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Abstract
Identifying the hypernym relations that hold between words is a fundamental task in NLP.

Word embedding methods have recently shown some capability to encode hypernymy. However,
such methods tend not to explicitly encode the hypernym hierarchy that exists between words.
In this paper, we propose a method to learn a hierarchical word embedding in a specific order to
capture the hypernymy. To learn the word embeddings, the proposed method considers not only the
hypernym relations that exists between words on a taxonomy, but also their contextual information
in a large text corpus. The experimental results on a supervised hypernymy detection and a newly-
proposed hierarchical path completion tasks show the ability of the proposed method to encode the
hierarchy. Moreover, the proposed method outperforms previously proposed methods for learning
word and hypernym-specific word embeddings on multiple benchmarks.

1. Introduction

Hypernymy relation is an essential component for many Natural Language Processing (NLP) tasks.
It represents an asymmetric relation between name of a class (hypernym) and a particular instance
of it (hyponym). For example, given the hypernymy pair (bird, vertebrate), the hyponym word bird
is a particular instance of the hypernym word vertebrate, and one can simply say “a bird is a verte-
brate”. Hypernymy identification plays a major role in various NLP tasks such as question answer-
ing [Huang et al., 2008], taxonomy construction [Navigli et al., 2011], textual entailment [Dagan
et al., 2013] and text generation [Biran and McKeown, 2013], to name a few.

The task of identifying hypernymy has been long addressed by relying on either the lexical-
syntactic patterns where a particular textual pattern suggests the existence of a hypernymy relation,
or the distributional representation of a given pair of words. In a pattern-based approach, from a
sentence like “a bird such as a falcon” we can identify a hypernymy relation between bird and fal-
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con. Despite its simplicity and efficiency, pattern-based approaches suffer from a low precision and
coverage issue [Yu et al., 2015]. For example, let us consider the sentence “some birds recorded in
Africa such as Gadwall”, a typical lexical-pattern based approach may incorrectly detect (Gadwall,
Africa) as hypernymy.

In contrast to the requirement of the pattern-based approaches to have the hypernym and hy-
ponym words occurring in the same sentence, the distributional family of approaches rely on the
words co-occurrence statistics in a large text corpus to represent the words and then deduce the hold
of hypernymy. It works on the assumption that taxonomically related words tend to occur in a sim-
ilar context. In particular, a hypernym word has a broader context than its hypernym, and therefore
the contextual features of the hyponym word are usually a subset of that of its hypernym. How-
ever, such approaches commonly struggle from discriminating the hypernym relations from other
lexico-semantic relations [Shwartz et al., 2016b].

Lately, distributed word representations (a.k.a word embeddings) [Mikolov et al., 2013, Pen-
nington et al., 2014] have shown some capability to encode hypernymy. Such methods typically
embed the words into dense, low-dimensional, real-valued vectors, using the co-occurrence statis-
tics obtained from a text corpora, and then used in a supervised settings to detect hypernymy. How-
ever, typical word embeddings models rely only on co-occurrence based similarity, and therefore
are insufficient to encode taxonomic relations in the learnt word embeddings [Anh et al., 2016].

Several recent studies have proposed methods for learning hypernymy-specific word embed-
dings [Yu et al., 2015, Anh et al., 2016, Nguyen et al., 2017]. Yu et al. [2015] design a neural network
to learn word embeddings that perceive hypernymy, purely relying on extracted pairwise training
data from a web corpus. Moreover, Anh et al. [2016] proposed a similar approach, but further utilise
the contextual information of the pre-extracted pairwise hypernymy. Similarly, Nguyen et al. [2017]
introduce the HyperVec model that use the Skip-gram with Negative Sampling (SGNS) [Mikolov
et al., 2013] objective to learn the word embeddings from a corpus subject to pairwise hypernymy
constraints extracted from a taxonomy. Moreover, Nickel and Kiela [2017] proposed a new model
that embed symbolic data into hyperbolic space, particularly into Poincaré ball, to learn hierarchi-
cal embeddings. Another model that is recently proposed is the LEAR model of Vulić and Mrkšić
[2018]. LEAR is a post-processing model that takes any word vectors and then adjust the input
vectors to emphasis the hypernym relations. The aforementioned methods merely consider pairwise
hypernymy relations rather than the hierarchical hypernymy path connecting a word to the root in a
taxonomy.

In this paper, we propose a method that jointly learns hierarchical word embeddings (HWE)
from a corpus and a taxonomy. The proposed method begins by embedding the words into random
low-dimensional real-valued vectors, and subsequently updates the embeddings to encode the hier-
archical structure available in the taxonomy. To train the proposed method, we use a taxonomy to
extract the hierarchical hypernymy paths for the hyponym words, and use the global vector [Pen-
nington et al., 2014] as a context-aware objective between the hypernym and hyponym words. As
such, the proposed model benefits from both the contextual information as well as the taxonomic
relations to learn the embeddings.

In our experiments, we evaluate our hierarchical word embeddings on the standard supervised
hypernymy task on various benchmarks, graded lexical entailment prediction and a newly-proposed
hierarchical path completion task. On the supervised hypernymy identification, the proposed method
reports an improvement over several previously proposed methods, showing the benefit of consider-
ing the full hierarchical hypernymy paths instead of only pairwise relations. Moreover, a quantitative
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and qualitative analysis on the newly-proposed hierarchical path completion task further illustrate
the ability of the proposed method to encode hypernymy in the learn embeddings.

2. Related Work

Over the years, two lines of approaches, pattern-based and distributional, have been predominantly
followed in the NLP community for identifying the hypernymy relation between words. The pattern-
based approach uses large text corpora to capture lexical-syntactic patterns with a high probability
of representing a hypernymy relationship [Liu and Singh, 2004, Suchanek et al., 2007, Wu et al.,
2012]. Popularly known as the Hearst’s patterns [Hearst, 1992] are an example of such patterns, for
instance, the sentence “vertebrate such as birds” indicates that vertebrate is a hypernym of birds.
Extracting such patterns paves the way to automatically build a taxonomy of hypernymy relations,
where the task of identifying the existence of hypernymy relation between a given pair of words
is then transformed into a problem of checking their existence in such taxonomies. Unfortunately,
pattern-based approaches are prone to data sparseness issues because two words must co-occur in
the same context in order for a pattern to be extracted [Yu et al., 2015, Shwartz et al., 2016b].

Distributional methods, on the other hand, focus on the word distribution in text corpora to
represent the words in a high dimensional vector space [Turney and Pantel, 2010], and rely on the
Distributional Inclusion Hypothesis (DIH) [Geffet and Dagan, 2005] to identify the hypernymy re-
lationships. DIH works on the assumption that a significant number of the distributional context
features of the hyponym word are expected to be a subset of the hypernym word features. For in-
stance, given the pair (bird, vertebrate), DIH assumes that most of the distributional features of
bird are features of vertebrate as well, but does not necessarily true for the reverse. Such unsuper-
vised distributional methods for hypernymy identification include [Weeds et al., 2004, Clarke, 2009,
Kotlerman et al., 2010, Lenci and Benotto, 2012].

Pattern-based and distribution-based approaches have complementary strengths, hence some
hybrid approaches have been proposed combining the strengths of the two approaches [Mirkin et al.,
2006, Shwartz et al., 2016a].

Several methods have been proposed that use pre-trained word embeddings as the input and
learn a classifier that can predict whether a hypernym relation exist between a given pair of words.
These methods can be seen as a combination between unsupervised and supervised methods in
the sense that the pre-trained word emebddings used as the input can be learnt using unsupervised
word embedding learning methods [Mikolov et al., 2013, Pennington et al., 2014], and the classifier
training part can be seen as a supervised (binary) classification task, where the labelled instances for
training can be retrieved from a taxonomy containing hypernyms-hyponyms. An important research
question in such approaches is how to represent the relationship between two words using their
word embeddings? To address this point, several unsupervised operators that take in two vectors
(corresponding to the embeddings of the two input words) and return a vector (corresponding to the
relation between the two input words) have been studied in prior work such as concatenation [Ba-
roni and Lenci, 2011], difference [Roller et al., 2014], addition [Weeds et al., 2014] and hybrid
combinations [Turney and Mohammad, 2015]. Although numerous work have reported good hy-
pernym detection accuracies using such supervised methods [Roller et al., 2014, Weeds et al., 2014,
Kruszewski et al., 2015, Sanchez and Riedel, 2017, Vulić et al., 2017]. [Levy et al., 2015b] raise
doubts as to whether these methods are truly learning the hypernymy relation or simply memorising
prototypical hypernyms.
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More recently, a new line of work focusing on learning hypernymy-specific word embeddings
[Yu et al., 2015, Anh et al., 2016, Nickel and Kiela, 2017, Glavaš and Ponzetto, 2017, Nguyen et al.,
2017, Vulić and Mrkšić, 2018] has gained much popularity in the field. This line is the closest to
our work. Yu et al. [2015] proposed a supervised distance-margin neural network for the purpose of
encoding hypernymy properties in the learnt embeddings. The neural network is trained using only
the pre-extracted pairwise hypernymy tuples from Probase [Wu et al., 2012], without considering
any contextual information that might be available in sentences where the two words co-occur.
However, it has been shown that co-occurrence contexts provide useful semantic clues for detecting
taxonomic relationships [Velardi et al., 2013, Anh et al., 2014].

Similarly, Anh et al. [2016] proposed a dynamically weighted neural network for leaning hy-
pernymy specific word embeddings. The proposed method initialises by extracting pairwise hyper-
nymy data from WordNet [Miller, 1995], followed by extracting related sentences from Wikipedia
to form the training data as triples including the hypernym, hyponym and a context word between
them, as an input to the neural network. Nguyen et al. [2017] introduced unsupervised neural model
(HyperVec) that outperformed the previous two hypernym-specific embeddings work. HyperVec
jointly learns from the extracted hypernym pairs and contextual data. In particular, their proposed
method starts by extracting all the hypernym pairs from the WordNet, and use SGNS as a context-
aware objective and jointly learns the hypernymy-specific word embeddings. Nguyen et al. [2017]
report an improvement over Yu et al. [2015] and Anh et al. [2016] methods on hypernymy rela-
tion identification task as well as the task of distinguishing between hypernym and hyponyms in
a hypernymy relation pair. Moreover, Vulić and Mrkšić [2018] introduce Lexical Entailment At-
tract Repel (LEAR) model to learn word embeddings that encode hypernymy. LEAR works as a
post-processing model that can take any word vectors as an input and inject external constraints
of hypernym relations extracted from WordNet to emphasis the hypernym relations into the given
word vectors. Whereas Nickel and Kiela [2017] followed a different line of work and proposed
Poincaré model that learn hierarchical embeddings into a hyperbolic space, precisely into Poincaré
ball, rather than the Euclidean space. Poincaré make use of WordNet hypernymy and merely learn
from the taxomomy without a corpus information.

Although the majority of such methods are attractive, because they jointly learn from manually
created taxonomies and text corpora, a common disadvantage of such methods is that they mainly
focus on pairwise hypernymy relations data in the taxonomies, instead of the entire hierarchical
path. A full hierarchical path of hypernymy not only gives a better understanding of the problem
than a single hypernymy edge but rather empirically shown to be useful for a pairwise hypernymy
identification.

3. Hierarchical Word Embeddings (HWE)

We propose a method that learns word embeddings by encoding the hierarchy of hypernymy rela-
tions between words. To explain our method, let us consider an example, given a hierarchical hyper-
nym path (bird→ vertebrate→ chordate→ organism→ animal) where the pairs (bird,vertebrate),
(vertebrate,chordate), (chordate,organism) and (organism,animal) represent a direct hypernymy re-
lation, whereas (bird, chordate) and (vertebrate, animal) form an indirect hypernymy. We require
our embeddings to be able to encode not only the direct hypernymy relations between the hypernym
and hyponym words, but also the indirect and the full hierarchical hypernym path.
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Given a taxonomy T and a corpus C, we propose a method for learning a hierarchical word
embedding wi ∈ Rd for the i-th word wi ∈ V in a vocabulary V . We use boldface fonts to denote
vectors. We assign two vectors for the wordwi, respectively denoting a hyponym wi, or a hypernym
w̃i. The proposed method initialises by making use of a set of hierarchical hypernymy paths, which
can be obtained from a taxonomy.

Let us assume that wi is a leaf node in the taxonomy and P(wi) is a path that connects wi to
the root of the taxonomy. If the taxonomy is a tree, then only one such path exists. However, if the
taxonomy is a lattice or there are multiple senses ofwi represented by different synsets as in the case
of WordNet, we might have multiple paths as P(wi). Because a taxonomy by definition arranges
concepts in a hierarchical order, we would assume that some of the information contained in a leaf
node wi to be inferred from its parent nodes that fall along the path P(wi). Different compositional
operators could be used then to infer the semantic representation for wi using its parents such as a
recurrent neural network (RNN). However, for simplicity and computational efficiency, we represent
the embedding of a leaf node as the sum of its parents’ embeddings. This idea can be formalised into
an objective function JT for the purpose of learning hierarchical word embedding over the entire
vocabulary as follows:

JT =
1

2

∑
i∈V

∣∣∣∣∣∣
∣∣∣∣∣∣wi −

∑
j∈P(wi)

w̃j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

(1)

The indirect hypernym at the top of path (i.e. the root of a taxonomy in case it is a tree or the
farthest from the hyponym word wi for a truncated path) represents less (more abstract) informa-
tion about the word wi than its direct hypernym. For example, revisiting our hierarchical example
above (bird → vertebrate→ chordate→ animal), the direct hypernym vertebrate represents more
information about bird than the indirect hypernym animal. To reflect this in the objective defined in
(1), we introduce a discounting term λ(w̃j) to assign a weight for each hypernym word in the path,
and update the objective function given by (1) as follows:

JT =
1

2

∑
i∈V

∣∣∣∣∣∣
∣∣∣∣∣∣wi −

∑
j∈P(wi)

λ(w̃j)w̃j

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

(2)

We set λ(w̃j) = exp(Lwi − Dw̃j ) where Lwi and Dw̃j respectively denote the length of the hier-
archical hypernymy path of the word wi, and the distance in words between the word wi and its
hypernym w̃j in the path, where the distances are measured over the shortest path from the root to
word in the taxonomy.

The objective function given by (2) learns the word embeddings purely from the taxonomy T .
It does not consider the contextual co-occurrences between the hyponym and hypernym words in
the corpus C. To address this problem, for each hypernym word w̃j that appears in the path of the
hyponym wi, we look up their co-occurrence in the corpus. For this purpose, we first create a co-
occurrence matrix X between the hyponym and hypernym words within a context window in the
corpus. The element Xij of X denotes the total occurrences between the words wi and w̃j in the
corpus. We then use the Global Vector (GloVe) [Pennington et al., 2014] objective to consider the
co-occurrence between the hyponym word wi and its hypernyms w̃j for the purpose of learning the
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embeddings as follows:

JC =
1

2

∑
i∈V

∑
j∈P(wi)

f(Xij)
(
wi
>w̃j + bi + bj − log(Xij)

)2
(3)

Where bi and bj are real-valued scalers biases associated with wi and w̃j . The function f is a
weighting function defined as follows.

f(t) =

{
(t/tmax)

α if t < tmax

1 otherwise
(4)

Finally, we combine the two objectives given by (2) and (3), into a joint linearly-weighted
objective as follows:

J = JT + JC (5)

To minimise (5) w.r.t. the parameters wi, w̃j , bi and bj , we compute the gradient of J w.r.t. those
parameters. We randomly initialise all parameters and perform Stochastic Gradient Descent with
the learning rate scheduled via AdaGrad [Duchi et al., 2011].

4. Experiments and Results

We evaluate the embeddings learnt by the proposed HWE on three main tasks: the standard super-
vised hypernymy identification, graded lexical entailment prediction and a newly-proposed hierar-
chical path completion. In all tasks, we compare the performance of the HWE with various prior
works on learning word embeddings. In Section 4.2, we first describe the experimental setup that we
follow to train the proposed method. We then introduce the word embedding models that we use to
compare the proposed method with (Section 4.2). Next, in Section 4.3, we discuss the experiments
conducted on the supervised hypernymy identification task. Next, we introduce the experiments of
predicting the graded lexical entailment task. We then describe the newly proposed evaluation task,
hierarchical path completion (Section 4.5).

4.1 Experimental Setup

Any taxonomy can be used as T with the proposed method provided that the hypernymy relations
that exist between words is specified. We use WordNet [Miller, 1995] in our experiments. The aver-
age path length of the WordNet words is 7 words. Following the recommendation in prior work on
extracting taxonomic relations, we exclude the top-level hypernyms in each path. For example, Anh
et al. [2016] found that words such as object, entity and whole at the upper level of the hierarchical
path to be noisy during the learning phase. In fact, for the nouns in the WordNet, the word ‘entity’
is the root for all the words. Moreover, the words like physical entity, abstraction, object and whole
appear in the hierarchical path of 58%, 47.27%, 34.74% and 30.95% of the WordNet words respec-
tively. As such, we limit the number of words in each path to 5 hypernyms, and obtained direct and
indirect hypernymy relations. As a results, the number of extracted relations was 256, 442 forming
a 59, 908 distinct hierarchical paths, and the vocabulary size V = 80, 673.
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As a corpus C, we used the ukWaC1 which has ca. 2 billion tokens. Following the recommenda-
tions made in [Levy et al., 2015a], we set the context window to 10 tokens to the both sides of the
hyponym word. We followed the GloVe settings and set α = 0.75 and tmax = 100 in (4).

4.2 Word Embedding Models

We compare the HWE with prior word embedding models that vary from state-of-the-art mod-
els that: (i) merely trained on text corpus (Continuous-Bag-Of-Words (CBOW), Skip-Gram with
Negative Sampling (SGNS) [Mikolov et al., 2013] and Global Vector (GloVe) [Pennington et al.,
2014]) (ii) jointly learn from a taxonomy and a text corpus (Retrofitting [Faruqui et al., 2015], Join-
tReps [Bollegala et al., 2016, Alsuhaibani et al., 2018]) and (iii) learn a hypernymy-specific word
embeddings (HyperVec [Nguyen et al., 2017],Poincaré [Nickel and Kiela, 2017],LEAR [Vulić and
Mrkšić, 2018]).

CBOW and SGNS are two log-bilinear single-layer neural models proposed by Mikolov et al.
[2013] that exploits the local co-occurrence between the words in a large text corpus. Where CBOW
objective is to predict the word given its context words, SGNS in contrast predicts the context words
given the focus word. GloVe is a log-bilinear model that uses the global co-occurrences between the
word and its context words to predict their embeddings, and it is represented by the objective func-
tion given by (3). Retrofit and JointReps are two models that combine the two resources, taxonomy
and text corpus, for learning word embeddings. In Retrofit, a pre-trained word embeddings are fed
into a taxonomy in a post-processing manner, whereas JointReps jointly learns the word embed-
dings from the two resources simultaneously. On the other hand, HyperVec, Poincaré and LEAR
are hypernymy-specific word embeddings. Details of these models are described in Section 2.

We used the same ukWaC corpus that is used with the proposed method to train the prior meth-
ods (CBOW, SGNS, GloVe, Retrofit, JointReps and HyperVec) using the publicly available im-
plementations by the original authors for each method. In all the experiments, we also follow the
same settings used with the proposed method, and set the context window to 10 words to both sides
of the focus word, and remove the words that appear less than 20 times in the corpus. Following Levy
et al. [2015a], we set the negative sampling rate to 5 in SGNS. We retrofit the embeddings learnt
by SGNS and CBOW into the Retrofit model. Moreover, for Retrofit, JointReps and HyperVec,
we used the hypernym relations extracted from the WordNet provided by the original authors for
each model to derive the taxonomy constraints during the training. For Poincaré model, we used the
gensim implementation [Řehůřek and Sojka, 2010] and set the negative samples to 10. In LEAR,
we used the pre-trained embeddings provided by the original authors. We learn a 300 dimensional
word embeddings in all experiments.

4.3 Supervised Hypernymy Identification

The supervised hypernymy identification is a standard task to evaluate the ability of the word em-
beddings to detect hypernymy. The task is modeled as a binary classification problem, where a
classifier is trained using pairs of words (x, y) labeled as positive (i.e. a hypernymy relation exists
between the words) or negative (otherwise). Each word in a word-pair is represented by its pre-
trained word embedding. Several approaches have been proposed to combine the embeddings of
the two words in each word-pair to create a single feature vector representing the relation between

1. http://wacky.sslmit.unibo.it

http://wacky.sslmit.unibo.it
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the two words that is subsequently given to the classifier. For example, concatenation (x⊕ y) [Ba-
roni et al., 2012], difference (x − y) and addition (x + y) [Weeds et al., 2014] have been used
as operators for creating feature vectors for word-pairs. In our preliminary experiments, we found
that concatenation to perform best among all of those operators for the task of training a hyper-
nymy identification. Therefore, we use concatenation as the preferred operator in the remainder of
the experiments described in the paper. We use a binary Support Vector Machine (SVM) classifier,
implemented in scikit-learn [Pedregosa et al., 2011]. We set an RBF kernel γ = 0.03125 and a cost
parameter C = 8.0, using an independent validation dataset.

Dataset #Instances Ratio pos/neg

Kotlerman 2,940 0.42
Bless 14,547 0.11
Baroni 2,770 0.98
Levy 12,602 0.08

Table 1: Summary of the datasets used in the supervised hypernymy identification task.

We pick four widely used hypernym benchmark datasets, Kotlerman [Kotlerman et al., 2010],
Bless [Baroni and Lenci, 2011], Baroni [Baroni et al., 2012] and Levy [Levy et al., 2014], for the
supervised classification task. To avoid any lexical memorisation, where the classifier simply mem-
orises the prototypical hypernyms rather than learning the relation, [Levy et al., 2015b] introduced
a disjoint version with none lexical overlap between the test and train portions for each of the above
datasets, we adopt these disjoint versions in our experiment. Details of each benchmark dataset is
summarised in Table 1.

In Table 2, we compare the quality of our embeddings (HWE) against that of the other methods
on the hypernym identification benchmarks. Although F1 score has been widely-used as an evalua-
tion measure in prior work on hypernym identification, [Sanchez and Riedel, 2017] argued that Area
Under the ROC Curve (AUC) is more appropriate as an evaluation measure for this task because
some of the benchmark datasets are unbalanced in terms of the number of positive vs. negative test
instances they contain. To be able to compare our results with prior work that report only F1 score,
we use both F1 score as well as AUC as evaluation measures in our experiments.

From Table 2, we see that the HWE reports the best scores in two of the benchmark datasets. In
particular, in Levy dataset, HWE reports the best performance, with a slight improvement over the
first two categories of methods in the table, but significant improvement (binomial test, p < 0.05)
over the closest related works in the third category. Similarly, HWE scores the highest in the Baroni
dataset where we can observe a strong difference between the hypernymy-specific word embedding
models and other methods. In particular, HyperVec, LEAR and HWE significantly outperforms
other methods and HWE reports the best score in this dataset. This result is particularly notewor-
thy, because a prior extensive analysis on different benchmark datasets for hypernym identification
by Sanchez and Riedel [2017] concluded that the Baroni dataset is the most appropriate dataset
for robustly evaluating hypernym identification methods. In Kotlerman and Bless datasets, LEAR
reports the best scores among all models. However, Table 2 shows that even the methods that were
trained only with a text corpus without specifically designed to capture the hypernymy relation, per-
form well in the Bless dataset, reporting a better or a comparable performance to the hypernymy-
specific embeddings such as HWE and HyperVec. It is worth noting that both of the closest related
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Model Kotlerman Bless Baroni Levy

F1 AUC F1 AUC F1 AUC F1 AUC

CBOW 56.07 56.20 89.58 86.89 68.02 68.41 68.58 64.23
SGNS 56.17 56.06 88.80 86.46 68.25 68.61 68.34 64.53
GloVe 56.26 56.49 89.92 88.59 69.86 70.27 68.07 64.61

Retrofit(CBOW) 53.82 56.40 84.78 78.93 70.34 70.69 50.28 51.11
Retrofit(SGNS) 53.27 56.11 84.25 78.32 71.52 71.84 49.48 50.73
JointReps 56.33 56.40 90.76 89.64 69.74 70.16 67.76 64.66

HyperVec 57.16 57.33 87.78 83.86 76.80 76.61 54.71 54.94
Poincaré 45.66 51.56 47.13 50.00 54.96 55.56 48.02 50.00
LEAR 64.62 64.14 93.46 91.83 77.26 77.68 66.82 62.84

HWE 57.32 57.63 86.06 81.97 77.37 77.73 68.59 64.83

Table 2: Classifier performance using different embedding methods as features on several hyper-
nym benchmark datasets.

works, HyperVec and LEAR, use pairwise hypernym relations in a similar spirit to the structure of
the benchmark datasets, whereas the HWE use the entire hierarchical path, nevertheless reporting a
better or comparable results.

4.4 Graded Lexical Entailment

An important aspects of the HWE embeddings is its ability to encode the hierarchical structure
available in the taxonomy in the learnt embeddings. To further check this ability we use the gold
standard dataset HyperLex [Vulić et al., 2017] to test how well the HWE embeddings capture
graded lexical entailment. HyperLex focuses on the relation of graded or soft lexical entailment at
a continuous scale rather than simplifying the judgements into a binary decision. The HyperLex
dataset consists of 2616 word pairs where each pair is manually annotated with a score on a scale of
[0, 10] indicating the strength of the relations of lexical entailment. Lexical entailment is asymmetric
in general, therefore we need an asymmetric distance function that takes into account both vector
norm and direction to provide correct entailment scores between word pairs. For this purpose, given
a hypernymy pair (x, y), where x is the hyponym word and y is the hypernym, we follow Vulić and
Mrkšić [2018] and compute the entailment score as follows:

score(x,y) = dcos(x,y) + (|x| − |y|) (6)

where dcos(x,y) is the cosine distance2. Following the standard approach for evaluating using the
HyperLex dataset, we measure Spearman ρ correlation coefficient between gold standard ratings
and the predicted scores. Table 3 shows the results of the Spearman correlation coefficients of HWE
and the other word embeddings models on the HyperLex dataset against the human ratings. Table 3
shows that HWE was able to encode the hierarchical structure in the learnt embeddings reporting
a better or comparable results to all other models except for LEAR. In particular, HWE reports

2. dcos(x,y) = 1− cos(x,y)
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an improvement over the corpus-based and joint methods as well as Poincaré embeddings. It is
noteworthy that LEAR was trained with larger resources which allows the model to benefit from a
large-scale vocabulary, as we use the provided pre-trained embeddings of LEAR. We aim to re-run
the experiment in the future and use the same resources, text corpus and taxonomy data, that were
used with all the models with LEAR.

Model Spearman’s ρ

CBOW 0.11
SGNS 0.11
GloVe 0.23

Retrofit(CBOW) 0.07
Retrofit(SGNS) 0.13
JointReps 0.08

HyperVec 0.47
Poincaré 0.35
LEAR 0.63

HWE 0.46

Table 3: Results of HWE and other word embeddings models on the HyperLex dataset.

4.5 Hierarchical Path Completion

Considering that our HWEs are designed to capture hierarchical information about words, it re-
mains an open question as to what extent the word embeddings learnt using the proposed method
encode the hierarchical structure. The supervised hypernymy identification and the graded lexical
entailment tasks discussed in the previous sections (4.3 and 4.4) provides only a partial answer to
this question because all the benchmarks used in the experiments there were specifically annotated
for hypernymy relation between two words, ignoring the taxonomic structure.

Unfortunately, none of the prior work has looked into this aspect of word embeddings and to
the best of our knowledge there exists no benchmark dataset for conducting such a hierarchical
evaluation over a taxonomy. To address this issue, we create a novel dataset by first sampling paths
from the WordNet, which connect a hypernym to a hyponym via a path not exceeding a maximum
path length Lmax. We limit the paths to contain words that are unigrams, bigrams or trigrams, and
sample the paths such that words with different frequency ranges are covered, thereby considering
paths that contain frequent as well as rare words. This enables us to conduct a fair and a balanced
evaluation of the hierarchical word embeddings. We remove any paths that are used as training data
when computing Jc in (1). By following this procedure we created a dataset that contains 330 paths.
If a path contains only unigrams then it is considered as a unigram path. If a path contains at least
one bigram but no trigrams, we consider it to be a bigram path and if a path contains a trigram then it
is considered as a trigram path. There are respectively 150, 120 and 60 unigram, bigram and trigram
paths in the created dataset.

Inspired by the word analogy prediction task that is widely used to evaluate word embed-
dings [Mikolov et al., 2013], we propose a hierarchical path completion task as follows. Given
a hierarchical path (a → b → c → d → e) where a is the hyponym word and b, c, d and e are its
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hypernyms, the task is to predict the hyponym word a given its hypernyms b, c, d and e. However, in
the taxonomy, we might observe several hyponym words that have the exact same hierarchical path.
For example, the hypernyms (b → c → d → e) might represent the hierarchical path to both a
and a′. In fact, for each hierarchical path in the WordNet, there are, on average, 8 hyponym words
represented by that particular hierarchical path. Therefore, for each hierarchical path instance, if a
method predicts a candidate a that belongs to any of the hyponyms with that path, we consider it to
be a correct prediction.

Given a set of word embeddings learnt using some word embedding learning method, to solve
a hierarchical path completion problem, we used several prediction methods to predict a hyponym
word a using the hypernyms b, c, d and e as described next.

ADD : We used an additive method (ADD), in which we compute the cosine similarity between
b+ c+d+ e and each word x in a fixed vocabulary, and select the word a∗ with the highest
cosine similarity as the prediction. If a∗ equals to a (or a’s), then we consider it to be a correct
prediction for the given test instance.

SUB : In addition to the ADD method, and following the same procedure of computing the cosine
similarity, we further consider several other prediction methods such as b + c + d − e, b +
c − d + e, b − c − d − e and b − c + d + e, for predicting a using the hypernyms b,
c,d and e. We refer to these methods as the subtraction (SUB). We found that the variant
b + c + d − e of SUB to perform consistently better than other SUB variations with all
embedding models. Considering that the further the subtracted candidate in the hierarchical
path from a the lesser its influence on the prediction. For example, the variant b + c + d − e
reports a better prediction result as compared to b − c + d + e, presumably because of the
subtracted hypernym c being closer to the hyponym a as compared to the farthest hyponym
e. The remainder of the experiments in the paper use the variant b+ c+ d− e as SUB.

DH : In this method, we use only the direct hypernym b to predict a (or a’s), and refer to this
method as the direct hypernym (DH). We follow the same procedure of computing the cosine
similarity as used in the ADD and SUB methods.

If the predicted candidate is in the set of hyponyms for a particular test hierarchical path, then
we consider it to be a correct prediction. We then define the accuracy of a prediction method that
uses word embeddings learnt from a particular word embedding learning method as the percentage
of the correctly answered test instances.

In Table 4, we report the accuracies of different word embedding learning methods on the hier-
archical path completion dataset using different prediction methods over different n-gram lengths.
According to Clopper-Pearson confidence intervals computed at p < 0.05, the proposed HWE sig-
nificantly outperforms all other word embedding learning methods compared in Table 4 irrespective
of the prediction method being used.

Surprisingly, in contrast to the results found on the supervised classification task (4.3) and
the graded lexical entailment task (4.4), where the prior word embeddings methods, including
hypernymy-specific methods HyperVec and LEAR were performing constantly well on pairwise
datasets, they seem to suffer capturing an upper level hierarchy in the vector space. Whereas, on
other side, Poincaré which was suffering with pairwise data in the previous tasks, seems to learn
a better upper level hierarchy and works well with this hierarchical completion task. The fact that
Poincaré embeddings, a hierarchical word embeddings learn method, reports good performance
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Prediction Method

Model ADD SUB DH

Uni Uni+Bi Uni+Bi+Tri Uni Uni+Bi Uni+Bi+Tri Uni Uni+Bi Uni+Bi+Tri

CBOW 38.25 36.96 35.18 36.43 35.74 35.22 44.43 44.38 43.16
SGNS 32.77 31.24 29.70 33.68 33.05 32.59 40.95 40.27 39.24
GloVe 29.60 27.59 25.66 37.56 27.42 26.90 44.18 42.83 42.66

Retrofit(CBOW) 38.58 38.32 37.82 37.67 37.28 36.76 44.94 43.39 43.23
Retrofit(SGNS) 34.73 33.95 33.27 34.73 34.09 33.85 42.92 42.14 41.88
JointReps 31.19 30.85 29.65 35.69 34.51 34.16 40.02 39.68 39.31

HyperVec 19.09 18.58 18.24 25.45 25.16 24.72 36.36 35.80 35.17
Poincaré 60.91 58.24 58.17 59.09 57.70 57.67 60.92 59.08 58.66
LEAR 25.45 25.22 24.73 22.91 20.25 20.06 28.45 27.77 26.60

HWE 88.30 85.19 84.75 71.39 69.89 69.65 84.96 81.28 81.05

Table 4: Accuracy (%) of the different word embedding learning models on the hierarchical path
completion dataset using the ADD, SUB and DH as prediction methods over Unigram,
Bigram and Trigram paths.

on this hierarchical path completion task, suggests that this is an appropriate task for evaluating
hierarchies and embeddings.

Using the ADD method, HWE reports an improvement as high as 28% on accuracy over
Poincaré, which is the highest score among the other methods. Table 4 shows that SUB slightly
increases the other word embedding methods’ results and decreases the performance of HWE. DH
significantly improves the results for all word embeddings, except for HWE and Poincaré, whereas
ADD applied to HWE reports the best overall performance in Table 4. This result shows that the
proposed HWE not relying merely on the direct hypernym but considers information available in
the entire hierarchical path composed into a single vector via addition. Furthermore, Table 4 shows
that including bigram and trigram hypernyms on the paths slightly hurt the performance, possibly
because of data sparseness.

To further demonstrate the ability of the proposed method for completing the hierarchical paths,
we qualitatively analyse the predictions of HWE and Retrofit(CBOW). Due to the limited avail-
ability of space, only a few randomly selected examples are shown in Table 5. The hyponym column
represents gold standard answers (i.e. correct hyponym words). Due to space limitations, we show
only a maximum of 4 correct hyponyms in the table. If a particular path has more than 4 hyponyms,
we randomly select 4, otherwise all possible hyponyms are listed. We see that HWE accurately pre-
dicts the correct word in many cases where Retrofit(CBOW) fails (shaded rows in the table). We
can also see Retrofit(CBOW) tends to predict the average nearest neighbour of a word’s hypernyms
to be the missing word, not necessarily completing the hierarchical path. For example, given the path
(?→ head dress→ clothing→ consumer goods→ commodity), HWE correctly predicts the miss-
ing word to be hat, whereas Retro(CBOW) incorrectly predicts dress. More interestingly, Table 5
shows by considering the hierarchical path we can reduce the ambiguity of the prediction. For in-
stance, given the path (?→ book→ publication→ work→ product) the Retrofit(CBOW) predicts
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Hypernym1

(b)
Hypernym2

(c)
Hypernym3

(d)
Hypernym4

(e)
Hyponym(s)
(a’s)

HWE
Prediction

Retrofit
Prediction

book publication work product booklet,textbook, textbook nature
storybook,catalog

success attainment accomplishment action winning, winning enjoyment
flying colors

head dress clothing consumer goods commodity turban,cap, hat dress
kaffiyeh,hat

supplier businessperson capitalist person recruiter,distributor, distributor market
stockist,caterer

great ape anthropoid ape ape primate orangutan, gorilla chimp
gorilla,chimpanzee

executive administrator head leader corporate executive, minister chair
minister,rainmaker

forced landing aircraft landing landing arrival crash landing crash landing landing
placental mammal vertebrate chordate ungulate,carnivore, carnivore ecology

lagomorph,rodnet
despair feeling state attribute discouragement, discouragement apathy

pessimism
waste activity act event waste of effort, boondoggle enjoyment

boondoggle
bank withdrawalwithdrawal removal separation bank run bank run withdrawal
capture felony crime transgression abduction, kidnapping kidnapping

kidnapping
text matter writing communication stanza,lyric, card lyric

lipogram
ocean trip water travel travel motion voyage,cruise round trip voyage

maiden voyage

Table 5: Selected predictions of HWE and Retrofit(CBOW) on the hierarchical path completion
task (ADD). Hyponym(s) represents gold standard answer(s).

the word nature to complete the path, presumably associating this with the scientific journal Nature3

because the path includes publication, however HWE correctly predicted the word to be textbook.
Moreover, from Table 5, we can see that in some cases HWE struggled to predict the correct words,
while Retrofit(CBOW) has managed to accurately complete the path. For example, HWE failed
to predict the word(s) voyage,cruise or maiden voyage to complete the path (? → ocean trip →
world travel→ travel→ motion) while Retrofit(CBOW) was able to do so. Considering the fact
that ghost and apparition are registered as synonyms in the WordNet, Retrofit(CBOW) could be
simply picking up this synonym, without considering any hierarchical information in this case.

Furthermore, we study the effect of each hypernym word in the hierarchical path towards the
prediction accuracy. In particular, given a hierarchical path (a → b → c → d → e), the goal is
to study which of the given hypernyms b, c , d and e is having the strongest effect on predicting the
correct word a. For this purpose, we used the same hierarchical path completion dataset including
bigram and trigram hypernyms and follow the same procedure used in the above experiment, but we
hold out one of the hypernym while computing the cosine similarity between b+c+d+e and a. We
vary the excluded hypernym between b, c, d and e. When we hold out b we refer to this as the direct

3. www.nature.com

www.nature.com
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Figure 1: Comparison of direct and indirect hypernym exclusion from a word’s path evaluated on
the hierarchical path completion dataset.

hypernym exclusion, whereas holding out one of c, d or e is referred to as the indirect hypernym
exclusion. In Figure 1, we report the accuracy result on the hierarchical path completion task using
the ADD method with each exclusion variation. Not surprisingly, excluding the direct hypernym
(b) drastically effect the performance. Whereas, the least effect can be observed with the farthest
hypernym (e). For example, in a hierarchical path of a hyponym word of only uigram hypernyms,
excluding the first direct hypernym results on 68% accuracy prediction, whereas holding out the
farthest hypernym significantly improves the prediction score reaching 88% accuracy.

We also investigate how the dimensionality d effects the proposed method. Similar to the pre-
vious experiments, we report the accuracy of predicting the hyponym word in each hierarchical
hypernym path. From Figure 2, we see that the proposed method is able to reach as high as 76%
with as small as 25 dimensions. The performance is then increase with the dimensionality, reaching
its peak with 200 dimensions reporting 88% accuracy. It is worth noting that, adding more dimen-
sions does not negatively effect the performance. Moreover, Figure 2 shows that including bigram
and trigram hypernym words in the paths report a slight decrease in the performance, but similar
trend as to the unigram only is observed.

5. Conclusion

We presented a method to learn a Hierarchical Word Embedding (HWE) for identifying the hyper-
nymy relations between words. For this purpose, we introduced a joint objective that make use of
both a taxonomy and a large text corpus to learn hierarchical word embeddings. We evaluated HWE
on the standard supervised hypernymy identification and a newly-proposed hierarchical hypernymy
path completion tasks. The experiments conducted in this paper on the above mentioned two tasks
demonstrate that HWE was able to encode the hypernymy relations between words into the learnt
embeddings, and reports an improvement over several previously proposed methods that learn either
general word embeddings or hypernymy-specific word embeddings.
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Figure 2: Effect of dimensions on the proposed method evaluated on hierarchical path completion
dataset.
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