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Abstract

While learning visuomotor skills in an end-to-end manner is appealing, deep neural
networks are often uninterpretable and fail in surprising ways. For autonomous
driving, models that explicitly represent objects may be more robust to new scenes
and provide intuitive visualizations. We describe a taxonomy of “object-centric"
models which leverage both object instances and end-to-end learning. In the
Grand Theft Auto V simulator, we show that object centric models outperform
object-agnostic methods in scenes with other vehicles and pedestrians, even with
an imperfect detector. We also demonstrate that our architectures perform well on
real world environments by evaluating on the Berkeley DeepDrive Video dataset.

1 Introduction

End-to-end approaches to visuomotor learning are appealing in their ability to discover which features
of an observed environment are most relevant for a task, and to be able to exploit large amounts of
training data to discover both a policy and a co-dependent visual representation. Yet, the key benefit
of such approaches—that they learn from task experience—is also their Achilles heel when it comes
to many real-world settings, where behavioral training data is not unlimited and correct perception of
“long-tail” visual phenomena can be critical for robust performance.

Learning all visual parameters of a visuomotor policy from task reward (or demonstration cloning)
places an undue burden on task-level supervision or reward. In autonomous driving scenarios, for
example, an agent should ideally be able to perceive objects and vehicles with a wide range of
appearance, even those that are not well represented in a behavioral training set. Indeed, for many
visuomotor tasks, there exist datasets with supervision for perception tasks, such as detection or
segmentation, that do not provide supervision for behaviour learning. Learning the entire range of
vehicle appearance from steering supervision alone, while optimal in the limit of infinite training
data, clearly misses the mark in many practical settings.

Classic approaches to robotic perception have employed separate object detectors to provide a fixed
state representation to a rule-based policy. Multistage methods, such as those which first segment
a scene, can avoid some aspects of the domain transfer problem [12], but do not encode discrete
objects, and thus are limited to holistic reasoning. End-to-end learning with pixel-wise attention can
localize specific objects and provide interpretability, but throws away the existence of instances.

We propose an object-centric perception approach to deep control problems, and focus our experimen-
tation on autonomous driving tasks. Existing end-to-end models are holistic in nature; our approach
augments policy learning with explicit representations that provide object level attention.

In this work we consider a taxonomy of representations that consider different levels of objects-centric
representations, such as discreteness and sparsity. We define a family of approaches to object-centric
models, and provide a comparative evaluation of the benefit of incorporating object knowledge either
at a pixel or box level, with either sparse or dense coverage, and with either pooled or concatenated
features.
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Grand Theft Auto V Berkeley DeepDrive

Figure 1: Our method uses discrete objects as part of the policy model for driving in traffic. The
learned selector identifies the objects most relevant to the policy, which is often the nearest car.

We evaluate these aspects in a challenging simulated driving environment with many cars and
pedestrians, as well as on real dash-cam data, as shown in Figure 1. We show that using a sparse
and discrete object-centric representation with a learned per-object attention outperforms previous
methods in on-policy evaluations and provides interpretability about which objects were determined
most relevant to the policy.

2 Related Work

Approaches to robot skill learning face bias/variance trade-offs, including in the definition of a
policy model. One extreme of this trade-off is to make no assumptions about the structure of the
observations, such as end-to-end behavior cloning from raw sensory data [1, 2, 19]. At the opposite
end, one can design a policy structure that is very specific to a particular task, e.g. for driving by
calculating margins between cars, encoding lane following, and tracking pedestrians [7]. These
modular pipelines with rule-based system dominate autonomous driving industry [17, 18, 21].

The first attempt at training an end-to-end driving policy from raw inputs traces back to 1980s with
ALVINN [14]. Muller et al. revisited this idea to help off-road mobile robots with obstacle avoidance
system [13]. Recently, Bojarski et al. demonstrate the appeal of foregoing structure by training a
more advanced convolutional network to imitate demonstrated driving [1, 2]. Xu et al. advocate
learning a driving policy from a uncalibrated crowd-sourced video dataset [19] and show their model
can predict the true actions taken by the drivers from RGB inputs. Codevilla et al. [4] leverage the
idea of conditional imitation learning on high-level command input in order to resolve the ambiguity
in action space. These end-to-end models, which automatically discover and construct the mapping
from sensory input to control output, reduce the burden of hand-crafting rules and features. However,
these approaches have not yet been shown to work in complex environments, such as intersections
with other drivers and pedestrians.

We address how to best represent images for robotics tasks such as driving. Muller et al. train a policy
model from the semantic segmentation of images, which increases generalization from synthetic
to real-world [12]. Chen et al. provide an additional intermediate stage for end-to-end learning,
which learns the policy on the top of some ConvNet-based measurements, such as affordance of
road/traffic state for driving [3]. Sauer et al. combine the advantages of conditional learning and
affordance [16]. The policy module is built on a set of low-dimensional affordance measurements,
with the given navigation commands. We argue for an object-centric approach which allows objects
to be handled explicitly by the model. Prior work has encoded objects as bounding box positions [5]
for manipulation tasks, but does not use end-to-end training and discards all information about the
objects except for their pixel positions. We expand upon this work and evaluate a taxonomy of
“object-centric" neural network models on the driving task.

3 Object-centric Policies

We describe an generic architecture that takes in RGB images and outputs actions. Our model
expresses a series of choices that add different levels of object-centricity to the model. Our goal is to
identify which aspects are important for visuomotor tasks such as autonomous driving.
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Figure 2: The overview of object-centric architecture. The image is first passed through a 34-layer
DLA convolutional network [20], which outputs RoI pooled features for each object along with
globally pooled features for the whole image. Then object-level attention layer calculates the task-
oriented importance score for each RoI. The linear policy layer takes both global and object features
and predicts action for next step.

3.1 Generic Architecture

The generic form of our model takes in an RGB image and outputs two sets of features: global image
contextual features and an object-centric representation. The global contextual features are produced
by a convolutional network over the whole image, followed by a global average pooling operation.
The object-centric representation is constructed as described below to produce a fixed-length object-
centric representation. The global features are concatenated with the object representation, and passed
to a fully connected policy network which outputs a discretized action. For on-policy evaluation, a
hard-coded PID controller converts the action to low-level throttle, steer, and brake commands.

3.2 Objectness Taxonomy

What does it mean for a end-to-end model to be “object-centric"? In this section, we define a
taxonomy of structures that leverage different aspects of “objectness". By defining this taxonomy and
placing previous work within it, we evaluate which aspects bring the greatest gains in performance
specifically for driving scenarios. The aspects discussed are countability, selection, and aggregation.
Figure 3 visualizes the levels.

Countability: Discrete vs Continuous An example of a continuous object-centric representation is
a pixel-level attention map over an image, as used in [8]. In contrast, a discrete representation could
be a bounding box or instance mask. The potential benefit of keeping a discrete object structure is
that a model may need to reason explicitly over instances (such as cars navigating an intersection)
rather than reasoning over the global vehicle “stuff". Our implementation of discrete objects applies
pre-trained FPN detector [11] to output bounding boxes for vehicles and pedestrians. We utilize
RoI-pooling layer [6] to extract regional feature for each box. The boxes and their respective features
are treated as a set of objects. In the discrete setting, we define O as the list of objects returned by the
detector, and f (oi) as the RoI features of the i-th object. We define G as the global features from the
whole image.

Selection: Sparse vs Dense Should the policy model reason over all objects at once (dense), or
should it first select a fixed number (sparse) of salient objects and consider only those? The former
allows more flexibility, but e.g., may distract the policy with cars that are very far away or separated
from the agent by a median. To obtain a relevance score for each object, we train a task-specific
selector jointly with the policy. The selector is a network that takes in the RoI features of each object
concatenated with the global image features and outputs a scalar score, indicating the relevance of
the object. The scores w are evaluated with a softmax to produce a weight between 0 and 1 for each
object. In the sparse model, only the top k scoring objects are used in the policy.

Aggregation: Sum vs Concatenate If using discrete objects, a decision needs to be taken about
how to combine the objects into a single representation. One possible approach is the weight and
sum the features of the objects, while another approach is to concatenate the features. The former is
agnostic to the number of objects and is order invariant, while the latter may allow for more nuanced
computation about multi-object decisions. Our implementation of the concatenation approach is to
sort the objects by their selector weights and concatenate the features w̄i ∗ fi in order from largest wi
to smallest.
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Figure 3: An illustration of the representation taxonomy we describe in Section 3.2. (a) shows
a global image representation that does not leverage objects. (b) is a continuous (pixel-level)
attention that selects salient parts of the image. (c) is a dense and discrete object representation that
selects all objects in the scene. (d) is a discrete but sparse object presentation that only selects the
objects important for the task. (e) is a sparse representation that treats each object individually by
concatenating instead of averaging the object features.

4 Experiments

We evaluate our object-centric models on both a simulated environment and a real-world dataset.
Specifically, we use the Grand Theft Auto V simulation [9] and the Berkeley DeepDrive Video dataset
[19] for online and offline evaluation, respectively. All models are trained on a behavioral cloning
objective.

4.1 Evaluation Setup

Online Driving Simulation For the simulation experiments, 1.6 million training frames were col-
lected by using the in-game navigation system as the expert policy. Following a DAgger-like [15]
augmented imitation learning pipeline, noise was added to the control command every 30 seconds
to generate diverse behavior. The noisy control frames and the following ∼ 7 frames were dropped
during training to avoid replicating noisy behavior. The simulation was rendered at 12 frames per
second. The training dataset was collected over 1000 random paths across 2km in the game. The
in-game times ranged from 8:00 am to 7:00 pm with the default cloudy weather. In total, Each
frame included control signals, such as speed, angle, throttle, steering, brake, as well as ground-truth
bounding boxes around vehicles and pedestrians. During our training and testing procedure we used
a camera in front of the car which keeps a fixed 60◦ horizontal field of view (FoV). The maximum
speed of all vehicles was set to 20km/h.

When training a policy, the expert’s continuous action was discretized into 9 actions: (left, straight,
right) × (fast, slow, stop). At evaluation time, we used a PID controller to translate the discrete
actions into continuous control signals per frame.

For testing, we deployed the model in 8 locations unseen during training, 2 highway and 6 urban
intersections. Figure 5 demonstrates some example scene layouts in our simulation environment. For
each location, we tested the model for 100 minutes: the agent was run for 10 independent roll-outs
lasting 10 minutes each. If the vehicle crashed or got stuck during a rollout, the incident was recorded
and the in-game AI intervened over for at least 15 seconds until it recovered. An extreme accident
which took more time to recover from would be penalized more in our metric as it would travel less
far overall; the frames during the intervention were not counted towards the total.

The models were evaluated with several metrics. For each roll-out, we calculated the total distance
travelled, the number of collisions, and the number of interventions by the in-game AI. To compare
across roll-outs, we computed the distance driven between AI interventions, the number of collisions
and interventions per 100m traveled.

Real-world Offline Dataset We used 2.2 million training frames and 0.2 million testing frames from
a large-scale crowd-sourcing dash-cam video dataset, with diverse driving behaviors. Each frame was
accompanied by raw sensory data from GPS, IMU, gyroscope, magnetometer, as well as sensor-fused
measurements like course and speed.

We follow the settings of continuous action driving model [19]. For each frame, the model was
trained to predict the expert’s future linear and angular speeds. The predictions were made at intervals
of 1/3 seconds during training.



Figure 4: Driving performance. From left to right: driving distance between interventions, number of
interventions per 100m , number of collisions per 100m. The top row shows results using a learned
detection model, while the bottom row uses ground-truth bounding box. The object centric models
(green) overall perform better than the object agnostic models (blue), with the sparse models being
the best. The highway environment is easier to drive than the urban environment. Comparing the
heuristic selector with the learned selector used in the “sparse object" model, it is clear that learning a
selector provides better results.

4.2 Results

We evaluate several baselines, prior methods, and ablations. The baseline method is based on the the
network by Xu et al. [19], which does not represent objects or use attention at inference time. The
pixel attention method is the same as baseline but with an additional pixel-level attention mechanism,
learned end-to-end with the task. This is similar to [8]. Next, we evaluate several object-centric
models drawn from our taxonomy. The results labeled dense object use a discrete and dense object
representation with summation of the objects weighted by a learned selector. Sparse object is the
same as dense object, but only looks at the top 5 objects in the scene, as scored by the learned selector.
While the preceding models used the selector to weight object features before summing them, sparse
object concat concatenates the features of the top 5 objects and passes the entire list to the fully
connected policy. We also evaluate our selector by comparing to a heuristic selector: the size of the
object’s bounding box. The results using the heuristic selector in a sparse object model are labeled
heuristic selector.

The results of the on-policy simulated driving are shown in Figure 4. We show several metrics:
the number of collisions, the number of times the agent got stuck, and the distance driven between
these. Each evaluation was repeated for two environments: urban (which has many intersections
and cars/pedestrians) and highway (which is mostly driving straight). The object-centric methods
consistently outperform the two object-agnostic method in the urban evaluation, while the highway
environment shows good performance for all attentional models. The comparable performance
between the evaluation with ground truth boxes versus predicted boxes (from a detector trained on
MSCOCO [10]) indicates that our method is robust to noisy detections.

To identify the benefits of using a learned selector over boxes, we compared the sparse object model
against a heuristic selector, which assigns importance to objects based on their size. The motivation
for this heuristic is that larger objects are likely to be closer, and therefore more important for the
policy. Figure 4 shows that the model with a learned selector performs equally or better than the
heuristic for every metric. Although some other heuristic may work better, we conclude that learning
the selector jointly with the policy is beneficial. Figure 5 and 6 shows example scenes with our
model’s attention for evaluation on the simulation and real-world, respectively.



Figure 5: Sample scenes from the Grand Theft Auto V simulation with our sparse model’s learned
object selector compared against a learned pixel-level attention. For rows 1 and 3, red indicates a
high scoring object, and blue is low scoring (best viewed on screen). For rows 2 and 4, then pixel
attention is shown by brightness of the pixels. The actions output by each model are shown by the
white squares in the corners: accelerator is the top square, and the bottom squares are turn left, brake,
and turn right, respectively. A single action may both turn and accelerate or brake. Rows 1 and 2
shows both models performing well, while rows 3 and 4 show the pixel attention model ignoring
pedestrians and deciding to accelerate towards them. The object centric model is more conservative
and attends strongly to the pedestrians, choosing to slow down instead of speeding up.

Figure 6: Sample scenes from the Berkeley DeepDrive Video dataset with the sparse model’s learned
selector visualized. Red indicates a high scoring object, and blue is low scoring (best viewed on
screen). Our method is robust to imperfect detections, such as overlapping bounding boxes, for both
both day and night scenes.

5 Conclusion

We defined a taxonomy over object-centric models and showed in an on-policy evaluation that sparse
object models outperformed object-agnostic models according to our metrics of distance driven and
frequency of collisions and interventions. Our results show that highway driving is significantly easier
than navigating intersections; the necessity of navigating city environments showcase the advantages
of representing objects. Overall the results, discreteness and sparsity, along with a learned selection
mechanism, seem to be the most important aspects of object-centric models.

Using generic object detection rather than class specific detection would hopefully lead to paying
attention to streetlight, signage, and other objects relevant to driving. These types of objects are
crucial for following the rules of the road, and we expect that object-centric policies would provide
even more gains in future settings. Promising avenues for future work also include leveraging the 3D
nature of objects and their temporal coherence.
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