search without any training. Possible future directions include extend-
ing our method to the general NAS problem to search for desired architectures from the scratch
and combining our proposed embedding space with Hernández-Lobato et al. (2016) to identify the
Pareto set of the architectures that are both small and accurate.

ACKNOWLEDGMENTS

The authors would like to thank Sibi Venkatesan for insightful discussions and the reviewers for
their valuable feedback.

9



Published as a conference paper at ICLR 2019

REFERENCES

Maruan Al-Shedivat, Andrew Gordon Wilson, Yunus Saatchi, Zhiting Hu, and Eric P Xing. Learning
scalable deep kernels with recurrent structure. The Journal of Machine Learning Research, 18(1):
2850–2886, 2017.

Anubhav Ashok, Nicholas Rhinehart, Fares Beainy, and Kris M. Kitani. N2n learning: Network
to network compression via policy gradient reinforcement learning. In International Confer-
ence on Learning Representations, 2018. URL https://openreview.net/forum?id=
B1hcZZ-AW.

James Bergstra, Daniel Yamins, and David Daniel Cox. Making a science of model search: Hyper-
parameter optimization in hundreds of dimensions for vision architectures. 2013.
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6 APPENDIX

6.1 DEFINITION OF FUNCTION f

We now discuss the form of the function f . We aim to find a network architecture which contains as
few parameters as possible but still can obtain a similar performance to the teacher network. Usually
compressing a network leads to the decrease in the performance. So the function f needs to provide
a balance between the compression ratio and the performance. In particular, we hope the function f
favors architectures of high performance but low compression ratio more than architectures of low
performance but high compression ratio. So we adopt the reward function design in N2N (Ashok
et al., 2018) for the function f . Formally, f is defined as:

f(x) = C(x) (2− C(x)) · A(x)

A(xteacher)
, (6)

where C(x) is the compression ratio of the architecture x, A(x) is the validation performance of x
and A(xteacher) is the validation performance of the teacher network. The compression ratio C(x) is
defined as C(x) = 1− #params(x)

#params(xteacher)
.

Note that for any x, to evaluate f(x) we need to train the architecture x on the training data and test
on the validation data. This is time-consuming so during the search process, we do not fully train x.
Instead, we only train x for a few epochs and use the validation performance of the network obtained
by early stopping as an approximation for A(x). We also employ the Knowledge Distillation (KD)
strategy (Hinton et al., 2015) for faster training as we are given a teacher network. But when we
fully train the architecture x to see its true performance, we fine tune it from the weights obtained
by early stopping with cross entropy loss without using KD.

6.2 REPRESENTATION FOR LAYER CONFIGURATION

We represent the configuration of one layer by a vector of length (m + 2n + 6), where m is the
number of types of layers we consider and n is the maximum number of layers in the network. The
first m dimensions of the vector are a one-hot vector, indicating the type of the layer. Then the
following 6 numbers indicate the value of different attributes of the layer, including the kernel size,
stride, padding, group, input channels and output channels of the layer. If one layer does not have
any specific attribute, the value of that attribute is simply set to zero.
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Table 4: Ablation study for the number of kernels K.

CIFAR-100 Accuracy #Params Ratio Times f(x)
K = 1 73.42% 2.68M 0.8745 7.97x 0.9181
K = 2 72.51% 2.14M 0.8996 9.96x 0.9119
K = 4 73.70% 2.47M 0.8842 8.64x 0.9238
K = 8 73.45% 2.12M 0.9006 10.06x 0.9240
K = 16 73.38% 1.81M 0.9153 11.80x 0.9256

The following 2n dimensions encode the edge information of the network, if we view the network as
a directed acyclic graph with each layer as a node in the graph. In particular, the 2n dimensions are
composed of two n-dim vectors, where one represents the edges incoming to the code and the other
one represents the edges outgoing from the node. The nodes in the directed acyclic graph can be
topologically sorted, which will give each layer an index. For an edge from node i to j, the (j− i)th
element in the outgoing vector of node i and the incoming vector of node j will be 1. We are sure
that j is larger than i because all the nodes are topologically sorted. With this representation, we can
describe the connection information in a complex network architecture.

6.3 ABLATION STUDY

Impact of number of kernels K: We study the impact of the number of kernels K. We conduct
experiments on CIFAR-100 and use ResNet-34 as the teacher network. We vary the value of K and
fix the number of evaluated architectures to 160. The results are summarized in Table 4. We can see
that K = 4, 8, 16 yield much better results than K = 1. Also the performance is not sensitive to K
as K = 4, 8, 16 yield similar results. In our main experiments, we fix K = 8.

Impact of adding skip connections: Our search space is defined based on three operations: layer
removal, layer shrinkage and adding skip connections. A key difference between our search space
and N2N Ashok et al. (2018) is that they only support layer removal and shrinkage do not support
adding skip connections. To validate the effectiveness of adding skip connections, we conduct
experiments on CIFAR-100 and on three architectures. In Table 5, ’Ours - removal + shrink’ refers
to the search space without considering adding skip connections and ’Ours’ refers to using the full
search space. We can see that ’Ours’ consistently outperforms ’Ours - removal + shrink’ across
different teacher networks, proving the effectiveness of adding skip connections.

Impact of the maximization of the acquisition function: As mentioned in Section 3.2, we have
two choices to maximize the acquisition function EIt(x): randomly sampling (RS) and evolutionary
algorithm (EA). We conduct the experiments to compare RS and ES to compress ResNet-34 on
CIFAR-100. We find that although EA is empirically better than RS in terms of maximizing EIt(x),
EA is slightly worse than RS in terms of the final search performance as shown in Table 6. For
any EIt(x), the solution found by EA xEA may be better than the solution found by RS xRS, i.e.,
EIt(xEA) > EIt(xRS). However, we observe that f(xEA) and f(xRS) are usually similar. We also
plot the values of f(x) for the evaluated architectures when using RS and EA to maximize the
acquisition function respectively in Figure 1. We can see that the function value of the evaluated
architectures grows slightly more stable when using RS to maximize the acquisition function then
using EA. Therefore, we choose RS in the following experiments for the sake of simplicity.

6.4 COMPARISON TO TPE (BERGSTRA ET AL., 2011)

Neural architecture search can be viewed as an optimization problem in a high-dimensional and
discrete space. There are existing optimization methods such as TPE (Bergstra et al., 2011) and
SMAC (Hutter et al., 2011) that are proposed to handle such input spaces. To further justify our idea
to learn a latent embedding space for the neural architecture domain, we now compare our method
to directly using TPE to search for compressed architectures in the original hyperparameter value
domain.

TPE (Bergstra et al., 2011) is a hyperparameter optimization algorithm based on a tree of Parzen
estimator. In TPE, they use Gaussian mixture models (GMM) to fit the probability density of the
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Table 5: Ablation study for adding skip connections.

CIFAR-100 Accuracy #Params Ratio Times f(x)
ResNet-18 Ours - removal + shrink 72.57% 1.42M 0.8733 8.85× 0.9062

±0.58% ±0.52M ±0.0461 ±3.97× ±0.0081
Ours 73.83% 1.87M 0.8335 6.01× 0.9123

±1.11% ±0.08M ±0.0073 ±0.26× ±0.0151
ResNet-34 Ours - removal + shrink 73.72% 2.75M 0.8711 8.01× 0.9205

±1.33% ±0.55M ±0.0257 ±1.70× ±0.0117
Ours 73.68% 2.36M 0.8895 9.08× 0.9246

±0.57% ±0.15M ±0.0069 ±0.59× ±0.0076

Table 6: Ablation study for the maximization of the acquisition function.

CIFAR-100 Accuracy #Params Ratio Times f(x)
RS, K = 1 73.42% 2.68M 0.8745 7.97x 0.9181
RS, K = 8 73.45% 2.12M 0.9006 10.06x 0.9240
EA, K = 1 71.52% 1.24M 0.9420 17.23x 0.9056
EA, K = 8 72.40% 2.15M 0.8990 9.90x 0.9104

hyperparameter values, which indicates that they determine the similarity between two architec-
ture configurations based on the Euclidean distance in the original hyperparameter value domain.
However, instead of comparing architecture configurations in the original hyperparameter value do-
main, our method transforms architecture configurations into a learned latent embedding space and
compares them in the learned embedding space.

We first do not consider adding skip connections between layers and focus on layer removal and
layer shrinkage only, i.e., we search for a compressed architecture by removing and shrinking layers
from the given teacher network. Therefore, the hyperparameters we need to tune include for each
layer whether we should keep it or not and the shrinkage ratio for each layer. This results in 64 hy-
perparameters for ResNet-18 and 112 hyperparameters for ResNet-34. We conduct the experiments
on CIFAR-100 and the results are summarized in the Table 7. Comparing ‘TPE - removal + shrink’
and ‘Ours - removal + shrink’, we can see that our method outperforms TPE and can achieve higher
accuracy with a similar size.

Now, we conduct experiments with adding skip connections. Besides the hyperparameters men-
tioned above, for each pair of layers where the output dimension of one layer is the same as the
input dimension of another layer, we tune a hyperparameter representing whether to add a skip con-
nection between them. The results in 529 and 1717 hyperparameters for ResNet-18 and ResNet-34
respectively. In this representation, the original hyperparameter space is extremely high-dimensional
and we think it would be difficult to directly optimize in this space. We can see from the table that
for ResNet-18, the ‘TPE’ results are worse than ‘TPE - removal + shrink’. We do not show the
‘TPE’ results for ResNet-34 here because the networks found by TPE have too many skip connec-
tions, which makes it very hard to train. The loss of those networks gets diverged easily and do not
generate any meaningful results. Based on the results on ‘layer removal + layer shrink’ only and the
results on the full search space, we can see that our method is better than optimizing in the original
space especially when the original space is very high-dimensional.

We would like to point out that TPE (Bergstra et al., 2011) and SMAC (Hutter et al., 2011) focus
on improving Sequential Model-Based Optimization (SMBO) methods while our novelty is not in
the use of Bayesian optimization methods. Our main contribution is the incrementally learning of
an embedding to represent the configuration of network architectures such that we can carry out
the optimization over the learned space instead of the original domain of the value of configuration
parameters. Our method is complementary to TPE (Bergstra et al., 2011) and SMAC (Hutter et al.,
2011) and can be combined with them when being applied to NAS.
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Figure 1: Comparison between random sampling (RS) and evolutionary algorithm (EA) for max-
imizing the acquisition function. Left: Value of f(x) vs. Index of evaluated architecture. Right:
Histogram of values of f(x).

Table 7: Comparison to TPE (Bergstra et al., 2011).

CIFAR-100 Accuracy #Params Ratio Times f(x)
ResNet-18 TPE - removal + shrink 70.60% 1.30M 0.8843 8.99x 0.8849

±0.69% ±0.28M ±0.0249 ±2.16x ±0.0111
TPE 65.17% 1.54M 0.8625 11.82x 0.8041

±3.14% ±1.42M ±0.1267 ±7.69x ±0.0595
Ours - removal + shrink 72.57% 1.42M 0.8733 8.85x 0.9062

±0.58% ±0.52M ±0.0461 ±3.97x ±0.0081
Ours 73.83% 1.87M 0.8335 6.01x 0.9123

±1.11% ±0.08M ±0.0073 ±0.26x ±0.0151
ResNet-34 TPE - removal + shrink 72.26% 2.36M 0.8893 9.24x 0.9065

±0.83% ±0.45M ±0.0211 ±1.59x ±0.0072
Ours - removal + shrink 73.72% 2.75M 0.8711 8.01x 0.9205

±1.33% ±0.55M ±0.0257 ±1.70x ±0.0117
Ours 73.68% 2.36M 0.8895 9.08x 0.9246

±0.57% ±0.15M ±0.0069 ±0.59x ±0.0076

6.5 RANDOM SAMPLING IN SEARCH SPACE

We need to randomly sample architectures in the search space when optimizing the acquisition
function. As mentioned in Section 3.2, we sample the architectures by sampling the operations to
manipulate the architecture of the teacher network. During the process, we need to make sure the
layers in the network are still compatible with each other in terms of the dimension of the feature
map. Therefore, We impose some conditions when we sample the operations in order to maintain
the consistency between between layers.

For layer removal, only layers whose input dimension and output dimension are the same are allowed
to be removed. For layer shrinkage, we divide layers into groups and for layers in the same group,
the number of channels are always shrunken with the same ratio. The layers are grouped according
to their input and output dimension. For adding skip connections, only when the output dimension of
one layer is the same as the input dimension of another layer, the two layers can be connected. When
there are multiple incoming edges for one layer in the computation graph, the outputs of source
layers are added up to form the input for that layer. When compressing ShuffleNet, we also slightly
modify the original architecture before compression. We insert a 1 × 1 convolutional layer before
each average pooling layer. This modification increases parameters by about 10% and does not
significantly influence the performance of ShuffleNet. Note that the modification only happens when
we need to compress ShuffleNet and does not influence the performance of the original ShuffleNet
shown in Table 2.
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Figure 2: Comparison between our method and random search (RS) baseline. Left: Value of f(x)
vs. Index of evaluated architecture. Right: Histogram of values of f(x).

Table 8: Comparison between different objective functions. ‘Euclidean’ refers to regressing the
function value with a Euclidean loss. ‘Marginal’ refers to maximizing the log marginal likelihood.
‘Posterior’ is our choice and refers to maximizing the predictive posterior probability.

CIFAR-100 Accuracy #Params Ratio Times f(x)
VGG-19 Euclidean 70.95% 2.47M 0.8771 9.62× 0.9453

±1.07% ±1.26M ±0.0627 ±4.55× ±0.0092
Marginal 69.90% 1.50M 0.9254 16.14× 0.9422

±0.69% ±0.68M ±0.3382 ±9.22× ±0.0071
Posterior 71.41% 2.61M 0.8699 7.99× 0.9518

±0.75% ±0.61M ±0.0306 ±1.99× ±0.0158
ResNet-18 Euclidean 71.67% 1.62M 0.856 7.07× 0.8917

±0.67% ±0.27M ±0.0243 ±1.09× ±0.0137
Marginal 72.80% 1.72M 0.8467 6.57× 0.9033

±1.11% ±0.18M ±0.0160 ±0.67× ±0.0094
Posterior 73.83% 1.87M 0.8335 6.01× 0.9123

±1.11% ±0.08M ±0.0073 ±0.26× ±0.0151
ResNet-34 Euclidean 72.87% 2.49M 0.8834 8.90× 0.9127

±1.11% ±0.60M ±0.2814 ±2.04× ±0.0103
Marginal 73.11% 3.34M 0.8435 6.47× 0.9059

±0.57% ±0.48M ±0.0224 ±0.89× ±0.0134
Posterior 73.68% 2.36M 0.8895 9.08× 0.9246

±0.57% ±0.15M ±0.0069 ±0.59× ±0.0076

6.6 ANALYSIS OF RANDOM SEARCH BASELINE

We observe that the random search (RS) baseline which maximizes f(x) with random sampling
can achieve very good performance. To analyze RS in more detail, we show the value of f(x) for
the 160 architectures evaluated in the search process in Figure 2. The specific setting we choose is
ResNet-34 on CIFAR-100. We can see that although RS can sometimes sample good architectures
with high f(x) value, it is much more unstable than our method. The function value of the evaluated
architectures selected by our method has a strong tendency to grow as we search more steps while
RS does not show such trend. Also, from the histogram of values of f(x), we can see that RS has a
much lower chance to get architectures with high function values than our method. This is expected
since our method leverages the learned architecture embedding or the kernel function to carefully
select the architecture for evaluation while RS just randomly samples from the search space. We can
conclude that our method is much more efficient than RS.
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6.7 CHOICE OF THE OBJECTIVE FUNCTION

We discuss the possible choices of the objective function for learning the embedding space in this
section. In our experiments, we learn the LSTM weights θ by maximizing the predictive posterior
probability, i.e., minimizing the negative log posterior probability as defined in Eq. 5. There are two
other alternative choices for the objective function as suggested by the reviewers. We discuss the
two choices and compare them to our choice in the following text.

Intuitively, a meaningful embedding space should be predictive of the function value, i.e, the per-
formance of the architecture. Therefore, a reasonable choice of the objective function is to train the
LSTM by regressing the function value with a Euclidean loss. Technically, this is done by adding a
fully connected layer FC(·; θ′) after the embedding, whose output is the predicted performance of
the input architecture. However, directly training the LSTM by regressing the function value does
not let us directly evaluate how accurate the posterior distribution characterizes the statistical struc-
ture of the function. As mentioned before, the posterior distribution guides the search process by
influencing the choice of architectures for evaluation at each step. Therefore, we believe maximiz-
ing the predictive posterior probability is a more suitable training objective for our search algorithm
than regressing the function value. To validate this, we have tried changing the objective function
from Eq. 5 to the squared Euclidean distance between the predicted function value and the true func-
tion value: 1

|D|
∑

i:xi∈D(FC(h(xi; θ); θ
′) − f(xi))2. The results are summarized in Table 8. We

observe that maximizing the predictive posterior probability consistently yields better results than
the Euclidean loss.

Another possible choice of the objective function is to maximize the log marginal likelihood
log p (f(D) | D; θ), which is the conventional objective function for kernel learning (Wilson et al.,
2016a;b). We do not choose to maximize log marginal likelihood because we empirically find that
maximizing the log marginal likelihood yields worse results than maximizing the predictive GP
posterior as shown in Table 8. When using the log marginal likelihood, we observe that the loss is
numerically unstable due to the log determinant of the covariance matrix in the log marginal likeli-
hood. The training objective usually goes to infinity when the dimension of the covariance matrix
is larger than 50, even with smaller learning rates, which may harm the search performance. There-
fore, we learn the embedding space by maximizing the predictive GP posterior instead of the log
marginal likelihood.
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