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ABSTRACT

To understand the inner work of deep neural networks and provide possible the-
oretical explanations, we study the deep representations through the untrained,
random weight CNN-DCN architecture. As a convolutional AutoEncoder, CNN
indicates the portion of a convolutional neural network from the input to an inter-
mediate convolutional layer, and DCN indicates the corresponding deconvolutional
portion. As compared with DCN training for pre-trained CNN, training the DCN
for random-weight CNN converges more quickly and yields higher quality image
reconstruction. Then, what happens for the overall random CNN-DCN? We gain
intriguing results that the image can be reconstructed with good quality. To gain
more insight on the intermediate random representation, we investigate the impact
of network width versus depth, number of random channels, and size of random
kernels on the reconstruction quality, and provide theoretical justifications on em-
pirical observations. We further provide a fast style transfer application using the
random weight CNN-DCN architecture to show the potential of our observation.

1 INTRODUCTION

Deep neural networks have achieved impressive performance on various machine learning tasks.
However, our understanding of how these deep learning models operate remains limited. Providing
a theoretical explanation or empirical interpretation for their success is an important research area.
Existing works Arora et al. (2015; 2014); Paul & Venkatasubramanian (2014) propose mathematical
models for learning architectures, however, the theoretical analysis of which fails to capture the
state-of-the-art architectures. Gilbert et al. (2017); Chang et al. (2018) leverage either compressive
sensing or ordinary differential equations to facilitate the understanding of CNNs. Ma et al. (2018);
Hand & Voroninski (2017) deliver rigorous proofs about the invertibility of convolutional generative
models. Despite these promising progress, there is no solid theoretical foundation on why the overall
random CNN-DCN architecture is capable for image reconstruction. In this paper, we bridge the gap
between the empirical observation and theoretical explanation of CNNs, especially the invertibility of
the overall random CNN-DCN architecture.

To understand the deep representations of intermediate layers, a variety of visualization techniques
have been developed in order to unveil the feature representation and hence the inner mechanism
of convolutional neural networks (CNNs) Zeiler & Fergus (2014); Mahendran & Vedaldi (2015);
Yosinski et al. (2015); Xu et al. (2015). In this work we propose applying randomization on
deconvolutional networks (DCNs) for a systematic investigation of deep representations, and provide
insights on the intrinsic properties of deep convolutional networks. We first observe that training the
DCN for reconstruction, the random CNN preserves richer information in the feature space. The
training on DCN converges faster for the random CNN contrasted to pre-trained CNN and yields
higher quality image reconstruction. It indicates there is rich information encoded in the random
features; the pre-trained CNN discards some information irrelevant for classification and encodes
relevant features in a way favorable for classification but harder for reconstruction. This leads us to
be curious about what happens if we feed the images to a CNN-DCN architecture where both the
CNN and the DCN have random weights.

Our motivation for studying the overall random CNN-DCN architecture is threefold. First, a series of
works empirically showed that a certain feature learning architecture with random weights allowed
satisfactory discriminative validity on object recognition tasks Jarrett et al. (2009), and certain convo-
lutional pooling architectures even with random weights can be inherently frequency selective and
translation invariant, leading to the potential application of fast search of network architectures Saxe
et al. (2011). Second, studying a complex system with random weights rather than learned determin-
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istic ones may lead to a better understanding of the system even in the learned case. For example, in
the field of compressed sensing, random sampling leads to breakthroughs in the understanding of the
number of required measurements for a stable reconstruction of the signal Giryes et al. (2016); Gilbert
et al. (2017). For highly complicated systems with nonlinear operations along the hidden layers,
there are already some investigations on random deep neural networks Saxe et al. (2011); Arora et al.
(2014); Ulyanov et al. (2017a). Third, as a reversible encoder-decoder architecture, deconvolution is
a valuable visualization technique for studying the feature representation of deep convolutional nets.
To our knowledge there is no existing work on the random deconvolutional networks in the literature.
Our work on using deconvolution to study the random intermediate features of CNN provides new
insights and inspires possible applications with untrained deep neural models.

Our main results and contributions are as follows. We study the overall random CNN-DCN archi-
tecture to investigate the randomness in deconvolutional networks, i.e. there is no training at all for
inverting the inputs that passes their information through a random weight convolutional network.
Surprisingly, the image is inverted with satisfactory quality. The geometric and photometric features
of the inputs are well preserved given a sufficient number of channels. We provide empirical evidence
as well as theoretical analysis on the reconstruction quality, and bound the error in terms of the
number of random nonlinearities, the network architecture, the distribution of the random weights,
and local similarity of the input which is high for natual images. Extensive empirical study by
varying the network width, depth, or kernel size has been performed to show the effectiveness on the
inversion. The CNN-DCN architecture with random weights can be very useful on texture synthesis,
style transfer, image segmentation, image inpainting, etc. As an example, we illustrate how fast style
transfer can be applied using random weight CNN-DCN architecture. Note that our approach can
save a big amount of time and energy as we do not need to do the pre-training on deep models, and it
is very flexible as we can easily try whatever nerual network architecture as we wish.

2 RELATED WORK

Two techniques are closely related to our work, deconvolution and randomization. Deconvolution in-
volves a CNN-DCN architecture, where CNN indicates the portion of a convolutional neural network
from the input to an intermediate convolutional layer, and DCN indicates the corresponding deconvo-
lutional network aiming to invert the intermediate features to the original images. Randomization
indicates the stochastic assignment of weights to the deep neural network.

As a generative model for encoder-decoder functions, deconvolutional networks (DCNs) are com-
monly used for deep feature visualization. Zeiler et al. Zeiler & Fergus (2014) propose to use a
multi-layered deconvolutional network Zeiler et al. (2011) to project the feature activations back
to the input pixel space, and show that the features have many intuitively desirable properties such
as compositionality, increasing invariance and class discrimination for deeper layers. Dosovitskiy
et al. Dosovitskiy & Brox (2016) design a deconvolution variant to invert image representations
learned from a pre-trained CNN, and conclude that features in higher layers preserve colors and
rough contours of the images and discard information irrelevant for the classification task that the
convolutional model is trained on. As there is no back propagation, their reconstruction is much
quicker than the representation inverting method on gradient descent Mahendran & Vedaldi (2015).

Randomization on neural networks can be tracked back to the 1960’s where the bottom-most layer of
shallow networks consisted of random binary connections Block (1962). In recent years, largely mo-
tivated by the fact that “randomization is computationally cheaper than optimization", randomization
has been resurfacing repeatedly in the machine learning literature Scardapane & Wang (2017). For
optimization problems such as regression or classification, this technique is used to stochastically
assign a subset of weights in a feedforward network to derive a simpler optimization problem Igelnik
& Pao (1995); Rahimi & Recht (2009). Specifically, they compute a weighted sum of the inputs
after passing them through a bank of arbitrary randomized nonlinearities, such that the resulting
optimization task is formulated as a linear least-squares problem. Empirical comparisons as well as
theoretical guarantees are provided for the approximation Rahimi & Recht (2008; 2009); Arora et al.
(2014). Other related works include random kernel approximation Rahimi & Recht (2007); Sinha &
Duchi (2016) and reservoir computing on random recurrent networks Lukosevicius & Jaeger (2009);
Jaeger & Haas (2004).

Specifically on convolutional neural networks (CNNs), there are a few works considering randomiza-
tion. Jarrett et al. Jarrett et al. (2009) observe that, on a one-layer convolutional pooling architecture,
random weights perform only slightly worse than pre-trained weights. Saxe et al. Saxe et al. (2011)
prove that certain convolutional pooling architectures with random weights are inherently frequency
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selective and translation invariant, and argue that these properties underlie their performance. He et
al. He et al. (2016) accomplish three popular visualization tasks, image inversion, texture synthesize
and style transfer, using random weight CNNs. Daniely et al. Daniely et al. (2016) extend the
scope from fully-connected and convolutional networks and prove that random networks induce
representations which approximate the kernel space. Gilbert et al. Gilbert et al. (2017) combine
compressive sensing with random-weight CNNs to investigate the CNN architectures. Dmitry et
al. Ulyanov et al. (2017a) utilize randomly-initialized neural nets to finish denoising and inpainting
tasks.

Motivated by the intuition that "random net is theoretically easier to comprehend than the complicated
well-trained net", and that it may reveal the intrinsic property of the network architecture, we use
randomization to explore the convolution followed by deconvolution architecture, provide theoretical
analysis on empirical observations, and show its application potentials by a style transfer case study.

3 PRELIMINARIES
3.1 DECONVOLUTIONAL NETWORK ARCHITECTURE

For the network architecture, we focus on VGG16 Simonyan & Zisserman (2015) for the deconvolu-
tion. A convolutional layer is usually followed by a pooling layer, except for the last convolutional
layer. For consistency, we will explore the “feature representation” after the convolutional layer but
before the pooling layer.

We build a CNN-DCN architecture on the layer of the feature representation to be studied. The
convolution operator of a deconvolutional layer in DCN is the same as the convolution operator
in CNN, and an upsampling operator Dosovitskiy & Brox (2016) is applied in DCN to invert the
corresponding pooling operator in CNN. We will focus on the representations of the convolutional
layers, and Figure 1 illustrates an example of the VGG Conv[5]-DeConv[5] architecture, where
Conv[5] indicates the sequential layers from Conv1 to Conv5. At the end of the DCN, a final crop
layer is added to cut the output of DeConv1 to the same shape as the original images. More details
are in Appendix 1.

Figure 1: The CNN-DCN architecture of VGG16.

3.2 TRAINING DCN FOR RANDOM CNN

We first explore the reconstruction ability of random CNNs. We assign Gaussian random weights to
the CNN part, and train the corresponding DCN to minimize the summation of the pixel-wise loss on
the reconstructed images.

Training. For each intermediate layer, using the feature vectors of all training images, we train the
corresponding DCN such that the summation of L2-norm loss between the inputs and the outputs is
minimized. Let Φ(xi, w) represent the output image of the DCN, in which xi is the ith input image
and w the weights of the DCN. We train the DCN to get the desired weights w∗ that minimize the
loss. Then for a feature vector of a certain layer, the corresponding DCN can predict an estimation of
the expected pre-image, the average of all natural images which would have produced the current
feature vector.

w∗ = arg min
w
L = arg min

w

∑
i

(Φ(xi, w)− xi)2 (1)

Specifically, we initialize the DCN by the “MSRA” method He et al. (2015) based on a modified
Caffe Jia et al. (2014); Dosovitskiy & Brox (2016). We use the training set of ImageNet Deng et al.
(2009) and the Adam Kingma & Ba (2015) optimizer with β1 = 0.9, β2 = 0.999 with mini-batch size
32. The initial learning rate is set to 0.0001 and the learning rate gradually decays by the “multistep”
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training. The weight decay is set to 0.0004 to avoid overfitting. The maximum number of iterations
is set at 200,000 empirically.

We also consider another network architecture, AlexNet Krizhevsky et al. (2012). For the random
weights, we try several Gaussian distributions with zero mean and various variance. We also try
several other types of random distributions, Uniform, Logistic, Laplace, to have a sound exploration.
See more details and comparisons in Appendix 2.

In the following, we use CDk to represent a Conv[k]-DeConv[k] architecture. Take the VGG CD2 for
elaboration, the loss curves during the training process are shown in Figure 10, which compares VGG
and AlexNet on random as well as pre-trained weights. Here Conv2_Pretrained or Conv2_Random
indicates whether the CNN is pre-trained or with random weights. We see that the training of DCN
for reconstruction converges much quicker on random CNN and yields slightly lower loss. It indicates
that by pre-training for classification, CNN encodes relevant features of the input image in a way
favorable for classification but harder for reconstruction. And VGG has a much lower reconstruction
loss than AlexNet.

Reconstruction. We take 5,000 samples from the training set and validation set respectively from
ImageNet, and compare their average reconstruction loss. The statistics are shown in Figure 11
("Pre-trained net" represents pre-trained CNN while "random net" represents random CNN when we
train the corresponding DCN for reconstruction). We see the pre-trained CNN and random CNN both
have good generalization ability; a random VGG yields much less loss than the pre-trained VGG for
the deconvolution reconstruction; for representations of deeper layers, the inverting loss increases
significantly for pre-trained VGG but grows slowly for random VGG. The results indicate that the
random CNN encodes much richer information of the original images; the pre-trained CNN discards
information not crucial for classification, especially on deeper layers, leading to a better classifier but
a harder reconstruction task.

Figure 4 shows reconstructions of various layers of the random VGG on images outside the training
set. The reconstruction quality decays for intermediate representations of deeper layers. The VGG
structure with random weights yields accurate reconstruction, even on CD5, which involves 26
convolution layers and 4 pooling layers. In Appendix 2, we also see that the reconstruction quality on
VGG based deconvolution is better than that on AlexNet based deconvolution.

Figure 2: Training curve. Figure 3: Reconstruction loss.

Original CD1 CD2 CD3 CD4 CD5

Figure 4: Reconstructions for CDk.

4 EMPIRICAL STUDIES ON RANDOM CNN-DCN
The above results inspire us to further explore what happens if both the CNN and DCN are of
random weights. In this section we consider the reconstructions on purely random VGG CNN-DCN
architecture (denoted by rrVGG for brevity), and find that the images can still be reconstructed with
satisfactory quality! In other words, the CNN randomly extracts the image features and passes them
to the DCN, then in an unsupervised manner the DCN reconstructs the input image by random feature
extraction! Such intriguing results show that the overall random CNN-DCN architecture substantially
contributes to the geometric and photometric invariance for the image inversion.

In the following, we will systematically explore the reconstruction ability of the rrVGG architecture
with ReLU nonlinearity. We found that the network depth has a bigger impact than the network
width, and the reconstruction quality decays with deeper layers; with plenty number of channels, an
increasing number of random channels promotes the reconstruction quality; and the reconstruction
quality decays with a larger kernel size.

For evaluation, we use the structural similarity (SSIM) index Wang et al. (2004), which is accurate
by considering the correlation and dependency of local spatially close pixels, and consistent to the
perceptron of human eyes. To remove the discrepancy on colors, we transform the inputs and outputs

4



Under review as a conference paper at ICLR 2020

in grey-scale, and in case of negative SSIM value, we invert the luminosity of the grayscale image for
calculation, so the value is in [0, 1]. A higher value indicates a higher similarity on the images.

4.1 ON NETWORK DEPTH/WIDTH

We first explore the impact of network depth and network width for the random reconstruction, using
a cat image outside the training data as an example. The weights are random in N(0, 0.1) 1.

We first study the reconstruction quality for different convolutional layers, as in Figure 5. Though
there is no training at all, DCN can still perceive geometric positions and contours for CD1 to CD3.
The deeper the random representations are, the coarser the reconstructed image is. We can still
perceive a very rough contour for the random CD4 architecture, which is already 10 layers deep. Our
follow-up theoretical analysis will show that depth does affect the results, as it affects the size of
receptive fields.

In Figure 6, we build a Conv1-DeConv1 (CD1) architecture with different dimensions (width) using
the actual width of VGG Conv1 to Conv5 for CD1 respectively. We see that the smaller the dimension
(width) is, the coarser the image is.

CD1 CD2 CD3 CD4 CD5

Figure 5: Reconstruction images for the rrVGG architecture(Zoom in for details).

CD1(227,300) CD1(114,148) CD1(57,72) CD1(29,34) CD1(15,16)

input

227	×	227

Conv1 DeConv1 Crop

227	×	227

D	×	DC×C
(D+1)	×	(D+1)
(D+2)	×	(D+2)

Figure 6: Left: Reconstruction images for the CD1 architecture with various network width. Right:
Architecture of CD1(C,D). (Zoom in for details)

4.2 ON NUMBER OF RANDOM CHANNELS

We investigate the reconstruction quality on the number of random channels using the rrVGG CD1
(Conv1-DeConv1) architecture. For simplicity, for each network instance we use the same number of
channels in all layers except the output layer. We vary the number of random channels from 4, 8 up
to 2048, and for each number of channels, we generate 30 rrVGG Conv1-DeConv1 networks and all
random weights are in N(0, 0.1) distribution. For input images we randomly pick 50 samples from
the ImageNet validation set.

To reduce occasionality on the reconstruction, we transform the inputs and outputs in grey-scale
and calculate the average SSIM value on each network, then we do statistics (mean and standard
deviation) on the 30 average values. Figure 7 shows the trends on SSIM when the number of channels
increases, (a) is for the original rrVGG network and (b) is for a variant of rrVGG network. The
variant of rrVGG is almost the same as the original network except that the last convolutional layer
is replaced by an average layer, which calculates the average over all the channels of the feature
maps next to the last layer. We see that the increasing number of random channels promotes the
reconstruction quality. Similar in spirit to the random forest method, different channels randomly
and independently extract some feature from the previous layer. With sufficient number of random
channels we may encode and transform all information to the next layer. In the next section, we will
prove for the variant convolutional network, when the width of the random neural network goes to
infinity, the output will converge to a fixed image close to the original image.

In Figure 8, we pick some input images, and show the corresponding output images closest to the
mean SSIM value for various number of channels. We transform the randomly-generated colored
image to grey-scale image, for the ease of comparing the structural similarity. The SSIM value is on
the top of each output image. The increasing number of channels promotes the random reconstruction

1In Appendix 2 Figure 1(b), we show the final reconstruction loss is similar if the variance of Gaussian
distribution is small enough.
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(a) (b) (c)

Figure 7: Statistics on SSIM for rrVGG Conv1-DeConv1 (a,b) and for rrVGG Conv1_1-DeConv1_1 (c).

Figure 8: Reconstructions on rrVGG Conv1-DeConv1 networks (Evaluated on SSIM). Note that
we transform the reconstructed colored-image to grey-scale for the ease of comparing the structural
similarity.

quality. To show how the reconstruction quality decays with deeper convolutional layers, we also do
experiments on the rrVGG CD2 architecture, and the quality decays by about a half as evaluated by
SSIM.

4.3 ON KERNEL SIZE

We expect that the reconstruction quality decays with larger kernel size, as a large kernel size can
not consider the local visual feature of the input. In the extreme case when the kernel size equals
the image dimension, the convolution operator actually combines all pixel values of the input to an
output pixel using random weights. We use the rrVGG Conv1_1 DeConv1_1 architecture, which
simply contains two convolutional operators. The random weights are in N(0, 0.1) distribution. For
each kernel size, we randomly generate 30 networks for the reconstruction on 50 sample images as
selected above. The results verifies our assumption, as in Figure 7(c).

4.4 STYLE TRANSFER APPLICATION

To show how our observation can be used for application, we provide a potential application using
random CNN-DCN - Style Transfer with rrVGG. By choosing the suitable number of filters, the
rrVGG CD1 architecture can achieve high-quality reconstruction. Besides, these reconstructions can
also bring slight differences such as the background color and texture, which is suited to exploring
more interesting style transfer results. And multiple rrV GG models can be efficiently acquired
without training. Recent work Gatys et al. (2016); Johnson et al. (2016); Ulyanov et al. (2017b);
Huang & Belongie (2017) on style transfer employing the CNN has ignited massive research interest,
while our work exhibits a novel direction of generating diverse stylized images given a single style
image, as shown in Figure 17. More details are in Appendix 4.

5 THEORETICAL RESULTS ON RANDOM CNN-DCN
In this section, we provide theoretical analysis to explain the empirical results. We will show that
a slight variant of the random CNN architecture has the ability to reconstruct the input image. We
also investigate how depth and width of the network will affect the reconstruction ability. Intuitively,
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content style rrV GG1 rrV GG2 rrV GG3

Figure 9: Style transfer from several rrVGG models. Each model has the same architecture but
different random weights.

as the depth of the network increases, the receptive field of each output image pixel becomes larger,
which makes the reconstruction harder whereas the width of the network, or equivalently, the number
of channels, gives more basis or ways to reconstruct the original input. We theoretically show that the
reconstruction ability of a random convolutional neural network rises when the number of channels in
each layer increases and drops when the depth of the network increases. Note that DCN is also a kind
of CNN with up-sampling layers, so our result can be directly applied to the CNN-DCN architecture.

For the following part, we will first show the convergence of the output image when the width of
the network goes to infinity. Many researchers have worked on the infinite width fully connected
networks. For instance, Williams (1996); Lee et al. (2017) focus on its relationship with Gaussian
Process. They show the exact equivalence between infinitely wide deep networks and Gaussian
Processes. Our work focuses on the random convolutional neural network without any training,
which is different from the above-mentioned works and is in accordance with our previous empirical
analysis. Then, we show the difference between the real output and the convergence value as a
function of the width. Finally, we give an upper bound on the angle between the input and the
convergence value. Thus, we can bound the reconstruction error.

Notations: We use A:,j to denote the jth column vector of matrix A and ‖x‖ to denote the l2-norm
of vector x. Let L be the number of layers in the neural network and X(i) ∈ RNi×di be the feature
maps in the ith layer, where Ni is the number of channels and di is the dimension of a single channel
feature map (i.e. the width of the map times its height). X = X(0) is the input image and f = X(L)

is the output image. w(i,j), a row vector, is the jth convolutional filter of the ith layer if it is a
convolutional layer. We use ReLU(x) = max(x, 0) as the activation function in the following
analysis.
Definition 1. Random CNN architecture To make it possible for property proof, this structure is
different from the classic CNN structure in the following three points:
1) Different filters in the same layer are i.i.d. random vectors and filters in different layers are
independent. The probability density function of each filter is isotropic. Let k(i)m = 1

2E|w
(i,j)
1 |m and

K
(i)
m =

k
(i)
2m−(k

(i)
m )2

(k
(i)
m )2

. Suppose k(i)1 , k
(i)
2 , k

(i)
4 all exist.

2) The last layer is the arithmetic mean of the channels of the previous layer, not the weighted
combination.
3) Except for X(L−1), each layer of convolutional feature maps are normalized by a factor of 1√

Ni
,

where Ni is the number of channels of this layer.

5.1 CONVERGENCE

From the previous experiments, we see that when the number of channels increases, the quality of the
output image improves. Here we prove that when the number of channels goes to infinity, the output
will actually converge. Each pixel in the final convergence value is a constant times the weighted
norm of its receptive field. Formally, we state our main results for the convergence value of the
random CNN as follows.
Theorem 1. (Convergence Value) Suppose all the pooling layers use l2-norm pooling. When
the number of filters in each layer of a random CNN goes to infinity, the output f corresponding
to a fixed input will converge to a fixed image f∗ with probability 1, where f∗ = kz∗ and k is
a constant only related to the CNN architecture and the distribution of random filters and z∗i =√∑

l∈Ri n(l,i)‖X:,l‖2, whereRi is the index set of the receptive field of z∗i and n(l,i) is the number

of routes from the lth pixel of a single channel of the input image to the ith output pixel.

The proof of Theorem 1 is in Appendix 3, Theorem 4. Here for the pooling layer, instead of average
pooling, which calculates the arithmetic mean, we use l2-norm pooling which calculates the norm
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of the values in a patch. Intuitively, if most pixels of the input image are similar to their adjacent
pixels, the above two pooling methods should have similar outputs. See details for average pooling in
Appendix 3.

5.2 VARIANCE

Now we consider the case of a finite number of channels in each layer. We mainly focus on the
difference between the real output and the convergence value as a function of the number of channels.
We prove that for our random CNN architecture, as the number of channels increases, with high
probability, the angle between the real output and the convergence value becomes smaller, which is
in accordance with the variant rrVGG experiment results shown in previous section.
Theorem 2. (Multilayer Variance) Suppose all the pooling layers use l2-norm pooling. For a
random CNN with L layers and Ni filters in the ith layer, let Θ denote the angle between the output
f and the convergence value f∗, suppose that there is at most one route from an arbitrary input pixel
to an arbitrary output pixel for simplicity, then with probability 1− δ,

sin Θ ≤
√
L− 1

Nδ
+

√√√√(L− 2)

√
L− 1

Nδ

L−2∏
i=0

λi,

where λi = 1√
1− ‖ε

(i)((z∗(i))2)‖2

‖(z∗(i))2‖2

and 1
N

= 1
L−1 (

K
(L−2)
1

NL−1
+
∑L−2
i=1

K
(i−1)
2

Ni
).

Here, ε(i)(x) actually measures the local similarity of x. The full definition of ε(i)(x) and the proof
of this theorem is in Appendix 3.

5.3 DIFFERENCE ON THE CONVERGENCE VALUE AND THE INPUT

Finally, we focus on how well our random CNN architecture can reconstruct the original input image.
From Theorem 2, we know that with high probability, the angle between the output of a random CNN
with finite channels and the convergence value will be upper-bounded. Therefore, to evaluate the
performance of reconstruction, we focus on the difference between the convergence value and the
input image. We will show that if the input is an image whose pixels are similar to their adjacent
pixels, then the angle between the input image X and the convergence value of the output image will
be small. To show the essence more clearly, we state our result for a two-layer random CNN and
provide the multi-layer one in Appendix 3, which needs more complicated techniques but has the
same insight as the two-layer one.
Theorem 3. For a two-layer random CNN, suppose each layer has a zero-padding scheme to keep the
output dimension equal to the dimension of the original input. The kernel size is r and stride is 1. The
input image is X ∈ Rd0 , which has only one channel, whose entries are all positive. εt = Xt −Xt

means the difference between one pixel Xt and the mean of the r-sized image patch whose center is
Xt. Let Φ be the angle between the input image X and the convergence value of the output image,
we have cos Φ ≥ 1− 1

M

∑
t εtXt, where M =

∑
tX

2
t .

The full proof of Theorem 3 is in Appendix 3. Note that when the kernel size r increases, εt will
become larger as an image only has local similarity, so that the lower bound of the cosine value
becomes worse, which explains the empirical results in previous section.

6 CONCLUSION

In this work, we introduce a novel investigation on deep random representations through the
convolution-deconvolution architecture, which to our knowledge is the first study on the randomness
of deconvolutional networks in the literature. We extensively explore the potential of randomness
for image reconstruction on deep neural networks, and found that images can be reconstructed with
satisfactory quality when there are a sufficient number of channels. Extensive investigations have
been performed to show the effectiveness of the reconstruction. We also provide theoretical analysis
that a slight variant of the random CNN architecture has the ability to reconstruct the input image,
and the output converges to the input image when the width of the network, i.e. number of channels,
goes to infinity. We also bound the reconstruction error between the input and the convergence value
as a function of the network width and depth.
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A APPENDIX

A.1 NETWORK ARCHITECTURE AND INITIAL WEIGHTS

A.1.1 DECONVOLUTIONAL NETWORK ARCHITECTURE

For the network architecture, we consider two typical CNNs for the deconvolution, VGG16 Simonyan
& Zisserman (2015) and AlexNet Krizhevsky et al. (2012). A convolutional layer is usually followed
by a pooling layer, except for the last convolutional layer, Conv5. For consistency, we will explore
the output after the convolutional layer but before the pooling layer. In what follows, “feature
representation” or “image representation” denotes the feature vectors after the linear convolutional
operator and the nonlinear activation operator but before the pooling operator for dimension reduction.

We build a CNN-DCN architecture on the layer of feature representation to be studied. The con-
volution operator of a deconvolutional layer in DCN is the same as the convolution operator in
CNN, and an upsampling operator is applied in DCN to invert the corresponding pooling operator
in CNN, as designed in Dosovitskiy & Brox (2016). We will focus on the representations of the
convolutional layers, since Dosovitskiy et al. Dosovitskiy & Brox (2016) build DCNs for each layer
of the pre-trained AlexNet and find that the predicted image from the fully connected layers becomes
very vague. For the activation operator, we apply the leaky ReLU nonlinearity with slope 0.2, that is,
r(x) = x if x ≥ 0 and otherwise r(x) = 0.2x. At the end of the DCN, a final Crop layer is added to
cut the output of DeConv1 to the same shape as the original images.

We build deconvolutional networks on both VGG16 and AlexNet, and most importantly, we focus
on the random features of the CNN structure when training the corresponding DCN. Then we do no
training for deconvolution and explore the properties of the purely random CNN-DCN architecture
on VGG16.

A.1.2 RANDOM DISTRIBUTIONS

For the random weights assigned to CNN or DCN, we try several Gaussian distributions with zero
mean and various variance to see if they have different impact on the DCN reconstruction. Subsequent
comparison shows that a small variance around 0.015 yields minimal inverting loss. We also try
several other types of random distributions, Uniform, Logistic, Laplace, to study their impact.

• The Uniform distribution is in [-0.04, 0.04), such that the interval equals [µ− 3δ, µ+ 3δ]
where µ = 0 and δ = 0.015 are parameters for Gaussian distribution.
• The Logistic distribution is 0-mean and 0.015-scale of decay. It resembles the normal

distribution in shape but has heavier tails.
• The Laplace distribution is with 0 mean and 2 ∗ λ2 variance (λ = 0.015), which puts more

probability density at 0 to encourage sparsity.

A.2 DETAILS ON TRAINING DCN FOR RANDOM CNN

A.2.1 TRAINING METHOD FOR DCN

For each intermediate layer, using the feature vectors of all training images, we train the corresponding
DCN such that the summation of L2-norm loss between the inputs and the outputs is minimized. Let
Φ(xi, w) represent the output image of the DCN, in which xi is the input of the ith image and w
is the weights of the DCN. We train the DCN to get the desired weights w∗ that minimize the loss.
Then for a feature vector of a certain layer, the corresponding DCN can predict an estimation of the
expected pre-image, the average of all natural images which would have produced the given feature
vector.

w∗ = arg min
w
L = arg min

w

∑
i

(Φ(xi, w)− xi)2 (2)

Specifically, we initialize the DCN by the “MSRA” method He et al. (2015) based on a modified
Caffe Jia et al. (2014); Dosovitskiy & Brox (2016). We use the training set of ImageNet Deng et al.
(2009) and the Adam Kingma & Ba (2015) optimizer with β1 = 0.9, β2 = 0.999 with mini-batch size
32. The initial learning rate is set to 0.0001 and the learning rate gradually decays by the “multistep”
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training. The weight decay is set to 0.0004 to avoid overfitting. The maximum number of iterations
is set at 200,000 empirically.

A.2.2 RESULTS FOR INVERTING THE REPRESENTATION

Training. We observe similar results for the training loss in different layers. Take the Conv2-
DeConv2 architecture for elaboration, the loss curves during the training process are shown in
Figure 10. Figure 10(a) compares VGG and AlexNet on random as well as pre-trained weights.
The training for reconstruction converges much quicker on random CNN and yields slightly lower
loss, and this trend is more apparent on VGG. It indicates that by pre-training for classification,
CNN encodes relevant features of the input image in a way favorable for classification but harder for
reconstruction. Also, VGG yields much lower inverting loss as compared with AlexNet. Figure 10(b)
shows that random filters of different small-variance Gaussian distributions on CNN affect the initial
training loss, but the loss eventually converges to the same magnitude. (The loss curve of N(0, 1)
is not included as the loss is much larger even after the converge.) Figure 10(c) shows that the four
different random distributions with appropriate parameters acquire similar reconstruction loss.

Generalization. We take 5000 samples from the training set and validation set respectively from
ImageNet, and compare their average reconstruction loss. The statistics is as shown in Figure
11, where CDk represents a Conv[k]-DeConv[k] architecture. Figure 11(a) shows that the VGG
architecture is good in generalization for the reconstruction, and random VGG yields much less loss
than pre-trained VGG. For representations of deeper layers, the inverting loss increases significantly
for pre-trained VGG but grows slowly for random VGG. This means that in deeper layers, the
pre-trained VGG discards much more information that is not crucial for classification, leading to a
better classifier but a harder reconstruction task. Figure 11(b) compares VGG and AlexNet on the
CD3 architecture. It shows that the reconstruction quality on random compares favourably against
that on pre-trained in VGG.

Reconstruction. Figure 12 shows reconstructions from various layers of random VGG and random
AlexNet, denoted by rwVGG and rwAlexNet respectively. 2 On both rwVGG and rwAlexNet, the
reconstruction quality decays for representations of deeper layers. The rwVGG structure yields more
accurate reconstruction, even on Conv5, which involves 26 convolution operations and 4 max pooling
operations.

Figure 13 shows reconstructions from a cat example image for various distributions of rwVGG CD2.
Except for N(0, 1), the reconstruction quality is indistinguishable by naked eyes. It shows that
different random distributions work well when we set the random weights relatively sparse.

In a nutshell, it is interesting that random CNN can speed up the training process of the DCN on
both VGG and AlexNet, obtain higher reconstruction quality and generalize well for other inputs.
Regarding weights in the convolutional part as a feature encoding of the original image, then the
deconvolutional part can decode from the feature representations encoded by various methods.
The fact that the random encoding of CNN is easier to be decoded indicates that the training for
classification moves the image features of different categories into different manifolds that are moving
further apart. Also, it may discard information irrelevant for the classification. The pre-trained CNN
benefits the classification but is adverse to the reconstruction.

A.3 PROOF OF THEORIES ON RANDOM CONVOLUTION

For completeness, we repeat the notations and the definition of random CNN architecture.

Notations: We use A:,j to denote the jth column vector of matrix A and use Aij to denote its
entry. Let xi be the ith entry of vector x. Let L be the number of layers in the neural network and
X(i) ∈ RNi×di be the feature maps in the ith layer, where Ni is the number of channels and di is the
dimension of a single channel feature map (i.e. the width of the map times its height). X = X(0) is
the input image and f = X(L) is the output image. For convenience, we also define convolutional
feature maps to be the feature maps after convolutional operation and define pooled feature maps and
up-sampled feature maps in the same way. In the ith layer, let ri be the fixed kernel size or the pool
size (e.g. 3× 3). If X(i+1) is convolutional feature maps, let Y (i) ∈ RNiri×d̃i be the patched feature

2For input images, the cat is an example image from caffe, and the other two are from the validation set of
ImageNet.
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(a) VGG vs. Alexnet (b) rwVGG (c) rwVGG

Figure 10: Training loss for the Conv2-DeConv2 architecture.

(a) Random VGG vs. Pre-trained VGG (b) VGG vs. Alexnet on CD3

Figure 11: Comparison on the generalization error.

Original CD1 CD2 CD3 CD4 CD5

(a) rwVGG

CD1 CD2 CD3 CD4 CD5

(b) rwAlexNet

Figure 12: (Zoom in for details.) Reconstructions for representations of different convolutional
layers of rwVGG and rwAlexNet.

Figure 13: (Zoom in for details.) Reconstructions for representations of rwVGG Conv2 in various
random distributions.
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maps of X(i), where d̃i is the number of patches and in fact d̃i = di+1 and Y (i)
:,j is the receptive field

of the jth pixel in a single channel output image after the ith layer. To form Y (i), we first divide
X(i) into patches and the mth patch is X(i)

:,D(i)
m

, {X(i)
:,j | j ∈ D

(i)
m }, where D(i)

m is an ordered set of

indexes. D(i)
m,s means the sth corresponding element in D(i)

m , s ∈ [ri]. We assume
⋃d̃i
m=1D

(i)
m = [di],

which is satisfied by most widely used CNNs. By transforming X(i)

:,D(i)
m

into a column vector, we can

obtain Y (i)
:,m. z(i) ∈ Rd̃i is a row vector defined by z

(i)
j = ‖Y (i)

:,j ‖, where ‖ · ‖ is the l2-norm operation.
w(i,j), a row vector, is the jth convolutional filter of the ith layer. If X(i+1) is pooled feature maps,
we also divide X(i) into patches and D(i)

m is the indexes of the mth patch. If X(i+1) is up-sampled
feature maps we have D(i)

m = {m}, which has only one element. So we can also define Y (i) and z(i)

for pooling and up-sampling layers. For the jth pixel of the output image in the last layer, define its
receptive filed on the input image in the first layer as X:,Rj = {X:,m | m ∈ Rj}, whereRj is a set
of indexes. The activation function ReLU(x) = max(x, 0) is the element-wise maximum operation
between x and 0 and (·)m is the element-wise power operation.
Definition 2. Random CNN architecture This structure is different from the classic CNN in the
following three points:

• Different filters in the same layer are i.i.d. random vectors and filters in different layers
are independent. The probability density function of each filter is isotropic. Let k(i)m =
1
2E|w

(i,j)
1 |m and K(i)

m =
k
(i)
2m−(k

(i)
m )2

(k
(i)
m )2

. Suppose k(i)1 , k
(i)
2 , k

(i)
4 all exist.

• The last layer is the arithmetic mean of the channels of the previous layer, not the weighted
combination.

• Except for X(L−1), each layer of convolutional feature maps are normalized by a factor of
1√
Ni

, where Ni is the number of channels of this layer.

A.3.1 CONVERGENCE

Theorem 4. (Convergence Value) Suppose all the pooling layers use l2-norm pooling. When
the number of filters in each layer of a random CNN goes to infinity, the output f corresponding
to a fixed input will converge to a fixed image f∗ with probability 1, where f∗ = kz∗ and k is
a constant only related to the CNN architecture and the distribution of random filters and z∗i =√∑

l∈Ri n(l,i)‖X:,l‖2, where n(l,i) is the number of routes from the lth input pixel to the ith output
pixel.

Here for the pooling layer, instead of average pooling, which calculates the arithmatic mean, we
use l2-norm pooling which calculates the norm of the values in a patch. We also show the result for
average pooling in Theorem A.7.

To prove the theorem, we first prove the following lemma.
Lemma 5. Suppose w ∈ Rn, n ≥ 2 is a random row vector and its probability density function is
isotropic. Y ∈ Rn×d is a constant matrix whose ith column vector is denoted by yi. z ∈ Rd is a
row vector and zi = ‖yi‖. Let g = max{wY, 0}. If km = 1

2E|w1|m exists, then Egm = kmzm and
Egigj = 1

πk2[(π − θij) cos θij + sin θij ]zizj , where θij is the angle between yi and yj .

Proof. Note that max{·, ·} and (·)m are both element wise operations. The ith element of Egm is
(Egm)i = Emax{wyi, 0}m.

Since the probability density function of w is isotropic, we can rotate yi to y′i without affecting the
value of Emax{wyi, 0}m. Let y′i = (‖yi‖, 0, ..., 0)T , we have

(Egm)i = Emax{‖yi‖w1, 0}m

= zmi Emax{w1, 0}m

= zmi
1

2
E|wm1 |

= kmzmi .
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Where the third equality uses the fact that the marginal distribution of w1 is also isotropic. Similarly,
we have:

Egigj = Emax{wyi, 0}max{wyj , 0}.
We can also rotate yi and yj to y′i and y′j . Let y′i = (‖yi‖, 0, 0, ..., 0)T and y′j =

(‖yj‖ cos θij , ‖yj‖ sin θij , 0, ..., 0)T and suppose the marginal probability density function of
(w1, w2) is p(ρ) which does not depend on φ since it is isotropic, where ρ =

√
w2

1 + w2
2 is the

radial coordinate and φ is the angular coordinate. We have:

Egigj = zizj

∫ ∞
0

p(ρ)ρ3dρ

∫ π
2

θij−π2
cos(θij − φ) cosφdφ.

Note that: ∫ ∞
0

p(ρ)ρ3dρ =
1

2π
Eρ2 =

1

π
Ew2

1 =
2

π
k2,∫ π

2

θij−π2
cos(θij − φ) cosφdφ =

1

2
((π − θij) cos θij + sin θij).

We obtain the second part of this lemma.

Now, we come to proof of Theorem A.1.

Proof. According to Lemma A.2, if X(i+1) is convolutional feature maps, we can directly obtain:

E(X
(i+1)
1,: )2 =

1

Ni+1
Emax{w(i,1)Y (i), 0}2 =

k
(i)
2

Ni+1
(z(i))2, 0 ≤ i ≤ L− 2

where we have fixed Y (i) and the expectation is taken over random filters in the ith layer only. Since
different channels in X(i+1) are i.i.d. random variables, according to the strong law of large numbers,
we have:

Ni+1∑
j=1

(X
(i+1)
j,: )2

a.s.−→ k
(i)
2 (z(i))2 when Ni+1 →∞,

which implies that with probability 1,

lim
Ni+1→∞

(z(i+1)
m )2 = lim

Ni+1→∞

∑
l∈D(i+1)

m

Ni+1∑
j=1

(X
(i+1)
j,l )2 = k

(i)
2

∑
l∈D(i+1)

m

(z
(i)
l )2.

Suppose that all Nj for 1 ≤ j ≤ i have gone to infinity and z(i) has converged to z∗(i), the
above expression is the recurrence relation between z∗(i+1) and z∗(i) in a convolutional layer:
(z
∗(i+1)
m )2 = k

(i)
2

∑
l∈D(i+1)

m
(z
∗(i)
l )2.

If X(i+1) is l2-norm pooled feature maps, we have ‖X(i+1)
:,l ‖ = z

(i)
l by defination. Therefore,

(z(i+1)
m )2 =

∑
l∈D(i+1)

m

(z
(i)
l )2.

If X(i+1) is up-sampled feature maps, a pixel X(i)
jp will be up-sampled to a r-sized block

{X(i+1)
jpq

| q ∈ [r]}, where X
(i+1)
jp1

= X
(i)
jp and all the other elements are zeros. Define

D̃(i+1)
m = {p | p1 ∈ D(i+1)

m }, we have:

(z(i+1)
m )2 =

∑
l∈D̃(i+1)

m

(z
(i)
l )2.

So far, we have obtained the recurrence relation in each layer. In order to get z∗(i+1) given z∗(i), we
use the same sliding window scheme on z∗(i) as that of the convolutional, pooling or upsampling
operation on the feature maps. The only difference is that in a convolutional layer, instead of
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calculating the inner product of a filter and the vector in a sliding window, we simply calculate the

l2-norm of the vector in the sliding window and then multiply it by
√
k
(i)
2 . Note that z∗(0) can be

directly obtained from the input image. Repeat this process layer by layer and we can obtain z∗(L−2).

According to Lemma A.2, we have:

EX(L−1)
1,: = Emax{w(L−2,1)Y (L−2), 0} = k

(L−2)
1 z(L−2).

Suppose that z(L−2) has converged to z∗(L−2), and by Definition A.1, f = 1
NL−1

∑NL−1

i=1 X
(L−1)
i,: ,

we have:
f
a.s.−→ k

(L−2)
1 z∗(L−2) when Ni →∞, i ∈ [L− 1].

Let k = k
(L−2)
1

∏L−3
i=0 k

(i)
2 and z∗ = (

∏L−3
i=0 k

(i)
2 )−1z∗(L−2), we have f∗ = kz∗. Note that z∗ is

obtained through a multi-layer sliding window scheme similar to the CNN structure. It only depends
on the input image and the scheme. It is easy to verify that z∗i is the square root of the weighted sum
of the square of input pixel values within the receptive field of the ith output pixel, where the weight
of an input image pixel is the number of routes from it to the output pixel.

A.3.2 VARIANCE

Theorem 6. (Variance) For a two-layer random CNN with N filters in the first convolutional layer,
let Θ denote the angle between the output f and the convergence value f∗, then with probability 1− δ,

sin Θ ≤
√
K

(0)
1

1
Nδ .

Proof. According to Theorem A.1, we have Ef = f∗ = k
(0)
1 z∗, where z∗ = z∗(0). For a two-layer

CNN, we can directly obtain:

f =
1

N

N∑
i=1

X
(1)
i,: =

1

N

N∑
i=1

max{w(0,i)Y (0), 0},

Since different channels are i.i.d. random variables, we have EX(1)
i,: = Ef = k

(0)
1 z∗. Then,

E‖f − Ef‖2 =
1

N
E‖X(1)

i,: − EX(1)
i,: ‖

2

=
1

N
(E‖X(1)

i,: ‖
2 − ‖EX(1)

i,: ‖
2)

=
1

N
(

d̃0∑
j=1

Emax{w(0,i)Y
(0)
:,j , 0}

2 − (k
(0)
1 )2‖z∗‖2)

=
1

N
(

d̃0∑
j=1

k
(0)
2 ‖Y

(0)
:,j ‖

2 − (k
(0)
1 )2‖z∗‖2)

=
1

N
(k

(0)
2 − (k

(0)
1 )2)‖z∗‖2

According to Markov inequality, we have:

Pr(‖f − Ef‖2 ≥ ε2) ≤ 1

Nε2
(k

(0)
2 − (k

(0)
1 )2)‖z∗‖2.

Let δ = 1
Nε2 (k

(0)
2 − (k

(0)
1 )2)‖z∗‖2, then with probability 1− δ:

sin Θ ≤ ‖f − Ef‖
‖Ef‖

≤ ε

k
(0)
1 ‖z∗‖

=

√√√√k
(0)
2 − (k

(0)
1 )2

(k
(0)
1 )2

1

Nδ
=

√
K

(0)
1

1

Nδ
.

To extend the above two-layer result to a multi-layer one, we first prove the following lemma. Note
that in this lemma, D(i) should be replaced by D̃(i) defined in the proof of Theorem A.1 if X(i) is
up-sampled feature maps.
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Lemma 7. Let φ(i)(·) : Rd̃i → Rd̃i+1 for 0 ≤ i ≤ L−3 denote the recurrence relation of {(z∗(i))2}
(i.e. (z∗(i+1))2 = φ(i)((z∗(i))2)), then φ(i)(·) is a linear mapping. For simplicity, suppose that for
any i ∈ [L − 3], card(D(i)

m ) = ri for any m ∈ [d̃i]. And D(i)
l

⋂
D(i)
m = ∅ for any l,m ∈ [d̃i] if

l 6= m. Then we can obtain ‖φ(i)(x)‖2 = ri+1(k(i))2(‖x‖2−‖ε(i)(x)|2) ≤ ri+1(k(i))2‖x‖2, where
k(i) = k

(i)
2 for convolutional layers and k(i) = 1 for pooling and up-sampling layers and ε(i)(·) is

defined by ε(i)(x)j = xj − 1
ri+1

∑
l∈D(i+1)

m
xl, where m satisfies j ∈ D(i+1)

m .

Proof. According to the definition of φ(i)(·) and Theorem A.1, we have:

φ(i)(x)m = k(i)
∑

j∈D(i+1)
m

xj .

It is easy to verify that for any c ∈ R and x,y ∈ Rdi+1 we have φ(i)(cx) = cφ(i)(x) and φ(i)(x +
y) = φ(i)(x) + φ(i)(y). So φ(i)(·) is a linear mapping.

Define xm = 1
ri+1

∑
j∈D(i+1)

m
xj , which is the average value of the mth patch. Let ε(i)(x)j =

xj − xm, where m satisfies j ∈ D(i+1)
m . We have:∑

j∈D(i+1)
m

x2
j =

∑
j∈D(i+1)

m

(xm + ε(i)(x)j)
2

= ri+1x
2
m +

∑
j∈D(i+1)

m

ε(i)(x)2j ,

Since {D(i+1)
m |m ∈ [d̃i+1]} is a partition of [d̃i] under our assumptions, we have ‖x‖2 =∑d̃i+1

m=1

∑
j∈D(i+1)

m
x2
j and ‖φ(i)(x)‖2 = r2i+1(k(i))2

∑d̃i+1

m=1 x
2
m, which implies that

‖φ(i)(x)‖2 = ri+1(k(i))2(‖x‖2 − ‖ε(i)(x)|2) ≤ ri+1(k(i))2‖x‖2.

Theorem 8. (Multilayer Variance) Suppose all the pooling layers use l2-norm pooling. For a
random CNN with L layers and Ni filters in the ith layer, let Θ denote the angle between the output
f and the convergence value f∗, suppose that there is at most one route from an arbitrary input pixel
to an arbitrary output pixel for simplicity, then with probability 1− δ,

sin Θ ≤
√
L− 1

Nδ
+

√√√√(L− 2)

√
L− 1

Nδ

L−2∏
i=0

λi,

where λi = 1√
1− ‖ε

(i)((z∗(i))2)‖2

‖(z∗(i))2‖2

and 1
N

= 1
L−1 (

K
(L−2)
1

NL−1
+
∑L−2
i=1

K
(i−1)
2

Ni
).

Proof. We will bound Θ recursively. Suppose that the angle between (z(i))2 and (z∗(i))2 is θi. We
have θ0 = 0. Let g(i+1,j) = (X

(i+1)
j,: )2 and g(i+1) = 1

Ni+1

∑Ni+1

j=1 g(i+1,j). If X(i+1) is convolu-

tional feature maps, we have obtained in the proof of Theorem A.1 that Eg(i+1) = Eg(i+1,j) =

k
(i)
2 (z(i))2. Using similar method to the proof of Theorem A.3 and let αi+1 denote the angle between

g(i+1) and Eg(i+1), we can derive that with probability 1− δi+1,

sinαi+1 ≤

√
K

(i)
2

1

Ni+1δi+1
.

For a l2-norm pooling layer or an up-sampling layer, we have:

sinαi+1 = 0 ≤

√
K

(i)
2

1

Ni+1δi+1
.
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Let βi+1 denote the angle between g(i+1) and (z∗(i))2. We have:

sinβi+1 ≤ sin(θi + αi+1) ≤ sin θi + sinαi+1.

Note that there exists a constant γ such that sinβi+1 = ‖γg(i+1)−(z∗(i))2‖
‖(z∗(i))2‖ . In fact, we can find the

value of γ is (z∗(i))2(g(i+1))T

‖g(i+1)‖2 , where (·)T means transpose. We use φ(i)(·) to denote the recurrence

relation of {(z∗(i))2} (i.e. (z∗(i+1))2 = φ(i)((z∗(i))2)). Note that (z(i+1))2 = φ(i)(g(i+1)) and
φ(i)(·) is linear, using the result in Lemma A.4, we can obtain:

sin θi+1 ≤
‖γ(z(i+1))2 − (z∗(i+1))2‖

‖(z∗(i+1))2‖

=
‖φ(i)(γg(i+1) − (z∗(i))2)‖

‖φ(i)((z∗(i))2)‖

≤ ‖γg(i+1) − (z∗(i))2‖√
‖(z∗(i))2‖2 − ‖ε(i)((z∗(i))2)‖2

= λi sinβi+1

≤ λi(sin θi + sinαi+1).

Where we defined λi = 1√
1− ‖ε

(i)((z∗(i))2)‖2

‖(z∗(i))2‖2

for 0 ≤ i ≤ L− 3, which is usually slightly bigger than

1 if the input is a natural image.

So far, we have derived the recurrence relation between sin θi+1 and sin θi. So we can get the bound
of θL−2. However, note that θL−2 is the angle between (z(L−2))2 and (z∗(L−2))2 instead of that
between z(L−2) and z∗(L−2). We will denote the latter by µ which is what we really need. We
know that there exists a constant γ′ such that sin θL−2 = ‖γ′(z(L−2))2−(z∗(L−2))2‖

‖(z∗(L−2))2‖ . Note that for any

a,b ∈ R+n, according to Cauchy-Schwarz inequality, we have:

n

n∑
i=1

(a2i − b2
i )

2 ≥ (

n∑
i=1

|a2i − b2
i |)2 = (

n∑
i=1

|ai − bi|(ai + bi))
2 ≥ (

n∑
i=1

(ai − bi)
2)2,

which implies that ‖a− b‖4 ≤ n‖a2 − b2‖2. Then we can bound µ:

sinµ ≤ ‖
√
γ′(z(L−2))− (z∗(L−2))‖

‖z∗(L−2)‖

≤

√√√√√d̃L−2‖(z∗(L−2))2‖
‖z∗(L−2)‖2

sin θL−2

If we define d̃L−1 = 1 and D(L−1)
1 = [dL−1], then we can define φL−2(·) : RdL−1 → R as

φ(L−2)(x) =
∑
j∈[dL−1]

xj . Note that ‖z∗(L−2)‖2 = φL−2((z∗(L−2))2) by definition. Then accord-
ing to Lemma A.2, let λL−2 = 1√

1− ‖ε
(L−2)((z∗(L−2))2)‖2

‖(z∗(L−2))2‖2

, we have

sinµ ≤
√
λL−2 sin θL−2

Let v denote the angle between z(L−2) and f , we have obtained its bound in Theorem A.3. With

probability 1− δL−1, we have sin v ≤
√
K

(L−2)
1

1
NL−1δL−1

. With all the bounds above, define N by

1
N

= 1
L−1 (

K
(L−2)
1

NL−1
+
∑L−2
i=1

K
(i−1)
2

Ni
) and choose δi =

δNK
(i)
2

(L−1)Ni for i ≤ L−2 and δL−1 =
δNK

(L−2)
1

(L−1)NL−1

for simplicity, we can obtain the bound of Θ: with probability 1− δ,

sin Θ ≤
√
L− 1

Nδ
+

√√√√(L− 2)

√
L− 1

Nδ

L−2∏
i=0

λi
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A.3.3 DIFFERENCE BETWEEN THE CONVERGENCE VALUE AND THE INPUT

For this part, we will give a detailed proof for a two-layer CNN and argue that the result can be
directly extended to a multi-layer one only with a few slight changes of definition.

Theorem 9. For a two-layer random CNN, suppose that each layer has a zero-padding scheme
to keep the output dimension equal to the dimension of the original input. The kernel size is r and
stride is 1. The input image is X ∈ Rd0 , whose entries are all positive. εt = Xt −Xt means the
difference between one pixel Xt and the mean of the r-sized image patch whose center is Xt. Let
Φ be the angle between the input image X and the convergence value of the output image, we have
cos Φ ≥ 1− 1

M

∑
t εtXt, where M =

∑
tX

2
t .

Proof. According to Theorem A.1, we know that f∗ = kz∗, where zt is the square root of the sum
of the square of the pixels in its corresponding receptive field (i.e. the l2-norm of the pixels), which
means zt =

√∑
α∈Rt X

2
α and k is a constant related to the network structure and distribution of the

random filters. With zero-padding on the input image, we can calculate the angle between f∗ and X:

cos Φ =

∑
t

(√∑
α∈Rt X

2
αXt

)
√∑

t

∑
α∈Rt X

2
α

√∑
tX

2
t

.

As each pixel contributes at most r times to the final output, we have√∑
t

∑
α∈Rt

X2
α ≤
√
r
√
M.

Also, using Cauchy-Schwarz Inequality and the fact that all Xt are positive, we can obtain√∑
α∈Rt

X2
α ≥

1√
r

∑
α∈Rt

Xα.

Now, we can bound the above cos Φ as follows:

cos Φ ≥

∑
t

(
1√
r
Xt

∑
α∈Rt Xα

)
√
r
√
M
√
M

=
1

M

∑
t

XtXt

=
1

M

∑
t

Xt(Xt − εt)

= 1− 1

M

∑
t

εtXt.

The above theorem indicates that, if the input is an image whose pixels are similar to their adjacent
pixels, then the the angle between the input image X and the convergence value of the output image
will be small.

We point out that the above theorem can be directly extended to multi-layer convolutional neural
networks. Suppose that the neural network has multiple layers. According to Theorem A.1, f∗ = kz∗.
Now, the pixels in the receptive fields contribute unequally to the corresponding output. Note that
when the network is multi-layer, the receptive field is greatly enlarged. We can similarly obtain:

cos Φ =

∑
t

(√∑
α∈Rt n(α,t)X

2
αXt

)
√∑

t

∑
α∈Rt n(α,t)X

2
α

√∑
tX

2
t

.
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Here, Rt is the index set of the receptive field of ft and n(α,t) is the number of routes from Xα to
ft. Suppose that the receptive field of each ft has the same size and shape, Xt is at a fixed relative
position of the receptive field of ft and n(α,t) only depends on the relative position between Xα

and Xt. Let Xt =
∑
α∈Rt

n(α,t)Xα∑
α∈Rt

n(α,t)
be the weighted average and εt = Xt −Xt. By using the same

technique above, we can obtain that

cos Φ ≥ 1− 1

M

∑
t

εtXt.

Note that although the bound is the same as the two-layer convolutional neural network, as the
receptive field is enlarged, εt can be much larger, so that the above bound will be worse.

We also give the convergence value for average pooling in the next theorem.

Theorem 10. (Convergence Value, average pooling) Suppose all the pooling layers use average
pooling. When the number of filters in each layer of a random CNN goes to infinity, the output f
corresponding to a fixed input will converge to a fixed image f∗ with probability 1.

Proof. Define C(i) ∈ Rdi×di by C(i)
jk = (X

(i)
:,j )TX

(i)
:,k . If X(i+1) is convolutional feature maps,

according to Lemma A.2, we have:

EX(i+1)
1,j X

(i+1)
1,k =

1

Ni+1
Emax{w(i,1)Y

(i)
:,j , 0}max{w

(i,1)Y
(i)
:,k , 0} =

1

Ni+1
k
(i)
2 h(ϕ

(i)
jk )z

(i)
j z

(i)
k ,

where ϕ(i)
jk is the angle between Y (i)

:,j and Y (i)
:,k and we defined h(x) = 1

π [(π − x) cosx+ sinx] for
abbreviation. We have fixed Y (i) and the expectation is taken over random filters in the ith layer only.
Since different channels in X(i+1) are i.i.d. random variables, according to the strong law of large
numbers, we have:

C
(i+1)
jk =

Ni+1∑
l=1

X
(i+1)
l,j X

(i+1)
l,k

a.s.−→ k
(i)
2 h(ϕ

(i)
jk )z

(i)
j z

(i)
k when Ni+1 →∞.

Note that:

z
(i)
j =

√√√√ ∑
l∈D(i)

j

‖X(i)
:,l ‖2 =

√√√√ ∑
l∈D(i)

j

C
(i)
ll ,

cosϕ
(i)
jk =

(Y
(i)
:,j )TY

(i)
:,k

z
(i)
j z

(i)
k

=

∑ri
s=1 C

(i)

D(i)
j,sD

(i)
k,s

z
(i)
j z

(i)
k

.

Suppose that all Nj for 1 ≤ j ≤ i have gone to infinity and C(i) has converged to C∗(i), the above
expressions are the recurrence relation between C∗(i+1) and C∗(i) for a convolutional layer. IfX(i+1)

is average-pooled feature maps, we have:

X
(i+1)
:,j =

1

ri

∑
l∈D(i)

j

X
(i)
:,l .

We have:

C
(i+1)
jk = (X

(i+1)
:,j )TX

(i+1)
:,k =

1

r2i

∑
l∈D(i)

j ,m∈D(i)
k

(X
(i)
:,l )TX(i)

:,m =
1

r2i

∑
l∈D(i)

j ,m∈D(i)
k

C
(i)
lm,

which is the recurrence relation for an average pooling layer.

For an up-sampling layer, a pixel X(i)
jk will be up-sampled to a block {X(i+1)

jkm
| m ∈ [r]}, where

X
(i+1)
jk1

= X
(i)
jk and all the other elements are zeros. We have:

C
(i+1)
jlkm

=

{
C

(i)
jk for l = m = 1,

0 otherwise.
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Note that we can directly calculate C∗(0) according to the input image. So we can recursively obtain
C∗(L−2) and thus z∗(L−2).

According to Lemma A.2, we have:

EX(L−1)
1,: = Emax{w(L−2,1)Y (L−2), 0} = k1z

(L−2).

Suppose that z(L−2) has converged to z∗(L−2), and by Definition A.1, f = 1
NL−1

∑NL−1

i=1 X
(L−1)
i,: ,

we have:
f
a.s.−→ k1z

∗(L−2) when Ni →∞, i ∈ [L− 1].

We can obtain the convergence value f∗ through the above process.

A.4 STYLE TRANSFER APPLICATIONS ON RRVGG

We observe that by choosing a suitable number of random filters, the rrVGG Conv1-DeConv1
architecture can achieve high-quality reconstruction. The reconstructions also bring slight differences
in the background color and texture, which is suited for exploring more interesting style transfer
results. Hence we utilize the framework, as shown in Fig. 14 to explore style transfer on rrVGG
models.

Recent work on style transfer employing the Convolutional Neural Network(CNN) raised significant
research interest. They either utilize the pretrained CNN for iterative optimization Gatys et al. (2016)
or train a feed-forward network Johnson et al. (2016); Ulyanov et al. (2017b) to achieve the stylization
efficiently. These approaches all adopted CNN to extract the feature map for constructing both the
style loss and content loss, achieving impressive stylization results. However, most of the work
either relies on optimization process Gatys et al. (2016) which is particularly slow or be limited by
a single style for each network Johnson et al. (2016); Ulyanov et al. (2017b). Hence, rather than
taking images as the input and output for the optimization process, we feed the feature vector gained
from the random CNN into the Feature Vector Transformation (FVT) component and output the
stylized feature vector Vnew. Feeding Vnew into random DCN will generate the stylized image which
is comparable to existing methods with less computational time.

Figure 14: Overview of style transfer on rrVGG (random convolution and random decomvolution).

As Fig. 14 shows, in the rrVGG Conv1-DeConv1 network, we extract the activation vectors of both
content and style images, Vs, Vc after the Conv1_2 layer. Afterwards, feeding the vectors Vc, Vs
into the FVT component. This framework is flexible as FVT can be replaced either by feed-forward
network or optimization process. Here we use iterative optimization for FVT to generate the stylized
feature vector.

Based on Ulyanov et al. (2016); Gatys et al. (2016), we also adopted the linear combination of both
content loss and style loss, L(Vs, Vc, Vnew) = αLc(Vc, Vnew) + βLs(Vs, Vnew). Lc indicates the
content loss which is the euclidean distance between the content vector Vc and stylized feature vector
Vnew, where Ai is the activation vector in i-th layer of the FVT.

Lc(Vc, Vnew) =
∑
i∈L
‖Ai(Vc)−Ai(Vnew)‖2 (3)

The style loss Ls is obtained from the Gram matrix of the feature vectors. In Eq. equation 4, G
represents the gram matrix. Inspired by Li et al. (2017)Huang & Belongie (2017), we also utilize
the the mean value and standard deviation of feature vectors to calculate the style loss, the result of
which is similar to the gram loss Ls.

Ls(Vs, Vnew) =
∑
i∈L
‖G(Ai(Vs))−G(Ai(Vnew))‖2 (4)
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In Fig. 14, FVT (iterative optimization) only contains the convolutional layer from Conv2 to Conv5
and rrVGG contains Conv1 and DeConv1. In addition, we can also utilize more layers on rrVGG and
FVT will contain less layers on the optimization network correspondingly, which will further speed
up the style transfer process. In experiments, our framework is faster than the original optimization
based approach and can transfer the arbitrary styles. The following illustrated figures are all generated
by implementing FVT with the optimization process. Compared with AdaIN Huang & Belongie
(2017), our process only consume time on FVT to generate the stylized feature vector Vnew and
employ random DCN to convert Vnew to the stylized image while Huang et al. Huang & Belongie
(2017) propose an AdaIN layer for transferring feature statistics and consume most of their time
at the expense of training DCN. For the FVT, as Fig. 14 shows, it can also be implemented by a
feed-forward network to accomplish the generation of stylized feature vector, which has achieved a
comparable speed with respect to the existing work Johnson et al. (2016); Ulyanov et al. (2017b);
Chen & Schmidt (2016); Chen et al. (2017). Since feature vectors Vs, Vc are acquired from Conv1_2
layer, thus having lower spatial resolution, which makes the optimization (FVT) on L converge faster
than existing works utilizing images as the input. Meanwhile, rrVGG CNN-DCN parts are free of
training, which compares favourably against Huang & Belongie (2017).

content style Gatys et al. Ulyanov et al. rrV GG1 rrV GG2

Figure 15: Style Transfer results Comparison

As for the stylization effectiveness, we compared our results with Gatys et al. Gatys et al. (2016)
and Ulyanov et al. Ulyanov et al. (2017b). In Fig. 15, rrV GG1 and rrV GG2 columns denote the
stylization results acquired from our framework, applying two different rrVGG models. As shown in
Fig. 15, our stylization results are competitive to other well-trained approaches. Focused on rrV GG1

column, our stylized result is inclined to extract more features from the style image and slightly
weaken the representation of content image. Since we utilize rrVGG CNN and DCN to complete the
transformation between feature space and image space, some content information is possible to be
lost during the reconstruction process. Despite that, our approach is still capable of generating high
quality stylized images.

In addition, we also investigate the stylized effectiveness when modifying the balance between style
and content in FVT. As shown in Figure 16, the number below each column indicates the relative
weightings between style and content reconstruction. In our framework, the transition from content
to style is smooth with increasing ratio.

content 101 102 103 104 105 style

Figure 16: Detailed results for the rrVGG style transfer. Each column represents the ratio between
style and content during the optimization phase.
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As shown in Figure 17, our stylized result is inclined to extract more features from the style image
and slightly weaken the representation of the content image.

content style rrVGG1 rrVGG2 rrVGG3

Figure 17: Style transfer from several rrVGG models. Each model has the same architecture but
different random weights.
As proposed in our paper, in terms of different distributions and number of filters, rrVGG can
reconstruct images with diverse textures and background colors. In Fig. 14, replacing CNN and DCN
parts with different rrVGG models, our framework can generate abundant stylized images depending
on a single style image. Since rrVGG models are generated without training, it won’t incur additional
computational cost. As shown in Fig. 17, the rightmost three columns comprise the stylized images
with different rrVGG model weights while the leftmost two columns represent input content and style
images respectively. For each row, given content and style images, we choose three stylized images
generated by our framework using different rrVGG models. For instance, in the 3-rd row of Fig. 17,
the parameters of chosen rrVGG models are as following: rrVGG1:(N(0, 0.01), filter size:3, filter
num:128), rrVGG2:(N(0, 0.01), filter size:5, filter num:256) and rrVGG3:(N(0, 0.1), filter size:3,
filter num:32). As shown in Fig. 17, those stylized images not only well preserve the style structure
such as the shape of the curved lines, waves and abstract objects, but also exhibit novel combinations
of the structure, shade and hue. Coupled with various rrVGG models, the proposed style transfer
framework is able to unleash the diversity and variation inside a single style image, which works well
in practice. Meanwhile, it’s flexible as well as fast, since the FVT part can be implemented either by
an optimization process or some feed-forward convolutional layers.
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