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Luck Matters: Understanding Training Dynamics of Deep ReLU
Networks

Abstract

We analyze the dynamics of training deep ReLU
networks and their implications on generaliza-
tion capability. Using a teacher-student setting,
we discovered a novel relationship between the
gradient received by hidden student nodes and
the activations of teacher nodes for deep ReLU
networks. With this relationship and the assump-
tion of small overlapping teacher node activa-
tions, we prove that (1) student nodes whose
weights are initialized to be close to teacher
nodes converge to them at a faster rate, and (2)
in over-parameterized regimes and 2-layer case,
while a small set of lucky nodes do converge to
the teacher nodes, the fan-out weights of other
nodes converge to zero. This framework pro-
vides insight into multiple puzzling phenomena
in deep learning like over-parameterization, im-
plicit regularization, lottery tickets, etc. We ver-
ify our assumption by showing that the majority
of BatchNorm biases of pre-trained VGG11/16
models are negative. Experiments on (1) random
deep teacher networks with Gaussian inputs, (2)
teacher network pre-trained on CIFAR-10 and
(3) extensive ablation studies validate our mul-
tiple theoretical predictions.

1. Introduction
Although neural networks have made strong empirical
progress in a diverse set of domains (e.g., computer vi-
sion (16; 32; 10), speech recognition (11; 1), natural lan-
guage processing (22; 3), and games (30; 31; 35; 23)), a
number of fundamental questions still remain unsolved.
How can Stochastic Gradient Descent (SGD) find good
solutions to a complicated non-convex optimization prob-
lem? Why do neural networks generalize? How can net-
works trained with SGD fit both random noise and struc-
tured data (38; 17; 24), but prioritize structured models,
even in the presence of massive noise (27)? Why are flat
minima related to good generalization? Why does over-
parameterization lead to better generalization (25; 39; 33;
26; 19)? Why do lottery tickets exist (6; 7)?

In this paper, we propose a theoretical framework for mul-
tilayered ReLU networks. Based on this framework, we try

to explain these puzzling empirical phenomena with a uni-
fied view. We adopt a teacher-student setting where the la-
bel provided to an over-parameterized deep student ReLU
network is the output of a fixed teacher ReLU network of
the same depth and unknown weights (Fig. 1(a)). In this
perspective, hidden student nodes are randomly initialized
with different activation regions. (Fig. 2(a)). During opti-
mization, student nodes compete with each other to explain
teacher nodes. Theorem 4 shows that lucky student nodes
which have greater overlap with teacher nodes converge to
those teacher nodes at a fast rate, resulting in winner-take-
all behavior. Furthermore, Theorem 5 shows that if a subset
of student nodes are close to the teacher nodes, they con-
verge to them and the fan-out weights of other irrelevant
nodes of the same layer vanishes.

With this framework, we can explain various neural net-
work behaviors as follows:

Fitting both structured and random data. Under gradi-
ent descent dynamics, some student nodes, which happen
to overlap substantially with teacher nodes, will move into
the teacher node and cover them. This is true for both struc-
tured data that corresponds to small teacher networks with
few intermediate nodes, or noisy/random data that corre-
spond to large teachers with many intermediate nodes. This
explains why the same network can fit both structured and
random data (Fig. 2(a-b)).

Over-parameterization. In over-parameterization, lots of
student nodes are initialized randomly at each layer. Any
teacher node is more likely to have a substantial overlap
with some student nodes, which leads to fast convergence
(Fig. 2(a) and (c), Thm. 4), consistent with (6; 7). This
also explains that training models whose capacity just fit
the data (or teacher) yields worse performance (19).

Flat minima. Deep networks often converge to “flat min-
ima” whose Hessian has a lot of small eigenvalues (28;
29; 21; 2). Furthermore, while controversial (4), flat min-
ima seem to be associated with good generalization, while
sharp minima often lead to poor generalization (12; 14; 36;
20). In our theory, when fitting with structured data, only
a few lucky student nodes converge to the teacher, while
for other nodes, their fan-out weights shrink towards zero,
making them (and their fan-in weights) irrelevant to the fi-
nal outcome (Thm. 5), yielding flat minima in which move-
ment along most dimensions (“unlucky nodes”) results in
minimal change in output. On the other hand, sharp min-
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Teacher Network
(Fixed parameters)

(Over-parameterized) Student Network
(Learnable Parameters)

(b)(a) (c)
j2

Input space

Figure 1. (a) Teacher-Student Setting. For each node j, the activation region is Ej = {x : fj(x) > 0}. (b) node j initialized to overlap
substantially with a teacher node j◦1 converges faster towards j◦1 (Thm. 4).. (c) Student nodes initialized to be close to teacher converges
to them, while the fan-out weights of other irrelevant student nodes goes to zero. (Thm. 5).

Structured Data
(Small teacher network)

Weight Initialization Convergence

The Effect of over-parameterization Random Data
(large teacher network)

Weight Initialization Convergence

(a) (b)

Figure 2. Explanation of implicit regularization. Blue are activation regions of teacher nodes, while orange are students’. (a) When the
data labels are structured, the underlying teacher network is small and each layer has few nodes. Over-parameterization (lots of red
regions) covers them all. Moreover, those student nodes that heavily overlap with the teacher nodes converge faster (Thm. 4), yield good
generalization performance. (b) If a dataset contains random labels, the underlying teacher network that can fit to it has a lot of nodes.
Over-parameterization can still handle them and achieves zero training error.

(a) (b) (c)

Figure 3. Explanation of lottery ticket phenomenon. (a) A suc-
cessful training with over-parameterization (2 filters in the teacher
network and 4 filters in the student network). Node j3 and j4 are
lucky draws with strong overlap with two teacher node j◦1 and
j◦2 , and thus converges with high weight magnitude. (b) Lottery
ticket phenomenon: initialize node j3 and j4 with the same ini-
tial weight, clamp the weight of j1 and j2 to zero, and retrain the
model, the test performance becomes better since j3 and j4 still
converge to their teacher node, respectively. (c) If we reinitialize
node j3 and j4, it is highly likely that they are not overlapping
with teacher node j◦1 and j◦2 so the performance is not good.

ima is related to noisy data (Fig. 2(d)), in which more stu-
dent nodes match with the teacher.

Implicit regularization. On the other hand, the snap-
ping behavior enforces winner-take-all: after optimization,
a teacher node is fully covered (explained) by a few stu-
dent nodes, rather than splitting amongst student nodes due
to over-parameterization. This explains why the same net-
work, once trained with structured data, can generalize to
the test set.

Lottery Tickets. Lottery Tickets (6; 7) is an interest-
ing phenomenon: if we reset “salient weights” (trained
weights with large magnitude) back to the values before op-
timization but after initialization, prune other weights (of-
ten > 90% of total weights) and retrain the model, the test
performance is the same or better; if we reinitialize salient

weights, the test performance is much worse. In our the-
ory, the salient weights are those lucky regions (Ej3 and
Ej4 in Fig. 3) that happen to overlap with some teacher
nodes after initialization and converge to them in optimiza-
tion. Therefore, if we reset their weights and prune oth-
ers away, they can still converge to the same set of teacher
nodes, and potentially achieve better performance due to
less interference with other irrelevant nodes. However, if
we reinitialize them, they are likely to fall into unfavorable
regions which cannot cover teacher nodes, and therefore
lead to poor performance (Fig. 3(c)), just like in the case of
under-parameterization.

2. Overview of the Framework
The details of our proposed theory can be found in Ap-
pendix (Sec. 5). Here we list the summary. First we show
that for multilayered ReLU, there exists a relationship be-
tween the gradient gj(x) of a student node j and teacher
and student’s activations of the same layer (Thm. 1):

gj(x) = f ′j(x)

∑
j◦

β∗jj◦(x)fj◦(x)−
∑
j′

βjj′(x)fj′(x)

 ,
(1)

where fj◦ is the activation of node j◦ in the teacher, and
j′ is the node at the same layer in the student. For each
node j, we don’t know which teacher node corresponds to
it, hence the linear combination terms. Typically the num-
ber of student nodes is much more than that of teachers’.
Thm. 1 applies to arbitrarily deep ReLU networks.

Then with a mild assumption (Assumption 1), we can write
the gradient update rule of each layer l in the following
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concise form (also Eqn. 8 in the Appendix):

Ẇl = L∗lW
∗
l H
∗
l−1 − LlWlHl−1 (2)

where L and L∗ are correlations matrix of activations from
the bottom layers, and H and H∗ are modulation matrix
from the top layers.

We then make an assumption that different teacher nodes
of the same layer have small overlap in node activations
(Assumption 3 and Fig. 7), and verify it in VGG16/VGG11
by showing that the majority of their BatchNorm bias are
negative (Fig. 4 and Fig. 14). With this assumption, we
prove two theorems:

• When the number of student nodes is the same as the
number of teacher nodes (ml = nl), and each stu-
dent’s weight vector wj is close to a corresponding
teacher w∗j◦ , then the dynamics of Eqn. 2 yields (re-
covery) convergence wj → w∗j◦ (Thm. 4). Further-
more, such convergence is super-linear (i.e., the con-
vergence rate is higher when the weights are closer).

• In the over-parameterization setting (nl > ml), we
show that in the 2-layer case, with the help of top-
layer, the portion of weights Wu that are close to
teacher W ∗ converge (Wu → W ∗). For other irrele-
vant weights, while their final values heavily depends
on initialization, with the help of top-down modula-
tion, their fan-out top-layer weights converge to zero,
and thus have no influence on the network output.

3. Experiments
3.1. Checking Assumption 3
To make Theorem 4 and Theorem 5 work, we make As-
sumption 3 that the activation field of different teacher
nodes should be well-separated. To justify this, we analyze
the BatchNorm bias of pre-trained VGG11 and VGG16.
We check the BatchNorm bias c1 as both VGG11 and
VGG16 use Linear-BatchNorm-ReLU architecture. After
BatchNorm first normalizes the input data into zero mean
distribution, the BatchNorm bias determines how much
data pass the ReLU threshold. If the bias is negative, then a
small portion of data pass ReLU gating and Assumption 3
is likely to hold. From Fig. 4, it is quite clear that the ma-
jority of BatchNorm bias parameters are negative, in par-
ticular for the top layers.

3.2. Experiment Setup
We evaluate both the fully connected (FC) and ConvNet
setting. For FC, we use a ReLU teacher network of size
50-75-100-125. For ConvNet, we use a teacher with chan-
nel size 64-64-64-64. The student networks have the same
depth but with 10x more nodes/channels at each layer,
such that they are substnatially over-parameterized. When
BatchNorm is added, it is added after ReLU.

We use random i.i.d Gaussian inputs with mean 0 and std
10 (abbreviated as GAUS) and CIFAR-10 as our dataset in

the experiments. GAUS generates infinite number of sam-
ples while CIFAR-10 is a finite dataset. For GAUS, we
use a random teacher network as the label provider (with
100 classes). To make sure the weights of the teacher
are weakly overlapped, we sample each entry of w∗j from
[−0.5,−0.25, 0, 0.25, 0.5], making sure they are non-zero
and mutually different within the same layer, and sample
biases from U [−0.5, 0.5]. In the FC case, the data di-
mension is 20 while in the ConvNet case it is 16 × 16.
For CIFAR-10 we use a pre-trained teacher network with
BatchNorm. In the FC case, it has an accuracy of 54.95%;
for ConvNet, the accuracy is 86.4%. We repeat 5 times
for all experiments, with different random seed and report
min/max values.

Two metrics are used to check our prediction that some
lucky student nodes converge to the teacher:

Normalized correlation ρ̄. We compute normalized cor-
relation (or cosine similarity) ρ between teacher and stu-
dent activations evaluated on a validation set. At each
layer, we average the best correlation over teacher nodes:
ρ̄ = meanj◦ maxj ρjj◦ , where ρjj◦ is computed for each
teacher and student pairs (j, j◦). ρ̄ ≈ 1 means that most
teacher nodes are covered by at least one student.

Mean Rank r̄. After training, each teacher node j◦ has the
most correlated student node j. We check the correlation
rank of j, normalized to [0, 1] (0=rank first), back at ini-
tialization and at different epoches, and average them over
teacher nodes to yield mean rank r̄. Small r̄ means that
student nodes that initially correlate well with the teacher
keeps the lead toward the end of training.

3.3. Results
Experiments are summarized in Fig. 5 and Fig. 6. ρ̄ indeed
grows during training, in particular for low layers that are
closer to the input, where ρ̄ moves towards 1. Furthermore,
the final winning student nodes also have a good rank at the
early stage of training. BatchNorm helps a lot, in particu-
lar for the CNN case with GAUS dataset. For CIFAR-10,
the final evaluation accuracy (see Appendix) learned by the
student is often∼ 1% higher than the teacher. Using Batch-
Norm accelerates the growth of accuracy, improves r̄, but
seems not to accelerate the growth of ρ̄.

The theory also predicts that the top-down modulation β
helps the convergence. For this, we plot β∗jj◦ at different
layers during optimization on GAUS. For better visualiza-
tion, we align each student node index j with a teacher node
j◦ according to highest ρ. Despite the fact that correlations
are computed from the low-layer weights, it matches well
with the top-layer modulation (identity matrix structure in
Fig. 16). More ablation studies are in Sec. 8.

4. Conclusion
We propose a novel mathematical framework for multi-
layered ReLU networks. This could tentatively explain
many puzzling empirical phenomena in deep learning.
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Figure 4. Distribution of BatchNorm bias in pre-trained VGG16 on ImageNet. Orange/blue are positive/negative biases. The first plot
corresponds to the lowest layer (closest to the input). VGG11 in Fig. 14.

Gaussian FC with BN

Gaussian CNN with BN

Gaussian FC without BN

Gaussian CNN without BN

Figure 5. Correlation ρ̄ and mean rank r̄ over training on GAUS. ρ̄
steadily grows and r̄ quickly improves over time. Layer-0 (the
lowest layer that is closest to the input) shows best match with
teacher nodes and best mean rank. BatchNorm helps achieve both
better correlation and lower r̄, in particular for the CNN case.

CIFAR10 FC with BN

CIFAR10 CNN with BN

CIFAR10 FC without BN

CIFAR10 CNN without BN

Figure 6. Same experiment setting as in Fig. 5 on CIFAR-10.
BatchNorm helps achieve lower r̄.
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5. Appendix: Mathematical Framework
Notation. Consider a student network and its associated teacher network (Fig. 1(a)). Denote the input as x. For each node
j, denote fj(x) as the activation, f ′j(x) as the ReLU gating, and gj(x) as the backpropagated gradient, all as functions of
x. We use the superscript ◦ to represent a teacher node (e.g., j◦). Therefore, gj◦ never appears as teacher nodes are not
updated. We use wjk to represent weight between node j and k in the student network. Similarly, w∗j◦k◦ represents the
weight between node j◦ and k◦ in the teacher network.

We focus on multi-layered ReLU networks. We use the following equality extensively: σ(x) = σ′(x)x. For ReLU node j,
we use Ej ≡ {x : fj(x) > 0} as the activation region of node j.

Objective. We assume that both the teacher and the student output probabilities over C classes. We use the output of
teacher as the input of the student. At the top layer, each node c in the student corresponds to each node c◦ in the teacher.
Therefore, the objective is:

min
w

J(w) =
1

2
Ex
[
‖fc(x)− fc◦(x)‖2

]
(3)

By the backpropagation rule, we know that for each sample x, the (negative) gradient gc(x) ≡ ∂J/∂fc = fc◦(x)− fc(x).
The gradient gets backpropagated until the first layer is reached.

Note that here, the gradient gc(x) sent to node c is correlated with the activation of the corresponding teacher node fc◦(x)
and other student nodes at the same layer. Intuitively, this means that the gradient “pushes” the student node c to align with
class c◦ of the teacher. If so, then the student learns the corresponding class well. A natural question arises:

Are student nodes at intermediate layers correlated with teacher nodes at the same layers?

One might wonder this is hard since the student’s intermediate layer receives no direct supervision from the corresponding
teacher layer, but relies only on backpropagated gradient. Surprisingly, the following theorem shows that it is possible for
every intermediate layer:
Theorem 1 (Recursive Gradient Rule). If all nodes j at layer l satisfies Eqn. 4

gj(x) = f ′j(x)

∑
j◦

β∗jj◦(x)fj◦(x)−
∑
j′

βjj′(x)fj′(x)

 , (4)

then all nodes k at layer l − 1 also satisfies Eqn. 4 with β∗kk◦(x) and βkk′(x) defined as follows:

β∗kk◦(x) ≡
∑
jj◦

wjkf
′
j(x)β∗jj◦(x)f ′j◦(x)w∗j◦k◦ , βkk′(x) ≡

∑
jj′

wjkf
′
j(x)βjj′(x)f ′j′(x)wj′k′ (5)

Note that this formulation allows different number of nodes for the teacher and student. In particular, we consider the
over-parameterization setting: the number of nodes on the student side is much larger (e.g., 5-10x) than the number of
nodes on the teacher side. Using Theorem 1, we discover a novel and concise form of gradient update rule:
Assumption 1 (Separation of Expectations).

Ex
[
β∗jj◦(x)f ′j(x)f ′j◦(x)fk(x)fk◦(x)

]
= Ex

[
β∗jj◦(x)

]
Ex
[
f ′j(x)f ′j◦(x)

]
Ex [fk(x)fk◦(x)] (6)

Ex
[
βjj′(x)f ′j(x)f ′j′(x)fk(x)fk′(x)

]
= Ex [βjj′(x)]Ex

[
f ′j(x)f ′j′(x)

]
Ex [fk(x)fk′(x)] (7)

Theorem 2. If Assumption 1 holds, the gradient dynamics of deep ReLU networks with objective (Eqn. 3) is:

Ẇl = L∗lW
∗
l H
∗
l+1 − LlWlHl+1 (8)

Here we explain the notations. W ∗l =
[
w∗1, . . . ,w

∗
ml

]
is ml teacher weights, β∗l+1 = Ex [βjj◦(x)], d∗jj◦ =

Ex
[
f ′j(x)f ′j◦(x)

]
and D∗l = [d∗jj◦ ], H

∗
l+1 = [hjj◦ ] = β∗l+1 ◦ Dl, l∗jj◦ = Ex [fj(x)fj◦(x)] and L∗l = [l∗jj◦ ]. We can

define similar notations for W (which has nl columns/filters), β, D, H and L (Fig. 7(c)). At the lowest layer l = 0,
L0 = L∗0, at the highest layer l = lmax − 1 where there is no ReLU, we have βlmax

= β∗lmax
= Hlmax

= H∗lmax
= I due

to Eqn. 3. According to network structure, βl+1 and β∗l+1 only depends on weights Wl+1, . . . ,Wlmax−1, while Ll and L∗l
only depend on W0, . . . ,Wl−1.
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Figure 7. (a) Small overlaps between node activations. (b) Assumption 2. (c) Notation in Thm. 2.

6. Appendix: Analysis on the Dynamics
In the following, we will use Eqn. 8 to analyze the dynamics of the multi-layer ReLU networks. For convenience, we first
define the two functions ψl and ψd (σ is the ReLU function):

ψl(w,w
′) = Ex

[
σ(wTx)σ(w′

T
x)
]
, ψd(w,w

′) = Ex
[
I(wTx)I(w′Tx)

]
. (9)

We assume these two functions have the following property .

Assumption 2 (Lipschitz condition). There exists Kd and Kl so that:

‖ψi(w,w1)− ψi(w,w2)‖ ≤ ψi(w,w1)(1 +Ki‖w1 −w2‖), i ∈ {d, l} (10)

Using this, we know that djj′ = ψd(wj ,wj′), d∗jj′ = ψd(wj ,w
∗
j′), and so on. For brevity, denote d∗∗jj′ = ψd(w

∗
j ,w

∗
j′)

(when notation j◦1 is heavy) and so on. We impose the following assumption:

Assumption 3 (Small Overlap between teacher nodes). There exists εl � 1 and εd � 1 so that:

d∗∗j1j2 ≤ εdd
∗∗
j1j1 (or εdd

∗∗
j2j2), l∗∗j1j2 ≤ εll

∗∗
j1j1 (or εll

∗∗
j2j2), for j1 6= j2 (11)

Intuitively, this means that the probability of the simultaneous activation of two teacher nodes j1 and j2 is small. One
such case is that the teacher has negative bias, which means that they cut corners in the input space (Fig. 7a). We have
empirically verified that the majority of biases in BatchNorm layers (after the data are whitened) are negative in VGG11/16
trained on ImageNet (Sec. 3.1).

6.1. Effects of BatchNorm

Batch Normalization (13) has been extensively used to speed up the training, reduce the tuning efforts and improve the test
performance of neural networks. Here we use an interesting property of BatchNorm: the total “energy” of the incoming
weights of each node j is conserved over training iterations:

Theorem 3 (Conserved Quantity in Batch Normalization). For Linear→ ReLU→ BN or Linear→ BN→ ReLU config-
uration, ‖wj‖ of a filter j before BN remains constant in training. (Fig. 11).

See Appendix for the proof. This may partially explain why BN has stabilization effect: energy will not leak from one
layer to nearby ones. Due to this property, in the following, for convenience we assume ‖wj‖2 = ‖w∗j‖2 = 1, and the
gradient ẇj is always orthogonal to the current weight wj . Note that on the teacher side we can always push the magnitude
component to the upper layer; on the student side, random initialization naturally leads to constant magnitude of weights.

6.2. Same number of student nodes as teacher

If nl = ml, L∗l = Ll = I (e.g., the input of layer l is whitened) and β∗l+1 = βl+1 = 11T (all β entries are 1), then the
following theorem shows that weight recovery could follow (we use j′ as j◦).

Theorem 4. For dynamics ẇj = P⊥wj
(W ∗h∗j − Whj), where P⊥wj

≡ I − wjw
T
j is a projection matrix into the or-

thogonal complement of wj . h∗j , hj are corresponding j-th column in H∗ and H . Denote θj = ∠(wj ,w
∗
j ) and assume

θj ≤ θ0. If γ = cos θ0 − (m − 1)εdMd > 0, then wj → w∗j with the rate 1 − ηd̄γ (η is learning rate). Here
d̄ = [1 + 2Kd sin(θ0/2)] minj d

∗0
jj and Md = (1 +Kd) [1 + 2Kd sin(θ0/2)]

2
/ cos θ02 .
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Figure 8. Over-parameterization and top-down modulation. Thm. 5 shows that under certain conditions, the relevant weightsWu →W ∗

and weights connecting to irrelevant student nodes Vr → 0.

See Appendix for the proof. Here we list a few remarks:

Faster convergence near w∗j . we can see that due to the fact that h∗jj in general becomes larger when wj → w∗j (since
cos θ0 can be close to 1), we expect a super-linear convergence near w∗j . This brings about an interesting winner-take-all
mechanism: if the initial overlap between a student node j and a particular teacher node is large, then the student node will
snap to it (Fig. 1(c)).

Importance of projection operator P⊥wj
. Intuitively, the projection is needed to remove any ambiguity related to weight

scaling, in which the output remains constant if the top-layer weights are multiplied by a constant α, while the low-layer
weights are divided by α. Previous works (5) also uses similar techniques while we justify it with BN. Without P⊥wj

,
convergence can be harder.

6.3. Over-Parameterization and Top-down Modulation

In the over-parameterization case (nl > ml, e.g., 5-10x), we arrange the variables into two parts: W = [Wu,Wr], where
Wu contains ml columns (same size as W ∗), while Wr contains nl −ml columns. We use [u] (or u-set) to specify nodes
1 ≤ j ≤ m, and [r] (or r-set) for the remaining part.

In this case, if we want to show “the main component” Wu converges to W ∗, we will meet with one core question: to
where will Wr converge, or whether Wr will even converge at all? We need to consider not only the dynamics of the
current layer, but also the dynamics of the upper layer. Using a 1-hidden layer over-parameterized ReLU network as an
example, Theorem 5 shows that the upper-layer dynamics V̇ = L∗V ∗ − LV automatically apply top-down modulation to

suppress the influence of Wr, regardless of their convergence. Here V =

[
Vu
Vr

]
, where Vu are the weight components of

u-set. See Fig. 8.

Theorem 5 (Over-Parameterization and Top-down Modulation). Consider Ẇ = W ∗H∗ − WH with over-
parameterization (n > m) and its upper-layer dynamics V̇ = L∗V ∗ − LV . Assume that initial value W 0

u is close to
W ∗: θj = ∠(wj ,w

∗
j ) ≤ θ0 for j ∈ [u]. If (1) Assumption 3 holds for all pairwise combination of columns of W ∗ and

W 0
r , and (2) there exists γ = γ(θ0,m) > 0 and λ̄ so that Eqn. 43 and Eqn. 44 holds, then Wu → W ∗, Vu → V ∗ and

Vr → 0 with rate 1− ηλ̄γ.

See Appendix for the proof (and definition of λ̄ in Eqn. 47). The intuition is: if Wu is close to W ∗ and Wr are far away
from them due to Assumption 3, the off-diagonal elements of L and L∗ are smaller than diagonal ones. This causes Vu to
move towards V ∗ and Vr to move towards zero. When Vr becomes small, so does βjj′ for j ∈ [r] or j′ ∈ [r]. This in turn
suppresses the effect of Wr and accelerates the convergence of Wu. Vr → 0 exponentially so that Wr stays close to its
initial locations, and Assumption 3 holds for all iterations. A few remarks:

Flat minima. Since Vr → 0, Wr can be changed arbitrarily without affecting the outputs of the neural network. This
could explain why there are many flat directions in trained networks, and why many eigenvalues of the Hessian are close
to zero (28).

Understanding of pruning methods. Theorem 5 naturally relates two different unstructured network pruning approaches:
pruning small weights in magnitude (8; 6) and pruning weights suggested by Hessian (18; 9). It also suggests a principled
structured pruning method: instead of pruning a filter by checking its weight norm, pruning accordingly to its top-down
modulation.

Accelerated convergence and learning rate schedule. For simplicity, the theorem uses a uniform (and conservative)
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γ throughout the iterations. In practice, γ is initially small (due to noise introduced by r-set) but will be large after a
few iterations when Vr vanishes. Given the same learning rate, this leads to accelerated convergence. At some point, the
learning rate η becomes too large, leading to fluctuation. In this case, η needs to be reduced.

Many-to-one mapping. Theorem 5 shows that under strict conditions, there is one-to-one correspondence between teacher
and student nodes. In general this is not the case. Two students nodes can be both in the vicinity of a teacher node w∗j and
converge towards it, until that node is fully explained. We leave it to the future work for rigid mathematical analysis of
many-to-one mappings.

Random initialization. One nice thing about Theorem 5 is that it only requires the initial ‖Wu −W ∗‖ to be small. In
contrast, there is no requirement for small ‖Vr‖. Therefore, we could expect that with more over-parameterization and
random initialization, in each layer l, it is more likely to find the u-set (of fixed size ml), or the lucky weights, so that Wu is
quite close to W ∗. At the same time, we don’t need to worry about ‖Wr‖ which grows with more over-parameterization.
Moreover, random initialization often gives orthogonal weight vectors, which naturally leads to Assumption 3.

6.4. Extension to Multi-layer ReLU networks
Using a similar approach, we could extend this analysis to multi-layer cases. We conjecture that similar behaviors happen:
for each layer, due to over-parameterization, the weights of some lucky student nodes are close to the teacher ones. While
these converge to the teacher, the final values of others irrelevant weights are initialization-dependent. If the irrelevant
nodes connect to lucky nodes at the upper-layer, then similar to Thm. 5, the corresponding fan-out weights converge to
zero. On the other hand, if they connect to nodes that are also irrelevant, then these fan-out weights are not-determined and
their final values depends on initialization. However, it doesn’t matter since these upper-layer irrelevant nodes eventually
meet with zero weights if going up recursively, since the top-most output layer has no over-parameterization. We leave a
formal analysis to future work.

7. Appendix: Proofs
7.1. Theorem 1

Proof. The first part of gradient backpropagated to node j is:

g1j (x) = f ′j(x)
∑
j◦

β∗jj◦(x)fj◦(x) (12)

= f ′j(x)
∑
j◦

β∗jj◦(x)f ′j◦(x)
∑
k◦

w∗j◦k◦fk◦(x) (13)

=
∑
k◦

f ′j(x)
∑
j◦

β∗jj◦(x)f ′j◦(x)w∗j◦k◦

 fk◦(x) (14)
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Therefore, for the gradient to node k, we have:

g1k(x) = f ′k(x)
∑
j

wjkg
1
j (x) (15)

= f ′k(x)
∑
k◦

∑
jj◦

wjkf
′
j(x)β∗jj◦(x)f ′j◦(x)w∗j◦k◦


︸ ︷︷ ︸

β∗
kk◦ (x)

fk◦(x) (16)

And similar for βkk′(x). Therefore, by mathematical induction, we know that all gradient at nodes in different layer follows
the same form.

7.2. Theorem 2

Proof. Using Thm. 1, we can write down weight update for weight wjk that connects node j and node k:

ẇjk =
∑
j◦,k◦

w∗j◦k◦ Ex
[
f ′j(x)β∗jj◦(x)f ′j◦(x)fk(x)fk◦(x)

]︸ ︷︷ ︸
β∗
jj◦kk◦

−
∑
j′,k′

wj′k′ Ex
[
f ′j(x)βjj′(x)f ′j′(x)fk(x)fk′(x)

]︸ ︷︷ ︸
βjj′kk′

(17)

Note that j◦, k◦, j′ and k′ run over all parents and children nodes on the teacher side. This formulation works for over-
parameterization (e.g., j◦ and j′ can run over different nodes). Applying Assumption 1 and rearrange terms in matrix form
yields Eqn. 8.

7.3. Theorem 3

Proof. Given a batch with size N , denote pre-batchnorm activations as f = [fj(x1), . . . , fj(xN )]T and gradients as
g = [gj(x1), . . . , gj(xN )]T (See Fig. 10(a)). f̃ = (f − µ)/σ is its whitened version, and c0f̃ + c1 is the final output of
BN. Here µ = 1

N

∑
i fj(xi) and σ2 = 1

N

∑
i(fj(xi)− µ)2 and c1, c0 are learnable parameters. With vector notation, the

gradient update in BN has a compact form with clear geometric meaning:

Lemma 1 (Backpropagation of Batch Norm (34)). For a top-down gradient g, BN layer gives the following gradient
update (P⊥f ,1 is the orthogonal complementary projection of subspace {f ,1}):

gf = JBN (f)g =
c0
σ
P⊥f ,1g, gc = S(f)Tg (18)
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Intuitively, the back-propagated gradient JBN (f)g is zero-mean and perpendicular to the input activation f of BN layer,
as illustrated in Fig. 10. Unlike (15; 37) that analyzes BN in an approximate manner, in Thm. 1 we do not impose any
assumptions.

Given Lemma 1, we can prove Thm. 3. For Fig. 11(a), using the property that Ex
[
glinj f linj

]
= 0 (the expectation is taken

over batch) and the weight update rule ẇjk = Ex
[
glinj fk

]
(over the same batch), we have:

1

2

d‖wj‖2

dt
=

∑
k∈ch(j)

wjkẇjk = Ex

 ∑
k∈ch(j)

wjkfk(x)glinj (x)

 = Ex
[
f linj (x)glinj (x)

]
= 0 (19)

For Fig. 11(b), note that Ex
[
glinj f linj

]
= Ex

[
grlj f

rl′

j f linj

]
= Ex

[
grlj f

rl
j

]
= 0 and conclusion follows.

7.4. Lemmas

For simplicity, in the following, we use δwj = wj −w∗j .

Lemma 2 (Bottom Bounds). Assume all ‖wj‖ = ‖wj′‖ = 1. Denote

p∗jj′ ≡ w∗j′d
∗
jj′ , pjj′ ≡ wj′djj′ , ∆pjj′ ≡ p∗jj′ − pjj′ (20)

If Assumption 2 holds, we have:
‖∆pjj′‖ ≤ (1 +Kd)d

∗
jj′‖δwj′‖ (21)

If Assumption 3 also holds, then:

d∗jj′ ≤ εd(1 +Kd‖δwj′‖)(1 +Kd‖δwj‖)d∗jj (22)

Proof. We have for j 6= j′:

‖∆pjj′‖ = ‖w∗j′d∗jj′ −wj′djj′‖ (23)
= ‖wj′(d

∗
jj′ − djj′) + (w∗j′ −wj′)d

∗
jj′‖ (24)

≤ ‖wj′‖‖d∗jj′ − djj′‖+ ‖w∗j′ −wj′‖d∗jj′ (25)
≤ d∗jj′Kd‖δwj′‖+ d∗jj′‖δwj′‖ (26)
≤ (1 +Kd)d

∗
jj′‖δwj′‖ (27)

If Assumption 3 also holds, we have:

d∗jj′ ≤ d∗∗jj′(1 +Kd‖δwj′‖) (28)
≤ εdd

∗∗
jj (1 +Kd‖δwj′‖ (29)

≤ εdd
∗
jj(1 +Kd‖δwj‖)(1 +Kd‖δwj′‖) (30)

Lemma 3 (Top Bounds). Denote

q∗jj′ ≡ v∗j′ l
∗
jj′ , qjj′ ≡ vj′ ljj′ , ∆qjj′ ≡ q∗jj′ − qjj′ (31)

If Assumption 2 holds, we have:
‖∆qjj′‖ ≤ (1 +Kl)l

∗
jj′‖δwj′‖ (32)

If Assumption 3 also holds, then:
l∗jj′ ≤ εl(1 +Kl‖δwj′‖)(1 +Kl‖δwj‖)l∗jj (33)

Proof. The proof is similar to Lemma 2.

Lemma 4 (Quadratic fall-off for diagonal elements of L). For node j, we have:

‖l∗jj − ljj‖ ≤ C0l
∗
jj‖δwj‖2 (34)

Proof. The intuition here is that both the volume of the affected area and the weight difference are proportional to ‖δwj‖.
‖l∗jj − ljj‖ is their product and thus proportional to ‖δwj‖2. See Fig. 12.
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Figure 12. Explanation of Lemma. 4.

7.5. Theorem 4

Proof. First of all, note that ‖δwj‖ = 2 sin
θj
2 ≤ 2 sin θ0

2 . So given θ0, we also have a bound for ‖δwj‖.

When β = β∗ = 11T , the matrix form can be written as the following:

ẇj = P⊥wj
w∗jh

∗
jj +

∑
j′ 6=j

P⊥wj

(
w∗j′h

∗
jj′ −wj′hjj′

)
= P⊥wj

p∗jj +
∑
j′ 6=j

P⊥wj
∆pjj′ (35)

by using P⊥wj
wj ≡ 0 (and thus hjj doesn’t matter). Since ‖wj‖ is conserved, it suffices to check whether the projected

weight vector P⊥w∗jwj of wj onto the complementary space of the ground truth node w∗j , goes to zero:

P⊥w∗j ẇj = P⊥w∗jP
⊥
wj

p∗jj +
∑
j′ 6=j

P⊥w∗jP
⊥
wj

∆pjj′ (36)

Denote θj = ∠(wj ,w
∗
j ) and a simple calculation gives that sin θj = ‖P⊥w∗jwj‖. First we have:

P⊥w∗jP
⊥
wj

w∗j = P⊥w∗j (I −wjw
T
j )w∗j = −P⊥w∗jwjw

T
j w
∗
j = − cos θjP

⊥
w∗j

wj (37)

From Lemma 2, we knows that

‖∆pjj′‖ ≤ (1 +Kd)d
∗
jj′‖δwj′‖ ≤ εd(1 +Kd) [1 + 2Kd sin(θ0/2)]

2
d∗jj‖δwj′‖ (38)

Note that here we have ‖δwj′‖ = 2 sin
θj
2 = sin θj/ cos

θj
2 ≤ sin θj/ cos θ02 . We discuss finite step with very small

learning rate η > 0:

sin θt+1
j = ‖P⊥w∗jw

t+1
j ‖ = ‖P⊥w∗jw

t
j + ηP⊥w∗j ẇ

t
j‖ (39)

≤ (1− ηd∗jj cos θtj) sin θtj + ηεdMd

∑
j′ 6=j

d∗jj sin θtj′ (40)

since ‖P⊥w∗j ‖ = ‖P⊥wj
‖ = 1. Here

Md = (1 +Kd) [1 + 2Kd sin(θ0/2)]
2
/ cos

θ0
2

(41)

is an iteration independent constant.

We set γ = cos θ0 − (m− 1)εdMd. If γ > 0, denote a constant d̄ = [1 + 2Kd sin(θ0/2)] minj d
∗0
jj and from Lemma 2 we

know d∗jj ≥ d̄ for all j. Then given the inductive hypothesis that sin θtj ≤ (1− ηd̄γ)t−1 sin θ0, we have:

sin θt+1
j ≤ (1− ηd̄γ)t sin θ0 (42)

Therefore, sin θtj → 0, which means that wj → w∗j .
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A few remarks:

The projection operator P⊥wj
. Note that P⊥wj

is important. Intuitively, without the projection, if the same proof logic
worked, one could have concluded that w converges to any αw∗, where α is a constant scaling factor, which is obviously
wrong.

Indeed, without P⊥wj
, there would be a term w∗jh

∗
jj−wjhjj on RHS. This term breaks into wj(h

∗
jj−hjj)+(w∗j −wj)h

∗
jj .

Although there could exist C so that ‖h∗jj − hjj‖ ≤ C‖δwj‖, unlike Lemma 4, C may not be small, and convergence is
not guaranteed.

7.6. Theorem 5

Proof. First, only for j ∈ [u], we have their ground truth value w∗j . For j ∈ [r], we assign w∗j = w0
j , i.e., their initial

values. As we will see, this will make things easier.

From the assumption, we know that sin θj ≤ sin θ0 for j ∈ [u]. In addition, denote that ‖δv0
j‖ ≤ Bδv for j ∈ [u]. Denote

Bv as the bound for all ‖v∗j‖.

Now suppose we can find a γ > 0 if the following set of equations are satisfied:

γ ≥ (Bv −Bδv) cos θ0 − εd(Bv +Bδv) max(Bd,u, Bd,r) > 0 (43)
γ ≥ 1− εl max(Bl,u, Bl,r)− κ > 0 (44)

Here

d̄ = (1−KdCd,j) min
j
d∗0jj > 0 (45)

l̄ = (1−KlCl,j) min
j
l∗0jj > 0 (46)

λ̄ = min(d̄, l̄) (47)
κ = 2C0 sin(θ0/2)(1 +Bδv) (48)

Cd,u = 2Kd sin(θ0/2) (49)

Cd,r = εdKd
Bd,r(Bv +Bδv)Bv
λ̄γ(2− ηλ̄γ)

(50)

Muu
d = (1 +Kd)(1 + Cd,u)2/ cos

θ0
2

(51)

Mur
d = (1 +Kd)(1 + Cd,u)(1 + Cd,r) (52)

Mru
d = (1 +Kd)(1 + Cd,u)(1 + Cd,r)/ cos

θ0
2

(53)

Mrr
d = (1 +Kd)(1 + Cd,r)

2 (54)
Bd,u = (m− 1)Muu

d + (n−m)Mur
d (55)

Bd,r = (m− 1)Mru
d + (n−m)Mrr

d (56)

and similarly we can define Cl and Ml etc. If we can find such a γ > 0 then the dynamics converges. Here all C are close
to 0 and M are close to 1.

Note that if εd and εl are small, it is obvious to see there exists a feasible γ > 0 (e.g., γ = 1).

To prove it, we maintain the following induction hypothesis for iteration t :

d∗tjj′ ≤ εdMd,jj′d
∗t
jj , l

∗t
jj′ ≤ εlMl,jj′ l

∗t
jj , j′ 6= j (W-Separation)

sin θtj ≤ (1− ηd̄γ)t−1 sin θ0, j ∈ [u] (Wu-Contraction)

‖δvtj‖ ≤ (1− ηl̄γ)t−1Bδv, j ∈ [u], ‖vtj‖ ≤ (1− ηl̄γ)t−1Bv, j ∈ [r] (V -Contraction)

Besides, the following condition is involved (but it is not part of induction hypothesis):

‖wt
j −w0

j‖ ≤ Cd,r, j ∈ [r] (Wr-Bound)
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Figure 13. Proof sketch of Thm. 5.

d∗tjj ≥ d∗0jj (1−KdCd,j) ≥ d̄ > 0, l∗tjj ≥ l∗0jj (1−KlCl,j) ≥ l̄ > 0 (57)

The proof can be decomposed in the following three lemma.

Lemma 5 (Top-layer contraction). If (W-Separation) holds for t, then (V -Contraction)) holds for iteration t+ 1.

Lemma 6 (Bottom-layer contraction). If (V -Contraction) holds for t, then (Wu-Contraction) holds for t + 1 and
(Wr-Bound) holds for t+ 1.

Lemma 7 (Weight separation). If (W-Separation) holds for t, (Wr-Bound) holds for t + 1 and (Wu-Contraction) holds
for t+ 1, then (W-Separation) holds for t+ 1.

As suggested by Fig. 13, if all the three lemmas are true then the induction hypothesis are true.

In the following, we will prove the three lemmas.

7.6.1. LEMMA 5

Proof. On the top-layer, we have V̇ = L∗V ∗ − LV . Denote that V =

 v1

. . .
vn

, where vj is the j-th row of the matrix V .

For each component, we can write:

v̇j = I(j ∈ [u])q∗jj − qjj +
∑

j′ 6=j,j′∈[u]

∆qjj′ +
∑

j′ 6=j,j′∈[r]

qjj′ (58)

Note that there is no projection (if there is any, the projection should be in the columns rather than the rows).

If (W-Separation) is true, we know that for j 6= j′,

‖∆qjj′‖ ≤ εlMl,uul
∗
jj‖δvj′‖, ‖qjj′‖ ≤ εlMl,url

∗
jj‖vj′‖, j ∈ [u] (59)

‖∆qjj′‖ ≤ εlMl,rul
∗
jj‖δvj′‖, ‖qjj′‖ ≤ εlMl,rrl

∗
jj‖vj′‖, j ∈ [r] (60)

Now we discuss j ∈ [u] and j ∈ [r]:

Relevant nodes. For j ∈ [u], the first two terms are:

∆qjj = −l∗jjδvj + (l∗jj − ljj)vj (61)

From Lemma 4 we know that:

‖(l∗jj − ljj)vj‖ ≤ Cl∗jj‖δwj‖2‖vj‖ ≤ 2C sin(θ0/2)(1 +Bδv)l
∗
jj‖δwj‖ = κl∗jj‖δwj‖ (62)
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Therefore using (V -Contraction) and (Wu-Contraction) at iteration t, we have:

‖δvt+1
j ‖ ≤ (1− ηl∗jj)‖δvtj‖+ ηκl∗jj‖δwt

j‖+ ηεlMl,uul
∗
jj

∑
j′ 6=j,j′∈[u]

‖δvtj′‖+ ηεlMl,url
∗
jj

∑
j′ 6=j,j′∈[r]

‖vtj′‖

≤ (1− ηl̄γ)t+1Bδv (63)

Since γ satisfies Eqn. 44.

Irrelevant nodes. Note that for j ∈ [r], we don’t have the term q∗jj . Therefore, we have:

‖vt+1
j ‖ ≤ (1− ηljj)‖vtj‖+ ηεlMl,rul

∗
jj

∑
j′ 6=j,j′∈[u]

‖δvtj′‖+ ηεlMl,rrl
∗
jj

∑
j′ 6=j,j′∈[r]

‖vtj′‖

≤ (1− ηl∗jj)‖vtj‖+ ηκl∗jj‖vtj‖+ ηεlMl,rul
∗
jj

∑
j′ 6=j,j′∈[u]

‖δvtj′‖+ ηεlMl,rrl
∗
jj

∑
j′ 6=j,j′∈[r]

‖vtj′‖

≤ (1− ηl̄γ)t+1Bv (64)

7.6.2. LEMMA 6

Proof. Similar to the proof of Thm. 4, for node j, in the lower-layer, we have:

ẇj = I(j ∈ [u])P⊥wj
p̃∗jj + P⊥wj

∑
j′ 6=j,j′∈[u]

∆p̃jj′ + P⊥wj

∑
j′∈[r],j′ 6=j

p̃jj′ (65)

where hjj′ = djj′v
T
j vj′ and p̃jj′ = pjj′v

T
j vj′ = wj′hjj′ .

Due to (W-Separation) and ‖wj′‖ = 1, we know that for j 6= j′:

‖∆p̃jj′‖ ≤ εdMd,uud
∗
jj‖δwj′‖‖vj‖‖vj′‖, ‖p̃jj′‖ ≤ εdMd,urd

∗
jj‖δwj′‖‖vj‖‖vj′‖, j ∈ [u] (66)

‖∆p̃jj′‖ ≤ εdMd,rud
∗
jj‖δwj′‖‖vj‖‖vj′‖, ‖p̃jj′‖ ≤ εdMd,rrd

∗
jj‖δwj′‖‖vj‖‖vj′‖, j ∈ [r] (67)

Note that if ‖vj′‖(for j ∈ [r]) doesn’t converge to zero, then due to Eqn. 67, there is always residue and wj won’t converge
to w∗j .

Now we discuss two cases:

Relevant nodes. For j ∈ [u], similar to Eqn. 37 we have:

sin θt+1
j ≤ (1− ηd∗jj‖vtj‖2 cos θtj) sin θtj + η‖vtj‖εdMd,uud

∗
jj

∑
j′ 6=j,j∈[u]

‖vtj′‖ sin θtj′

+ η‖vtj‖εdMd,urd
∗
jj

∑
j′ 6=j,j∈[r]

‖vtj′‖ (68)

Since (Wu-Contraction) and (V -Contraction) holds for time t, we know that:

sin θt+1
j ≤ (1− ηd̄γ)t+1 sin θ0 (69)

since Eqn. 43 holds.

Irrelevant nodes. In this case, we cannot prove for j ∈ [r], wj converges to any determined target. Instead, we show that
wj won’t move too much from its initial location w0

j , which is also set to be w∗j , before its corresponding vj converges to
zero. This is important to ensure that (W-Separation) remains correct thorough-out the iterations.

For any j ∈ [u], using (Wu-Contraction) and (V -Contraction), we know that the distance between the current wj and its
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Figure 14. BatchNorm bias distribution of pre-trained VGG11 on ImageNet. Orange/blue are positive/negative biases. The first plot
corresponds to the lowest layer (closest to the input).

initial value is

‖wt+1
j −w0

j‖ ≤ η

t∑
t′=0

‖ẇt′

j ‖ ≤ η
t∑

t′=0

∥∥∥∥∥∥
∑

j′ 6=j,j′∈[u]

∆p̃t
′

jj′ +
∑

j′∈[r],j′ 6=j

p̃t
′

jj′

∥∥∥∥∥∥ (70)

≤ ηεdBd,u(Bv +Bδv)Bv

t∑
t′=0

(1− ηλ̄γ)2t
′

(71)

=
εdBd,r(Bv +Bδv)Bv

λ̄γ(2− ηλ̄γ)
= Cd,r (72)

Therefore, we prove that (Wr-Bound) holds for iteration t+ 1.

7.7. Lemma 7

Proof. Simply followed from combining Lemma 3, Lemma 2 and weight bounds (Wu-Contraction) and (V -Contraction).

8. Appendix: More experiments
Besides, we also perform ablation studies on GAUS.

Size of teacher network. As shown in Fig. 15(a), for small teacher networks (FC 10-15-20-25), the convergence is much
faster and training without BatchNorm is faster than training with BatchNorm. For large teacher networks, BatchNorm
definitely increases convergence speed and growth of ρ̄.

Finite versus Infinite Dataset. We also repeat the experiments with a pre-generated finite dataset of GAUS in the CNN
case, and find that the convergence of node similarity stalls after a few iterations. This is because some nodes receive very
few data points in their activated regions, which is not a problem for infinite dataset. We suspect that this is probably the
reason why CIFAR-10, as a finite dataset, does not show similar behavior as GAUS.
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Figure 15. Ablation studies on GAUS. (a) ρ̄ converges much faster in small models (10-15-20-25) than in large model (50-75-100-125).
BatchNorm hurts in small models. (b) ρ̄ stalls using finite samples.
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Figure 16. Visualization of (transpose of) H∗ and β∗ matrix before and after optimization (using GAUS). Student node indices are
reordered according to teacher-student node correlations. After optimization, student node who has high correlation with the teacher
node also has high β entries. Such a behavior is more prominent in H∗ matrix that combines β∗ and the activation patterns D∗ of
student nodes (Sec. 5).
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Figure 17. Mean/Median rank at different epoch of the final winning student nodes that best match the teacher nodes after the training
using BatchNorm. Gaussian (left) versus CIFAR10 (right). FC (top) versus CNN (bottom).
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Figure 18. Mean/Median rank at different epoch of the final winning student nodes that best match the teacher nodes after the training
without BatchNorm. Gaussian (left) versus CIFAR10 (right). FC (top) versus CNN (bottom).
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Figure 19. Gaussian data with small (10-15-20-25) and large (50-75-100-125) FC models. Small models (top) versus large models
(bottom). With BN (left) versus Without BN (right).
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Figure 20. Gaussian CNN. With BN (top) versus Without BN (bottom). Finite Dataset (left) versus Infinite Dataset (right).


