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Abstract

Light field data have been demonstrated in favor of many tasks in computer vision,
but existing works about light field saliency detection still rely on hand-crafted
features. In this paper, we present a deep-learning-based method where a novel
memory-oriented decoder is tailored for light field saliency detection. Our goal is
to deeply explore and comprehensively exploit internal correlation of focal slices
for accurate prediction by designing feature fusion and integration mechanisms.
The success of our method is demonstrated by achieving the state of the art on
three datasets. We present this problem in a way that is accessible to members
of the community and provide a large-scale light field dataset that facilitates
comparisons across algorithms. The code and dataset are made publicly available
at https://github.com/OIPLab-DUT/MoLF.

1 Introduction

Salient object detection (SOD) is the ability to identify the most visually distinctive objects despite
substantial appearance similarity in a scene. This fundamental task has attracted lots of interest due
to its importance in various applications, such as visual tracking [20, 47], object recognition [43, 10],
image segmentation [33], image retrieval [44], and robot navigation [9].

Existing methods can be categorized into 2D (RGB), 3D (RGB-D) and 4D (light field) saliency
detection based on the input data types. 2D methods [15, 23, 8, 18, 21, 36, 27, 63] have achieved great
success and long been dominant in the field of saliency detection. However, 2D saliency detection
methods may suffer from false positives when it comes to challenging scenes shown in Fig. 1. The
reasons are twofold: First, traditional 2D methods underlie many prior knowledges in which violations
highly pose a risk under complex scenes; Second, 2D deep-learning-based methods are subject to the
features extracted from limited RGB data not containing as much special information from RGB-D
data or light field data. 3D saliency detection has also attracted a lot of attention because depth maps
providing scene layout can improve the saliency accuracy to some extent. However, mediocre-quality
depth maps heavily jeopardize the accuracy of saliency detection.

The light field provides images of the scene from an array of viewpoints which spread over the extent
of the lens aperture. These different views can be used to produce a stack of focal slices, containing
abundant spatial parallax information as well as accurate depth information about the objects in the
scene. Furthermore, focusness is one of the strongest information, allowing a human observer to
instantly understand the order in which objects are arranged along the depth in a scene [24, 59, 29].
Light field data have been demonstrated in favor of many applications in computer vision, such as
depth estimation [16, 48, 64], super resolution [67, 55], and material recognition [51]. Due to the
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Figure 1: Left: some challenging scenes, e.g., similar foreground and background, complex back-
ground, transparent objects, and low intensity environment. Right: the light field data. (a)-(d) are
four focal slices that focus at different depth levels. The green box with red dot represents different
focus positions. From our observation, they are beneficial for efficient foreground and background
separation. (e) shows our model’s saliency results. ‘GT’ means ground truths.

unique property of light field, it has shown promising prospects in saliency detection [24, 28, 58, 56,
59, 29]. However, deep-learning-based light field methods have been missing from contemporary
studies in saliency detection. We have strong reasons to believe introducing the CNN framework for
light field saliency detection is an important aspect, as do 2D and 3D methods in SOD.

In order to incorporate the CNN framework and light field for accurate SOD, there are three key
issues needed to be considered. First, how do we solve the deficiency of training data? Second, how
do we effectively and properly fuse light field features generated from different focal slices? Third,
how do we comprehensively integrate multi-level features?

In this paper, we leverage the ideas from light field to confront these challenges. To better adapt our
network to fuse features from focal slices, we may neither want to ignore more contribution of the
corresponding focal slices where the salient object happens to be in focus, nor destroy the spatial
correlation between different focal slices. Therefore, we propose a novel memory-oriented spatial
fusion module (Mo-SFM) to resemble the memory mechanism of how human fuse information to
understand a scene by going through all pieces of information and emphasizing the most relevant ones.
On the other hand, integration of fused features is used for higher cognitive processing. Therefore,
we propose a sophisticated multi-level integration mechanism in a top-down manner where high-level
features are used to guide low-level feature selection, namely memory-oriented feature integration
module (Mo-FIM). The previous information referred to as memory is used in our channel attention to
update the current light field feature, so that important and unnecessary features can be distinguishable.
In summary, our main contributions are as follows:

• We introduce a large-scale light filed saliency dataset with 1462 samples, each of which con-
tains an all-focus image, a focal stack with 12 focal slices, a depth map, and a corresponding
ground truth, genuinely hoping that this could pave the way for light field SOD and enable
more advanced research and development.

• We propose a novel memory-oriented decoder tailored for light field SOD. Feature fusion
mechanism in Mo-SFM and feature integration mechanism in Mo-FIM enable more accurate
prediction. This work is, to the best of our knowledge, the first exploitation of using the
unique focal slices in light field data for deep-learning-based saliency detection.

• Extensive experiments on three light field datasets show that our method achieves consis-
tently superior performance over 25 state-of-the-art 2D, 3D and 4D approaches.

2 Related Work

Salient Object Detection. Early works [23, 8, 18, 19, 40, 68, 32, 30, 41, 49] for saliency detection
mainly rely on hand-crafted features and prior knowledges, such as color-contrast and background
prior. Recently, with the utilization of CNNs, 2D SOD has achieved appealing performance. Li
et al. [27] adopt a CNN to extract multi-scale features to predict saliency for each super-pixel. Wang
et al. [50] propose two CNNs to integrate local super-pixel estimation and global search for SOD.
Zhao et al. [63] utilize two independent CNNs to extract both global and local contexts. Lee et al. [26]
combine low-level distant map with high-level semantic features of deep CNNs for SOD. These
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methods achieve better performance but suffer from time-consuming computation and injure the
spatial information of the input images. Afterwords, Liu and Han [35] first generate a coarse saliency
map and then refine its details step by step. Hou et al. [21] introduce short connections into multiple
side-outputs based on HED [54] architecture. Zhang et al. [60] integrate multi-level features in
multiple resolutions and combine them for accurate prediction. Luo et al. [37] propose a simplified
CNN to combine both local and global information and design a loss to penalize boundary errors.
Zhang et al. [62] and Liu et al. [36] introduce attention mechanism to guide feature integration. Deng
et al. [11] design a residual refinement block to learn the complementary saliency information of the
intermediate prediction. Li et al. [31] transfer contour knowledge to saliency detection without using
any manual saliency masks. Detailed surveys about 2D SOD can be found in [3, 2, 4, 52].

In 3D SOD, depth images with affluent spatial information can act as complementary cues for
saliency detection [38, 39, 14, 25, 42, 5]. Peng et al. [39] regard the depth data as one channel of
input and feed it into a multi-stage saliency detection model. Ju et al. [25] and Feng et al. [14] present
saliency methods based on anisotropic center-surround difference or local background enclosure.
Zhu et al. [66] propose a center-dark channel prior for RGB-D SOD. Qu et al. [42] use hand-crafted
features to train a CNN and achieve better performance than tradition methods. In [17, 7], two-stream
models are used to process the RGB image and depth map separately and cross-modal features are
combined to jointly make prediction. Due to limited training sets, they are trained in a stage-wise
manner. Chen et al. [5] design a progressive fusion network to fuse cross-modal multi-level features
to predict saliency maps. Chen et al. [6] propose a three-stream network to extract RGB-D features
and use attention mechanism to adaptively select complement. Zhu et al. [65] use large-scale RGB
datasets to pre-train a prior model and employ depth-induced features to enhance the network.

Previous works in light field SOD have shown promising prospects, especially for some complex
scenarios. Li et al. [29, 28] report a saliency detection approach on the light field data and propose
the first light field saliency dataset-LFSD. Zhang et al. [58] propose saliency method based on depth
contrast and focusness-based background priors, and show the effectiveness and superiority of light
field properties. Li et al. [56] introduce a weighted sparse coding structure for handling heterogenous
types of input data. Zhang et al. [59] integrate multiple visual cues from light field images to detect
salient regions. However, deep-learning-based light field methods are still in the infancy, and many
issues have yet to be explored.

3 Light Field Dataset

To remedy the data deficiency problem, we introduce a large-scale light field saliency dataset with
1462 selected high-quality samples captured by Lytro Illum camera. We decode the light field format
file using Lytro Desktop. Each light field consists of an all-focus image, a focal stack with 12 focal
slices focusing at different depths, a depth image, and a corresponding manually labeled ground truth.
The focal stack resembles human perception using eyes, i.e., the eyes can dynamically refocus at
different focal slices to determine saliency [29]. Fig. 1 shows samples of light fields in our proposed
dataset. From our observation, they are beneficial for efficient foreground and background separation.
During annotation, three volunteers are asked to draw a rectangle to the most attractive objects.
Then, we collect 1462 samples by choosing the images with consensus. We manually label the
salient objects from the all-focus image using a commonly used segmentation tool. By supplying
the easy-to-understand dataset, we hope to promote the research and make the SOD problem more
accessible to those familiar with this field. The proposed light field saliency dataset provides the
unique focal slices that can be used to support the training needs of deep neural networks.

This dataset consists of 900 indoor and 562 outdoor scenes captured in the surrounding environments
of our daily life, e.g., offices, supermarkets, campuses, streets and so on. Besides, this dataset contains
many challenging scenes as shown in Fig. 1, e.g., similar foreground and background(108), complex
background(31), transparent objects(28), multiple objects(95), and low-intensity environments(9).

4 The Proposed Network

4.1 The Overall Architecture

We adopt the widely utilized VGG-19 net [46] as the backbone architecture, drop the last pooling
layer and fully connected layers, and reserve five convolutional blocks to better fit for our task, as
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Figure 2: The overall architecture of our proposed network, which contains an encoder and a
memory-oriented decoder.

shown in Fig. 2. In the encoder, RGB image is fed into a stream to generate raw RGB features
while all focal slices are fed into another stream to generate light field features with abundant spacial
information. For simplicity, we just illustrate one single encoder, which represents the two streams
simultaneously. As suggested in [5], the Conv1_2 block (i.e., Block1) might be too shallow to make
reliable prediction. We hereby perform our decoder on deeper layers (i.e., Block2-Block5). More
specifically, given the RGB image I0 and the focal slices {Ii}12i=1 with size H ×W , we denote the
outputs of the last four blocks as {f im,m = 2, 3, 4, 5}12i=0, where i = 0 represents features generated
in the RGB stream, i = 1 · · · 12 represents the indexes of focal slices and m = 2, 3, 4, 5 represents
the last four convolution blocks.

4.2 The Memory-oriented Spatial Fusion Module (Mo-SFM)

With the raw RGB and light field features generated from the encoder, we aim at fusing all available
information to address the challenging problem of light field SOD. A straightforward solution is to
simply concatenate light field features produced by different focal slices. However, two drawbacks
emerge in this approach. First, it ignores the relative contributions of different focal slices to the
final results. Focal slices represent images focused at different depths in a scene as shown in Fig. 1.
Intuitively, different focal slices have different weights regarding the salient objects. Second, direct
concatenation operation seriously damages the spatial correlation of those focal slices. A more proper
and effective fusion strategy should be considered. Hence, we propose a novel memory-oriented
spatial fusion module (Mo-SFM) to address this problem. In this module, we introduce an attention
mechanism shown in Fig. 2 to emphasize the useful features and suppress the unnecessary ones from
focused and blurred information. This procedure can be defined as:

Attm = δ(Wm ∗AvgPooling(D[f0m; f1m; · · · ; f12m ]) + bm), (1)

f̃ im = f im �Attim, i = 0, 1, · · · , 12, (2)

where D[ · ; · · · ; · ] means concatenation operation. ∗,Wm and bm represent convolution operator
and convolution parameters in m-th layers. AvgPooling(·) means global average pooling operation
and δ(·) means softmax function. Attm ∈ R1×1×N means the channel-wise attention map in m-th
layers. � denotes feature-wise multiplication.

Then those weighted light field features {f̃ im}12i=0 are regarded as a sequence of inputs corresponding
to the consecutive time steps. They are fed into a ConvLSTM [45] structure to gradually refine their
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Figure 3: Visual comparisons in ablation studies. (a) means using RGB image only. (b) means using
light field data (concatenation without weighting). (c) means concatenation with weighting. (d)
means ConvLSTM fusion with weighting. (e) represents (d)+GPM (i.e., full Mo-SFM). (f) means our
whole network without the SCIM. (g) means the final model.

spatial information for accurately identifying the salient objects. This procedure can be defined as:

it = σ(Wxi ∗ f̃ im +Whi ∗ Ht−1 +Wci◦Ct−1 + bi),

ft = σ(Wxf ∗ f̃ im +Whf ∗ Ht−1 +Wcf◦Ct−1 + bf ),

Ct = ft◦Ct−1 + it◦ tanh(Wxc ∗ f̃ im +Whc ∗ Ht−1 + bc),

ot = σ(Wxo ∗ f̃ im +Who ∗ Ht−1 +Wco◦Ct + bo),

Ht = ot◦ tanh(Ct),

(3)

where ◦ denotes the Hadamard product and σ(·) is sigmoid function. A memory cell Ct stores the
earlier information. All W∗ and b∗ are model parameters to be learned. All the gates it, ft, ot,
memory cell Ct, and hidden stateHt are 3D tensors. In this way, after 13 steps, four fused light field
features {f2, f3, f4, f5} are effectively generated: fm = H13. The unique property of the light field
data makes it spontaneously suitable to use ConvLSTM for feature fusion. The ConvLSTM is also
beneficial for making better use of the spatial correlation between multiple focal slices thanks to its
powerful gate and memory mechanism. By now, our model enhances the average MAE performance
by nearly 14.7% points on our proposed dataset and LFSD dataset (b vs d in Tab. 1).

Furthermore, to capture global contextual information at different scales, we further extend a global
perception module (GPM) on the top of fm. The GPM can be defined as:

Fm = Conv1×1(D(fm;qr∈RS (Convd(fm; θm; r)))),m = 2, 3, 4, 5, (4)

where D[ · ; · · · ; · ] denotes concatenation operation. qr∈RS (OP) means operation, OP is
performed several times using different dilation rates r in rates_set (denoted as RS) and all results
are returned. θm is parameters to be learned in m-th layer. {Fm}5m=2 are the final fused light field
features in multiple layers. At the end, we add several intermediate supervisions on Fm in each layer
to facilitate network convergence and encourage explicit fusion of those light field features.

4.3 The Memory-oriented Feature Integration Module (Mo-FIM)

Table 1: Quantitative results of the ablation analysis for our
network. The meaning of indexes has been explained in the
caption of Fig. 3.

Ours LFSD

indexes Modules Fβ ↑ MAE ↓ Fβ ↑ MAE ↓
(a) RGB 0.643 0.144 0.607 0.194
(b) LF(w/o weighting) 0.805 0.074 0.781 0.121
(c) LF(with weighting) 0.819 0.069 0.789 0.116
(d) +SFM(w/o GPM) 0.821 0.062 0.797 0.105
(e) +SFM(with GPM) 0.825 0.059 0.807 0.099
(f) +FIM(w/o SCIM) 0.838 0.054 0.814 0.092
(g) +FIM(with SCIM) 0.843 0.052 0.819 0.089

Efficient integration of hierarchical
deep features is significant for pixel-
wise prediction tasks, e.g., salient
object detection [60, 5], semantic
segmentation [34]. We propose a
new memory-oriented module, which
from a novel perspective, utilizes the
memory mechanism to effectively in-
tegrate multi-level light field features
in a top-down manner. Specifically, as
each channel of a feature map is con-
sidered as a ‘feature detector’ [53, 57],
we design a scene context integration

5



module (SCIM) shown in Fig. 2, which utilizes memory information from toper layers to learn a
channel attention map and updates the current light field feature by focusing on important channels
and suppressing unnecessary ones. Then, the ConvLSTM progressively integrates the high-level
memories and the current elaborately refined input. That is to say, the high-level features with
abundant semantic information are gradually summarized as memory and then being used to guide
the selection of low-level spatial details for precise saliency prediction.

More specifically, in the SCIM shown in Fig. 2,Ht−1 represents the previous scene understanding
(i.e., hidden state of ConvLSTM in t − 1 time step) and Fm means the fused light field feature in
mth layer. The SCIM can de defined as:

F̃m = δ(AvgPooling(W1 ∗ Ht−1 ⊕W2 ∗ Fm))⊗ Fm, (5)

where ⊕ and ⊗ denote element-wise addition and multiplication, respectively. Then the updated
feature F̃m is fed into a ConvLSTM cell to further summarize spatial information from the historical
memory and current input F̃m. We use the output of Block5 as the initial state of ConvLSTM and
SCIM, i.e., H0 = F5. After 4 steps (corresponding to F̃5, F̃4, F̃3, F̃2, respectively), the output of the
ConvLSTM is followed by a transition convolutional layer and an up-sample operation to get the
final saliency map S. The calculation procedure is similar to Equ. 3 by replacing the inputs.
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Figure 4: Visual results of the intermediate supervi-
sions. In such a complex scene, our model can gradu-
ally optimize the saliency maps and produce a precise
prediction.

However, the top-down structure may cause
high-level features diluted as they are trans-
mitted to the lower layers. To address this
problem, inspired by DenseNet [22], we link
the features in low and high levels in the way
shown in Fig. 2, to alleviate gradient vanish-
ing and meanwhile encourage feature reuse.
The final light field features to be used can
be defined as: Fm =

∑5
r=m Fr, m is set to

2, 3, 4, 5, successively. Besides, in order to
guarantee each time step of the ConvLSTM
can explicitly learn the most important in-
formation for accurately identifying salient
objects, we add intermediate supervisions
on all internal outputs of the ConvLSTM.
Generally speaking, those intermediate supervisions can act as instruction to guide the SCIM and
ConvLSTM to accurately filter the non-salient areas and retain salient areas. Intermediate results are
illustrated in Fig. 4. Full details about codes will be made publicly available.

5 Experiments

5.1 Datasets

To evaluate the performance of our proposed network, we conduct experiments on our proposed
dataset and the only two public light field saliency datasets: LFSD [29] and HFUT [59].

Ours: This dataset consists of 1462 light field samples. We randomly select 1000 samples for training
and the remaining 462 samples for testing. More details can be found in Sec. 3.
LFSD: This dataset contains 100 light fields captured by Lytro camera. This dataset is proposed by
Li et al., in [29], which pioneered the use of light field for solving challenging problems in SOD.
HFUT: HFUT consists of 255 samples captured by Lytro camera. It is a challenging dataset, with
the real-life scenarios at various distances, sensors noises, lighting conditions, and so on.

All samples in LFSD and HFUT are used for testing to evaluate the generalization abilities of saliency
models. To avoid overfitting, we augment the training set by flipping, cropping and rotating.

5.2 Experiments Setup

Evaluation Metrics. We adopt five metrics for comprehensive evaluation, including Precision-
Recall (PR) curve, F-measure [1], Mean Absolute Error (MAE), S-measure [12] and E-measure [13].
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Figure 6: The PR curves of our proposed method and other CNNs-based methods. Obviously, ours is
consistently outstanding over other approaches.
They are universally-agreed and standard for evaluating a SOD model and well explained in many
literatures. Due to limited space, we will not show the detailed description.

Implementation Details. Our network is implemented on Pytorch framework and trained with a
GTX 2080 Ti GPU. All training and test images are uniformly resized to 256× 256. Our network
is trained in an end-to-end manner, in which the momentum, weight decay and learning rate are set
to 0.9, 0.0005, 1e-10, respectively. During the training phrase, we use softmax entropy loss, and
the network is trained by standard SGD and converges after 40 epochs with batch size of 1. The
two backbone networks of the RGB and focal stack streams are all initialized with corresponding
pre-trained VGG-19 net [46]. Other parameters are initialized with Gaussian kernels.

5.3 Ablation Studies

The Effectiveness of Light Field Data. Tab. 1 (a) and (b) show the detection results of our baseline
network illustrated in Fig. 5 with RGB data and with light field data, respectively. Numerical results
measured by F-measure and MAE demonstrate that the network using light field data outperforms
the one only using RGB data. Fig. 3 (a) and (b) show the visual comparisons of two aforementioned
networks, respectively. This also indicates that light field data improve prediction performance under
challenging circumstances. Moreover, we conduct an experiment by repeating the RGB input-frame
12 times, in such a way that the model architecture is identical to the 4D version but the input data is
only 2D. The quantitative results in term of F-measure and MAE are 0.819 / 0.089 (focal slices) and
0.740 / 0.140 (RGB) respectively. This further confirms the effectiveness of the focusness information
and our spatial fusion module.

The Effectiveness of Mo-SFM. To give evidence for the effectiveness of the Mo-SFM, we compare
the baseline network with it adding the Mo-SFM. Significant improvement can be visually observed
between them shown in Fig. 3 (b) and (e). Numerically, our Mo-SFM reduces the MAE performances
by nearly 19.2% on two datasets. To conduct further investigation, we provide internal inspection on
the Mo-SFM. The gradual improvements, as we add our feature weighting mechanism, ConvLSTM
integrator and the GPM into the Mo-SFM shown in Fig. 3 (c), (d) and (e), are consistent with our
assertion that different contributions and spatial correlation of different focal slices are beneficial to
SOD. Also, GPM is proved to be able to adaptively detect objects of different scales. Quantitative
results in Tab. 1 also numerically show the accumulative accuracy gains from the three components.

The Effectiveness of Mo-FIM. The Mo-FIM is proposed for higher cognitive processing. Fig. 3
(g) visually shows the influence of the addition of the Mo-FIM. We observe that considerable gains
(reduce the MAE by 11.8% and 10.1% shown in Tab. 1) are achieved. This result is logical since
high-level features are gradually summarized as memory and then being used to guide the selection
of low-level spatial details by using the Mo-FIM. Results in Fig. 3 show that removing the SCIM
from the Mo-FIM may lead to false positives. This suggests that the SCIM effectively updates the
original input according to memory-oriented scene understanding and may greatly bias the results.
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Table 2: Quantitative comparisons on the light field datasets. The best three results are shown in
boldface, red, and green fonts respectively. ∗ means non-deep-learning. - means no available results.

Ours HFUT [59] LFSD [29]

Types Methods Years Es ↑ Sα ↑ Fβ ↑ MAE↓ Es ↑ Sα ↑ Fβ ↑ MAE↓ Es ↑ Sα ↑ Fβ ↑ MAE↓

4D

Ours - 0.923 0.887 0.843 0.052 0.785 0.742 0.627 0.095 0.886 0.830 0.819 0.089
LFS∗ [29] TPAMI’17 0.728 0.563 0.484 0.240 0.650 0.559 0.416 0.222 0.771 0.680 0.740 0.208
MCA∗ [59] TOMM’17 - - - - 0.714 0.652 0.558 0.139 0.841 0.749 0.815 0.150
WSC∗ [56] CVPR’15 - - - - - - - - 0.794 0.706 0.706 0.156
DILF∗ [58] IJCAI’15 0.805 0.705 0.641 0.168 0.701 0.669 0.529 0.148 0.810 0.755 0.728 0.168

3D

TANet [6] TIP’19 0.861 0.803 0.771 0.096 0.761 0.711 0.605 0.111 0.849 0.803 0.804 0.112
MMCI [7] PR’19 0.853 0.785 0.750 0.116 0.748 0.711 0.608 0.116 0.848 0.799 0.796 0.128
PCA [5] CVPR’18 0.857 0.800 0.762 0.100 0.757 0.730 0.619 0.104 0.846 0.807 0.801 0.112
PDNet [65] arXiv’18 0.864 0.803 0.763 0.111 0.758 0.741 0.608 0.112 0.849 0.786 0.780 0.116
CTMF [17] TCyb’17 0.881 0.823 0.790 0.100 0.747 0.723 0.596 0.119 0.856 0.801 0.791 0.119
DF [42] TIP’17 0.838 0.716 0.733 0.151 0.701 0.641 0.531 0.156 0.816 0.751 0.756 0.162
CDCP∗ [66] ICCVW’17 0.795 0.690 0.639 0.159 0.696 0.653 0.528 0.159 0.739 0.659 0.642 0.201
ACSD∗ [25] ICIP’15 0.629 0.385 0.151 0.321 0.665 0.559 0.421 0.201 0.803 0.731 0.764 0.185
NLPR∗ [39] ECCV’14 0.768 0.564 0.659 0.177 0.706 0.579 0.567 0.148 0.744 0.553 0.712 0.216

2D

PiCANet [36] CVPR’18 0.892 0.829 0.821 0.083 0.762 0.719 0.600 0.115 0.780 0.729 0.671 0.158
PAGRN [62] CVPR’18 0.878 0.822 0.828 0.084 0.758 0.704 0.619 0.116 0.805 0.727 0.725 0.147
C2S [31] ECCV’18 0.874 0.844 0.791 0.084 0.762 0.736 0.618 0.112 0.820 0.806 0.749 0.113
R3Net [11] IJCAI’18 0.833 0.819 0.783 0.113 0.697 0.720 0.606 0.151 0.838 0.789 0.781 0.128
Amulet [60] ICCV’17 0.882 0.847 0.805 0.083 0.737 0.739 0.615 0.118 0.821 0.773 0.757 0.135
UCF [61] ICCV’17 0.850 0.837 0.769 0.107 0.729 0.736 0.596 0.144 0.776 0.762 0.710 0.169
NLDF [37] CVPR’17 0.862 0.786 0.778 0.103 0.761 0.685 0.583 0.107 0.810 0.745 0.748 0.138
DSS [21] CVPR’17 0.827 0.764 0.728 0.128 0.759 0.699 0.606 0.138 0.749 0.677 0.644 0.190
DHS [35] CVPR’16 0.872 0.841 0.801 0.090 0.720 0.642 0.542 0.129 0.836 0.770 0.761 0.133
MST∗ [49] CVPR’16 0.785 0.686 0.629 0.157 0.693 0.641 0.529 0.156 0.754 0.659 0.631 0.191
BSCA∗ [41] CVPR’15 0.811 0.720 0.690 0.180 0.693 0.651 0.530 0.193 0.777 0.718 0.688 0.203
DSR∗ [30] ICCV’13 0.799 0.678 0.645 0.164 0.695 0.655 0.518 0.153 0.736 0.633 0.631 0.208

The Limitations of Our Approach. In this paper, we present a deep-learning-based light field
saliency detection method for deeply exploring and comprehensively exploiting internal correlation
of focal slices. We demonstrate the success of our method by achieving the state-of-the-art on three
datasets. We see this work as opening two potential directions for future study. The first is building a
big and versatile dataset for training and validating different models. We present one dataset-training
our model and testing other 2D, 3D and 4D models-but one could also be bigger for improving
generalization ability of all the models training on it. The other direction is developing a more
computation-efficient and memory-efficient method as the focal stack is employed in the training
process. We present the first deep-learning-based method for light field saliency detection, but there
are other lightweight models that could potentially benefit from the light field data.

5.4 Comparisons with State-of-the-arts

We compare results from our method and other 25 2D, 3D and 4D ones, containing both deep-learning-
based methods and non-deep learning ones(remarked with ∗). There are 4 4D light field methods:
LFS∗ [29], MCA∗ [59], WSC∗ [56], DILF∗ [58]; 9 3D RGB-D methods: TANet [6], MMCI [7],
PCA [5], PDNet [65], CTMF [17], DF [42], CDCP∗ [66], ACSD∗ [25], NLPR∗ [39]; and 12 top-
ranking RGB methods: PiCANet [36], PAGR [62], C2S [31], R3Net [11], Amulet [60], UCF [61],
NLDF [37], DSS [21], DHS [35], MST∗ [49], BSCA∗ [41], DSR∗ [30]. For fair comparisons, the
results from competing methods are generated by authorized codes or directly provided by authors.

Quantitative Evaluation. Quantitative results are shown in Tab. 2. The proposed model consistently
achieves the highest scores on all datasets across four evaluation metrics. An important observation
should be noted: compared to the latest CNNs-based RGB SOD methods with large-quantity training
sets, our method also achieves significant advantages with a relatively small training set. This
indicates that light field data are significant and promising. Fig. 6 shows that the PR curves of our
method outperform those top-ranking approaches.

Qualitative Evaluation. Fig. 7 shows some selected representative samples of results comparing our
method with those of the current state-of-the-art methods. Our method is able to handle a wide rage
of challenging scenes, including shown in Fig. 7, small objects (1st row), similar foreground and
background (2nd, 4th and 9th rows), clutter background (3rd-5th and 8th rows), and other difficult
scenes (6th and 7th rows). In those complex cases, we can see that our predicted results can be
positively influenced by the light field data and our proposed network where the light field features
from different focal slices are effectively fused and the multi-level global semantic information and
local detail cues are sufficiently integrated.
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Figure 7: Visual comparisons of our method with top-ranking CNNs-based methods in some chal-
lenging cases. Obviously, our model can generate precise salient results even in those complex scenes,
which indicates that our method takes full advantages of light fields for accurate saliency prediction.

6 Conclusion

In this paper, we develop a novel memory-oriented decoder tailored for light field saliency detection.
Our Mo-SFM resembles the memory mechanism of how human fuse information and effectively
excavates the various contributions and spatial correlations of different focal slices. The Mo-FIM
also sufficiently integrates multi-level features by leveraging high-level memory to guide low-level
selection. Additionally, we introduce a large-scale light field saliency dataset to pave the way for
future studies. Experiments show that our method achieves superior performance over 25 methods
including 2D, 3D and 4D ones, especially in complex scenarios.
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