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ABSTRACT

Deep neural networks (DNN5s) perform well on a variety of tasks despite the fact
that most used in practice are vastly overparametrized and even capable of perfectly
fitting randomly labeled data. Recent evidence suggests that developing "com-
pressible" representations is key for adjusting the complexity of overparametrized
networks to the task at hand and avoiding overfitting (Arora et al., 2018; Zhou
et al., 2018). In this paper, we provide new empirical evidence that supports this
hypothesis, identifying two independent mechanisms that emerge when the net-
work’s width is increased: robustness (having units that can be removed without
affecting accuracy) and redundancy (having units with similar activity). In a series
of experiments with AlexNet, ResNet and Inception networks in the CIFAR-10
and ImageNet datasets, and also using shallow networks with synthetic data, we
show that DNNs consistently increase either their robustness, their redundancy, or
both at greater widths for a comprehensive set of hyperparameters. These results
suggest that networks in the deep learning regime adjust their effective capacity by
developing either robustness or redundancy.

1 INTRODUCTION

Deep neural networks (DNNs) are capable of successfully learning from examples in a wide variety
of tasks. Though these networks are typically trained with large amounts of data, the number of
free parameters in their architectures is often several orders of magnitude greater than the number of
training examples. This overparametrization reflects the ability of DNNs to memorize entire datasets,
even with randomized labels (Zhang et al., 2016; 2017). Additionally, large networks not only tend
to match the performance of small ones, but often generalize better (e.g. Neyshabur et al. (2017b);
Frankle & Carbin (2018); Neyshabur et al. (2018); Novak et al. (2018)). Figure 1 demonstrates
this for a variety of modern networks trained in ImageNet and CIFAR-10. These observations raise
the question of how vastly overparametrized networks can perform well in structured tasks without
overfitting. While DNNs appear to adapt their capacity to the complexity of the given task, precisely
what causes them to do so remains an open question (Poggio et al., 2017).

Several previous studies have aimed to uncover why, out of the many optima an overparametrized
network can reach to achieve 100% training accuracy, they tend toward ones that generalize well
(Neyshabur et al., 2017b; Zhang et al., 2017; Neyshabur et al., 2018; Novak et al., 2018) often by
proving generalization bounds for simple models related to weight matrix norms or Rademacher
complexity (Bartlett et al., 2017; Neyshabur et al., 2017a; Arora et al., 2018; Neyshabur et al., 2018).
Frankle & Carbin (2018), showed that, in certain networks, the crucial computations were performed
by sparse subnetworks within them. In doing so, they suggested that large networks tend to perform
as well as or better than smaller ones because they more reliably contained fortuitously-initialized
“lottery ticket” subnetworks. Here, we focus on the question of why generalization ability does
not decrease as a network’s degree of overparametrization increases. We investigate two critical
properties of DNNs: robustness (how fragile the network is to removal of units) and redundancy (how
similar unit activity is). In doing so, we build off of theoretical work by Arora et al. (2018) and Zhou
et al. (2018), connecting the compressibility of DNNSs to their non-overfitting behavior. We find that
various DNNSs train toward regimes with different degrees of robustness and redundancy, but that at
least one of the two properties, if not both, consistently emerges as a model’s size is increased. Based
on these results, we offer interpretations of the various ways in which DNNs may constrain their
effective capacity to protect from overfitting.
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Figure 1: Classification accuracy does not deteriorate with model size factor. Top-1 accuracies
achieved across model sizes and datasets. (a) ResNet18s, Inception-v3s, and Inception-v3s with a
single layer varied trained in ImageNet, (b) Regularized AlexNets and ResNet56s with and without
training on random labels in CIFAR-10, (c) Glorot, He, and LeCun-initialized AlexNets in CIFAR-10.
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Figure 2: Some, but not all networks become more robust when model size is increased. (a)
ResNet18 trained in ImageNet, (b) Glorot-initialized AlexNet in CIFAR-10, (c) He-initialized
AlexNet in CIFAR-10. Each point shows the proportion of labels that did not change when the
percentage of units on the x-axis were randomly ablated. (a) and (b) show an increase in robustness
with model width while (b) and (c) illustrate that initialization affects robustness trends.

2 THE ROBUSTNESS-REDUNDANCY HYPOTHESIS

It has been observed that the increase of overparametrization without loss of generality for DNN
models relates to adjustments of the models complexity, given the task at hand (e.g. Arora et al.
(2018); Zhou et al. (2018)). Observations such as Figure 2a,b show empirically that certain large
networks are more robust to the ablation (dropout) of a fixed proportion of units than small ones
which might suggest that these large models are adjusting their complexity to the task at hand.
However, Figure 2c shows that this robustness can be dependent on network initialization, and to
our knowledge, the mechanisms responsible for these observations have not yet been the subject
of empirical investigation. Given an increased level of overparametrization, we contemplate six
capacity-constraining features which could prevent a network from overfitting. (We cannot a priori
exclude the interplay of some of these aspects.)

(i) Redundant functional units: units whose activations can be expressed linearly in terms of other
units and which affect the output of the network.

(ii) Redundant blocked units: units as above but which do not affect output.

(iii) Nonredundant blocked units: units with noncorrelated activity which do not propagate to affect
output.

(iv) Silent units: units that are sparsely activated across datapoints.

(v) Constant units: units that are consistently activated with low variance across datapoints.
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(vi) Semantically redundant units: units which are not linearly correlated to others and which provide
a different representation from the previous one, similarly related to the learning task.

Metrics: In this work, we provide measures to aid in distinguishing which of these features that large
models may be developing in order to constrain their capacity. Consider a layer £ with n units inside
a DNN and a dataset D = {x;, y;}/,, with m samples. We define robustness as the ability of the
network to output consistent labels unperturbed and when unital ablations (dropouts) are applied to a
certain proportion of its units. We quantify robustness by applying ablations to units during evaluation
as done by (Cheney et al., 2017). We randomly apply these ablations to different proportions of units
in our networks to obtain that network’s ablation curve as reported in Figure 2. We use the area under
these ablation curves as a metric for robustness. This measure should aid in distinguishing features
(i, vi) where we expect robustness to increase as n grows larger from features (ii, iii, iv) where we
expect it to remain unchanged.

We define redundancy as a property of a model which can be quantified through two metrics,
compressibility and similarity. Given a layer ¢ we measure its compressibility by quantifying
the amount of principal components needed to explain 95% of the activational variance in the n
units. We also introduce similarity as a measure of a special type of redundancy in which units are
highly correlated. We determine two units in the same layer to be similar if their absolute valued
Pearson correlation coefficient exceeds a certain threshold (here, we use 0.5). Figure B2 shows the
distributions of these coefficients for several AlexNet models. The use of both compressibility and
similarity should discriminate features (i, ii), for which we expect an increase of both measures as n
increases, from features (iv, v) for which we expect increasing compressibility and stable similarity
(because Pearson correlation normalizes variance).

Redundancy and robustness do not imply each other. To show this, let S and £ denote respectively
a small and large deep network, both trained on the dataset D. Suppose that the generalization ability
of L is equal to or greater than that of S. We provide an example for each of four possible scenarios.

L is more robust and redundant than S: This scenario could be constructed using redundant functional
neurons (i). Given S, we could duplicate each layer ¢ with outgoing weights w in S, except for
the output layer, so that the new layers were [/, /] composites with [, '] outgoing weights. This
would increase redundancy and robustness because each unit would have a redundant twin, increasing
robustness because each a twin could continue to serve a units function if it were ablated.

L is equally or less robust and more redundant than S: This scenario could result from a “weight
balancing” effect. As in the previous case, we could duplicate the neurons in each layer, but also
add a large, opposite-signed constant 7 to the halved output weights of each unit and its duplicate
so that the new layers were [(, {] composites with [ + 7, 5 — 1] outgoing weights. As 7 grows
larger, outputs become less robust to ablation. Such an £ would be more redundant, as each unit has
a corresponding redundant twin (i), but at the same time less robust as the pairs need to balance each
other for stability. A second way this scenario could result is from the addition of silent units (iv)
which would tend make activation vectors more compressible (though not more similar), but would
not make the network more robust to the ablation of a fixed proportion of units.

L is more robust and equally or less redundant than S: This can occur in certain cases in which the
two models learn qualitatively different representations by forming units that are merely semantically
redundant (vi). As an example, suppose that S learned holistic class representations but that £ had
the capacity to learn more complex bag-of-features class representations. If so, £ would be more
robust because of its bag-like representations without necessarily being more redundant.

L is equally or less robust and redundant than S: Given S, such an £ could be created by adding
nonredundant blocked units (iii) to S. This operation does not increase redundancy, as the units are
not linearly correlated, neither robustness as the smaller proportion of essential units in £ would be
offset by an increase in the number of units dropped out in with the ablation of a fixed proportion of
units.

The robustness-redundancy hypothesis: Consider a small deep network S and a large one L, both
with the same architecture, trained with the same explicit regularization scheme, each with a tuned set
of hyperparameters and a the same random initialization scheme. Based on our findings, our central
hypothesis is that alongside £ generalizing as well or better than S, £ will be more robust and/or
more redundant than S due to the effects of autoregularization.
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Dataset Network Initialization Optimizer Regularizers L.Rate-B.Size
Uncorr. 10 dim MLP Normal* Momentum None Best
Uncorr. 10k dim ~ MLP Normalx Momentum, SGD o Best
Adam *

CIFAR-10 AlexNet Glorot/LeCun/Hex Momentum None, DA, DO, WDx* Bestx
(+ rand. labelsx) ResNet56 Glorot Momentum BN, DA, WD Bestx
ImageNet ResNgtlS Glorot Momentum BN, DA, WD Bestx

Inception-v3 Normal RMSProp BN, DA, WD Best

Table 1: Network training and performance details: “BN” refers to batch normalization, “DA”
refers to data augmentation, “DO” refers to dropout, and “WD” refers to L2 weight decay. “Best”
refers to learning rate/batch size combinations that we found to achieve the highest accuracy. Stars
(%) indicate factors for which we tested different hyperparameters/variants.

3 METHODS

To investigate redundancy and robustness across common cases used for machine learning research,
we experiment on a variety of different tasks, networks, initializations, sizes, architectures, optimizers,
and regularizers. Table 1 gives details for the training and performance of the networks and datasets
we use. Features that we tested multiple variants of are marked with a star (x). Further details for all
networks can be found in appendix A. To see how robustness and redundancy vary as functions of a
model’s degree of overparametrization, we tested variants of each network in which the number of
weights/filters in each layer/block/module were multiplied by factors of 1/4, 1/2, 1, 2, and 4.

Networks: For experiments with synthetic, uncorrelated data, we used simple multilayer perceptrons
(MLPs) with 1 hidden layer of 128 units for the 1x model size and ReLU activations. For experiments
using CIFAR-10, we used scaled-down AlexNet models with two convolutional and two fully-
connected layers based on Zhang et al. (2016) and ResNet56s with initial convolutions and 3 block
layers based on He et al. (2016). For the ImageNet dataset, we used ResNet18s with 4 block layers
also based on He et al. (2016) as well as Inception-v3 networks based on (Szegedy et al., 2016).
Figure 1 shows the testing accuracy achieved by several of our ImageNet and CIFAR-10 networks.
For these and all others we test, increasing model size results in either equal or improved performance.
Due to hardware restrictions, we were not able to train any 2x or 4x sized Inception-v3s and instead
experimented with versions of these networks where a single layer’s size varied from 1/4x to 4x.
Figure A1 plots the number of trainable parameters for each of our networks, showing that they
increase exponentially with model size.

Datasets: We used the ImageNet dataset with approximately 1 million training images and 50,000
images for validation and the CIFAR-10 dataset with a 50,000/5,000/10,000 train/validation/test split
for our larger-scale experiments. For small-scale ones using MLPs, we used synthetic, uncorrelated
data generated by randomly-initialized teacher MLPs with binary output identical in architecture
to the 1/4x MLP models that we trained. We verified that our teacher networks output each label
for between 40% and 60% of random inputs. We trained and evaluated our MLPs by default on
datasets of 1,000 examples. All networks were trained for a fixed number of iterations except for the
CIFAR-10 AlexNets which were trained to the epoch of maximum validation accuracy. However,
Figure C3 demonstrates that the trends in robustness and redundancy that we analyze are invariant
to the amount of training time after convergence in the ResNet18s, and we observe the same for all
other models.

Initializations: By default, we initialized our MLP and Inception-v3 networks using random normal
distributions with mean 0 and a fixed o. In the MLPs, we experimented with various values for . For
our AlexNet and ResNet models, we defaulted to using normal Xavier/Glorot initialization with mean
0 and relatively small-variance (02 =2/(fan_in+ f an_out)). However, in the AlexNets, we also

experiment with medium-variance LeCun initialization (02 =V3/f an_in) and high-variance He
initialization (02 =2/ fan_in) as well as uniform initialization distributions.
Optimizers: We use RMSProp in the Inception-v3s and the momentum optimizer in all other models

by default. We also experiment with using momentumless stochastic gradient descent (SGD) and
Adam with our MLPs.

Regularizers: We train our MLPs and AlexNets by default with no explicit regularization (except
for early stopping in the AlexNets). We train all ResNets and the Inception-v3 networks with batch
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Figure 3: Robustness and redundancy emerge in ResNet18s, robustness alone in Inception-v3s
(ImageNet): (a) Areas under ablation curves, (b) principle component compressibility that retains
95% of activational variance, (c) the average number of similar neurons per neuron. Each point is an
average across layers.

normalization, data augmentation, and weight decay. To test how explicit regularization contributes
to robustness and redundancy, we also analyze AlexNets trained with data augmentation, dropout,
weight decay, and all three combined.

Learning Rates and Batch Sizes: Typically in DNNs, varying batch size and learning rate jointly
by a constant factor tends to affect training time but not performance (Krizhevsky, 2014), and they
are commonly varied in practice. To see how this affects robustness and redundancy, we experiment
with varying learning rate and batch size jointly by factors of 1/4, 1, and 4.

Samplings and Replicates: Due to the the number of units in the models and the size of the datasets,
fully analyzing all activation vectors for convolutional filters was intractable. Instead, we based
our measures of robustness and redundancy on a sampling of units capped at 50,000 per layer. We
average across three independent samplings and find that the variance between them is negligible.
For each model, we also average across layers, and except for the ResNet18s and Inception-v3s, we
also average results across three independently-trained replicates. All error bars for robustness and
compressibility plots show standard deviation between independently trained model replicates when
applicable and independent samplings of units when not. They are typically to small to appear in
plots. Those for similarity show average standard deviation within trials. For all experiments, we
display only results for the test/validation set because results from the train set (except for accuracy)
were almost identical.

4 RESULTS

Here, we present our findings for how robustness and redundancy vary as a function of model size.
We experiment across a wide variety of networks, hyperparameters, and training methods, show that
robustness and/or redundancy emerge in large models across cases used throughout modern machine
learning research.

Robustness emerges and redundancy varies in modern ImageNet models. Figure 3 shows that
the ResNet18 and Inception-v3 models both become more robust as their model size increases.
However, they demonstrate the independence of redundancy and robustness with the ResNet18s de-
veloping more compressibility and much more similarity, and the Inception-v3s losing compressibility
with size. We take this discrepancy between robustness and redundancy trends as strong evidence that
these models, particularly the Inception-v3s, are autoregularizing largely by forming qualitatively
different representations at different sizes with units that are merely semantically redundant at large
sizes. We also observe that compressibility and similarity do not predict each other particularly well,
especially in the case of the ResNet18s, potentially due to different proportions of redundant and
silent or constant units in these networks.

Robustness and redundancy develop in networks trained on randomly-labeled data. Our cen-
tral question revolves around how models are able to constrain their effective capacity to the task at
hand, so it is natural to study robustness and redundancy in networks trained to memorize randomly



Under review as a conference paper at ICLR 2020

CIFAR-10 CIFAR-10

g 1.0 100 40 CIFAR-10

-‘r_:u 0.8 — g 80 = g Network — Labels

Q > Oc —$— AlexNet

< 0.6 E 60 —._—./’/_:_4 3e 4= AlexNet-Random

g @ T == 2 B 50— —#— ResNetse

2 0.4 o 40 v a5 gf =¥= ResNet56-Random

& g = E810

5 0:2 £ 20 &

=) ) #

< 0.0 T [ rrrr[ T T 0 T T T TTTT] 1 0

1/4x  1/2x 1x 2X 4x 1/4x  1/2x 1x 2x 4x 1/4x  1/2x 1x 2X 4x
Model Size Factor Model Size Factor Model Size Factor

(a) (b) (©)

Figure 4: Robustness and/or redundancy emerge in AlexNet and ResNet18 models, even when
trained on randomly labeled data (CIFAR-10): (a) Areas under ablation curves, (b) principle
component compressibility that retains 95% of activational variance, (c) the average number of
similar neurons per neuron. Each point is an average across layers.

labeled images. Figure 4 compares our results with the standard AlexNet and ResNet56 models
trained on both uncorrupted and randomly-labeled CIFAR-10. With random labels, all networks of
the 1x model size or greater were able to fit the training set with perfect or near-perfect performance.
Even when fitting randomly labeled data, these models develop significant levels of redundancy
and/or robustness at large sizes. Curiously, in the ResNet56 models, fitting random labels caused
robustness to flatline but redundancy to increase relative to the models trained on correctly-labeled
data. These trends strongly indicate that robustness and redundancy do not predict generalization
capability.

Robustness and redundancy are sensitive to initialization variance. Some recent work has sug-
gested that network initialization has a large influence over generalization behavior (Frankle & Carbin,
2018; Chizat et al., 2019; Woodworth et al., 2019). To see what effects it may have on robustness
and redundancy, we test initializations with differing levels of variance. Figure 5 presents results
for AlexNets trained with high-variance He, medium-variance LeCun, and low-variance Glorot
initializations. Robustness increases with model size for the Glorot and Lecun-initialized nets but
exhibits a fairly flat trend for the He-initialized nets, which demonstrate a case where robustness does
not emerge at large size. For the Lecun and He-initialized nets, some model size factor doublings
coincide with more than a doubling of the number of similar units per unit, perhaps reflecting a
fairly sharp transition to a differently-behaving regime when initialization variance becomes high
enough. That fact that the He-initialized nets exhibit a strongly positive trend in redundancy but not
robustness might be indicative of redundant blocked units. We also test AlexNets with uniform He,
LeCun, and Glorot initializations and find their results (Figure C4) to be very similar to those of the
normal initialized ones, suggesting that the initialization distribution matters little compared to the
initialization variance.

Adding to our analysis of initializations, Figure C5 shows the results of altering initialization variance
in our MLPs trained on uncorrelated data. Those initialized with small variance develop more
redundancy at larger model sizes, the opposite trend as in our AlexNets. We also find that the
MLPs initialized with very high variance develop neither more redundancy nor robustness. However,
Figure C6 shows that the same is not the case for similar MLPs trained on low dimensional data,
suggesting that this phenomenon in which neither robustness or redundancy increase is related
to high dimensionality in data. We restrict our robustness-redundancy hypothesis only to deep
models and show that it applies to state of the art networks, but this case with a single layer MLP,
high initialization, and high dimensional, uncorrelated data presents a limitation for our framework.
We speculate that these models may be operating in a regime with unique representations or with
nonredundant blocked units at large size factors.

The robustness-redundancy hypothesis holds under a number of additional tests. Figure C7,
Figure C8, Figure C9, and Figure C10 show that while individual layers in our ResNets and Inception-
v3s display unique trends, each develops more redundancy or robustness at higher sizes and generally
follows the trend of its network as a whole. There is no consistent relationship between a layer’s
depth and its robustness or redundancy.
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Figure 5: Initialization influences robustness and redundancy; high variance initialization leads
to redundancy without robustness in AlexNets (CIFAR-10) (a) Areas under ablation curves, (b)
principle component compressibility that retains 95% of activational variance, (c) the average number
of similar neurons per neuron. Each point is an average across layers.

Because we speculate that redundancy and robustness in DNNGs is a result of autoregularization, it
is also natural to analyze their trends in networks trained with and without explicit regularization.
Figure C11 shows that data augmentation, dropout, weight decay, and all three together change the
overall amount of redundancy or robustness developed in the CIFAR-10 AlexNet models, but they
did not change the trends.

To probe the influence of optimizers, we test training the MLP models using stochastic gradient
descent (SGD), momentum, and Adam. Figure C12 shows that varying these optimizers can affect
how much redundancy or robustness develop, but they do not change overall trends. Additionally,
to see if robustness and redundancy depend on learning rate and batch size, we test the ResNet18,
ResNet56, and AlexNet models trained on ImageNet and CIFAR-10 with several experiments in
which we vary learning rate and batch size while keeping them proportional. Figure C13 and
Figure C14 show that this has little to no effect on outcomes.

5 RELATED WORK AND DISCUSSION

In this work, we empirically analyze models in terms of their activations (Novak et al., 2018; Morcos
et al., 2018a;b) which makes our results contextual to input data. Because of this, we are able to scale
our analysis to state of the art networks like ResNet18 and Inception-v3. And by focusing not on
the broad question of generalization, but on the subproblem of why networks do not perform worse
when their size is increased, we are able to show that redundancy and robustness are central to how
networks autoregularize.

A related branch of work has focused on the relationship between a network’s compressibility and
its generalization behavior (Zhou et al., 2018), and insights by Alvarez & Salzmann (2016); Arpit
et al. (2017); Maennel et al. (2018); Ansuini et al. (2019), and Gidel et al. (2019) suggest that DNNs
preferably learn simple representations over complex ones. Network compression approaches based
on pruning unimportant units or weights developed by Han et al. (2015); Raghu et al. (2016); Hu et al.
(2016); Advani & Saxe (2017); Frankle & Carbin (2018) and Li et al. (2018) have suggested that the
crucial computations within networks only tend to be performed by a relatively small subset of the
weights and units within. Meanwhile, redundancy-based compression methods which prune or merge
redundant units have been developed by others including Gong et al. (2014); Srinivas & Babu (2015),
and Wang et al. (2019). Our results generally validate both of these approaches, but we show that
different networks develop different compressible features and to different extents, so we speculate
that both pruning unimportant units and compressing redundant units may be complementary tools
for developing new compression algorithms. We also show that redundancy is highly sensitive to a
network’s initialization while its accuracy is not. This suggests that certain compression techniques
could be improved greatly by validating over multiple initializations in order to produce maximally
redundant models. We also make progress toward tightening our understanding of how compressible
DNNs are which Zhou et al. (2018) shows can lead to improved practical generalization bounds.
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Arora et al. (2014) suggests that redundancy implies robustness, and Morcos et al. (2018b) connects
a network’s robustness to the flattening of a layers’ activation space along the direction of a single
activation vector to improved generalization performance. However, our findings suggest that these
trends may not hold for all networks and that redundancy and robustness poorly predict generalization.
Our work is also related to Maennel et al. (2018) who takes a theoretical approach to show that model
networks in the overparametrized regime tend to develop weight vectors that align to a set of discrete
directions that are determined by the input data. Our work suggest that their conclusions may retain a
high degree of explanatory power in some but not all state of the art cases.

Despite a great deal of recent progress, to our knowledge, ours is the first work to date that has
quantitatively studied the connections between overparametrization, robustness, and redundancy
together. We analyze these phenomena across a wide range of networks which may aid in under-
standing how well theoretical findings (which are typically based on simple models) generalize to
common networks in machine learning. We find that each network we analyze displays unique
trends in robustness, compressibility, and similarity, yet that all deep ones develop more redundancy
and/or robustness at large model sizes. We also demonstrate that the two are highly dependent on
initializations and that high variance increases redundancy in some networks and decrease it in others.
Limitations of our work include that we do not analyze cases with varying network depth and the fact
that our single-layer MLPs with large initializations trained with high-dimensional, uncorrelated data
do not seem to develop either increased robustness or redundancy at large model sizes. However, a
recent strand of research has emerged illluminating similarities between deep networks and kernel
machines (Belkin et al., 2018; Jacot et al., 2018; Liang & Rakhlin, 2018) and suggesting that networks
with high-variance initializations can operate in a kernel-like regime (Chizat et al., 2019; Woodworth
et al., 2019) which we suspect relates to these findings for networks initialized with large variance.

6 CONCLUSION

In this paper, we jointly analyze the robustness and redundancy of deep neural networks with the
aim of understanding why generalization ability does not tend to decrease as a network’s degree of
overparametrization increases. In doing so, we find that robustness and redundancy do not imply
each other but that one or the other or both consistently increase alongside overparametrization. We
connect these observations to various capacity-constraining features which DNNs may develop in
order to support the connection between compressibility and generalization and to shed light on the
features networks may develop to avoid overfitting. In doing so, we paint a more complex picture of
robustness and redundancy than much previous work has assumed. By illustrating the relationships
between these phenomena, we suggest various new research directions in theory of learning and
compression. We believe that together, these findings represent a milestone in understanding the
emergent properties of overparametrized neural networks.
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A NETWORK DETAILS
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Figure Al: Parameters: (a) Multilayer perceptrons, (b) AlexNets and ResNet56s, (c) ResNet18s,
Inception-v3s, and Inception-v3s with a single layer varied. The log number of trainable parameters
at each model size.

ResNet18s: These networks were off the shelf from He et al. (2016) for the ImageNet dataset. They
consisted of an initial convolution and batch norm followed by 4 building block (v1) layers, each with
2 blocks and a fully connected layer leading to a softmax output. All kernel sizes in the initial layers
and block layers were of size 7 x 7 and stride 2. All activations were ReLU. In the 1x sized model,
the convolutions in the initial and block layers used 64, 64, 128, and 256 filters respectively. After
Xavier/Glorot initialization, we trained them for 90 epochs with a default batch size of 256 an initial
default learning rate of 1 which decayed by a factor of 10 at epochs 30, 60, and 80. Training was
done on the ILSVRC 2012 dataset with approximately 1 million images, and evaluation was done on
50,000 validation images. Optimization was done with SGD using 0.9 momentum. We used batch
normalization, data augmentation with random cropping and flipping, and 0.0001 weight decay.

Inception-v3s: These networks were off the shelf from Szegedy et al. (2016) for the ImageNet
dataset. For the sake of brevity, we will omit including the architectural details here. After using
a truncated normal initialization with o = 0.1, we trained them for 90 epochs with a default batch
size of 256 and initial default learning rate of 1 with an exponential decay of 4% every 8 epochs.
Training was done for 90 epochs on the ILSVRC 2012 dataset with approximately 1 million images,
and evaluation was done on 50,000 validation images. Optimization was done with the RMSProp
optimizer. We used a weight decay of 0.00004, augmentation with random cropping and flipping,
and batch norm with 0.9997 decay on the mean and an epsilon of 0.001 to avoid dividing by zero.
Due to hardware constraints, we were not able to train 2x and 4x variants of the network. Instead, we
trained the 1/4x-1x sizes along with versions of the network with 1/4x-4x sizes for a the "mixed 2: 35
x 35 x 288" layer only.

AlexNets: We use a scaled-down version of the network developed by Krizhevsky et al. (2012)
for the CIFAR10 dataset similar to the one used by Zhang et al. (2016). The network consisted of
a 5-layer neural network with two convolutional layers, two dense layers and a readout layer. In
each convolutional layer, 5 x 5 filters with stride 1 were applied, followed by max-pooling with
a 3 x 3 kernel and stride 2. Importantly, local response normalization with a radius of 2, alpha
= 2% 1079, beta = 0.75 and bias = 1.0 was applied after each pooling which has an effect of
negatively correlating different units. Each layer contained bias terms, and all activations were ReLU.
In the 1x sized model, the convolutions used 96 and 256 filters, while the dense layers used 384,
and 192 units. We trained these networks on 45,000 images with early stopping based on maximum
performance on a 5,000 image validation set. The test set was 10,000 images. Weights were optimized
with SGD using 0.9 momentum with an initial learning rate of 0.01, exponentially decaying by 5%
every epoch. By default, and unless otherwise stated, we used Xavier/Glorot initialization, a batch
size of 128, and no explicit regularizers.

ResNet56s: These networks were off the shelf from He et al. (2016) for the CIFAR-10 dataset. They
consisted of an initial convolution and batch norm followed by 3 building block (v1) layers, each
with 9 blocks, and a fully connected layer leading to a softmax output. Kernels in the initial layers
and block layers were of size 3 x 3 and stride 1. All activations were ReLU. In the 1x sized model,
the convolutions in the initial and block layers used 16, 16, 32, 64, and 128 filters respectively. After
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initializing with Xavier/Glorot initialization, we trained them on 45,000 images for 182 epochs with
a default batch size of 128 and an initial default learning rate of 1 which decayed by a factor of 10 at
epochs 91 and 136. Testing was done on 10,000 images. Optimization was done with SGD using 0.9
momentum. We used batch normalization, data augmentation with random cropping and flipping
(except for our variants trained on randomly labeled data), and 0.0002 weight decay.

MLPs: We use simple multilayer perceptrons with either 10 or 10,000 inputs and binary output.
They contained a single hidden layer with 128 units for the 1x model sizes and a bias unit. All hidden
units were ReLLU activated. Weights were initialized using a normal distribution with default o of
0.01. Each was trained by default for 50 epochs on 1,000 examples produced by a 1/4x sized teacher
network with the same architecture which was verified to produce each output for between 40% and
60% of random inputs.

B DISTRIBUTION OF CORRELATION COEFFICIENTS

Our criterion for similarity was based on the Pearson correlation r between two units in a layer. We
considered two units to be similar if abs(r) was at least 0.5. Figure B2 shows the distribution of
all absolute valued correlation coefficients in unregularized, regularized, and random-label-fitting
AlexNets in CIFAR-10. In each of these networks, more similar neurons are found in the first
convolutional and final fully connected layers, and with the exception of the fully connected layers in
the regularized models, the tails of the distributions extend higher at higher model sizes.

C SUPPLEMENTAL FIGURES
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Figure B2: Absolute value correlation coefficients between neurons in AlexNet models: The
columns correspond to unregularized, regularized (data augmentation, dropout, and weight decay),
and random-label-fitting AlexNets in CIFAR-10. The rows correspond to hidden layers of the
networks. The first two of which are convolutional and the last two fully connected. Blue bars give
means. Each plot shows the distribution for the 1/4x, 1x, and 4x model sizes.
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Figure C3: Robustness and redundancy are invariant in ResNet18s under different amounts of
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and (d) similarity across training epochs after convergence in ResNet18.
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Figure C4: AlexNet robustness and redundancy trends with uniform initializations resemble
those with normal initializations (CIFAR-10). Trends in (a) accuracy, (b) robustness, (c) compress-
ibility, and (d) similarity with He, LeCun, and Glorot uniform initializations across size factors for
AlexNets.
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Figure C5: The emergence of redundancy is sensitive to initialization variance in MLPs trained
on 10,000 dimensional data. Trends in (a) accuracy, (b) robustness, (c) compressibility, and (d)
similarity with multiple initialization variances across size factors for MLPs trained on 10,000
dimensional synthetic uncorrelated data. The legend gives o for the normal weight initialization.
Each initialization results in similar, flat accuracy and robustness curves. Low variance initializations
developed more compressibility and similarity with size, but high variance did not.
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Figure C6: The emergence of redundancy is not sensitive to initialization variance in MLPs
trained on 10 dimensional data. Trends in (a) accuracy, (b) robustness, (c) compressibility, and
(d) similarity with multiple initialization variances across size factors for MLPs trained on 10,000
dimensional synthetic uncorrelated data. The legend gives o for the normal weight initialization.
Each initialization results in similar, flat accuracy and robustness curves. All models developed more
compressibility and similarity with size.
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Figure C7: ResNet56 robustness and redundancy layerwise (CIFAR-10): Trends in (a) robustness,
(b) compressibility, and (c) similarity among layers/blocks within ResNet56 in CIFAR-10. Each
layer/block has a unique curve, with the initial convolutional and final block layers exhibiting the
most robustness and redundancy.
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Figure C8: ResNet18 robustness and redundancy layerwise (ImageNet): Trends in (a) robustness,
(b) compressibility, and (c) similarity among layers/blocks within ResNet18 in ImageNet. The final
block layer is the most robust while the initial convolutional layer is the most compressible and
similar. This might be a sign of the phenomenon we describe as “weight balancing” or the formation
of silent or constant units in the block layers, particularly the final one.
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Figure C9: Inception-v3 robustness and redundancy layerwise (ImageNet): Trends in (a) robust-
ness, (b) compressibility, and (c) similarity among the final 35 x 35, 17 x 17, and 8 x 8 blocks within
Inception-v3 in ImageNet. Layers develop robustness and compressibility in order of their depth in
the network, while the final 17 x 17 layer is the most similar.
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Figure C10: Inception-v3 single layer robustness and redundancy layerwise (ImageNet): Trends
in (a) robustness, (b) compressibility, and (c) similarity among the final 35 x 35, 17 x 17, and 8 x 8
blocks within Inception-v3s in ImageNet as only the final 35 x 35 layer is varied in size. Varying the
size of a single layer has little or no effect on the redundancy and robustness of other layers.
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Figure C11: Explicit regularization affects amounts but not trends for robustness and redun-
dancy in AlexNets (CIFAR-10). Trends in (a) accuracy, (b) robustness, (c) compressibility, and (d)
similarity with various explicit regularizers across size factors for AlexNets. We test data augmenta-
tion, dropout, weight decay, and all three together against the unregularized control. Each regularizer
positively affects generalization performance, though weight decay only has a slightly positive effect.
None serve to change the general trends in robustness and redundancy, but they scale the curves up or
down. Data augmentation reduces robustness, compressibility, and similarity, possibly because it
forces the AlexNets to approximate a more complex function than nonaugmented data does. Dropout
and weight decay, however, have a large and small positive effect on robustness, compressibility, and
redundancy respectively. We attribute this to dropout forcing networks to develop redundant units to
cope with ablations and weight decay pushing the weights of the network toward a smaller subspace.
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Figure C12: Various optimizers result in different amounts but not different trends in robust-
ness and redundancy in MLPs (Uncorrelated 10,000 dimensional synthetic data). Trends in (a)
accuracy, (b) robustness, (c) compressibility, and (d) similarity with momentum, stochastic gradient
descent, and Adam optimizers across size factors for MLPs trained on 10,000 dimensional synthetic
uncorrelated data. All three optimizers result in similar, flat curves in accuracy and robustness but
increases for compressibility and similarity with size. Momentum results in a relatively high level of
compressibility and similarity, SGD results in a low level of both, and Adam results in relatively low
compressibility but high similarity. This may be a sign that these optimizers promote the development
of silent/constant and redundant units to differing degrees.
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Figure C13: Robustness and redundancy do not depend on learning rate and batch size factor in
ResNet18 (ImageNet). Trends in (a) accuracy, (b) robustness, (c) compressibility, and (d) similarity
across model sizes. We vary a constant factor k from 1/4 to 4 as a multiplier for the batch sizes and
learning rates. “Max” refers to the maximum batch size that could be used for training a model given
available hardware.
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Figure C14: The learning rate and batch size factor only has a slight effect on compressibility
in AlexNets and ResNet56s (CIFAR-10). Trends in (a) accuracy, (b) robustness, (c) compressibility,
and (d) similarity across model sizes for AlexNets and ResNet56s. We vary a constant factor & from
1/4 to 4 as a multiplier for the batch sizes and learning rates. 4x AlexNets with k& = 4 were not
trained due to hardware restrictions. Compressibility tends to be slightly higher with higher k.
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