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ABSTRACT

The ResNet and the batch-normalization (BN) achieved high performance even
when only a few labeled data are available. However, the reasons for its high
performance are unclear. To clear the reasons, we analyzed the effect of the skip-
connection in ResNet and the BN on the data separation ability, which is an impor-
tant ability for the classification problem. Our results show that, in the multilayer
perceptron with randomly initialized weights, the angle between two input vectors
converges to zero in an exponential order of its depth, that the skip-connection
makes this exponential decrease into a sub-exponential decrease, and that the
BN relaxes this sub-exponential decrease into a reciprocal decrease. Moreover,
our analysis shows that the preservation of the angle at initialization encourages
trained neural networks to separate points from different classes. These imply that
the skip-connection and the BN improve the data separation ability and achieve
high performance even when only a few labeled data are available.

1 INTRODUCTION

The architecture of a neural network heavily affects its performance especially when only a few
labeled data are available. The most famous example of one such architecture is the convolutional
neural network (CNN) (LeCun et al., 1995). Even when convolutional layers of CNN were randomly
initialized and kept fixed and only the last fully-connected layer was trained, it achieved a compet-
itive performance compared with the traditional CNN (Jarrett et al., 2009; Zhang & Suganthan,
2017). Recent other examples are the ResNet (He et al., 2016) and the batch-normalization (BN)
(Ioffe & Szegedy, 2015). The ResNet and the BN are widely used in few-shot learning problems
and achieved high performance (Munkhdalai et al., 2018; Oreshkin et al., 2018).

One reason for the success of neural networks is that their architectures enable its feature vector
to capture prior knowledge about the problem. The convolutional layer of CNN enable its feature
vector to capture statistical properties of data such as the shift invariance and the compositionality
through local features, which present in images (Zeiler & Fergus, 2014). However, effects of the
skip-connection in ResNet and the BN on its feature vector are still unclear.

To clear the effects of the skip-connection and the BN, we analyzed the transformations of input
vectors by the multilayer perceptron, the ResNet, and the ResNet with BN. Our results show that
the skip-connection and the BN preserve the angle between input vectors. This preservation of the
angle is a desirable ability for the classification problem because the last output layer should separate
points from different classes and input vectors in different classes have a large angle (Yamaguchi
et al., 1998; Wolf & Shashua, 2003). Moreover, our analysis shows that the preservation of the
angle at initialization encourages trained neural networks to separate points from different classes.
These imply that the skip-connection and the BN improve the data separation ability and achieve
high performance even when only a few labeled data are available.

2 PRELIMINARIES

2.1 NEURAL NETWORKS

We consider the following L layers neural networks, which transform an input vector x ∈ RD into
a new feature vector hL ∈ RD through layers. Let h0 = x and ϕ(·) = max(0, ·) be the ReLU
activation function.
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Multilayer perceptron (MLP):
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ResNet (Yang & Schoenholz, 2017; Hardt & Ma, 2017) :
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ResNet with batch-normalization (BN):
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where the expectation is taken under the distribution of input vectors in the mini-batch of the stochas-
tic gradient descent (SGD). Without loss of generality, we assume that the variance of input vectors
in the mini-batch is one, Var (xd) = 1 for all d ∈ [D].

We analyzed the average behavior of these neural networks when the weights were randomly ini-
tialized as follows. In the MLP, the weights were initialized by the He initialization (He et al., 2015)
because the activation function is the ReLU function.

W l
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In the ResNet and the ResNet with BN, the first internal weights were initialized by the He initializa-
tion, but the second internal weights were initialized by the Xavier initialization (Glorot & Bengio,
2010) because the second internal activation function is the identity.
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2.2 TRANSFORMATION OF INPUT VECTORS

We analyzed the transformation of input vectors through hidden layers of the neural networks. Now
we define the quantity studied in this paper.

Definition 1 For a pair of the feature vectors hl(n), hl(m) of input vectors x(n), x(m), we define
the angle and the cosine similarity,

∠(hl(n), hl(m)) = arccos
(
cl(n,m)

)
, cl(n,m) =

ql(n,m)√
ql(n)ql(m)

(6)

where ql(n) = E
[
∥hl(n)∥2

]
is the length of the feature vector and ql(n,m) = E

[
hl(n)

T
hl(m)

]
is the inner product between the pair of the feature vectors. Note that the expectation is taken under
the probability distribution of initial weights.

3 MAIN RESULTS

3.1 RECURRENCE RELATION OF THE ANGLE

We derived the recurrence relation of the angle (Table 1). Its plot (Fig.1) shows that the MLP
contracts the angle between input vectors, which is an undesirable property for the classification

2



Under review as a conference paper at ICLR 2019

Table 1: Recurrence relation of the angle. Let ψ(θ) = 1
π (sin θ + (π − θ) cos θ).

Model Angle ∠(hl+1(n), hl+1(m)) Cosine similarity cl+1(n,m)

MLP
arccos

(
cl+1(n,m)

) ψ(∠(hl(n), hl(m)))

ResNet 1
2ψ(∠(hl(n), hl(m))) + 1

2 cos∠(hl(n), hl(m))

ResNet with BN 1
l+3ψ(∠(hl(n), hl(m))) + l+2

l+3 cos∠(hl(n), hl(m))
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Figure 1: Recurrence relation of
the angle. The skip-connection and
the BN preserve the angle.
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Figure 2: Transformation of the angle between input vectors. We plot-
ted the mean and the standard deviation of the angle over 10 randomly
initialized parameters.

problem, and that the skip-connection in ResNet and the BN relax this contraction. Numerical
simulations (Fig.2) on the MNIST dataset (LeCun et al., 1998) validated our analysis.

Table 1 gives us the clear interpretation how the skip-connection in ResNet and the BN preserve
the angle between input vectors. The ReLU activation function contracts the angle because the
ReLU activation function truncates negative value of its input. The skip-connection bypasses the
ReLU activation function and thus reduces the effect of the ReLU activation function to the half.
Moreover, the BN reduces the effect of the ReLU activation function to the reciprocal of the depth.

3.2 DYNAMICS OF THE ANGLE THROUGH LAYERS

We derived the dynamics of the angle through layers (Table 2) by applying the recurrence relation
of the angle (Table 1) iteratively and using the fact that, if θ is small, arccos(ψ(θ)) can be well
approximated by the linear function, a · θ where a < 1 is constant. Table 2 shows that, in the MLP
with randomly initialized weights, the angle between input vectors converges to zero in an expo-
nential order of its depth, that the skip-connection in ResNet makes this exponential decrease into
a sub-exponential decrease, and that the BN relaxes this sub-exponential decrease into a reciprocal
decrease. In other words, the skip-connection in ResNet and the BN preserve the angle between
input vectors. Numerical simulation (Fig.3) on the MNIST dataset validated our analysis.

Table 2: Dynamics of the angle through layers.

Model Angle ∠(hL(n), hL(m))

MLP ≃ aL · ∠(x(n), x(m))

ResNet ≥
(
1+a
2

)L · ∠(x(n), x(m))

ResNet with BN ≥ 2
L+2 · ∠(x(n), x(m))
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Figure 3: Dynamics of the angle. We plotted the
mean and the standard deviation of the angle over
10 randomly initialized parameters.

3



Under review as a conference paper at ICLR 2019

3.3 ROLE OF TRAINING AND ITS RELATION TO THE PRESERVATION OF THE ANGLE

A desirable ability of the neural network for the classification problem is to separate points from
different classes. However, our results show that the randomly initialized neural networks contract
the angle between input vectors from different classes. Our analysis provide us with an insight how
training tackle this problem. We can show that the cosine similarity cl+1(n,m) is proportional to

cos θ cos(θ − ∠(hl(n), hl(m))) (7)

where θ is a parameter we can control by training. Its plot (Fig.4) implies that training makes small
angles smaller and large angles larger by taking the extreme value of θ like 0 or π. In order to
validate this insight, we stacked the softmax layer on top of an 1 layer MLP and trained this model
by the SGD with 100 labeled examples in the MNIST dataset. Fig.5 shows the change of the angles
of feature vectors by training, which validated our insight.

The above discussion also shows the relationship between training and the preservation of the angle.
The angle of feature vectors at high layer of the initialized MLP is small, which implies that training
doesn’t take extreme value of θ and doesn’t separate points from different classes. On the other hand,
the skip-connection and the BN preserve the angle between input vectors even at high layer. Thus,
training takes extreme value of θ and separates points from different classes. Numerical simulations
(Fig.6), which is the same as the previous one, validated our insight.

4 CONCLUSION

The ResNet and the BN achieved high performance even when only a few labeled data are avail-
able. To clear the reasons for its high performance, we analyzed effects of the skip-connection in
ResNet and the BN on the transformation of input vectors through layers. Our results show that the
skip-connection and the BN preserve the angle between input vectors, which is a desirable ability
for the classification problem. Moreover, our analysis shows that the preservation of the angle at
initialization encourages trained neural networks to separate points from different classes. These
results imply that the skip-connection and the BN improve the data separation ability and achieve
high performance even when only a few labeled data are available.
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Figure 4: Cosine similarity of feature vectors
cl+1(n,m) for vectors hl(n), hl(m) which
have a large angle or small angle.
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Figure 5: Change of the angles of feature
vectors by training.
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Figure 6: Change of the angles of feature vectors by training
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