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Abstract
While human experts excel in and rely on identifying an abnormal structure when assessing a medi-
cal scan, without necessarily specifying the type, current unsupervised abnormality detection meth-
ods are far from being practical. Recently proposed deep-learning (DL) based methods were initial
attempts at showing the capabilities of this approach. In this work, we propose an outlier detection
method combining image restoration with unsupervised learning based on DL. A normal anatomy
prior is learned by training a Gaussian Mixture Variational Auto-Encoder (GMVAE) on images
from healthy individuals. This prior is then used in a Maximum-A-Posteriori (MAP) restoration
model to detect outliers. Abnormal lesions, not represented in the prior, are removed from the im-
ages during restoration to satisfy the prior and the difference between original and restored images
form the detection of the method. We evaluated the proposed method on Magnetic Resonance Im-
ages (MRI) of patients with brain tumors and compared against previous baselines. Experimental
results indicate that the method is capable of detecting lesions in the brain and achieves improve-
ment over the current state of the art.
Keywords: Unsupervised lesion detection, image restoration

1. Introduction

Identifying abnormal structures is an important component of radiological assessment. Arguably,
abnormal structures, such as lesions, are first identified as outliers that do not fit expectations on
normal anatomy, and then their types are specified. While the second task is tremendously difficult,
even non-experts can excel in the first one. After showing a non-radiologist a small number of
examples of images showing “normal” anatomy, they start to identify lesions with distinct intensity
patterns as abnormal patterns.

Recently, research on supervised machine learning algorithms for lesion detection has taken
huge strides in automated lesion detection of prespecified type, where models are optimized to
detect lesions contained in a training set(Ayachi and Amor, 2009; Zikic et al., 2012; Geremia et al.,
2011; Dong et al., 2017; Pereira et al., 2016; Kamnitsas et al., 2017; Li et al., 2018). Despite the
success of supervised approaches, the problem of detecting any lesion, without specifying a type, as
abnormal regions remains a very challenging problem. Advancing on this task would facilitate new
applications in acquisition and screening. Furthermore, unlike supervised methods, unsupervised
methods may not require extensive datasets from patients, making them attractive from a practical
point of view.
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UNSUPERVISED LESION DETECTION

Over the last two decades, many unsupervised lesion detection methods have been proposed.
Prior to DL-based models, Van Leemput et al (Van Leemput et al., 2001) utilized registration to a
healthy brain atlas and mixture models based on tissue-specific intensity to detect lesions, followed
by Moon et al (Moon et al., 2002) using an atlas with spatial features instead and Prastawa et al
(Prastawa et al., 2004) combining spatial and intensity atlases. More recent non-DL works moved
from modeling pixels independently to modeling small image patches through dimensionality re-
duction methods such as principle component analysis (Zacharaki and Bezerianos, 2012) and (Erus
et al., 2014), statistical patch-wise representations in (Cardoso et al., 2015) and sparse representation
(Zeng et al., 2016). In the latest years, neural network based generative models such as Generative
Adversarial Networks (GAN) (Goodfellow et al., 2014), and Variational Auto-encoders (Kingma
and Welling, 2013) (VAE) have been applied to unsupervised lesion detection. The underlying ap-
proach, similar to non-DL methods, is to first learn a normative distribution using GAN or AE-based
methods and then detect areas with low-likelihood as lesions, with respect to the distribution. The
common detection procedure is to project a given image to the latent space of the learned model,
reconstruct it and identify differences between reconstruction and the original image. Areas not fit-
ting to the normative distribution cannot be reconstructed faithfully, leading to high reconstruction
errors. AnoGAN (Schlegl et al., 2017) used a GAN within the described common approach. The
projection to the latent space was solved as an optimization problem, seeking the best latent space
representation for a given image. The optimization can be difficult to solve in practice. Methods
proposed in (Baur et al., 2018; Pawlowski et al., 2018; Chen and Konukoglu, 2018) used AE-based
methods to learn the normative distribution, which facilitated projection to the latent space.

In this work, we propose a novel unsupervised lesion detection method based on image restora-
tion. The goal of the method is to identify a pixel-wise detection map like a segmentation. Similar
to previous approaches, the framework consists of approximating a normative prior distribution of
healthy images using an AE-based method, specifically Gaussian Mixture Variational Autoencoder
(GMVAE) (Dilokthanakul et al., 2016; Johnson et al., 2016). Different than previous methods, we
cast the detection as an image restoration problem and solve it by Maximum-A-Posteriori (MAP)
estimation using the normative distribution as the prior term, similar to the method proposed in (Tez-
can et al., 2018) for image reconstruction. The detection method is iterative and leverages the dif-
ferentiability of the normative distribution modeled via neural networks. The final detection result
is given as the difference between restored and original image. We evaluate the proposed method
using MRI from patients with brain tumors and compare with other methods.

2. Methods

The proposed method consists of two steps : 1) modelling the distribution of healthy images, i.e. the
normative distribution, using a GMVAE and 2) detecting lesions as outliers with MAP restoration.
First we briefly explain GMVAE, then continue with the restoration algorithm and finally give some
details on parameter selection.

2.1. GMVAE

We first introduce the VAE model and then GMVAE as its extension.

VAE (Kingma and Welling, 2013) is an unsupervised density estimation method that approxi-
mates the distribution of high dimensional data, e.g. images, from a given set of samples. It for-
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mulates a latent variable model, written as log p(X) = log
∫

p(X |z)p(z)dz, with X ∈RN the image,
z∈RL the latent variable (N� L) and p(z) a pre-specified prior on the latent variable, where p(X |z)
is modeled as a neural network. The learning is cast as maximizing the log-likelihood, log p(X), of
the observed samples. The direct evaluation of the integral is often not analytically achievable. As
a remedy, a proposal distribution q(z|X) that approximates the true posterior p(z|X) is introduced.
This allows formulating a lower bound to log p(X) as the evidence lower bound (ELBO):

log p(X)≥ ELBO =Eq(z|X)[log p(X |z)]−KL[q(z|X)||p(z)], (1)

where KL denotes the Kullback-Leibler divergence. The first term is a reconstruction loss, X is
first projected to the latent space and then back-projected to the image space, i.e. reconstructed,
and Eq(z|X)[log p(X |z)] measures the expected deviation of the reconstruction and observation. The
second term measures the divergence between the encoded distribution and the prescribed prior,
acting as a regularizer. The equation becomes an equality when q(z|X) = p(z|X). In VAEs, q(z|X),
the encoder, can be modeled as a Gaussian N(µz(X),σ2

z (X)I), where µz(X) and σz(X) are functions
of the input X that are parameterized by a neural network. Similarly, p(X |z), the decoder, can also
be modeled as a Gaussian N(µX(z),σ2

X(z)I) where variables are functions of z parameterized by
another network. For both Gaussians, diagonal covariance matrices are used, I represent the identity
matrix with appropriate dimensions. The training then aims at optimizing network parameters to
maximize the ELBO, for a given set of training samples. After training, the ELBO becomes a close
approximation to the true distribution p(X).

GMVAE (Dilokthanakul et al., 2016) replaces the unit Gaussian prior on the latent space with a
Gaussian mixture model, which leads to higher representation power. GMVAE has three latent vari-
ables z,ω,c and models p(z|ω,c) = ∏

K
k=1 N(µck(ω),diag(σ2

ck
(ω)))ck . Here, K is the pre-specified

number of components, c∼Mult( 1
K ) is a one-hot vector and ω ∼N(0, I). z|ω is a Gaussian mixture

model and the parameters µck(ω),σ2
ck
(ω) are functions of ω parameterized as neural networks.

In the GMVAE formulation, the ELBO is expressed as

Eq(z|X)[log p(X |z)]−Eq(ω|X)p(c|z,ω)[KL[q(z|X)||p(z|ω,c)]]

−KL[q(ω|X)||p(ω)]−Eq(z|X)q(ω|X)[KL[p(c|z,ω)||p(c)]],
(2)

where the first term is the same reconstruction term as in Eqn. 1. When the ELBO is maximized, the
second term ensures that the encoder distribution fits the prior, the third term makes sure the poste-
rior of ω does not diverge much from the prior p(ω) and the last term enforces that the model does
not collapse into a single Gaussian but uses the mixture model. Similar to VAE, all the probability
functions are parameterized by networks and GMVAE model is trained to maximize the ELBO for
a set of training samples. As its latent space has higher modeling capacity, the GMVAE should
in theory make a better approximation to p(X) than the vanilla VAE after the training. We use 7
convolutional layers for the encoder and 7 transpose convolutional layers for the decoder. The latent
variables z and ω are implemented as 2D structures with sizes 32x42x1. We use c = 9 clusters. For
further details on the architectures we refer the reader to the Appendix A.

2.2. Restoration of the image with lesions

Here, we assume that a normative distribution p(X) is learned with an AE-based model using images
from healthy individuals. Although our final method uses GMVAE, the proposed detection process
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is generic and can be applied to other AE-based models, hence, we present it considering its gener-
ality. Denoting an image with lesion with Y ∈RN , we model the lesion as an additive component,
and Y can then be written as Y = X + D̂, with D̂ being the lesion and X the ‘healthy’ counterpart
of Y without the lesion. D̂ here is a pixel-wise lesion image, which the proposed algorithm aims to
determine.

The goal of the restoration is to find X given Y , i.e. to find the corresponding healthy image
where the healthy region in Y is unchanged and lesion region is replaced by ‘healthy’ structures.
We model the restoration as the following MAP estimation problem

argmax
X

log p(X |Y ) = argmax
X

[log p(Y |X)+ log p(X)] (3)

The first term p(Y |X) stands for a data consistency term, which we detail in Section 2.2, and the
second term is the normative prior learned from healthy images. In our proposed method, we use
the ELBO from the trained GMVAE to approximate the prior distribution as was done in (Tezcan
et al., 2018). In this case, the equation can be reformulated as

argmax
X

log p(X |Y )≈ argmax
X

[log p(Y |X)+ELBO(X)]. (4)

Since the prior model is trained on healthy images, it will assign high probabilities to such images
and low probability to images with lesions. When modified to maximize the ELBO, an image with
lesions appears more similar to a healthy image with lesions removed during the process. However,
in Eqn 4, while the ELBO tries to change the image, the data consistency term prevents big changes,
resulting in a balanced optimization problem.

We restore the anomalous images using gradient ascent. Taking the derivative of Eqn (4) w.r.t.
to input X we obtain G(x) = d

dX [log p(Y |X)+ELBO(X)]
∣∣
X=x, where the ELBO term is also differ-

entiable with respect to its input (Tezcan et al., 2018). The iterative gradient ascent equation is given
as usual as Xi+1 = Xi +αi ·G(Xi), where i is the iteration index and αi is the step size. We initialize
the input images as X0 = Y and after n steps we have the restored image X̂ = Xn. The pixel-wise
lesion map is then given as D̂ = Y − X̂ . Considering that lesion effects can be both negative and
positive, the final detection of the proposed method is given as D = |D̂|= |Y − X̂ |.

During training, the prior model learns to assign high standard deviation σz(X) to regions where
the reconstruction mean µz(X) deviates from the samples, and lesions correspond to precisely such
regions. Since the gradient incorporates the inverse of standard deviation as a factor, the magnitude
in lesions get down-scaled, causing instability issues. We avoid this by setting the standard deviation
of p(X |z) to 1/

√
2 in the whole image during restoration. This modification is heuristic and not

ideal, but it empirically works on the hold-out validation set. A summary of the restoration process
is presented in Appendix D.

Data Consistency The likelihood p(Y |X) measures the distance between X and Y and serves as
the data consistency term, which punishes deviations in X from Y .

We assume that lesions are structurally compact areas that can be modeled with piece-wise
linear functions with sparse gradients, however, we cannot tell anything about their intensity values.
To incorporate this assumption into our model, we use the TV norm (Rudin et al., 1992), where the
lesion D̂=Y−X is assumed to have a low TV norm and X̂ = argmaxX [−λ ||X−Y ||TV +ELBO(X)],
where λ > 0, is a multiplier and balances the effect of the TV norm and the ELBO. Unfortunately,
it is not trivial to set λ in the unsupervised scenario.

Below, we present a heuristic method for determining λ based on the training data.
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2.3. Determining λ for the data consistency term

In the unsupervised setting we have no access to images with lesions, therefore, we cannot rely on
any such images to determine λ . Instead, we choose the λ value based on the changes it causes
on the training images. As all the training images are acquired from healthy individuals with no
lesions, ideally the restoration framework should yield no change on them. However, due to the
approximate nature of the normative distribution modeled with networks and possible issues with
optimization, slight changes will occur. For a wide range of λ values, we compute the average
change incurred on the training set and use the `1 distance to quantify the average change and
calculate ε(λ ) = 1

M ∑{Ys} |Ys− X̂λ
s |, which is consistent with the metric used to detect outliers.

Here M is defined as the number of subjects in {Ys}. In Figure 2(b), we plot ε(λ ) vs λ computed
over a set of 52 healthy subjects, for which details are given in Section 3. We observe that ε(λ ) has
a minimum value at a certain λ . We choose the λ value that yields the minimum change in the set
of training images. Note that the curve does not decrease as λ increases because (i) λ weights the
TV norm, which is different from ε(λ ), and (ii) optimization is possibly non-convex and certain λ

might yield more faithful restorations, which is also important for lesion detection.

2.4. Calculating the threshold for masking

With the restored image X̂ and the input image Y , the residual image D is calculated as D = |X̂−Y |.
To create a binary detection map S from D, we need to identify a threshold Tls, where pixels with D
values larger than Tls will be labeled as lesion and others as healthy.

As we do not have ground truth detections in the unsupervised scenario, we use the approach
proposed in (Konukoglu et al., 2018) for determining the threshold.

We assume all training images are lesion free and therefore any detection with the proposed
method are false positives. Based on this, we set a limit for the False Positive Rate (FPR) lFPR in
the training set and determine the minimum threshold on D that satisfies the limit.

We obtain the threshold by the golden section search algorithm (Kiefer, 1953) to convert the
residual maps D to binary detection maps S and calculate the Dice coefficient (DSC) for each test
subject.

To provide a baseline for the DSC values, we calculate DSC AUC using a threshold obtained
by ROC curves. Specifically, We use ROC curves to select the threshold that leads to the maximum
value of T PR−FPR, and calculate DSC for each subject based on this threshold. This yields an
optimistic score and not used to assess the model.

3. Experimental Settings

3.1. Datasets & Preprocessing

The current implementation of our method applies to 2D slices. Specifically, we used T2-weighted
MR images from the Cambridge Centre for Ageing and Neuroscience dataset (CamCANT2) (Taylor
et al., 2017) to train our network. It contains 652 subjects with lesion-free brain slices where 600
subjects were randomly selected as the training data and 52 as test data. We performed lesion
detection on T2 weighted images from the Multimodal Brain Tumor Image Segmentation (BRATS)
(Menze et al., 2015) Challenge 2017 dataset.

For both datasets, we first normalized image intensities by computing I−min(I)
max(I)−min(I) for each

subject, where I are pixel intensities. We trained and tested our method on transversal slices. Since
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CamCANT2 and BRATS datasets have different intensity characteristics, we performed histogram
matching on BRATS where we randomly chose a subject from CamCANT2 dataset and matched
the histogram of each BRATS subject to it. Lastly, we excluded slices with only background and
cropped excessive background of all slices for both training and lesion detection to a size of 158×
198 to accelerate computation.

3.2. Implementation Details

General Settings: We trained a GMVAE and ran the restoration for 500 steps in all experiments.
Details for network architectures and model training are presented in Appendix B. We experimen-
tally explored the effect of different number of restoration steps and the number of clusters. We
used the optimal cluster number for detection c = 9.

Selecting the optimal λ and threshold values: We used the 52 subjects from the CamCANT2
test dataset to determine λ value and the threshold as in section 2.3 and 2.4.

The λ values and the thresholds were then used for the evaluation. In order to understand
the sensitivity of the proposed method to different λ values, we additionally ran restoration with
different values and present the results.

4. Results

4.1. Overall lesion detection result

Figure 1: Segmentation by GMVAE(TV) at DSC5. Top to bottom: images with lesions, restored
images, residual images, predicted segmentations, groundtruth segmentations.
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Visual results in Figure 1 show seven randomly selected detection results at DSC5. Illustration
for DSC1, DSC10 and DSC AUC are provided in Appendix E. The proposed method is able to
detect lesions, especially when the lesions are of a relatively large size or appear in high intensity
such as in columns A to D. On the other hand, the method has difficulty detecting smaller lesions as
shown in columns E to G.

Table 1 presents the evaluated metrics for baselines and our method. GMVAE performs the best
in terms of DSC AUC, AUC, DSC5 and DSC10 among all the methods. Compared to AnoGAN (Schlegl
et al., 2017), VAE-256, VAE-128 and AAE-128 (Chen et al., 2018), we achieve respectively 28%,
24%, 20% and 19% increase in AUC.

Table 1: Summarized AUC and DSC for GMVAE(TV) and baseline methods. FPR and FNR are
calculated from Tls at DSC AUC. DSC1, DSC5, DSC10 are calculated from Tlss at lFPR =
0.01,0.05,0.10. For GMVAE(TV), λ = 1.8. na:not available.

Methods DSC AUC AUC FPR FNR DSC1 DSC5 DSC10
VAE(TV) (ours) 0.34±0.18 0.80 0.11 0.40 0.34±0.20 0.36±0.27 0.40±0.24

GMVAE(TV) (ours) 0.37±0.18 0.83 0.12 0.34 0.22±0.21 0.46±0.23 0.43±0.20
VAE-256 na 0.67 0.26 0.43 na na na
VAE-128 0.22±0.14 0.69 0.21 0.46 0.09±0.06 0.19±0.15 0.26±0.17
AAE-128 0.23±0.13 0.70 0.25 0.43 0.03±0.03 0.18±0.14 0.23±0.15
AnoGAN 0.19±0.10 0.65 0.33 0.37 0.02±0.02 0.10±0.06 0.19±0.13

We also plot the Receiver operating characteristic (ROC) curves in Figure 2(c) using the whole
dataset. The ROC curves are consistent with the AUC values shown in Table 1.

4.2. Sensitivity to λ values

In Figure 2(a), we show the AUC values for the proposed GMVAE(TV) within the range of [0.6,
4.0]. The performance of the method appears to be relatively stable, which is desirable due to the
difficulty of parameter selection in the unsupervised setting.

In Figure 2(b) we show the change of ε(λ ) using different λ s for GMVAE(TV) restoration. The
lowest ε(λ ) value is obtained with λ = 1.8.

4.3. Sensitivity to number of clusters and restoration steps:

We present results for varying number of clusters, shown in Table 2. The results suggest that, al-
though the performance may change, the method works for all number of clusters we experimented
with. We also show results for AUC values vs number of restoration steps used in Appendix C for
the whole dataset, which indicate convergence at 500 steps.

5. Conclusion

In this paper, we proposed an unsupervised lesion detection method based on image restoration
with a normative prior learned via AE-based neural network models, specifically GMVAE. The
result showed that our method was able to detect brain tumors without any supervision, achieving
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Figure 2: (2(a)) AUC vs. λ . The AUC values are calculated using all subjects in BRATS dataset.
(2(b)) ε(λ ) vs. λ . (2(c)) ROC curves on BRATS dataset.

Table 2: AUC/DSC values for varying number of clusters. Mean ± std are shown for DSC. FPR
and FNR are calculated from Tls at DSC AUC. DSC1, DSC5, DSC10 are calculated from
Tlss at lFPR = 0.01,0.05,0.1

Cluster Size DSC AUC AUC FPR FNR DSC1 DSC5 DSC10
c = 3 0.27±0.16 0.78 0.20 0.35 0.04±0.07 0.26±0.19 0.32±0.19
c = 6 0.30±0.18 0.73 0.11 0.49 0.06±0.13 0.35±0.21 0.28±0.17
c = 9 0.37±0.18 0.83 0.12 0.34 0.22±0.21 0.46±0.23 0.43±0.20
c = 12 0.30±0.17 0.77 0.14 0.43 0.08±0.13 0.37±0.22 0.33±0.18

high AUCs and DSCs, improving on the state-of-the-art methods. Further experiments revealed that
the model is robust to parameter selection to a reasonable extent. This article presents the technical
details and further research on applying the methodology on different lesions will prove its value as
a general purpose unsupervised lesion detection method.
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Appendix A. Network Architecture and Training Details

We build the GMVAE as a fully convolutional network and the latent space as a 2D structure. The
network is shown in Table 3. The encoder consist of 7 convolutional layers and the decoder consist
of 5 transposed convolutional layers and 2 convolutional layers.

We set the dimension of latent variables z = 32× 42× 1, the dimension of the prior ω = 32×
42×1 and the number of mixtures c = 9.

Table 3: The encoder encodes q(z|X) and q(ω|X). They share layers except the output where
four 1× 1 convolution layers are used. The layers are connected from top to bottom.
{∗}n means the layer with the given settings are used n times. Conv(*) is the convolu-
tional layer. µ∗ and σ∗ are means and standard deviations of output variables z,ω and X .
ReLU means rectified linear unit activation function. The decoder decodes p(X |z). Up-
conv(*) is the transposed convolutional layer. tf.image.resize images is a built in function
of Tensorflow for resizing images, where we use nearest neighbor method. Network
p(z|ω,c) is to generate distributions of z given the prior ω and mixture category c

Structure Input Layers Output
Encoder X {Conv(3×3×64,stride = 2), ReLU}1 µz and σz

q(z|X) 158×198×1 {Conv(3×3×64,stride = 1), ReLU}2 32×42×1
and {Conv(3×3×64,stride = 2), ReLU}1 µω and σω

q(ω|X) {Conv(3×3×64,stride = 1), ReLU}2 32×42×1
{Conv(1×1×1,stride = 1)}1

Decoder z {UpConv(1×1×64,stride = 1), ReLU}1 µX

p(X |z) 32×42×1 {UpConv(3×3×64,stride = 1), ReLU}2 158×198×1
tf.image.resize images, Upsampling×2 σX

{Conv(3×3×64,stride = 1), ReLU}1 158×198×1
{UpConv(3×3×64,stride = 1), ReLU}2

tf.image.resize images, Upsampling×2
{Conv(3×3×1,stride = 1)}1

Network ω {Conv(1×1×64,stride = 1), ReLU}1 µz|ω,c
p(z|ω,c) 32×42×1 {Conv(1×1×1,stride = 1)}1 and

σz|ω,c
32×42×1

Appendix B. Training and Restoration details

To train the VAE and GMVAE, we use the Adam optimizer with parameters β1=0.9, β2=0.999, ε =
1×10−8, and a learning rate of 5×10−5. For restoration, in both evaluation and while determining
the λ values, we run the gradient ascent for n = 500 iterations with a learning rate of α = 1×10−3.

We use Tensorflow to implement the network as well as the restoration procedure. The im-
plementation code can be found at https://github.com/yousuhang/Unsupervised-Lesion-Detection-
via-Image-Restoration-with-a-Normative-Prior
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Appendix C. AUC values vs. restoration step

Here we show the convergence of performance in terms of AUC for the whole dataset with increas-
ing number of restoration steps.
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Figure 3: AUC vs Restoration Step plot
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Appendix D. Lesion Detection Algorithm

Here we present a summary of the proposed algorithm for lesion detection.

Algorithm 1: Unsupervised Lesion Detection
Input: Y ′: original image with lesion; ELBO: a GMVAE trained only on healthy images; X : a rep-

resentative image from the training set for histogram matching ; Tls: threshold for masking;
αi: step size for each iteration

Output: S: Predicted Detection
Procedure DETECT(Y ′, ELBO, X, Tls, αi)

Y ← HistEq(Y ′,X) // fit histogram of Y ′ to histogram of X.
X0← Y // initialize Xi with the equalized test image.
for i = 0 to n−1 do // restoration iterations

G(Xi)← d
dX [log p(Y |X)+ELBO(X)]

∣∣
X=Xi

Xi+1← Xi +αi ·G(Xi) // update image using the gradient

end
X̂ ← Xn // restored image
D← |Y − X̂ | // calculate the residual image
S← threshold(D,Tls) // threshold residual images to obtain lesion
labels

return S // Resulting segmentation map
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Appendix E. Other Visual Results

Here we show other segmentation examples for thresholds chosen at DSC1 (Figure 4), DSC10
(Figure 5) and DSC AUC (Figure 6). The input images are the same as in Figure 1.

Figure 4: BRATS segmentation results by GMVAE(TV) for DSC1. Row 1: images with lesions;
row 2∼4: restored images, residual images and segmentations; row 5: ground truth seg-
mentations.
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Figure 5: BRATS segmentation results by GMVAE(TV) for DSC10. Row 1: images with lesions;
row 2∼4: restored images, residual images and segmentations; row 5: ground truth seg-
mentations.
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Figure 6: BRATS segmentation results by GMVAE(TV) for DSC AUC. Row 1: images with le-
sions; row 2∼4: restored images, residual images and segmentations; row 5: ground
truth segmentations.
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