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1. Introduction

Our vision is a motion model of the oscillating vocal folds that can prospectively be used
for motion prediction and anomaly detection in laryngeal laser surgery during phonation.
Surgical procedures on cysts or similar pathologies during phonation promise several medical
advantages: the edges of the vocal folds are only visible during phonation, pathologies are
squeezed out due to muscle contraction and can presumably be removed with reduced
trauma. The main challenge is the high frequency of the phonation (>100 Hz).

Shape and motion models are an ongoing field of research in the medical image commu-
nity (McClelland et al., 2013). A common approach for shape models is based on principal
components (PCA) and its variations (Heimann and Meinzer, 2009). PCA is a statisti-
cal analysis method commonly used for dimension reduction where high-dimensional data
is projected into a low-dimensional representation (embedding). A similar approach was
used to compute a motion model for compensation of respiratory motion in radiotherapy
using manifold learning based on locally linear embeddings (Baumgartner et al., 2017). An
image-based motion model was introduced in 2015 where a PCA of optical flow fields was
used to extract high-dimensional, global motion correlations in non-medical image sequences
(Wulff and Black, 2015). An autoencoder was used to determine a manifold over the space
of human motion (Holden et al., 2015). Equivalent to PCA, an autoencoder computes a
lower-dimensional embedding in the bottleneck (latent space). The motion manifold is the
subspace of latent representations correlating to expected motion patterns within all possi-
ble representations of the latent space. By regularization of the latent space it is possible to
compute continuous motion manifolds as the regularization enforces interpolability within
the motion subspace.

In this work we propose to learn motion concepts and global motion correlations of the
vocal folds and surrounding tissue from endoscopic images using manifold learning based
on a variational autoencoder. This has the advantage that training can be performed in
a self-supervised manner without applying prior knowledge or additional image or sensor
data. The motion model represents a strong prior belief about vocal fold motion.
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Figure 1: Excerpt of high-speed sequence of vocal folds during phonation. Green line marks
the beginning of visible phonation in image sequence. The red boxes marks
corrupted input image. The reconstruction (b) from a VAE shows abstracted
concepts of laryngeal movement. +) frame 40, ∗) frame 53

2. Methods

Autoencoders have shown to be able to learn underlying concepts within data. We enforce
learning of abstracted concepts (variations in motion rather than variations in lighting
or noise) by choosing a low dimension latent space (bottleneck). To ensure interpolation
capability in the motion representation we chose a variational autoencoder (VAE) for prob-
abilistic regularization of the latent space (Kingma and Welling, 2014; Rezende et al., 2014).
A VAE is a probabilistic interpretation of an autoencoder based on the principles of Bayes
inference. Regularization is achieved by injecting Gaussian noise into the bottleneck. The
objective function L is composed of a reconstruction loss Lrec comparing the input x ∈ RN

with the reconstructed output x̂ ∈ RN and the Kullback-Leibler divergence Lkld for regu-
larizing latent space z(µz, σz) ∈ RM:

L =

N∑
i

(xi − x̂i)2︸ ︷︷ ︸
Lrec(x,x̂)

−
M∑
i

1

2
log(σ2i )− µ2i − σ2i )︸ ︷︷ ︸

Lkld(z)

. (1)

Our experiments are based on a high-speed video sequence of vocal folds during phona-
tion (128×128 px @1000 fps). We split the video in disjoint training, validation and test
set. Figure 1a shows the first section of the test set. For our VAE implementation we chose
latent space dimension M = 32. All layers are fully-connected for high similarity to PCA.
The encoder has two hidden layers (each reduces size by 2) and a bottleneck layer with
stacked entries for mean µz ∈ R32 and variance σ2z ∈ R32 required regularization scheme.
(For inference z = µz.) The decoder is inverse symmetrical to the encoder. We added
non-linearity with rectified linear units (ReLU) after each non-bottleneck layer.
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Figure 2: Visualization of latent space representation.

3. Results

Figure 1b shows the reconstructions from the learned latent space. It can be seen that the
images are reduced to the conceptional basics: the latent representation contains informa-
tion of how far the vocal folds are apart and it is also possible to distinguish between a
relaxed and a contracted larynx (during phonation). The change in brightness was iden-
tified as less significant and is not encoded. Figure 2a shows latent variables z over time
for the test set in Figure 1a. For better visibility we only show seven components zi∈{1,...,7}
with highest variance over time. Phonation is made visible by high-frequency oscillations
in the latent variables. Hence, the time line can be divided into a pre-phonation, phonation
and post-phonation stage. (Note: Visible phonation in the video sequence starts at approx.
frame 53, however it becomes visible in the latent space a lot earlier at approx. frame 40.)
The high frequency oscillations still seem correlated. Anomalies in the latent space at frame
63 correspond to corrupted input in Figure 1a. The sequence of the latent variables seems
structured and presumably suited for prediction tasks. Figure 2b shows an embedding of
the latent space. The high-dimensional latent representation is projected into 2d-space us-
ing dimensionality reducing PCA. Embedded images correspond to the projected location.
Vocal folds on the left are closed and open on the right side. The embeddings are arranged
in a circle, making it seem that the embedding uncovers a learned oscillation cycle. Motion
forms a continuous circle, i.e. encoded motion seems to be interpolatable.

4. Conclusion and Outlook

The proposed method seems to be a promising approach in generating motion and oscillation
models of the vocal folds. The current motion model already seems well suited for prediction
of movement, as well as for anomaly detection, both essential for patient safety. Deeper
assessment of this hypothesis and incorporating more high-level model architectures and
regularization techniques are promising steps for further studies.
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