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Abstract

Maximum Likelihood Estimators (MLE) has many good properties. For example,
the asymptotic variance of MLE solution attains equality of the asymptotic Cramér-
Rao lower bound (efficiency bound), which is the minimum possible variance for
an unbiased estimator. However, obtaining such MLE solution requires calculating
the likelihood function which may not be tractable due to the normalization term of
the density model. In this paper, we derive a Discriminative Likelihood Estimator
(DLE) from the Kullback-Leibler divergence minimization criterion implemented
via density ratio estimation and a Stein operator. We study the problem of model
inference using DLE. We prove its consistency and show that the asymptotic
variance of its solution can attain the equality of the efficiency bound under mild
regularity conditions. We also propose a dual formulation of DLE which can be
easily optimized. Numerical studies validate our asymptotic theorems and we give
an example where DLE successfully estimates an intractable model constructed
using a pre-trained deep neural network.

1 Introduction

Maximum Likelihood Estimation (MLE) has been a classic choice of density parameter estimator. It
can be derived from the Kullback-Leibler (KL) divergence minimization criterion and the resulting
algorithm simply maximizes the likelihood function (log-density function) over a set of observations.
The solution of MLE has many attractive asymptotic properties: the asymptotic variance of MLE
solutions reach an asymptotic lower bound of all unbiased estimators [5, 24].

However, learning via MLE requires evaluating the normalization term of the density function; it
may be challenging to apply MLE to learn a complex model that has a computationally intractable
normalization term. A partial solution to this problem is approximating the normalization term or
the gradient of the likelihood function numerically. Many methods along this line of research have
been actively studied: importance-sampling MLE [25], contrastive divergence [12] and more recently
amortized MLE [33]. While the computation of the normalization term is mitigated, these sampling-
based approximate methods come at the expense of extra computational burden and estimation
errors.

The issue of intractable normalization terms has led to the develoment of other approaches other
than the KL divergence minimization. For example, Score Matching (SM) [13] minimizes the Fisher
divergence [26] between the data distribution and a model distribution which is specified by the
gradient (with respect to the input variable) of its log density function. Its computation does not
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require the evaluation of the normalization term, thus SM does not suffer from the intractability
issue. Extensions of SM has been used for infinite dimensional exponential family models [28],
non-negative models [14, 35] and high dimensional graphical models fitting [17].

Other than the Fisher divergence, a kernel-based divergence measure known as Kernel Stein Discrep-
ancy (KSD) [4, 19] has been proposed as a test statistic for goodness-of-fit testing to measure the
difference between a data and a model distribution, without the hassle of evaluating the normalization
term. It reformulates the kernel Maximum Mean Discrepancy (MMD) [9] with a Stein operator
[29, 8, 23] which is also defined using the gradient of the log density function. For the same reason
as in SM, the KSD can be estimated when applied to a density model with an intractable normalizer.
The last few years have seen many applications of KSD such as variational inference [18], sampling
[23, 3], and score function estimation [16, 27] among others. KSD minimization is a natural candidate
criterion for fitting intractable models [2]. However, the divergence measure defined by the KSD
is directly characterized by the kernel used. Unlike in the case of goodness-of-fit testing where the
kernel may be chosen by maximizing the test power [15], to date, there is no clear objective for
choosing the right kernel in the case of model fitting.

By contrast, KL divergence has been a classic discrepancy measure for model fitting. The question
that we address is: can we construct a generic model inference method by minimizing the KL
divergence without the knowledge of the normalization term? In this paper, we present a novel
unnormalized model inference method, Discriminative Likelihood Estimation (DLE), by following
the KL divergence minimization criterion. The algorithm uses a technique called Density Ratio
Estimation [31] which is conventionally used to estimate the ratio between two density functions from
two sets of samples. We adapt this method to estimate the ratio between a data and an unnormalized
density model with the help of a Stein operator. We then use the estimated ratio to construct a
surrogate to KL divergence which is later minimized to fit the parameters of an unnormalized density
function. The resulting algorithm is a min max problem, which we show can be conveniently
converted into a min-min problem using Lagrangian duality. No extra sampling steps are required.

We further prove the consistency and asymptotic properties of DLE under mild conditions. One
of our major contributions is that we prove the proposed estimator can also attain the asymptotic
Cramér-Rao bound. Numerical experiments validate our theories and we show DLE indeed performs
well under realistic settings.

2 Background

2.1 Problem: Intractable Model Inference via KL Divergence Minimization

Consider the problem of estimating the parameter θ of a probability density model p(x;θ) from a
set of i.i.d. samples: Xq := {x(i)

q }nq

i=1
i.i.d.∼ Q where Q is a probability distribution whose density

function is q(x). One idea is minimizing the sample approximated KL divergence from pθ to q:

min
θ

KL [q|pθ] = min
θ

Eq
[
log

q(x)

p(x;θ)

]
= C −max

θ
Eq [log p(x;θ)]

≈ C −max
θ

1

nq

nq∑
i=1

log p(x(i)
q ;θ),

where C is a constant that does not depend on θ. The last line uses Xq to approximate the expectation
over q(x). This technique is known as Maximum Likelihood Estimation (MLE).

Despite many advantages, MLE is unfit for intractable model inference. Consider for instance a
density model p(x;θ) := p̄(x;θ)

z(θ) , where p̄(x;θ) is a positive multilayer neural network parametrized
by θ, Z(θ) =

∫
p̄(x;θ)dx is the normalization term which guarantees that p(x;θ) integrates to 1

over its domain. In this example, Z(θ) does not have a computationally tractable form; therefore,
MLE cannot be used without approximating the likelihood function or its gradient using numerical
methods such as Markov chain Monte Carlo (MCMC).

However, there is an alternative approach to minimizing the KL divergence: KL [q|pθ] is an expecta-
tion of the log-ratio log q(x)

p(x;θ) with respect to the data distribution q(x). If we have access to q(x)
p(x;θ) ,

we can approximate this KL by taking the average of the density ratio function over samples Xq , and
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the density model parameter θ can be subsequently estimated by minimizing this approximation to
the KL divergence.

2.2 Two Sample Density Ratio Estimation

Traditionally, Density Ratio Estimation (DRE) [30, 31] refers to estimating the ratio of two unknown
densities from their samples. Given two sets of i.i.d. samples drawn separately from distributions
Q and P : Xq := {x(i)

q }nq

i=1 ∼ Q,Xp := {x(i)
p }np

i=1 ∼ P,xq,xp ∈ Rd, where distribution Q and P
have density functions q(x) and p(x) respectively. We hope to estimate the ratio q(x)

p(x) .

We can model the density ratio using a function r(x; δ) parameterized by δ. To obtain the parameter
δ, we minimize the KL divergence KL[q|qδ] where q(x; δ) := r(x; δ)p(x):

min
δ

KL[q|qδ] s.t.
∫
r(x; δ)p(x)dx = 1. (1)

KL[q|qδ] comprises three terms in which only one term is dependent on the parameter δ:

KL[q|qδ] = Eq[log q(x)]− Eq[log r(x; δ)]− Eq[log p(x)] ≈ − 1
nq

∑nq

i=1 log r(x
(i)
q ; δ) + C, (2)

The last step uses Xq to approximate the expectation over q(x). C is a constant irrelevant to δ. We
can also approximate the equality constraint in (1) using Xp:∫

r(x; δ)p(x)dx ≈ 1
np

∑np

j=1 r(x
(j)
p ; δ). (3)

Combining (2) and (3), we get a sample version of (1):

δ̂ := argmin
δ
− 1

nq

∑nq

i=1 log r(x
(i)
q ; δ) + C s.t. 1

np

∑np

j=1 r(x
(j)
p ; δ) = 1. (4)

The above optimization is called Kullback Leibler Importance Estimation Procedure (KLIEP) [30].
Unfortunately, it cannot be directly used to estimate our ratio q(x)

p(x;θ) since we only have samples
from q(x) but not from p(x;θ). Consequently the equality constraint

∫
r(x; δ)p(x;θ)dx = 1 can

no longer be approximated using samples.

A natural remedy to this problem is to draw samples from p(x;θ) using sampling techniques, such as
MCMC which, in general, can be costly when p(x;θ) is complex. Correlation among drawn samples
from an MCMC scheme further complicates estimation of the ratio. More importantly, regardless
of the feasibility of sampling from p(x;θ), the availability of an explicit (possibly unnormalized)
density p(x;θ) is much more valuable than just samples, especially in a high dimensional space
where samples rarely capture the fine-grained structural information present in the density model
p(x;θ).

In this work, we propose a new procedure – Stein Density Ratio Estimation – which can directly
use the (unnormalized) density p, as it is, without sampling from it. Moreover, the new procedure
(described in Section 3.1) yields a density ratio model rθ(x; δ) for the ratio function q(x)

p(x;θ) that
automatically satisfies the aforementioned equality constraint for all θ.

3 Stein Density Ratio Estimation

Let us consider a linear-in-parameter density ratio model r(x; δ) := δ>f(x), where f(x) is a
“feature function” that transforms a data point x into a more powerful representation. To better model
q(x)
p(x;θ) , we define a family of feature functions called Stein features.

3.1 Stein Features

Suppose we have a feature function f(x) : Rd → Rb and a density model p(x;θ) : Rd → R. A Stein
feature Tθf(x) ∈ Rb with respect to p(x;θ) is Tθf(x) := [Tθf1(x), . . . , Tθfi(x), . . . , Tθfb(x)]>,
where Tθ is a Stein operator [29, 8, 4, 23] and Tθfi(x) ∈ R is defined as

Tθfi(x) := 〈∇x log p(x;θ),∇xfi(x)〉+ trace(∇2
xfi(x)),

3



where fi is the i-th output of function f , ∇xfi(x) is the gradient of fi(x) and ∇2
xfi(x) is the

Hessian of fi(x). Note that computing Tθf(x) does not require evaluating the normalization term
Z(θ) as

∇x log p(x;θ) = ∇x log p̄(x;θ)−∇x logZ(θ), where∇x logZ(θ) = 0.

Example 1. Let p(x;θ) be in exponential family with sufficient statistic ψ(x), then

Tθfi(x) = θ>Jxψ(x)∇xfi(x) + trace[∇2
xfi(x)],

where Jxψ(x) ∈ Rdim(θ)×d is the Jacobian of ψ(x) and dim(θ) is the dimension of θ .

One more example can be found at Appendix, Section A.1. A slightly different Stein opera-
tor was introduced in [4, 23] where T ′θf(x) ∈ R for f(x) ∈ Rd is defined as T ′θf(x) :=∑d
i=1 [∂xi

log p(x;θ)] fi(x)+∂xi
fi(x),where ∂xi

f(x) is the partial derivative of f(x) with respect
to xi. We can see the relationship between T and T ′: Tθfi(x) = T ′θ∇xfi(x). Next we show an
important property of Stein features.

Proposition 1 (Stein’s Identity). Suppose p(x;θ) > 0,

∀i,j lim
|xj |→∞

p(x1, · · · , xj , · · · , xd;θ)∂xjfi(x1, · · · , xj , · · · , xd) = 0,

p(x;θ) is continously differentiable and fi is twice continuously differentiable for all θ and i. Then
Epθ [Tθf(x)] = 0 for all θ.

We give a proof in Appendix Section B.1. Similar identities were given in previous literatures such
as Lemma 2.2 in [19] or Lemma 5.1 in [4]. Utilizing this property, we can construct a density ratio
model which bypasses the “intractable equality constraint” issue when estimating q(x)

p(x;θ) as shown in
the next section.

3.2 Stein Density Ratio Modeling and Estimation (SDRE)

Define a linear-in-parameter density ratio model: rθ(x; δ) := δ>Tθf(x)+1 by using a Stein feature
function. We can see that Epθ [rθ(x; δ)] = Epθ [δ>Tθf(x) + 1] = δ>Epθ [Tθf(x)] + 1 = 1 where
the last equality is ensured by Proposition 1 for all δ and θ if the specified regularity conditions are
met. This equality means the constraint in (1) is automatically satisfied with this density ratio model.
Now we can solve (4) without its equality constraint.

δ̂ := argmin
δ∈Rb

− 1

nq

nq∑
i=1

log rθ(x(i)
q ; δ) + C = argmax

δ∈Rb

1

nq

nq∑
i=1

log
[
δ>Tθf(x(i)

q ) + 1
]
. (5)

It can be seen that (5) is an unconstrained concave maximization problem. Note for all xq ∈ Xq,
rθ(xq; δ̂) must be strictly positive thanks to the log-barrier (see e.g., Section 17.2 in [22]) in our
objective function. However, it is not possible to guarantee that for all x ∈ Rd, rθ(x; δ̂) is positive.
This is not a problem in this paper, as the density ratio function is only used for approximating the
KL divergence, and we will not evaluate rθ(x; δ̂) at a data point x that is outside of Xq. Note, the
unnormalized density model p̄(x;θ), by definition, should be non-negative everywhere for all θ.

We refer to the objective (5) as Stein Density Ratio Estimation (SDRE). One may notice that
1
nq

∑nq

i=1 log rθ(x
(i)
q ; δ̂) evaluated at δ̂ is exactly the sample average of the estimated ratio over Xq

which allows us to approximate the KL divergence from p(x;θ) to q(x).

4 Intractable Model Inference via Discriminative Likelihood Estimation

Let `(δ̂,θ) := 1
nq

∑nq

i=1 log rθ(x
(i)
q ; δ̂). We will use `(δ̂,θ) as a replacement of KL [q(x)|p(x;θ)].

The rationale of minimizing KL divergence from p(x;θ) to q(x) leads to:

min
θ
`(δ̂,θ) or equivalently min

θ
max
δ

`(δ,θ). (6)
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The equivalence is due to the fact that ` evaluated at the optimal ratio parameter δ̂ is also the maximum
of the DRE objective function when being optimized w.r.t. δ. The outer problem minimizes ` with
respect to the density parameter θ. We call this estimator Discriminative Likelihood Estimation
(DLE) as the parameter of the density model p(x;θ) is learned via minimizing a discriminator1,
which is the likelihood ratio function `(δ̂,θ) measuring the differences between q(x) and p(x;θ).

4.1 Consistency with Correct Model

For brevity, we state all theorems assuming all regularity conditions in Proposition 1 are met.

Notations: H is∇2
(δ,θ)`(δ,θ), the full Hessian of `(δ,θ). Hδ,θ is∇δ∇θ`(δ,θ), submatrix of the

Hessian matrix whose rows and columns indexed by δ,θ respectively. s ∈ Rdim(θ) is∇θ log p(x,θ)
evaluated at θ∗, score function of p(x;θ). λ(·) is the eigenvalue operator. λmin(·) or λmax(·) is the
minimum or maximum eigenvalue and ‖ · ‖ is the operator norm.

We study the consistency of the following estimator under a correct model setting.

(δ̂, θ̂) := arg min
θ∈Θ

max
δ∈∆nq

`(δ,θ), (7)

where Θ and ∆nq
are compact parameter spaces for θ and δ respectively. The compactness condition

is among a set of conditions commonly used in classic consistency proofs (see e.g., Wald’s Consistency
Proof, 5.2.1,[32]). It is possible to derive weaker conditions given specific choices of f or p(x;θ).
However, in the current manuscript, we only focus on more generic settings and conditions that would
give rise to estimation consistency and useful asymptotic theories. We assume they are properly
chosen so that (θ̂, δ̂) is the saddle point of (7).

First, we assume our density model p(x;θ) is correctly specified:
Assumption 1. There exists a unique pair of parameter (θ∗, δ∗),θ∗ ∈ Θ, δ∗ ∈ ∆nq , such that
p(x;θ∗) ≡ q(x) and rθ∗(x; δ∗) = 1.

Given how rθ(x; δ) is constructed in Section 3.2, the above assumption implies δ∗ must be 0.
Assumption 2. There exist constants Λmin > 0,Λ′min > 0 and Λmax > 0 so that ∀θ ∈ Θ, δ ∈ ∆nq

λmin {−Hδ,δ} ≥ Λ′min,Λmax ≥
∥∥∥Hθ,δH

−1
δ,δ

∥∥∥ , λmin

{
−Hθ,δH

−1
δ,δHδ,θ

}
≥ Λmin > 2 ‖Hθ,θ‖ .

The lower-boundedness of λmin {−Hδ,δ} implies the strict concavity of `(δ,θ) with respect to
δ (`(δ,θ) is already concave by construction, see (5)): For all θ ∈ Θ, there exists a unique δ̂(θ)
that maximizes the likelihood ratio, which means the likelihood ratio function should always have
sufficient discriminative power to precisely pinpoint the differences between our data and the current
model θ. It also ensures that δ can “teach” the model parameter θ well by assuming the “interaction”
between δ and θ in our estimator,Hθ,δ , is well-behaved.

Now we analyze Assumption 2 on a special case:

Proposition 2. Let ∆nq
:=

{
δ

∣∣∣∣ 1
Cratio

≤ rθ(x; δ) ≤ Cratio, ‖δ‖2 ≤ T/σ(nq),∀θ ∈ Θ,∀x ∈ Xq,

}
where T > 0, Cratio > 1 are constants and σ(·) is a monotone-increasing function. p(x;θ) is in
exponential family with sufficient statistic ψ(x) and Stein feature is chosen as Tθψ(x). Suppose
there exist constants C2, C3, C4, C5,Λ

′′
max,Λ

′′
min > 0, C2 ≥ 1

nq

∑nq

i=1 ‖Jxψ(x
(i)
q )‖4,

λmin

{
1

nq

nq∑
i=1

Jxψ(x(i)
q )Jxψ(x(i)

q )>

}
≥ C3,

1

nq

nq∑
i=1

‖Jxψ(x(i)
q )Jxψ(x(i)

q )
>
‖ ≤ C4,

1

nq

nq∑
i=1

‖Jxψ(x(i)
q )Jxψ(x(i)

q )
>
‖ · ‖Tθψ(x(i)

q )‖ ≤ C5

and Λ′′max ≥ λ
(

1
nq

∑nq

i=1 Tθψ(x
(i)
q )Tθψ(x

(i)
q )>

)
≥ Λ′′min,∀θ ∈ Θ with high probability. There

exists a constant N > 1, when nq ≥ N , Assumption 2 holds with high probability.
1The word “discriminator” is borrowed from GAN [7]. Indeed, DLE and GAN bears many resemblances.
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The proof can be found in Appendix, Section B.3. Note in practice the domain constraint of ∆nq in
this proposition can be easily enforced via convex constraints or penalty terms. Analysis on a few
other examples can be found in Appendix, Section A.2.

Proposition 2 gives us some hints on how the feature function f of Stein feature can be chosen. In the
case of exponential family, the choice f = φ guarantees Assumption 2 to hold with high probability
when nq increases.
Assumption 3 (Concentration of Stein features). The difference between the sample average of
the Stein feature Tθ∗f(x) and its expectation over q converges to zero in `2 norm in probability.∥∥∥ 1
nq

∑nq

i=1 Tθ∗f(x
(i)
q )− Eq [Tθ∗f(x)]

∥∥∥
2

P→ 0.

Note, if Assumption 1 holds at the same time, Proposition 1 indicates Eq [Tθ∗f(x)] ≡ 0. This
assumption holds due to the (strong) law of large numbers given that the Eq [Tθ∗f(x)] exists.

Theorem 1 (Consistency). Suppose Assumption 1, 2 and 3 holds, (δ̂, θ̂)
P→ (0,θ∗).

See Section B.4 in Appendix for the proof. This theorem states that as nq increases, all saddle points
of (7), converge to the vicinity of true parameters. All the following theorems rely on the result of
Theorem 1.

4.2 Asymptotic Variance of θ̂ and Fisher Efficiency of DLE

In this section we state one of our main contributions: DLE can attain the efficiency bound, i.e.,
asymptotic Cramér-Rao bound when f(x) is appropriately chosen. First, we show our estimator
θ̂ has a simple asymptotic distribution which allows us to perform model inference. To state the
theorem, we need an extra assumption on the HessianH:

Assumption 4 (Uniform Convergence onH). supδ∈∆nq ,θ∈Θ |Hi,j − Eq [Hi,j ]|
P→ 0,∀i,j .

This assumption states the second order derivatives (which is an average over samples from Xq)
converges uniformly to its population mean, as nq → ∞. It helps us control the residual in the
second order Taylor expansion in our proof. This assumption may be weakened given specific choices
of f and p(x;θ) but we focus on establishing the asymptotic results in generic settings, so this
condition is only listed as an assumption.

Theorem 2 (Asymptotic Normality of θ̂). Suppose Assumption 1, 2, 3 and 4 holds,

√
nq

(
θ∗ − θ̂

)
 N [0,V ] ,V =

(
−Eq

[
H∗θ,δ

]
Eq
[
H∗δ,δ

]−1Eq
[
H∗δ,θ

])−1

, (8)

whereH∗ isH evaluated at (δ∗,θ∗).

See Section B.5 in Appendix for the proof. In practice, we do not know Eq [H∗], so we may use Ĥ ,
the Hessian of `(δ,θ) evaluated at (δ̂, θ̂) as an approximation to Eq [H∗].

Although MLE is also asymptotically normal, important quantities such as Fisher Information Matrix
may not be efficiently computed on intractable models. In comparison, Theorem 2 enables us to
compute parameter confidence interval for DLE even on intractable pθ.

Now we consider the asymptotic efficiency of the DLE with respect to specific choices of Stein
features. Let V f be the asymptotic variance (8) using a Stein feature with a specific choice of f .

Lemma 3. Suppose that Assumptions 1, 2, 3 and 4 hold and Eq[Tθ∗f(x)Tθ∗f(x)>] is invertible.
Moreover, suppose that the integration and the derivative of ∂θi

∫
p(x;θ)Tθf(x)dx is exchangeable

for all i. Vf =
(
Eq[sTθ∗f(x)>]Eq[Tθ∗f(x)Tθ∗f(x)>]−1Eq[Tθ∗f(x)s>]

)−1
.

The proof is given in Section B.6 in the Appendix. Lemma 3 expresses asymptotic variance using
score function and Stein feature and is used to prove that the variance monotonically decreases as the
vector space spanned by the Stein feature vectors becomes larger.
Corollary 4 (Monotonocity of Asymptotic Variance). Define the inner product as Eq[fg] for func-
tions f and g. Let Tθ∗f(x) = [t1, . . . , tb] and Tθ∗ f̄(x) = [t̄1, . . . , t̄b̄] be two Stein feature vec-
tors. Assume that span{t1, . . . , tb} ⊂ span{t̄1, . . . , t̄b̄}, where span{· · · } denotes the linear space
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spanned by the specified elements. Then, the inequality Vf̄ � Vf holds in the sense of the positive
definiteness.

Proof. Let us define Pfs as the orthogonal projection of s onto span{t1, . . . , tb}. A simple calcula-
tion yields Pfs = Eq[sTθ∗f(x)>]Eq[Tθ∗f(x)Tθ∗f(x)>]−1Tθ∗f(x), and thus, Lemma 3 leads to
V −1
f = Eq[Pfs(Pfs)>]. From the property of the orthogonal projection (see e.g., Theorem 2.23 in

[34]), we have Eq[Pf̄s(Pf̄s)>] � Eq[Pfs(Pfs)>]. Therefore, we obtain Vf̄ � Vf .

For Qfs = s − Pfs, we have Eq[ss>] = Eq[Pfs(Pfs)>] + Eq[Qfs(Qfs)>] = V −1
f +

Eq[Qfs(Qfs)>]. Thus, we see that the asymptotic variance converges to the inverse of the Fisher
information, Eq[ss>]−1, as Pfs gets close to s. In particular, when the linear space span{t1, . . . , tb}
includes s, Qfs vanishes and consequently the DLE with f(x) is asymptotically efficient.
Example 2. Let p(x;θ) be the model of the d-dimensional multivariate Gaussian distribution
N (θ, Iden ·σ2), where Iden is the identity matrix. Here the variance σ2 is assumed to be known. The
score function is sj(x;θ) = −(xj − θj)/σ2, and the Stein feature vector defined from f(x) = x is
(Tθx)j = −(xj−θj)/σ2 for j = 1, . . . , d. Clearly, the score function is included in span{t1, . . . , td}.
Hence, the DLE with f achieves the efficiency bound of the parameter estimation.

One more example can be found in Appendix, Section A.3. In fact, Corollary 3 suggests that as
long as we can represent the score function s using Stein feature Tθf up to a linear transformation,
DLE can achieve efficiency bound. However, since f is coupled with ∇x log p(x;θ) in Tθf , it is
not always easy to reverse engineer an f from s. Nonetheless, our numerical experiments show that
using simple functions such polynomials as f yields good performance.

4.3 Model Selection of DLE

As our objective (6) tries to minimize the discrepancy between our model p(x;θ) and the data
distribution, it is tempting to compare models using the objective function evaluated at (δ̂, θ̂), i.e.,
`(δ̂, θ̂). However, the more sophisticated p(x;θ) becomes, the more likely it picks up spurious
patterns of our dataset. Similarly, the more powerful the Stein features are, the more likely the
discriminator is overly critical to the density model on this dataset. Thus a better model selection
criterion would be comparing Eq

[
`(δ̂, θ̂)

]
which eliminates the potential of overfitting a specific

dataset. Unfortunately, this expectation cannot be computed without the knowledge on q(x). We
propose to approximate this quantity using a penalized likelihood:
Theorem 5. Suppose Assumption 1, 2, 3 and 4 holds. Eq

[
H∗δ,δ

]
and Eq

[
H∗δ,θ

]
are full-rank and

dim(θ) ≤ b, then nqEq
[
`(δ̂, θ̂)

]
= minθ maxδ nq`(δ,θ)− b+ dim(θ) + op(1).

See Section B.7 in Appendix for the proof. This theorem is closely related to a classic result called
Akaike Information Criterion (AIC) [1]. Both AIC and Theorem 5 similarly penalize the degree of
freedom of the density model dim(θ), while our theorem also penalizes the number of ratio parameter
dim(δ) = b due to the fact that our ratio function is also fitted using samples.

One can also show `(δ̂, θ̂) follows a χ2 distribution. See Section B.8 in Appendix for details.

Theorem 5 provides an information-criterion based model selection method. SupposeM is a set of dif-
ferent Stein features and M ′ is a set of candidate density models. We can jointly select density model
and Stein feature: (m̂, m̂′) := arg minm′∈M ′ maxm∈M Eq[`(θ̂(m′), δ̂(m))], where (θ̂(m′), δ̂(m))

are estimated parameters under the model choice (m′,m). Replacing Eq[`(θ̂(m′), δ̂(m))] with the
penalized likelihood derived in Theorem 5, we can get a practical model selection method.

5 Lagrangian Dual of SDRE and DLE by Minimization

Some techniques can be used to directly optimize the min-max problem in (6), such as performing
gradient descend/ascend on θ and δ alternately. However, looking for the saddle points of a min-max
optimization is hard. In this section, we derive a partial Lagrangian dual for (6) so we can convert this
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(a) qqplot of marginals (b)√nqθ̂ vs. C.I. (c) Var(θ̂), Gamma dist. (d) Var(θ̂), Gaussian mix.

Figure 1: Theoretical Prediction values vs. Empirical results

min-max problem into a min-min problem whose local optima can be efficiently found by existing
optimization techniques.
Proposition 3. SDRE problem in (5) has a Lagrangian dual:

µ̂ = argmin
µ

nq∑
i=1

[−(log−µi)− 1]−
nq∑
i=1

µi s.t. :

nq∑
i=1

µiTθf(x(i)
q ) = 0. (9)

Moreover, the duality gap between (9) and (5) is 0 and rθ(x
(i)
q ; δ̂) = −1/µ̂i.

See Section B.9 in the Appendix for its proof. Instead of solving the min-max problem (6), we solve
the following constrained minimization problem:

min
θ

min
µ

nq∑
i=1

[−(log−µi)− 1]−
nq∑
i=1

µi, s.t. :

nq∑
i=1

µiTθf(x(i)
q ) = 0, (10)

where we replace the inner max problem in (6) with its Lagrangian (9). All experiments in this paper
are performed using the Lagrangian dual objective (10). See https://github.com/lamfeeling/
Stein-Density-Ratio-Estimation for code demos on SDRE and model inference.

6 Related Works

Score Matching (SM) [13, 14] is a inference method for unnormalized statistical models. It estimates
model parameters by minimizing the Fisher divergence [20, 26] between the true log density and
the model log density. To estimate the parameter, this method only requires ∇x log p(x;θ) and
∇2
x log p(x;θ) to avoid evaluating the normalization term.

Kernel Stein Discrepancy (KSD) [2] is a kernel mean discrepancy measure between a data distribu-
tion and a model density using the Stein identity defined on Stein operator T ′pθ . This measure has
been used for model evaluation [4, 19]. In Section 7, we minimize such a discrepancy with respect to
θ for unnormalized model parameter estimation. A more generic version of this estimator has been
discussed in [2].

Noise Contrastive Estimation (NCE) [10] estimates the parameters of an unnormalized statistical
model by performing a non-linear logistic regression to discriminate between observed dataset and
artificially generated noise. The normalization term can be dealt with like a regular parameter in
the statistical model and estimated through such a logistic regression. NCE requires us to select a
noise distribution and in our experiments, we use a multivariate Gaussian distribution with mean and
variance the same as Xq .

7 Experiments

7.1 Validation of Asymptotic Results

To examine the asymptotic distribution of √nq[θ̂ − θ∗], we design an intractable exponential family
model p̄(x;θ) := exp

[
η(θ)>ψ(x)

]
, where

ψ(x) := [

d∑
i=1

x2
i , x1x2,

d∑
i=3

x1xi, tanh(x)]>,η(θ) := [−.5, .6, .2, 0, 0, 0,θ]
>
,x ∈ R5,θ ∈ R2.

8



Figure 2: MNIST images with the highest (upper red box) and the lowest unnormalized density (lower green
box) estimated on each digit by DLE and NCE.

tanh(x) is applied in an element-wise fashion. The feature function of the Stein feature is chosen as
f(x) := tanh(x) ∈ R5. Due to the tanh function, p̄(x;θ) does not have a closed form normalization
term. We draw nq = 500 samples from p(x;0) as Xq. Given we set θ∗ = 0, Xq actually comes
from a tractable distribution. However the intractability of p̄(x;θ) does not allow us to perform MLE
straight away.

We run DLE 6000 times with new batch of Xq each time and obtain an empirical distribution of
√
nqθ̂. We show qqplots of its marginal distributions vs. N (0, V1,1), N (0, V2,2), the asymptotic

distribution predicted by Theorem 2 whose variance V is approximated byXq and θ̂. Figure 1a shows
all quantiles between the empirical marginals and predicted marginals are very well aligned. We also
scatter-plot √nqθ̂ together with the predicted 95% and 99.9% confidence interval in Figure 1b. It
can be seen that the empirical joint distribution of√nqθ̂ has the same elongated shape as predicted
by Theorem 2 and agrees with the predicted confidence intervals nicely.

One of our major contributions is proving DLE attains the Cramér-Rao bound. We now compare
the variances of the estimated parameter θ̂ using Gamma p(x; θ) = Γ(5, θ), θ∗ = 1 and Gaussian
mixture model p(x; θ) = .5N (θ, 1) + .5N (1, 1), θ∗ = −1 across DLE, SM and KSD. Varnq [θ̂] are
shown on Figure 1c and 1d. For DLE, we set f(x) := [x, x2] and for KSD, we use a polynomial
kernel with degree 2. Note we particularly choose p(x; θ) to be tractable so we can compute MLE
and Cramér-Rao bound easily. It can be seen that all estimators have decreasing variances and MLE,
being one of the minimum variance estimators, has the lowest variance. However, DLE has the
second lowest variances in both cases and quickly converges to Cramér-Rao bound after nq = 150.
In comparison, both KSD and SM maintain higher levels of variances.

7.2 Unnormalized Model Using Pre-trained Deep Neural Network (DNN)

In this experiment, we create an exponential family model p̄(x;θi) := exp[θ>i ψ(x)],x ∈ R784

where ψ(x) ∈ R20 is a pre-trained 3-layer DNN. ψ(x) is trained using a logistic regression so that
the classification error is minimized on the full MNIST dataset over all digits. Clearly, p̄(x;θi) does
not have a tractable normalization term. The dataset Xqi contains nq = 100 randomly selected
images from a single digit i and we use DLE and NCE to estimate θ̂i for each digit i. For DLE, we
set f(x) = ψ(x). Though we can only obtain an unnormalized density for each digit, it can be used
to rank images and find potential inliers and outliers.

In Figure 2 we show images that are ranked either among the top two or bottom two places when
sorted by log p̄(x; θ̂i), for each digit i. It can be seen that, when θ̂ is estimated by DLE, images
ranked the highest are indeed typical looking images, while the lowest ranking images tend to be
outliers in that digit group. However, in comparison, when θ̂ is estimated by NCE, some highest
ranked images are distorted while some lowest ranked image look very regular. This experiment
shows the usefulness of DLE as a model inference method when working with a complex model
(DNN) on a high dimensional dataset (d = 784) using relatively small number of samples (nq = 100).

8 Conclusion and Discussion
In this paper, we introduce a model inference method for unnormalized statistical models. First,
Stein density ratio estimation is used to fit a ratio and to approximate the KL divergence. The model
inference is done by minimizing such an approximated KL divergence. Despite promising theoretical
and experimental results, future works are needed to demonstrate a systematic way of choosing Stein
features in different scenarios as the performance of DLE depends heavily on such choices.
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