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ABSTRACT

This paper addresses the challenging problem of retrieval and matching of graph
structured objects, and makes two key contributions. First, we demonstrate how
Graph Neural Networks (GNN), which have emerged as an effective model for
various supervised prediction problems defined on structured data, can be trained
to produce embedding of graphs in vector spaces that enables efficient similarity
reasoning. Second, we propose a novel Graph Matching Network model that,
given a pair of graphs as input, computes a similarity score between them by
jointly reasoning on the pair through a new cross-graph attention-based matching
mechanism. We demonstrate the effectiveness of our models on different domains
including the challenging problem of control-flow-graph based function similarity
search that plays an important role in the detection of vulnerabilities in software
systems. The experimental analysis demonstrates that our models are not only able
to exploit structure in the context of similarity learning but they can also outperform
domain-specific baseline systems that have been carefully hand-engineered for
these problems.

1 INTRODUCTION

Graphs are natural representations for encoding relational structures that are encountered in many
domains. Expectedly, computations defined over graph structured data are employed in a wide variety
of fields, from the analysis of molecules for computational biology and chemistry (Gilmer et al.,
2017;|Yan et al., 2005), to the analysis of knowledge graphs or graph structured parses for natural
language understanding.

In the past few years graph neural networks (GNNs) have emerged as an effective class of models for
learning representations of structured data and for solving various supervised prediction problems
on graphs. Such models are invariant to permutations of graph elements by design and compute
graph node representations through a propagation process which iteratively aggregates local structural
information (Scarselli et al., [2009; [Li et al., 2015} |Gilmer et al.}2017). These node representations
are then used directly for node classification, or pooled into a graph vector for graph classification.
Problems beyond supervised classification or regression are relatively less well-studied for GNNs.

In this paper we study the problem of similarity learning for graph structured objects, which appears
in many important real world applications, in particular similarity based retrieval in graph databases.
One motivating application is the computer security problem of binary function similarity search,
where given a binary which may or may not contain code with known vulnerabilities, we wish to check
whether any control-flow-graph in this binary is sufficiently similar to a database of known-vulnerable
functions. This helps identify vulnerable statically linked libraries in closed-source software, a
recurring problem (CVE] 2010} 2018) for which no good solutions are currently available. Figure ]
shows one example from this application, where the binary functions are represented as control flow
graphs annotated with assembly instructions. This similarity learning problem is very challenging as
subtle differences can make two graphs be semantically very different, while graphs with different
structures can still be similar. A successful model for this problem should therefore (1) exploit
the graph structures, and (2) be able to reason about the similarity of graphs both from the graph
structures as well as from learned semantics.



Under review as a conference paper at ICLR 2019

In order to solve the graph similarity learning
problem, we investigate the use of GNNs in this o
context, explore how they can be used to embed ’ ‘
graphs into a vector space, and learn this em- F =
bedding model to make similar graphs close in [ Fa

the vector space, and dissimilar graphs far apart. T 7‘ ’ : ‘

One important property of this model is that, it ’ “:_ = E=

maps each graph independently to an embedding ’ < ‘] = | EEAE +
vector, and then all the similarity computation L o= [
happens in the vector space. Therefore, the em- E ’ .
beddings of graphs in a large database can be k . "
precomputed and indexed, which enables effi- |+ V‘Ij ’ £ [E=
cient retrieval with fast nearest neighbor search : e
data structures like k-d trees (Bentley, |1975) or | ==
locality sensitive hashing (Gionis et al.| {1999). ’ . :

0x138cd3

movsxd
lea
cmp
jbe

We further propose an extension to GNNs which

we call Graph Matching Networks (GMNs) for

similarity learning. Instead of computing graph  Figure 1: The binary function similarity learning
representations independently for each graph, problem. Checking whether two graphs are simi-
the GMNs compute a similarity score through lar requires reasoning about both the structure as
a cross-graph attention mechanism to associate  well as the semantics of the graphs. Here the left
nodes across graphs and identify differences. By two control flow graphs correspond to the same
making the graph representation computation de- function compiled with different compilers (and
pendent on the pair, this matching model is more  therefore similar), while the graph on the right
powerful than the embedding model, providing  corresponds to a different function.

a nice accuracy-computation trade-off.

We evaluate the proposed models and baselines

on three tasks: a synthetic graph edit-distance learning task which captures structural similarity
only, and two real world tasks - binary function similarity search and mesh retrieval, which require
reasoning about both the structural and semantic similarity. On all tasks, the proposed approaches
outperform established baselines and structure agnostic models; in more detailed ablation studies, we
found that the Graph Matching Networks consistently outperform the graph embedding model and
Siamese networks.

To summarize, the contributions of this paper are: (1) we demonstrate how GNNs can be used to
produce graph embeddings for similarity learning; (2) we propose the new Graph Matching Networks
that computes similarity through cross-graph attention-based matching; (3) empirically we show
that the proposed graph similarity learning models achieve good performance across a range of
applications, outperforming structure agnostic models and established hand-engineered baselines.

2 RELATED WORK

Graph Neural Networks and Graph Representation Learning  The history of graph neural
networks (GNN5s) goes back to at least the early work by |Gori et al.| (2005) and [Scarselli et al.| (2009),
who proposed to use a propagation process to learn node representations. These models have been
further developed by incorporating modern deep learning components (Li et al., 2015} |Velickovic
et al., |2017; Bruna et al.l 2013). A separate line of work focuses on generalizing convolutions
to graphs (Bruna et al., 2013} Bronstein et al.| |2017). Popular graph convolutional networks also
compute node updates by aggregating information in local neighborhoods (Kipf & Welling, [2016)),
making them the same family of models as GNNs. GNNs have been successfully used in many
domains (Kipf & Wellingl 2016} Velickovic et al.| [2017; Battaglia et al.,[2016;|2018; Niepert et al.,
2016;|Duvenaud et al., 20155 Gilmer et al.L[2017;|Dai1 et al., 20175 |Li et al., 2018} 'Wang et al.;,2018aib)).
Most of the previous work on GNNs focus on supervised prediction problems (with exceptions like
(Dai et al., 2017 L1 et al., [2018; [Wang et al., 2018a))). The graph similarity learning problem we
study in this paper and the new graph matching model can be good additions to this family of models.

Graph Similarity Search and Graph Kernels Graph similarity search has been studied extensively
in database and data mining communities (Yan et al., 2005; Dijkman et al., [2009). The similarity
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is typically defined by either exact matches (full-graph or sub-graph isomorphism) (Berretti et al.|
2001} Shasha et al.l 2002 |Yan et al.| 2004} |Srinivasa & Kumar, [2003)) or some measure of structural
similarity, e.g. in terms of graph edit distances (Willett et al.,|1998; |Raymond et al., 2002). Most of
the approaches proposed in this direction are not learning-based, and focus on efficiency.

Graph kernels are kernels on graphs designed to capture the graph similarity, and can be used in
kernel methods for e.g. graph classification (Vishwanathan et al.| [2010; |Shervashidze et al., 201 I}).
Popular graph kernels include those that measure the similarity between walks or paths on graphs
(Borgwardt & Kriegel, |2005; |Kashima et al.| [2003; |[Vishwanathan et al., 2010), kernels based on
limited-sized substructures (Horvath et al., [2004; |Shervashidze et al., 2009) and kernels based on
sub-tree structures (Shervashidze & Borgwardt, 2009} |Shervashidze et al., 2011). Graph kernels
are usually used in models that may have learned components, but the kernels themselves are hand-
designed and motivated by graph theory. They can typically be formulated as first computing the
feature vectors for each graph (the kernel embedding), and then take inner product between these
vectors to compute the kernel value. One exception is (Yanardag & Vishwanathan|, [2015) where
the co-occurrence of graph elements (substructures, walks, etc.) are learned, but the basic elements
are still hand-designed. Compared to these approaches, our graph neural network based similarity
learning framework learns the similarity metric end-to-end.

Distance Metric Learning Learning a distance metric between data points is the key focus of the
area of metric learning. Most of the early work on metric learning assumes that the data already lies
in a vector space, and only a linear metric matrix is learned to properly measure the distance in this
space to group similar examples together and dissimilar examples to be far apart (Xing et al., |2003;
Weinberger & Saull 2009; |Davis et al.l 2007)). More recently the ideas of distance metric learning
and representation learning have been combined in applications like face verification, where deep
convolutional neural networks are learned to map similar images to similar representation vectors
(Chopra et al., 2005} |Hu et al., 2014} [Sun et al.,[2014). In this paper, we focus on representation and
similarity metric learning for graphs, and our graph matching model goes one step beyond the typical
representation learning methods by modeling the cross-graph matchings.

Siamese Networks Siamese networks (Bromley et al.,|1994; Baldi & Chauvin, 1993)) are a family of
neural network models for visual similarity learning. These models typically consist of two networks
with shared parameters applied to two input images independently to compute representations, a
small network is then used to fuse these representations and compute a similarity score. They can
be thought of as learning both the representations and the similarity metric. Siamese networks have
achieved great success in many visual recognition and verification tasks (Bromley et al., 1994} Baldi
& Chauvin, |1993; [Koch et al., [2015; [Bertinetto et al., 2016; Zagoruyko & Komodakis, |2015). In the
experiments we adapt Siamese networks to handle graphs, but found our graph matching networks
to be more powerful as they do cross-graph computations and therefore fuse information from both
graphs early in the computation process. Independent of our work, recently (Shyam et al., 2017)
proposed a cross-example attention model for visual similarity as an alternative to Siamese networks
based on similar motivations and achieved good results.

3 DEEP GRAPH SIMILARITY LEARNING

Given two graphs G; = (V1, E1) and Gy = (Va, E5), we want a model that produces the similarity
score s(G1, G2) between them. Each graph G = (V, E) is represented as sets of nodes V' and edges
E, optionally each node i € V' can be associated with a feature vector x;, and each edge (i,5) € E
associated with a feature vector x;;. These features can represent, e.g. type of a node, direction of an
edge, etc. If a node or an edge does not have any associated features, we set the corresponding vector
to a constant vector of 1s. We propose two models for graph similarity learning: a model based on
standard GNNs for learning graph embeddings, and the new and more powerful GMNs. The two
models are illustrated in Figure 2]

3.1 GRAPH EMBEDDING MODELS

Graph embedding models embed each graph into a vector, and then use a similarity metric in that
vector space to measure the similarity between graphs. Our GNN embedding model comprises 3
parts: (1) an encoder, (2) propagation layers, and (3) an aggregator.
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Figure 2: Illustration of the graph embedding (left) and matching models (right).

Encoder The encoder maps the node and edge features to initial node and edge vectors through
separate MLPs:

h{” = MLP,oae(x:), Vi€V ey = MLPeqge(xi;), V(i,j) € E. (1)

Propagation Layers A propagation layer maps a set of node representations {hgt) }iev to new node
representations {hgtH) }iev, as the following:

m; ,; = fmessage(hl('t)7 h;‘t)a eij)7 h§t+l) = fnode hgt)v Z m;_,; ()
j:(j,0)EE

Here fiessage 1S typically an MLP on the concatenated inputs, and f,,,q. can be either an MLP or a
recurrent neural network core, e.g. RNN, GRU or LSTM (Li et al.,2015). To aggregate the messages,
we use a simple sum which may be alternatively replaced by other commutative operators such as
mean, max or the attention-based weighted sum (Velickovi¢ et al.,[2017). Through multiple layers of
propagation, the representation for each node will accumulate information in its local neighborhood.

Aggregator After a certain number 7" rounds of propagations, an aggregator takes the set of node
representations {hz(-T)} as input, and computes a graph level representation hg = f G({hﬁT)}), as

he = MLPg (Z o(MLPe (b)) © MLP(hET))) , 3)
i€V
which transforms node representations and then uses a weighted sum with gating vectors to aggregate

across nodes. The weighted sum can focus only on the important nodes, it is more powerful than a
simple sum and also works significantly better empirically.

After the graph representations h¢, and he, are computed for the pair (G, G2), we compute the
similarity between them using a similarity metric in the vector space, for example the Euclidean,
cosine or Hamming similarities.

Note that without the propagation layers (or with 0 propagation steps), this model becomes an instance
of the Deep Set (Zaheer et al.,|2017) or PointNet (Q1 et al.,|2017), which does computation on the
individual nodes, and then pool the node representations into a representation for the whole graph.
Such a model, however, ignores the structure and only treats the data as a set of independent nodes.

3.2 GRAPH MATCHING NETWORKS

Graph matching networks take a pair of graphs as input and compute a similarity score between them.
Compared to the embedding models, these matching models compute the similarity score jointly on
the pair, rather than first independently mapping each graph to a vector. Therefore these models are
potentially stronger than the embedding models, at the cost of some extra computation efficiency.

We propose the following graph matching network, which changes the node update module in each
propagation layer to take into account not only the aggregated messages on the edges for each graph
as before, but also a cross-graph matching vector which measures how well a node in one graph can
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be matched to one or more nodes in the other:

mj%z fmessage(h(t) h(t) eij)7 V(Zaj) S El U E2 (4)

1 ;= fmatch<h§“,h§-”), VieVi,jeVoori€Va,jEV 5)

bV = fooae [ B myn Y (©6)
J J’

hg, = h, he, = h, — f.(hg . h 7

a: = fa{h; ' hiewr), ha, = fa({h;" ' tew,), s= fs(hg,, ha,). @)

Here f is a standard vector space similarity between hg, and hg,. fiaten is @ function that
communicates cross-graph information, which we propose to use an attention-based module:

() 1,()
exp(sp(h; ,h
Ajyi = psn(h; ) 22) Wi = aj%i(hl(-t) — hg-t)) and therefore (8)
> exp(sp(h;”, hy ))

St =) ajl h{") — h(t) Zaﬁz : )
j j

sp, 1s again a vector space similarity metric, like Euclidean or cosine similarity, a;_,; are the attention
weights, and ; Mj_s; Intuitively measures the difference between hz(-t) and its closest neighbor

in the other graph. Note that because of the normalization in a;_,;, the function fmatch implicitly

depends on the whole set of {hgt) }, which we omitted in Eq. for a cleaner notation. Since attention
weights are required for every pair of nodes across two graphs, this operation has a computation
cost of O(|V1]||Vz|), while for the GNN embedding model the cost for each round of propagation is
O(|V] + |E|). The extra power of the GMNs comes from utilizing the extra computation.

Note By construction, the attention module has a nice property that, when the two graphs can
be perfectly matched, and when the attention weights are peaked at the exact match, we have
> ; Pj—i = 0, which means the cross-graph communications will be reduced to zero vectors, and
the two graphs will continue to compute identical representations in the next round of propagation.
On the other hand, the differences across graphs will be captured in the cross-graph matching vector
> s which will be amplified through the propagation process, making the matching model
more sensitive to these differences.

Compared to the graph embedding model, the matching model has the ability to change the represen-
tation of the graphs based on the other graph it is compared against. The model will adjust graph
representations to make them become more different if they do not match.

3.3 LEARNING

The proposed graph similarity learning models can be trained on a set of example pairs or triplets.
Pairwise training requires us to have a dataset of pairs labeled as positive (similar) or negative
(dissimilar), while triplet training only needs relative similarity, i.e. whether G is closer to G5 or Gis.
We describe the losses on pairs and triplets we used below, which are then optimized with gradient
descent based algorithms.

When using Euclidean similarity, we use the following margin-based pairwise loss:
Lpair = B,y .0 [max{0,y — t(1 — d(G1, G2))}], (10)

where t € {—1,1} is the label for this pair, v > 0 is a margin parameter, and d(G1,G2) =
|hg, — he,||? is the Euclidean distance. This loss encourages d(G1, G2) < 1 — v when the pair is
similar (¢t = 1), and d(G1,G2) > 1 4+ v when t = —1. Given triplets where G; and G+ are closer
than G; and G3, we optimize the following margin-based triplet loss:

Liriplet = E(Gy,G0,64)[max{0,d(G1,G2) — d(G1,G3) + 7} (11
This loss encourages d(G1, G2) to be smaller than d(G1, G'3) by at least a margin .

For applications where it is necessary to search through a large database of graphs with low latency,
it is beneficial to have the graph representation vectors be binary, i.e. hg € {—1,1}#, so that
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efficient nearest neighbor search algorithms (Gionis et al.| [1999) may be applied. In such cases, we
can minimize the Hamming distance of positive pairs and maximize it for negative pairs. With this
restriction the graph vectors can no longer freely occupy the whole Euclidean space, but we gain the
efficiency for fast retrieval and indexing. To achieve this we propose to pass the hg vectors through a
tanh transformation, and optimize the following pair and triplet losses:

Lpair = E(thmt)[(t —s(Gy, GQ))2]/47 and (12)
Liviplet = E(G1,G2,64)[(8(G1,G2) — 1) + (s(G1, G3) +1)°]/8, (13)

where s(G1,G2) = & 21[{:1 tanh(hg,;) - tanh(hg,;) is the approximate average Hamming simi-
larity. Both losses are bounded in [0, 1], and they push positive pairs to have Hamming similarity
close to 1, and negative pairs to have similarity close to -1. We found these losses to be a bit more
stable than margin based losses for Hamming similarity.

4 EXPERIMENTS

In this section, we evaluate the graph similarity learning (GSL) framework and the graph embedding
(GNNs) and graph matching networks (GMNs) on three tasks and compare these models with
other competing methods. Overall the empirical results demonstrate that the GMNs excel on graph
similarity learning, consistently outperforming all other approaches.

4.1 LEARNING GRAPH EDIT DISTANCES

Problem Background Graph edit distance between graphs GG; and G is defined as the minimum
number of edit operations needed to transform G; to G2. Typically the edit operations include
add/remove/substitute nodes and edges. Graph edit distance is naturally a measure of similarity
between graphs and has many applications in graph similarity search (Dijkman et al., [2009; Zeng
et al} [2009; |Gao et al.l|2010). However computing the graph edit distance is NP-hard in general
(Zeng et al.,|2009)), therefore approximations have to be used. Through this experiment we show that
the GSL models can learn structural similarity between graphs on very challenging problems.

Training Setup We generated training data by sampling random binomial graphs G with n nodes
and edge probability p (Erdos & Rényil, [1959)), and then create positive example G2 by randomly
substituting k,, edges from G'; with new edges, and negative example G's by substituting k,, edges
from Gy, where k, < k A model needs to predict a higher similarity score for positive pair
(G1,G2) than negative pair (G1,G3). Throughout the experiments we fixed the dimensionality
of node vectors to 32, and the dimensionality of graph vectors to 128 without further tuning. We
also tried different number of propagation steps 7" from 1 to 5, and observed consistently better
performance with increasing 7". The results reported in this section are all with 7" = 5 unless stated
otherwise. More details are included in Appendix [B.1}

Baseline We compare our models with the popular Weisfeiler Lehman (WL) kernel (Shervashidze
et al., 2011}, which has been shown to be very competitive on graph classification tasks and the
Weisfeiler Lehman algorithm behind this kernel is a strong method for checking graph isomorphism
(edit distance of 0), a closely related task (Weisfeiler & Lehman, |1968; Shervashidze et al.,[2011).

Evaluation The performance of different models are evaluated using two metrics: (1) pair AUC -
the area under the ROC curve for classifying pairs of graphs as similar or not on a fixed set of 1000
pairs and (2) triplet accuracy - the accuracy of correctly assigning higher similarity to the positive
pair in a triplet than the negative pair on a fixed set of 1000 triplets.

Results We trained and evaluated the GSL models on graphs of a few specific distributions with
different n, p, with k, = 1 and k,, = 2 fixed. The evaluation results are shown in Table ‘We can
see that by learning on graphs of specific distributions, the GSL models are able to do better than
generic baselines, and the GMNs consistently outperform the embedding model (GNNs).

For the GMNs, we can visualize the cross-graph attention to gain further insight into how it is working.
Figure [3[ shows two examples of this for a matching model trained with n sampled from [20, 50],

"Note that even though G is created with k, edge substitutions from (1, the actual edit-distance between
G4 and G2 can be smaller than &, due to symmetry and isomorphism, same for G'3 and k,,. However the
probability of such cases is typically low and decreases rapidly with increasing graph sizes.
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Graph Distribution | WL kernel GNN GMN
n=20,p=0.2 | 80.8/83.2 | 88.8/94.0 95.0/95.6
n=20,p=0.5 | 745/78.0 | 92.1/93.4 96.6/98.0
n=>50,p=0.2 | 93.9/97.8 | 959/972 97.4/97.6
n=>50,p=0.5 | 823/89.0 | 88.5/91.0 93.8/92.6

Table 1: Comparing the graph embedding (GNN) and matching (GMN) models trained on graphs
from different distributions with the basel

graph edit distance = 1 graph edit distance = 2

Figure 3: Visualization of cross-graph attention for GMNs after 5 propagation layers. In each pair
of graphs the left figure shows the attention from left graph to the right, the right figure shows the
opposite.

tested on graphs of 10 nodes. The cross-graph attention weights are shown in green, with the scale of
the weights shown as the transparency of the green edges. We can see that the attention weights can
align nodes well when the two graphs match, and tend to focus on nodes with higher degrees when
they don’t. However the pattern is not as interpretable as in standard attention models.

More experiments on generalization capabilities of these models (train on small graphs, test on larger
graphs, train on graphs with some k,, k,, combinations, test on others) are included in Appendix

4.2 CONTROL FLOW GRAPH BASED BINARY FUNCTION SIMILARITY SEARCH

Problem Background Binary function similarity search is an important problem in computer
security. The need to analyze and search through binaries emerges when we do not have access to
the source code, for example when dealing with commercial or embedded software or suspicious
executables. Combining a disassembler and a code analyzer, we can extract a control-flow graph
(CFG) which contains all the information in a binary function in a structured format. See Figure[T|and
Appendix [B.2]for a few example CFGs. In a CFG, each node is a basic block of assembly instructions,
and the edges between nodes represent the control flow, indicated by for example a jump or a return
instruction used in branching, loops or function calls. In this section, we target the vulnerability
search problem, where a piece of binary known to have some vulnerabilities is used as the query, and
we search through a library to find similar binaries that may have the same vulnerabilities{| Accurate
identification of similar vulnerabilities enables security engineers to quickly narrow down the search
space and apply patches.

In the past the binary function similarity search problem has been tackled with classical graph
theoretical matching algorithms (Eschweiler et al.,2016; [Pewny et al., 2015)), and Xu et al.|(2017)
and [Feng et al.| (2016) proposed to learn embeddings of CFGs and do similarity search in the
embedding space. Xu et al.|(2017) in particular proposed an embedding method based on graph
neural networks, starting from some hand selected feature vectors for each node. Here we study
further the performance of graph embedding and matching models, with pair and triplet training,
different number of propagation steps, and learning node features from the assembly instructions.

Training Setup and Baseline We train and evaluate our model on data generated by compiling the
popular open source video processing software £ fmpegqg using different compilers gcc and clang,
and different compiler optimization levels, which results in 7940 functions and roughly 8 CFGs
per function. The average size of the CFGs is around 55 nodes per graph, with some larger graphs
having up to a few thousand nodes (see Appendix [B.2]for more detailed statistics). Different compiler
optimization levels result in CFGs of very different sizes for the same function. We split the data and
used 80% functions and the associated CFGs for training, 10% for validation and 10% for testing. The

“Note that our formulation is general and can also be applied to source code directly if they are available.
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Figure 4: Performance (x 100) of different models on the binary function similarity search task.

models were trained to learn a similarity metric on CFGs such that the CFGs for the same function
have high similarity, and low similarity otherwise. Once trained, this similarity metric can be used to
search through library of binaries and be invariant to compiler type and optimization levels.

We compare our graph embedding and matching models with Google’s open source function similarity
search tool (Dullien, |2018)), which has been used to successfully find vulnerabilities in binaries in
the past. This tool computes representations of CFGs through a hand-engineered graph hashing
process which encodes the neighborhood structure of each node by hashing the degree sequence from
a traversal of a 3-hop neighborhood, and also encodes the assembly instructions for each basic block
by hashing the trigrams of assembly instruction types. These features are then combined by using a
SimHash-style (Charikar, 2002) algorithm with learned weights to form a 128-dimensional binary
code. An LSH-based search index is then used to perform approximate nearest neighbor search using
hamming distance.

Following (Dullien, [2018)), we also map the CFGs to 128-dimensional binary vectors, and use the
Hamming similarity formulation described in Section [3|for training. We further studied two variants
of the data, one that only uses the graph structure, and one that uses both the graph structure and
the assembly instructions with learned node features. When assembly instructions are available, we
embed each instruction type into a vector, and then sum up all the embedding vectors for instructions
in a basic block as the initial representation vector (the x;’s) for each node, these embeddings are
learned jointly with the rest of the model.

Results Figure |4|shows the performance of different models with different number of propagation
steps and in different data settings. We again evaluate the performance of these models on pair AUC
and triplet accuracy on fixed sets of pairs and triplets from the test set. It is clear from results that: (1)
the performance of both the graph embedding and matching models consistently go up with more
propagation steps, and in particular significantly outperforming the structure agnostic model special
case which uses 0 propagation steps; (2) the graph embedding model is consistently better than the
baselines with enough propagation steps; and (3) graph matching models outperforms the embedding
models across all settings and propagation steps. Additionally, we have tried the WL kernel on this
task using only the graph structure, and it achieved 0.619 AUC and 24.5% triplet accuracy. This is not
surprising as the WL kernel is not designed for solving this task, while our models learn the features
useful for the task of interest, and can achieve better performance than generic similarity metrics.

4.3 MORE BASELINES AND ABLATION STUDIES

In this section, we carefully examine the effects of the design decisions we made in the GMN
model and compare it against a few more alternatives. In particular, we evaluate the popular Graph
Convolutional Network (GCN) model by [Kipf & Welling| (2016) as an alternative to our GNN
model, and Siamese versions of the GNN/GCN embedding models. The GCN model replaces the
message passing in Eq.[2] with graph convolutions, and the Siamese model predicts a distance value by
concatenating two graph vectors and then pass through a 2 layer MLP. The comparison with Siamese
networks can in particular show the importance of the cross-graph attention early on in the similarity
computation process, as Siamese networks fuse the representations for 2 graphs only at the very end.

We focus on the function similarity search task, and also conduct experiments on an extra COIL-
DEL mesh graph dataset (Riesen & Bunke| 2008)), which contains 100 classes of mesh graphs
corresponding to 100 types of objects. We treat graphs in the same class as similar, and used identical
setup as the function similarity search task for training and evaluation.
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Model | Pair AUC _ Triplet Acc Model | Pair AUC _ Triplet Acc
Baseline 96.09 96.35
GCN 94.80 94.95
GCN 96.67 96.57 .
. Siamese-GCN 95.90 96.10
Siamese-GCN 97.54 97.51
GNN 98.58 98.70
GNN 97.71 97.83 .
. Siamese-GNN 98.76 98.55
Siamese-GNN 97.76 97.58 GMN 08.97 08.80
GMN 99.28 99.18
Function Similarity Search COIL-DEL

Table 2: More results on the function similarity search task and the extra COIL-DEL dataset.

Table [2| summarizes the experiment results, which clearly show that: (1) the GNN embedding model
is a competitive model (more powerful than the GCN model); (2) using Siamese network architecture
to learn similarity on top of graph representations is better than using a prespecified similarity metric
(Euclidean, Hamming etc.); (3) the GMNs outperform the Siamese models showing the importance
of cross-graph information communication early in the computation process.

5 CONCLUSIONS AND DISCUSSION

In this paper we studied the problem of graph similarity learning using graph neural networks.
Compared to standard prediction problems for graphs, similarity learning poses a unique set of
challenges and potential benefits. For example, the graph embedding models can be learned through a
classification setting when we do have a set of classes in the dataset, but formulating it as a similarity
learning problem can handle cases where we have a very large number of classes and only very few
examples for each class. The representations learned from the similarity learning setting can also
easily generalize to data from classes unseen during training (zero-shot generalization).

We proposed the new graph matching networks as a stronger alternative to the graph embedding
models. The added power for the graph matching models comes from the fact that they are not
independently mapping each graph to an embedding, but rather doing comparisons at all levels
across the pair of graphs, in addition to the embedding computation. The model can then learn to
properly allocate capacity toward the embedding part or the matching part. The price to pay for this
expressivity is the added computation cost in two aspects: (1) since each cross-graph matching step
requires the computation of the full attention matrices, which requires at least O(|V1||Vz]) time, this
may be expensive for large graphs; (2) the matching models operate on pairs, and cannot directly be
used for indexing and searching through large graph databases. Therefore it is best to use the graph
matching networks when we (1) only care about the similarity between individual pairs, or (2) use
them in a retrieval setting together with a faster filtering model like the graph embedding model or
standard graph similarity search methods, to narrow down the search to a smaller candidate set, and
then use the more expensive matching model to rerank the candidates to improve precision.

Developing neural models for graph similarity learning is an important research direction with many
applications. There are still many interesting challenges to resolve, for example to improve the
efficiency of the matching models, study different matching architectures, adapt the GNN capacity to
graphs of different sizes, and applying these models to new application domains. We hope our work
can spur further research in this direction.
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A EXTRA DETAILS ON MODEL ARCHITECTURES

In the propagation layers of the graph embedding and matching models, we used an MLP with one
hidden layer as the fiessage module, with a ReLU nonlinearity on the hidden layer. For node state

vectors (the hl(.t) vectors) of dimension D, the size of the hidden layer and the output is set to 2D.
We found it to be beneficial to initialize the weights of this fi,essage module to be small, which
helps stablizing training. We used the standard Glorot initialization with an extra scaling factor of
0.1. When not using this small scaling factor, at the begining of training the message vectors when
summed up can have huge scales, which is bad for learning.

One extra thing to note about the propagation layers is that we can make all the propagation layers
share the same set of parameters, which can be useful if this is a suitable inductive bias to have.

We tried different f,,,q. modules in both experiments, and found GRUs to generally work better than
one-hidden layer MLPs, and all the results reported uses GRUs as f,o4e, With the sum over edge
messages » ;M _,; treated as the input to the GRU for the embedding model, and the concatenation

of >, m;_;and >, pj _,; as the input to the GRU for the matching model.

In the aggregator module, we used a single linear layer for the node transformation MLP and the
gating MLPg,te in Eq.3. The output of this linear layer has a dimensionality the same as the required
dimensionality for the graph vectors. o(z) = H% is the logistic sigmoid function, and © is the
element-wise product. After the weighted sum, another MLP with one hidden layers is used to
further transform the graph vector. The hidden layer has the same size as the output, with a ReLU
nonlinearity.

For the matching model, the attention weights are computed as

exp(sh(hz(-t), h§-t)))
Aj—i = OBERONS (14)
Z]" exp(sn(h; 7hj' )
We have tried the Euclidean similarity sj,(h;,h;) = —|/h; — h;||? for s, as well as the dot-product
similarity s (h;,h;) = h h;, and they perform similarly without significant difference.

B EXTRA EXPERIMENT DETAILS

We fixed the node state vector dimensionality to 32, and graph vector dimensionality to 128 throughout
both the graph edit distance learning and binary function similarity search tasks. We tuned this initially
on the function similarity search task, which clearly performs better than smaller models. Increasing
the model size however leads to overfitting for that task. We directly used the same setting for the
edit distance learning task without further tuning. Using larger models there should further improve
model performance.

B.1 LEARNING GRAPH EDIT DISTANCES

In this task the nodes and edges have no extra features associated with them, we therefore initialized
the x; and x;; vectors as vectors of 1s, and the encoder MLP in Eq.1 is simply a linear layer for the
nodes and an identity mapping for the edges.

We searched through the following hyperparameters: (1) triplet vs pair training; (2) number of
propagation layers; (3) share parameters on different propagation layers or not. Learning rate is
fixed at 0.001 for all runs and we used the Adam optimizer Kingma & Ba|(2014)). Overall we found:
(1) triplet and pair training performs similarly, with pair training slightly better, (2) using more
propagation layers consistently helps, and increasing the number of propagation layers 7" beyond 5
may help even more, (3) sharing parameters is useful for performance more often than not.

Intuitively, the baseline WL kernel starts by labeling each node by its degree, and then iteratively
updates a node’s representation as the histogram of neighbor node patterns, which is effectively
also a graph propagation process. The kernel value is then computed as a dot product of graph
representation vectors, which is the histogram of different node representations. When using the
kernel with T iterations of computation, a pair of graphs of size |V| can have as large as a 2|V |T
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Eval Graphs WL kernel GNN GMN
n=100,p=0.2 | 98.5/994 | 96.6/96.8 96.8/97.7
n=100,p=0.5 | 86.7/97.0 | 79.8/81.4 83.1/83.6
n=200,p=0.2 | 99.9/100.0 | 88.7/88.5 89.4/90.0
n=200,p=0.5 | 935/99.2 | 720/72.3 68.3/70.1

Table 3: Generalization performance on large graphs for the GSL models trained on small graphs
with 20 <n < 50and 0.2 < p < 0.5.

dimensional representation vector for each graph, and these sets of effective ‘feature’ types are
different for different pairs of graphs as the node patterns can be very different. This is an advantage
for WL kernel over our models as we used a fixed sized graph vector regardless of the graph size. We
evaluate WL kernel for 7" up to 5 and report results for the best T" on the evaluation set.

In addition to the experiments presented in the main paper, we have also tested the generalization
capabilities of the proposed models, and we present the extra results in the following.

Train on small graphs, generalize to large graphs. In this experiment, we trained the GSL
models on graphs with n sampled uniformly from 20 to 50, and p sampled from range [0.2, 0.5] to
cover more variability in graph sizes and edge density for better generalization, and we again fix
kp, = 1,k, = 2. For evaluation, we tested the best embedding models and matching models on
graphs with n = 100, 200 and p = 0.2, 0.5, with results shown in Table[3] We can see that for this
task the GSL models trained on small graphs can generalize to larger graphs than they are trained on.
The performance falls off a bit on much larger graphs with much more nodes and edges. This is also
partially caused by the fact that we are using a fixed sized graph vector throughout the experiments
, but the WL kernel on the other hand has much more effective ‘features’ to use for computing
similarity. On the other hand, as shown before, when trained on graphs from distributions we care
about, the GSL models can adapt and perform much better.

Train on some £, k,, combinations, test on other combinations. We have also tested the model
trained on graphs with n € [20, 50, p € [0.2,0.5], k, = 1, k, = 2, on graphs with different k,, and
ky, combinations. In particular, when evaluated on k,, = 1, k,, = 4, the models perform much better
than on k, = 1, k,, = 2, reaching 1.0 AUC and 100% triplet accuracy easily, as this is considerably
simpler than the k, = 1,k, = 2 setting. When evaluated on graphs with k, = 2,k, = 3, the
performance is workse than k, = 1, k,, = 2 as this is a harder setting.

In addition, we have also tried training on the more difficult setting k, = 2, k,, = 3, and evaluate
the models on graphs with k, = 1,k, = 2 and n € [20, 50], p € [0.2,0.5]. The performance of the
models on these graphs are actually be better than the models trained on this setting of &, = 1, k,, = 2,
which is surprising and clearly demonstrates the value of good training data. However, in terms
of generalizing to larger graphs models trained on k, = 2, k,, = 3 does not have any significant
advantages.

B.2 BINARY FUNCTION SIMILARITY SEARCH

In this task the edges have no extra features so we initialize them to constant vectors of 1s, and the
encoder MLP for the edges is again just an identity mapping. When using the CFG graph structure
only, the nodes are also initialized to constant vectors of 1s, and the encoder MLP is a linear layer.
In the case when using assembly instructions, we have a list of assembly code associated with each
node. We extracted the operator type (e.g. add, mov, etc.) from each instruction, and then embeds
each operator into a vector, the initial node representation is a sum of all operator embeddings.

We searched through the following hyperparameters: (1) triplet or pair training, (2) learning rate in
{1073,107*}, (3) number of propagation layers; (4) share propagation layer parameters or not; (5)
GRU vs one-layer MLP for the f,,4. module.

Overall we found that (1) triplet training performs slightly better than pair training in this case; (2)
both learning rates can work but the smaller learning rate is more stable; (3) increasing number of
propagation layers generally helps; (4) using different propagation layer parameters perform better
than using shared parameters; (5) GRUs are more stable than MLPs and performs overall better.
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Figure 5: Example control flow graphs for the same binary function, compiled with different compilers
(clang for the leftmost one, gcc for the others) and optimization levels. Note that each node in the
graphs also contains a set of assembly instructions which we also take into account when computing
similarity using learned features.

In addition to the results reported in the main paper, we have also tried the same models on another
dataset obtained by compiling the compression software unrar with different compilers and op-
timization levels. Our graph similarity learning methods also perform very well on the unrar data,
but this dataset is a lot smaller, with around 400 functions only, and overfitting is therefore a big
problem for any learning based model, so the results on this dataset are not very reliable to draw any
conclusions.

A few more control-flow graph examples are shown in Figure[5] The distribution of graph sizes in the
training set is shown in Figure [6]

C EXTRA ATTENTION VISUALIZATIONS

A few more attention visualizations are included in Figure [7| Figure [§] and Figure 0] Here the
graph matching model we used has shared parameters for all the propagation and matching layers
and was trained with 5 propagation layers. Therefore we can use a number 7' different from the
number of propagation layers the model is being trained on to test the model’s performance. In both
visualizations, we unrolled the propagation for up to 9 steps and the model still computes sensible
attention maps even with 7" > 5.
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Figure 6: Control flow graph size distribution in the training set. In this plot the graphs are sorted by
size on the x axis, each point in the figure corresponds to the size of one graph.

Note that the attention maps do not converge to very peaked distributions. This is partially due
to the fact that we used the node state vectors both to carry information through the propagation
process, as well as in the attention mechanism as is. This makes it hard for the model to have
very peaked attention as the scale of these node state vectors won’t be very big. A better solution
is to compute separate key, query and value vectors for each node as done in the tensor2tensor
self-attention formulation |Vaswani et al.|(2017), which may further improve the performance of the
matching model.

Figure [7] shows another possibility where the attention maps do not converge to very peaked distribu-
tions because of in-graph symmetries. Such symmetries are very typical in graphs. In this case even
though the attention maps are not peaked, the cross graph communication vectors p are still zero, and
the two graphs will still have identical representation vectors.
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Figure 7: The change of cross-graph attention over propagation layers. Here the two graphs are
two isomorphic chains and there are some in-graph symmetries. Note that in the end the nodes are
matched to two corresponding nodes with equal weight, except the one at the center of the chain
which can only match to a single other node.
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Figure 8: The change of cross-graph attention over propagation layers. Here the two graphs are

isomorphic, with graph edit distance 0. Note that in the end a lot of the matchings concentrated on
the correct match.
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Figure 9: The change of cross-graph attention over propagation layers. The edit distance between
these two graphs is 1.
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