
Published as a workshop paper at ICLR 2019

POINT CLOUD GAN

Chun-Liang Li∗, Manzil Zaheer∗, Yang Zhang, Barnabás Póczos, Ruslan Salakhutdinov
Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213
{chunlial,manzilz,yz6,bapoczos,rsalakhu}@cs.cmu.edu

ABSTRACT

Generative Adversarial Networks (GAN) can achieve promising performance on
learning complex data distributions on different types of data. In this paper, we
first show that a straightforward extension of an existing GAN algorithm is not
applicable to point clouds, because the constraint required for discriminators is
undefined for set data. We propose a two fold modification to a GAN algorithm
to be able to generate point clouds (PC-GAN). First, we combine ideas from
hierarchical Bayesian modeling and implicit generative models by learning a
hierarchical and interpretable sampling process. A key component of our method
is that we train a posterior inference network for the hidden variables. Second,
PC-GAN defines a generic framework that can incorporate many existing GAN
algorithms. We further propose a sandwiching objective, which results in a tighter
Wasserstein distance estimate than the commonly used dual form in WGAN. We
validate our claims on the ModelNet40 benchmark dataset and observe that PC-
GAN trained by the sandwiching objective achieves better results on test data than
existing methods. We also conduct studies on several tasks, including generalization
on unseen point clouds, latent space interpolation, classification, and image to point
clouds transformation, to demonstrate the versatility of the proposed PC-GAN
algorithm.

1 INTRODUCTION

A fundamental problem in machine learning is that given a data set, learn a generative model
that can efficiently generate arbitrary many new sample points from the domain of the underlying
distribution (Bishop, 2006). Deep generative models use deep neural networks as a tool for learning
complex data distributions (Kingma & Welling, 2013; Oord et al., 2016; Goodfellow et al., 2014).
Especially, Generative Adversarial Networks (GAN) (Goodfellow et al., 2014) has drawn attention
because of its success in many applications. Compelling results have been demonstrated on different
types of data, including text, images, and videos (Lamb et al., 2016; Karras et al., 2017; Vondrick
et al., 2016). Their wide range of applicability was also shown in many important problems, including
data augmentation (Salimans et al., 2016), image style transformation (Zhu et al., 2017), image
captioning (Dai et al., 2017), and art creations (Kang, 2017).

Recently, capturing 3D information is garnering attention. There are many different data types for
3D information, such as CAD, 3D meshes, and point clouds. 3D point clouds are getting popular
since these store more information than 2D images and sensors capable of collecting point clouds
have become more accessible. These include Lidar on self-driving cars, Kinect for Xbox, and face
identification sensor on phones. Compared to other formats, point clouds can be easily represented as
a set of points, which has several advantages, such as permutation invariance of the set members. The
algorithms which can effectively learn from this type of data is an emerging field (Qi et al., 2017a;b;
Zaheer et al., 2017; Kalogerakis et al., 2017; Fan et al., 2017). However, compared to supervised
learning, unsupervised generative models for 3D data are still under explored (Achlioptas et al., 2017;
Oliva et al., 2018).

Extending existing GAN frameworks to point clouds or more generally set data is not straightforward.
In this paper, we begin by formally defining the problem and discussing its difficulty (Section 2).
Circumventing the challenges, we propose a deep generative adversarial network (PC-GAN) with
a hierarchical sampling and inference network for point clouds. The proposed architecture learns
a stochastic procedure which can generate new point clouds and draw samples from the generated
point clouds without explicitly modeling the underlying density function (Section 3). The proposed

1

Published as a workshop paper at ICLR 2019

PC-GAN is a generic algorithm which can incorporate many existing GAN variants. By utilizing
the property of point clouds, we further propose a sandwiching objective by considering both
upper and lower bounds of Wasserstein distance estimate, which can lead to tighter approximation
(Section 3.1). Evaluation on ModelNet40 shows excellent generalization capability of PC-GAN.
We first demonstrate that we can sample from the learned model to generate new point clouds
and the latent representations learned by the inference network provide meaningful interpolations
between point clouds. Then we show the conditional generation results on unseen classes of objects,
which demonstrates the superior generalization ability of PC-GAN. Lastly, we also provide several
interesting studies, such as classification and point clouds generation from images (Section 5).

2 PROBLEM DEFINITION AND DIFFICULTY

A point cloud for an object θ is a set of n low dimensional vectors X = {x1, ..., xn} with xi ∈ Rd,
where d is usually 3 and n can be infinite. M different objects can be described as a collection of
point clouds X(1), ..., X(M). A generative model for sets should be able to: (1) Sample entirely new
sets according to p(X), and (2) sample arbitrarily many more points from the distribution of given
set, i.e. x ∼ p(x|X).

Based on the De-Finetti theorem, we could factor the probability with some suitably de-
fined θ, such as object representation of point clouds, as p(X) =

∫
θ

∏n
i=1 p(xi|θ)p(θ)dθ.

Figure 1: Natural extension of GAN to
handle set data does not work.

In this view, the factoring can be understood as follows:
Given an object, θ, the points xi in the point cloud can
be considered as i.i.d. samples from p(x|θ), an unknown
latent distribution representing object θ. Joint likelihood
can be expressed as:

p(X, θ) = p(θ)︸︷︷︸
object

n∏
i=1

p(xi|θ)︸ ︷︷ ︸
points for object

(1)

One approach can be used to model the distribution of the point cloud set together, i.e.,
{{x(1)

i }ni=1, . . . , {x
(m)
i }ni=1}. In this setting, a naíve application of traditional GAN is possible

through treating the point cloud as finite dimensional vector by fixing the number and order of the
points (reducing the problem to instances in Rn×3) with DeepSets (Zaheer et al., 2017) classifier
as the discriminator to distinguish real sets from fake sets. However, this approach would not work
in practice because the integral probability metric (IPM) guarantees behind the traditional GAN
no longer hold (e.g. in case of Arjovsky et al. (2017), nor are 1-Lipschitz functions over sets well-
defined). The probabilistic divergence approximated by a DeepSets classifier might be ill-defined.
Counter examples for breaking IPM guarantees can be easily found as we show next.

Counter Example Consider a simple GAN (Goodfellow et al., 2014) with a DeepSets classifier as
the discriminator. In order to generate coherent sets of variable size, we consider a generatorG having
two noise sources: u and zi. To generate a set, u is sampled once and zi is sampled for i = 1, 2, ..., n
to produce n points in the generated set. Intuitively, fixing the first noise source u selects a set and
ensures the points generated by repeated sampling of zi are coherent and belong to the same set. The
setup is depicted in Figure 1. In this setup, the GAN minimax problem would be:

min
G

max
D

E
θ∼p(θ)

xi∼p(xi|θ)

[logD ({xi})] + E
u∼p(u)
zi∼p(zi)

[log (1−D ({G(u, zi)}))] (2)

Now consider the case, when there exists an ‘oracle’ mapping T which maps each sample point
deterministically to the object it originated from, i.e. ∃T : T ({xi}) = θ. A valid example is when
different θ leads to conditional distribution p(x|θ) with non-overlapping support. Let D = D′ ◦ T
and G ignore z, then the optimization task becomes as follows:

min
G

max
D′

E
θ∼p(θ)

xi∼p(xi|θ)

[logD′ (T ({xi}))] + E
u∼p(u)
zi∼p(zi)

[log (1−D′ (T ({G(u, zi)})))]

⇒min
G

max
D′

E
θ∼p(θ)

xi∼p(xi|θ)

[logD′ (θ)] + E
u∼p(u)
zi∼p(zi)

[log (1−D′ (T ({G(u)})))]

⇒min
G

max
D′

E
θ∼p(θ)

[logD′ (θ)] + E
u∼p(u)

[log (1−D′ (T ({G(u)})))]

(3)

2

Published as a workshop paper at ICLR 2019

Thus, we can achieve the lower bound − log(4) by only matching the p(θ) component, while the
conditional p(x|θ) is allowed to remain arbitrary. So simply using DeepSets classifier without any
constraints in simple GAN in order to handle sets does not lead to a valid generative model.

3 PROPOSED METHOD

G(z, u) G(z, u)

Q(X)

Randomness
for points

z

Randomness
for points
z

Randomness
for objects

u

Inference

Generated
point cloud
for plane

Generated
point cloud

for chair

Figure 2: Overview of PC-GAN.

As described in Section 2, directly learning point cloud
generation under GAN formulation is difficult. However,
given θ, learning p(x|θ) is a simpler task of learning a
3-dimensional distribution. Given two point clouds, one
popular heuristic distance between them is the Chamfer
distance (Achlioptas et al., 2017). On the other hand, if we
treat each point cloud as a 3-dimensional distribution, we
can adopt a broader class of probabilistic divergences for
comparing them. Instead of learning explicit densities (Jian
& Vemuri, 2005; Strom et al., 2010; Eckart et al., 2015),
we are interested in implicit generative models with a
GAN-like objective (Goodfellow et al., 2014), which has
been demonstrated to learn complicated distributions. Formally, given a θ, we train a generator
Gx(z, θ) such that x = Gx(z, θ), where z ∼ p(z). The generator Gx(z, θ) follows G by optimizing
a probabilistic divergence D(P‖G) between the distribution G of Gx(z, θ) and p(x|θ), which is

denoted as P. The full objective can be written as Eθ∼p(θ)
[

min
Gx

D(P‖G)

]
.

Inference Although GANs have been extended to learn conditional distributions (Mirza & Osindero,
2014; Isola et al., 2017), they require conditioning variables to be observed, such as the one-hot label
or a given image. Our θ, instead, is an unobserved latent variable for modeling different objects, which
we need to infer during training. The proposed algorithm has to concurrently learn the inference
network Q(X) ≈ θ while we learn p(x|θ). Since X is a set of points, we can adopt Qi et al. (2017a);
Zaheer et al. (2017) for modeling Q. We provide more discussion on this topic in the Appendix A.1.
Hierarchical Sampling After trainingGx andQ, we use the trainedQ to collect the inferredQ(X)
and train the generator Gθ(u) ∼ p(θ) for higher hierarchical sampling. Here u ∼ p(u) is the other
noise source independent of z. In addition to layer-wise training, a joint training could further boost
performance. The full generative process for sampling one point cloud could be represented as
{xi}ni=1 = {G(zi, u)}ni=1 = {Gx(zi, Gθ(u))}ni=1, where z1, . . . , zn ∼ p(z), and u ∼ p(u).

The overview of proposed algorithm for point cloud generation (PC-GAN) is shown in Figure 2.

3.1 DIFFERENT DIVERGENCES FOR MATCHING POINT CLOUDS

To train the generator Gx using a GAN-like objective for point clouds, we need a discriminator f(·)
to distinguishes generated samples and true samples conditioned on θ. Combining with the inference
network Q(X) discussed aforementioned, the objecitve with IPM-based GANs can be written as

Eθ∼p(θ)
[

min
Gx,Q

max
f∈Ωf

Ex∼p(X|θ) [f(x)]− Ez∼p(z),X∼p(X|θ) [f(Gx(z,Q(X)))]︸ ︷︷ ︸
D(P‖G)

]
, (4)

where Ωf is the constraint for different probabilistic distances, such as 1-Lipschitz (Arjovsky et al.,
2017), L2 ball (Mroueh & Sercu, 2017) or Sobolev ball (Mroueh et al., 2017).

3.2 TIGHTER SOLUTIONS VIA SANDWICHING

In our setting, each point xi in the point cloud can be considered to correspond to single images when
we train GANs over images. An example is illustrated in Figure 3 where samples from MMD-GAN
(Li et al., 2017a) trained on CelebA consists of both good and bad faces. In case of images, when
quality is evaluated, it primarily focuses on coherence individual images and the few bad ones are
usually left out. Whereas in case of point cloud, to get representation of an object we need many
sampled points together and presence of outlier points degrades the quality of the object. Thus,
when training a generative model for point cloud, we need to ensure a much lower distance D(P‖G)
between true distribution P and generator distribution G than would be needed in case of images.

3

Published as a workshop paper at ICLR 2019

Figure 3: Connection between good/bad
points and faces generated from a GAN.

We begin by noting that the popular Wasserstein GAN (Ar-
jovsky et al., 2017), aims to optimize G by minw(P,G),
where w(P,G) is the Wasserstein distance w(P,G) be-
tween the truth P and generated distribution G of G.
Many GAN works (e.g. Arjovsky et al. (2017)) approx-
imate w(P,G) in dual form (a maximization problem),
such as (4), by neural networks. The resulting estimate
WL(P,G) is a lower bound of the true Wasserstein dis-
tance, as neural networks can only recover a subset of
1-Lipschitz functions (Arora et al., 2017) required in the
dual form. However, finding a lower bound WL(P,G) for w(P,G) may not be an ideal surrogate for
solving a minimization problem minw(P,G). In optimal transport literature, Wassertein distance is
usually estimated by approximate matching cost, WU (P,G), which gives us an upper bound of the
true Wasserstein distance.

We propose to combine, in general, a lower bound WL and upper bound estimate WU by sandwiching
the solution between the two, i.e. we solve the following minimization problem:

min
G

WU (P,G) s.t. WU (P,G)−WL(P,G) < λ (5)

The problem can be simplified and solved using method of lagrange multipliers as follows:

min
G

Ws(P,G) := (1− s)WU (P,G) + sWL(P,G) (6)

By solving the new sandwiched problem (6), we show that under certain conditions we obtain a better
estimate of Wasserstein distance in the following lemma:
Lemma 1. Suppose we have two approximators to Wasserstein distance: an upper bound WU and
a lower WL, such that ∀P,G : (1 + ε1)w(P,G) ≤ WU (P,G) ≤ (1 + ε2)w(P,G) and ∀P,G :
(1− ε2)w(P,G) ≤WL(P,G) ≤ (1− ε1)w(P,G) respectively, for some ε2 > ε1 > 0 and ε1 > ε2/3.
Then, using the sandwiched estimator Ws from (6), we can achieve tighter estimate of the Wasserstein
distance than using either one estimator, i.e.

∃s : |Ws(P,G)− w(P,G)| < min{|WU (P,G)− w(P,G)|, |WL(P,G)− w(P,G)|} (7)

3.2.1 UPPER AND LOWER BOUND IMPLEMENTATION

For WL, we can adopt many GAN variants (Arjovsky et al., 2017; Gulrajani et al., 2017; Mroueh &
Sercu, 2017). ForWU , we use Bertsekas (1985), which results in a fast ε approximation of the Wasser-
stein distance estimate in primal form without solving non-trivial linear programming. We remark
estimating Wasserstein distance w(P,G) with finite samples via its primal is only favorable to low
dimensional data, such as point clouds. The error of empirical estimate in primal is O(1/n1/d) (Weed
& Bach, 2017). When the dimension d is large (e.g. images), we cannot accurately estimate w(P,G)
in primal as well as its upper bound with a small minibatch. For detailed discussion of finding lower
and upper bound, please refer to Appendix A.2 and A.3.

4 RELATED WORKS

Generative Adversarial Network (Goodfellow et al., 2014) aims to learn a generator that can sample
data followed by the data distribution. Compelling results on learning complex data distributions
with GAN have been shown on images (Karras et al., 2017), speech (Lamb et al., 2016), text (Yu
et al., 2016; Hjelm et al., 2017), vedio (Vondrick et al., 2016) and 3D voxels (Wu et al., 2016).
However, the GAN algorithm on 3D point cloud is still under explored (Achlioptas et al., 2017).
Many alternative objectives for training GANs have been studied. Most of them are the dual form of
f -divergence (Goodfellow et al., 2014; Mao et al., 2017; Nowozin et al., 2016), integral probability
metrics (IPMs) (Zhao et al., 2016; Li et al., 2017a; Arjovsky et al., 2017; Gulrajani et al., 2017)
or IPM extensions (Mroueh & Sercu, 2017; Mroueh et al., 2017). Genevay et al. (2018) learn the
generative model by the approximated primal form of Wasserstein distance (Cuturi, 2013).

Instead of training a generative model on the data space directly, one popular approach is combining
with autoencoder (AE), which is called adversarial autoencoder (AAE) (Makhzani et al., 2015).
AAE constrain the encoded data to follow normal distribution via GAN loss, which is similar to
VAE (Kingma & Welling, 2013) by replacing the KL-divergence on latent space via any GAN loss.

4

Published as a workshop paper at ICLR 2019

Tolstikhin et al. (2017) provide a theoretical explanation for AAE by connecting it with the primal
form of Wasserstein distance. The other variant of AAE is training the other generative model to learn
the distribution of the encoded data instead of enforcing it to be similar to a known distribution (Engel
et al., 2017; Kim et al., 2017). Achlioptas et al. (2017) explore a AAE variant for point cloud. They
use a specially-designed encoder network (Qi et al., 2017a) for learning a compressed representation
for point clouds before training GAN on the latent space. However, their decoder is restricted to be a
MLP which generates m fixed number of points, where m has to be pre-defined. That is, the output
of their decoder is fixed to be 3m for 3D point clouds, while the output of the proposed Gx is only
3 dimensional and Gx can generate arbitrarily many points by sampling different random noise z
as input. Yang et al. (2018); Groueix et al. (2018b) propose similar decoders to Gx with fixed grids
to break the limitation of Achlioptas et al. (2017) aforementioned, but they use heuristic Chamfer
distance without any theoretical guarantee and do not exploit generative models for point clouds.
The proposed PC-GAN can also be interpreted as an encoder-decoder formulation. However, the
underlying interpretation is different. We start from De-Finetti theorem to learn both p(X|θ) and p(θ)
with inference network interpretation of Q, while Achlioptas et al. (2017) focus on learning p(θ)
without modeling p(X|θ).

Lastly, GAN for learning conditional distribution (conditional GAN) has been studied in images with
single conditioning (Mirza & Osindero, 2014; Pathak et al., 2016; Isola et al., 2017; Chang et al.,
2017) or multiple conditioning (Wang & Gupta, 2016). The case on point cloud is still under explored.
Also, most of the works assume the conditioning is given (e.g. labels and base images) without
learning the inference during the training. Training GAN with inference is studied by Donahue et al.
(2016); Dumoulin et al. (2016); Li et al. (2017b); however, their goal is to infer the random noise z of
generators and match the semantic latent variable to be similar to z. Li et al. (2018) is a parallel work
aiming to learn GAN and unseen latent variable simultaneously, but they only study image and video
datasets.

5 EXPERIMENTS

In this section we demonstrate the point cloud generation capabilities of PC-GAN. As discussed in
Section 4, we refer Achlioptas et al. (2017) as AAE as it could be treated as an AAE extension to point
clouds and we use the implementation provided by the authors for experiments. The sandwitching
objective Ws for PC-GAN combines WL and WU with the mixture 1:20 without tunning for all
experiment. WL is a GAN loss by combining Arjovsky et al. (2017) and Mroueh & Sercu (2017)
(technical details are in Appendix A.3) and we adopt (Bertsekas, 1985) for WU . We parametrize Q in
PC-GAN by DeepSets (Zaheer et al., 2017). The review of DeepSets is in Appendix E. Other detailed
configurations of each experiment can be found in Appendix F.

5.1 SYNTHETIC DATASETS

We generate 2D circle point clouds. The center of circles follows a mixture of Gaussians
N ({±16} × {±16}, 16I) with equal mixture weights. The radius of the circles was drawn from a
uniform distribution Unif(1.6, 6.4). One sampled circile is shown in Figure 4a.

40 20 0 20 40

x

40

20

0

20

40

y

40 20 0 20 40

x

40

20

0

20

40

y

40 20 0 20 40

x

40

20

0

20

40

y

20 15 10 5 0 5
x

20

15

10

5

0

y

(a) True Data

0 1 2 3 4 5 6 7 8
Radius r

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

p
(r

)

True

AAE-20

(b) AAE

0 1 2 3 4 5 6 7 8
Radius r

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

p
(r

)

True

PC-GAN

(c) PC-GAN

Figure 4: (a) (top) the true center distribution and (bot-
tom) one example of a circle point cloud. (b-d) are the
reconstructed center and radius distributions.

For AAE, the output size of the decoder is
500× 2 for 500 points, and the output size
of the encoder (latent code) is 20. The to-
tal number of parameters are 24K. For PC-
GAN, the inference network output size is
15. The total nuumber of parameters of PC-
GAN is only 12K. We evaluated the con-
ditional distributions on the 10, 000 testing
circles. We measured the empirical distri-
butions of the centers and the radius of the
generated circles conditioning on the testing
data as shown in Figure 4.

From Figure 4, both AAE and PC-GAN
can successfully recover the center distri-
bution, but AAE does not learn the radius
distribution well even with larger latent code

5

Published as a workshop paper at ICLR 2019

Table 1: Quantitative results of different models trained on different subsets of ModelNet40 and
evaluated on the corresponding test set. ModelNet10 is a subset containing 10 classes of objects,
while ModelNet40 is a full training set. AAE is trained using the code from Achlioptas et al. (2017).
The PC-GAN variants are trained via upper bound WU , lower bound WL and sandwiching loss Ws.

Data Distance to Face (D2F ↓) Coverage (↑)
PC-GAN (Ws) AAE PC-GAN (WU) PC-GAN (WL) PC-GAN (Ws) AAE PC-GAN (WU) PC-GAN (WL)

Aeroplanes 1.89E+01 1.99E+01 1.53E+01 2.49E+01 1.95E-01 2.99E-02 1.73E-01 1.88E-01
Benches 1.09E+01 1.41E+01 1.05E+01 2.46E+01 4.44E-01 2.35E-01 2.58E-01 3.83E-01
Cars 4.39E+01 6.23E+01 4.25E+01 6.68E+01 2.35E-01 4.98E-02 1.78E-01 2.35E-01
Chairs 1.01E+01 1.08E+01 1.06E+01 1.08E+01 3.90E-01 1.82E-01 3.57E-01 3.95E-01
Cups 1.44E+03 1.79E+03 1.28E+03 3.01E+03 6.31E-01 3.31E-01 4.32E-01 5.68E-01
Guitars 2.16E+02 1.93E+02 1.97E+02 1.81E+02 2.25E-01 7.98E-02 2.11E-01 2.27E-01
Lamps 1.47E+03 1.60E+03 1.64E+03 2.77E+03 3.89E-01 2.33E-01 3.79E-01 3.66E-01
Laptops 2.43E+00 3.73E+00 2.65E+00 2.58E+00 4.31E-01 2.56E-01 3.93E-01 4.55E-01
Sofa 1.71E+01 1.64E+01 1.45E+01 2.76E+01 3.65E-01 1.62E-01 2.94E-01 3.47E-01
Tables 2.79E+00 2.96E+00 2.44E+00 3.69E+00 3.82E-01 2.59E-01 3.20E-01 3.53E-01

ModelNet10 5.77E+00 6.89E+00 6.03E+00 9.19E+00 3.47E-01 1.90E-01 3.36E-01 3.67E-01
ModelNet40 4.84E+01 5.86E+01 5.24E+01 7.96E+01 3.80E-01 1.85E-01 3.65E-01 3.71E-01

(20) and more parameters (24K). The gap
of memory usage could be larger if we configure AAE to generate more points, while the model size
required for PC-GAN is independent of the number of points. The reason is MLP decoder adopted
by Achlioptas et al. (2017) wastes parameters for nearby points. Using the much larger model (more
parameters) could boost the performance. However, it is still restricted to generate a fixed number of
points for each object as we discussed in Section 4.

5.2 STUDY ON MODELNET40

We consider ModelNet40 (Wu et al., 2015) benchmark, which contains 40 classes of objects. There
are 9, 843 training and 2, 468 testing instances. We follow Achlioptas et al. (2017) to consider two
settings. One is training on single class of objects. The other is training on all 9, 843 objects in the
training set. Achlioptas et al. (2017) set the latent code size of AAE to be 128 and 256 for these two
settings, with the total number of parameters to be 15M and 15.2M , respectively. Similarly, we set
the output dimension of Q in PC-GAN to be 128 and 256 for single-class and all-classes. The total
number of parameters are 1M and 3M , respectively.

Metrics for Quantitative Comparison Firstly, we are interested in whether the learned Gx and Q
can model the distribution of unseen test data. For each test point cloud, we infer the latent variable
Q(X), then use Gx to generate points. We then compare the distribution between the input point
cloud and the conditionally generated point clouds.

Figure 5: Sample
mesh of ModelNet40

There are many finite sample estimation for f -divergence and IPM can
be used for evaluation. However, those estimators with finite samples are
either biased or with high variance (Peyré et al., 2017; Wang et al., 2009;
Póczos et al., 2012; Weed & Bach, 2017). Also, it is impossible to use these
estimators with infinitely many samples if they are accessible.

For ModelNet40, the meshes of each object are available. In many statis-
tically guaranteed distance estimates, the adopted statistics are commonly
based on distance between nearest neighbors (Wang et al., 2009; Póczos
et al., 2012). Therefore, we propose to measure the performance with the
following criteria. Given a point cloud {xi}ni=1 and a mesh, which is a
collection of faces {Fj}mj=1, we measure the distance to face (D2F) as

D2F
(
{xi}ni=1, {Fj}mj=1

)
=

1

n

n∑
i=1

min
j
D(xi, Fj),

where D(xi, Fj) is the Euclidean distance from xi to the face Fj . This distance is similar to Chamfer
distance, which is commonly used for measuring images and point clouds (Achlioptas et al., 2017;
Fan et al., 2017), with infinitely samples from true distributions (meshes).

Nevertheless, the algorithm can have low or zero D2F by only focusing a small portion of the point
clouds (mode collapse). Therefore, we are also interested in whether the generated points recover
enough supports of the distribution. We compute the Coverage ratio as follows. For each point, we

6

Published as a workshop paper at ICLR 2019

(a) Data (b) PC-GAN (Ws) (c) AAE (d) PC-GAN (WU) (e) PC-GAN (WL)

Figure 6: Example reconstruction (conditional generation) on test objects. PC-GAN with sandwiching
(Ws) is better in capturing fine details like wheels of aeroplane or proper chair legs.

find the its nearest face, we then treat this face is covered1. We then compute the ratio of number
of faces of a mesh is covered. A sampled mesh is showed in Figure 5, where the details have more
faces (non-uniform). Thus, it is difficult to get high coverage for AAE or PC-GAN trained by limited
number of sampled points. However, the coverage ratio, on the other hand, serve as an indicator about
how much details the model recovers.

The results are reported in Table 1. We compare four different algorithm, AAE and PC-GAN with
three objectives, including upper bound WU (ε approximated Wasserstein distance), lower bound
WL (GAN with L2 ball constraints and weight clipping), and the sandwiching loss Ws as discussed
in Section 3.2, The study with WU and WL also serves as the ablation test of Ws.

Comparison between Upper bound, Lower bound and Sandwiching Since WU directly opti-
mizes distance between training and generated point clouds, WU usually results in smaller D2F than
WL in Table 1. One the other hand, although WL only recovers lower bound estimate of Wasserstein
distance, its discriminator is known to focus on learning support of the distribution (Bengio, 2018),
which results in better coverage (support) than WU .

Theoretically, the proposed sandwiching Ws results in a tighter Wasserstein distance estimation than
WU and WL (Lemma 1). Based on above discussion, it can also be understood as balancing both D2F
and coverage by combining both WU and WL to get a desirable middle ground. Empirically, we even
observe that Ws results in better coverage than WL, and competitive D2F with WU . The intuitive
explanation is that some discriminative tasks are off to WU objective, so the discriminator can focus
more on learning distribution supports. We argue that this difference is crucial for capturing the object
details. Some reconstructed point clouds of testing data are shown in Figure 6. For aeroplane examples,
WU are failed to capture aeroplane tires and Ws has better tire than WL. For Chair example, Ws

recovers better legs than WU and better seat cushion than WL. Lastly, we highlight Ws outperforms
others more significantly when training data is larger (ModelNet10 and ModelNet40) in Table 1.

Comparison between PC-GAN and AAE In most of cases, PC-GAN with Ws has lower D2F
in Table 1 with less number of parameters aforementioned. Similar to the argument in Section 5.1,
although AAE use larger networks, the decoder wastes parameters for nearby points. AAE only
outperforms PC-GAN (Ws) in Guitar and Sofa in terms of D2F, since the variety of these two classes
are low. It is easier for MLP to learn the shared template (basis) of the point clouds. On the other
hand, due to the limitation of the fixed number of output points and Chamfer distance objective, AAE
has worse coverage than PC-GAN, It can be supported by Figure 6, where AAE is also failed to
recover aeroplane tire.

Hierarchical Sampling In Section 3, we propose a hierarchical sampling process for sampling
point clouds. In the first hierarchy, the generator Gθ, samples a object (θ = Gθ(u), u ∼ P(u)), while
the second generator Gx samples points based on θ to form the point cloud.

The randomly sampled results without given any data as input are shown in Figure 7. More results
can be found in Appendix C. The point clouds are all smooth, structured and almost symmetric. It
shows PC-GAN captures inherent symmetries and patterns in all the randomly sampled objects, even
if overall object is not perfectly formed. This highlights that learning point-wise generation scheme
encourages learning basic building blocks of objects.

1We should do thresholding to ignore outlier points. In our experiments, we observe that without excluding
outliers does not change conclusion for comparison.

7

Published as a workshop paper at ICLR 2019

Figure 7: Randomly sampled objects and corresponding point cloud from the hierarchical sampling
Even if there are some defects, the objects are smooth, symmetric and structured.

Interpolation of Learned Manifold We study whether the interpolation between two objects on
the latent space results in smooth change. We interpolate the inferred representations of two objects
by Q, and use the generator Gx to sample points based on the interpolation. The inter-class result is
shown in Figure 8. More studies about interpolation between rotations can be found in Appendix D.1.

Figure 8: Interpolating between latent representations Q(X) of a table and a chair point clouds.

Generalization on Unseen Classes In above, we studied the reconstruction of unseen testing
objects, while PC-GAN still saw the point clouds from the same class during training. Here we study
the more challenging task. We train PC-GAN on first 30 (Alphabetic order) class, and test on the
other fully unseen 10 classes. Some reconstructed (conditionally generated) point clouds are shown
in Figure 9. More (larger) results can be found in Appendix C. For the object from the unseen classes,
the conditionally generated point clouds still recovers main shape and reasonable geometry structure,
which confirms the advantage of the proposed PC-GAN: by enforcing the point-wise transformation,
the model is forced to learn the underlying geometry structure and the shared building blocks, instead
of naively copying the input from the conditioning. The rsulted D2F and coverage are 57.4 and
0.36, which are only slightly worse than 48.4 and 0.38 by training on whole 40 classes in Table 1
(ModelNet40), which also supports the claims of the good generalization ability of PC-GAN.

(a) Stool (b) Table (c) Toilet (d) Vase

Figure 9: The reconstructed objects from unseen classes (even in training). In each plot, LHS is true
data while RHS is PC-GAN. PC-GAN generalizes well as it can match patterns and symmetries from
classes seen in the past to new unseen classes.

More Studies We also condct other studies to make experiments complete, including interpolation
between different rotations, classification and image to point clouds. Due to space limit, all of the
results can be found in Appendix D.

6 CONCLUSION

In this paper, we first showed a straightforward extension of existing GAN algorithm is not applicable
to point clouds. We then proposed a GAN modification (PC-GAN) that is capable of learning to
generate point clouds by using ideas both from hierarchical Bayesian modeling and implicit generative
models. We further propose a sandwiching objective which results in a tighter Wasserstein distance
estimate theoretically and better performance empirically.

In contrast to some existing methods (Achlioptas et al., 2017), PC-GAN can generate arbitrary
as many i.i.d. points as we need to form a point clouds without pre-specification. Quantitatively,
PC-GAN achieves competitive or better results using smaller network than existing methods. We also
demonstrated that PC-GAN can capture delicate details of point clouds and generalize well even on
unseen data. Our method learns “point-wise” transformations which encourage the model to learn
the building components of the objects, instead of just naively copying the whole object. We also
demonstrate other interesting results, including point cloud interpolation and image to point clouds.

Although we only focused on 3D applications in this paper, our framework can be naturally general-
ized to higher dimensions. In the future we would like to explore higher dimensional applications,
where each 3D point can have other attributes, such as RGB colors and 3D velocity vectors.

8

Published as a workshop paper at ICLR 2019

REFERENCES

Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations
and generative models for 3d point clouds. arXiv preprint arXiv:1707.02392, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. ICML, 2017.

Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and equilibrium
in generative adversarial nets (gans). arXiv preprint arXiv:1703.00573, 2017.

Yoshua Bengio. Gans and unsupervised representation learning, 2018.

Dimitri P Bertsekas. A distributed asynchronous relaxation algorithm for the assignment problem. In
Decision and Control, 1985.

M Christopher Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New York,
2006.

JH Rick Chang, Chun-Liang Li, Barnabas Poczos, BVK Vijaya Kumar, and Aswin C Sankara-
narayanan. One network to solve them all—solving linear inverse problems using deep projection
models. arXiv preprint, 2017.

Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. On visual similarity based 3d
model retrieval. In Computer graphics forum, 2003.

Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-r2n2: A
unified approach for single and multi-view 3d object reconstruction. In ECCV, 2016.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In NIPS, 2013.

Bo Dai, Sanja Fidler, Raquel Urtasun, and Dahua Lin. Towards diverse and natural image descriptions
via a conditional gan. arXiv preprint arXiv:1703.06029, 2017.

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv preprint
arXiv:1605.09782, 2016.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Arjovsky,
and Aaron Courville. Adversarially learned inference. arXiv preprint arXiv:1606.00704, 2016.

Ben Eckart, Kihwan Kim, Alejandro Troccoli, Alonzo Kelly, and Jan Kautz. Mlmd: Maximum
likelihood mixture decoupling for fast and accurate point cloud registration. In 3DV, 2015.

Jesse Engel, Matthew Hoffman, and Adam Roberts. Latent constraints: Learning to generate condi-
tionally from unconditional generative models. arXiv preprint arXiv:1711.05772, 2017.

Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object
reconstruction from a single image. In CVPR, 2017.

Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative models with sinkhorn diver-
gences. In AISTATS, 2018.

Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Abhinav Gupta. Learning a predictable and
generative vector representation for objects. In European Conference on Computer Vision, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry. Atlasnet:
A papier-m\ˆ ach\’e approach to learning 3d surface generation. arXiv preprint arXiv:1802.05384,
2018a.

Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry. A
papier-mâché approach to learning 3d surface generation. In CVPR, 2018b.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved
training of wasserstein gans. In NIPS, 2017.

9

Published as a workshop paper at ICLR 2019

Christian Häne, Shubham Tulsiani, and Jitendra Malik. Hierarchical surface prediction for 3d object
reconstruction. In 3D Vision (3DV), 2017 International Conference on, 2017.

R. Devon Hjelm, Athul Paul Jacob, Tong Che, Kyunghyun Cho, and Yoshua Bengio. Boundary-
seeking generative adversarial networks. arXiv:1702.08431, 2017.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. arXiv preprint, 2017.

Bing Jian and Baba C Vemuri. A robust algorithm for point set registration using mixture of gaussians.
In ICCV, 2005.

Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji, and Siddhartha Chaudhuri. 3d shape
segmentation with projective convolutional networks. CVPR, 2, 2017.

Eunsu Kang. FACE Exhibition, 2017. Judith Rae Solomon Gallery, Youngstown, OH.
http://art.ysu.edu/2017/09/06/face-by-eunsu-kang-and-collaborators/.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Michael Kazhdan, Thomas Funkhouser, and Szymon Rusinkiewicz. Rotation invariant spherical
harmonic representation of 3 d shape descriptors. In Symposium on geometry processing, 2003.

Yoon Kim, Kelly Zhang, Alexander M Rush, Yann LeCun, et al. Adversarially regularized autoen-
coders for generating discrete structures. arXiv preprint arXiv:1706.04223, 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Alex M Lamb, Anirudh Goyal ALIAS PARTH GOYAL, Ying Zhang, Saizheng Zhang, Aaron C
Courville, and Yoshua Bengio. Professor forcing: A new algorithm for training recurrent networks.
In NIPS, 2016.

Chongxuan Li, Max Welling, Jun Zhu, and Bo Zhang. Graphical generative adversarial networks.
arXiv preprint arXiv:1804.03429, 2018.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos. Mmd gan:
Towards deeper understanding of moment matching network. In NIPS, 2017a.

Chunyuan Li, Hao Liu, Changyou Chen, Yuchen Pu, Liqun Chen, Ricardo Henao, and Lawrence
Carin. Alice: Towards understanding adversarial learning for joint distribution matching. In NIPS,
2017b.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial
autoencoders. arXiv preprint arXiv:1511.05644, 2015.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, and Zhen Wang. Least squares generative
adversarial networks. In ICCV, 2017.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Youssef Mroueh and Tom Sercu. Fisher gan. In NIPS, 2017.

Youssef Mroueh, Chun-Liang Li, Tom Sercu, Anant Raj, and Yu Cheng. Sobolev gan. arXiv preprint
arXiv:1711.04894, 2017.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. In NIPS, 2016.

Junier B Oliva, Avinava Dubey, Barnabás Póczos, Jeff Schneider, and Eric P Xing. Transformation
autoregressive networks. arXiv preprint arXiv:1801.09819, 2018.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
arXiv preprint arXiv:1601.06759, 2016.

10

http://art.ysu.edu/2017/09/06/face-by-eunsu-kang-and-collaborators/

Published as a workshop paper at ICLR 2019

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In CVPR, 2016.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport. Technical report, 2017.

Barnabás Póczos, Liang Xiong, and Jeff Schneider. Nonparametric divergence estimation with
applications to machine learning on distributions. arXiv preprint arXiv:1202.3758, 2012.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. CVPR, 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In NIPS, 2017b.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In NIPS, 2016.

Hang Shao, Abhishek Kumar, and P Thomas Fletcher. The riemannian geometry of deep generative
models. arXiv preprint arXiv:1711.08014, 2017.

Abhishek Sharma, Oliver Grau, and Mario Fritz. Vconv-dae: Deep volumetric shape learning without
object labels. In European Conference on Computer Vision, 2016.

Johannes Strom, Andrew Richardson, and Edwin Olson. Graph-based segmentation for colored 3d
laser point clouds. In IROS, 2010.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view convolutional
neural networks for 3d shape recognition. In ICCV, 2015.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasserstein auto-encoders.
arXiv preprint arXiv:1711.01558, 2017.

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene dynamics. In
NIPS, pp. 613–621, 2016.

Qing Wang, Sanjeev R Kulkarni, and Sergio Verdú. Divergence estimation for multidimensional
densities via k-nearest-neighbor distances. IEEE Transactions on Information Theory, 2009.

Xiaolong Wang and Abhinav Gupta. Generative image modeling using style and structure adversarial
networks. In ECCV, 2016.

Jonathan Weed and Francis Bach. Sharp asymptotic and finite-sample rates of convergence of
empirical measures in wasserstein distance. arXiv preprint arXiv:1707.00087, 2017.

Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. Learning a probabilis-
tic latent space of object shapes via 3d generative-adversarial modeling. In NIPS, 2016.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In CVPR, 2015.

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud auto-encoder via deep
grid deformation. In CVPR, volume 3, 2018.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets
with policy gradient. CoRR, abs/1609.05473, 2016.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov, and
Alexander J Smola. Deep sets. In NIPS, 2017.

Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial network. arXiv
preprint arXiv:1609.03126, 2016.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593, 2017.

11

Published as a workshop paper at ICLR 2019

A DETAILS OF THE PROPOSED METHOD

A.1 NEURAL NETWORK REALIZATION OF INFERENCE NETWORK

Our solution comprises of a generator Gx(z, ψ) which takes in a noise source z ∈ Rd1 and a
descriptor ψ ∈ Rd2 encoding information about distribution of θ. For a given θ0, the descriptor ψ
would encode information about the distribution δ(θ − θ0) and samples generated as x = Gx(z, ψ)
would follow the distribution p(x|θ0). More generally, ψ can be used to encode more complicated
distributions regarding θ as well. In particular, it could be used to encode the posterior p(θ|X) for a
given sample set X , such that x = Gx(z, ψ) follows the posterior predictive distribution:

p(x|X) =

∫
p(x|θ)p(θ|X)dθ.

A major hurdle in taking this path is thatX is a set of points, which can vary in size and permutation of
elements. Thus, making design of Q complicated as traditional neural network can not handle this and
possibly is the reason for absence of such framework in the literature despite being a natural solution
for the important problem of generative modeling of point clouds. However, we can overcome this
challenge and we propose to construct the inference network by utilizing the permutation equivariant
layers from Deep Sets (Zaheer et al., 2017). This allows it handle variable number of inputs points in
arbitrary order, yet yielding a consistent descriptor ψ.

After training Gx and the inference network Q, we use trained Q to collect inferred Q(X) and
train the generator Gθ(u) ∼ p(θ) for higher hierarchical sampling, where u is the other noise
source independent of z. In addition to the layer-wise training, a joint training may further boost
the performance. The full generative process for sampling one point cloud could be represented as
{xi}ni=1 = {Gx(zi, Gθ(u))}ni=1, where z1, . . . , zn ∼ p(z) and u ∼ p(u).

We call the proposed GAN framework for learning to generative point clouds as PC-GAN as shown
in Figure 2. The conditional distribution matching with a learned inference in PC-GAN can also be
interpreted as an encoder-decoder formulation (Kingma & Welling, 2013). The difference between
it and the point cloud autoencoder (Achlioptas et al., 2017; Yang et al., 2018) will be discussed in
Section 4.

A.2 UPPER IMPLEMENTATION

The primal form of Wasserstein distance is defined as

w(P,G) = inf
γ∈Γ(P,G)

∫
‖x− y‖1dγ(x, y),

where γ is the coupling of P and G. The Wasserstein distance is also known as optimal transport
(OT) or earth moving distance (EMD). As the name suggests, when w(P,G) is estimated with finite
number of samples X = x1, . . . , xn and Y = y1, . . . , yn, we find the one-to-one matching between
X and Y such that the total pairwise distance is minimal. The resulting minimal total (average)
pairwise distance is w(X,Y). In practice, finding the exact matching efficiently is non-trivial and
still an open research problem (Peyré et al., 2017). Instead, we consider an approximation provided
by Bertsekas (1985). It is an iterative algorithm where each iteration operates like an auction whereby
unassigned points x ∈ X bid simultaneously for closest points y ∈ Y , thereby raising their prices.
Once all bids are in, points are awarded to the highest bidder. The crux of the algorithm lies in
designing a non-greedy bidding strategy. One can see by construction the algorithm is embarrassingly
parallelizable, which is favourable for GPU implementation. One can show that algorithm terminates
with a valid matching and the resulting matching cost WU (X,Y) is an ε-approximation of w(X,Y).
Thus, the estimate can serve as an upper bound, i.e.

w(X,Y) ≤WU (X,Y) ≤ (1 + ε)w(X,Y), (8)

We remark estimating Wasserstein distance w(P,G) with finite sample via primal form is only
favorable in low dimensional data, such as point clouds. The error between w(P,G) and w(X,Y) is
O(1/n1/d), where d is data dimension (Weed & Bach, 2017). Therefore, for high dimensional data,
such as images, we cannot accurately estimate wasserstein distance in primal and its upper bound
with a small minibatch.

12

Published as a workshop paper at ICLR 2019

Finding a modified primal form with low sample complexity is also an open research problem (Cuturi,
2013; Genevay et al., 2018), and combining those into the proposed sandwiching objective for high
dimensional data is left for future works.

A.3 LOWER IMPLEMENTATION

The dual form of Wasserstein distance is defined as

w(P,G) = sup
f∈L1

Ex∼P f(x)− Ex∼Gf(x), (9)

where Lk is the set of k-Lipschitz functions whose Lipschitz constant is no larger than k. In practice,
deep neural networks parameterized by φ with constraints fφ ∈ Ωφ (Arjovsky et al., 2017), result in
a distance approximation

WL(P,G) = max
fφ∈Ωφ

Ex∼P fφ(x)− Ex∼Gfφ(x). (10)

If there exists k such that Ωf ⊆ Lk, then WL(P,G)/k ≤ w(P,G) ∀P,G is a lower bound. To
enforce Ωφ ⊆ Lk, Arjovsky et al. (2017) propose a weight clipping constraint Ωc, which constrains
every weight to be in [−c, c] and guarantees that Ωc ⊆ Lk for some k. However, choosing clipping
range c is non-trivial in practice. Small ranges limit the capacity of networks, while large ranges result
in numerical issues during the training. On the other hand, in addition to weight clipping, several
constraints (regularization) have bee proposed with better empirical performance, such as gradient
penalty (Gulrajani et al., 2017) and L2 ball (Mroueh & Sercu, 2017). However, there is no guarantee
the resulted functions are still Lipschitz or the resulted distances are lower bounds of Wasserstein
distance. To take the advantage of those regularization with the Lipschitz guarantee, we propose a
simple variation by combining weight clipping, which always ensures Lipschitz functions.

Lemma 2. There exists k > 0 such that

max
f∈Ωc∩Ωφ

Ex∼P [fφ(x)]− Ex∼G[fφ(x)] ≤ 1

k
w(P,G) (11)

Note that, if c→∞, then Ωc ∩ Ωφ = Ωφ. Therefore, from Proposition 2, for any regularization of
discriminator (Gulrajani et al., 2017; Mroueh & Sercu, 2017; Mroueh et al., 2017), we can always
combine it with a weight clipping constraint Ωc to ensure a valid lower bound estimate of Wasserstein
distance and enjoy the advantage that it is numerically stable when we use large c compared with
original weight-clipping WGAN (Arjovsky et al., 2017).

In practice, we found combing L2 ball constraint and weight-clipping leads to satisfactory perfor-
mance. We also studied popular WGAN-GP (Gulrajani et al., 2017) with weight clipping to ensure
Lipschitz continuity of discriminator, but we found L2 ball with weight clipping is faster and more
numerically stable to train.

B TECHNICAL PROOF

Lemma 1. Suppose we have two approximators to Wasserstein distance: an upper bound WU and
a lower WL, such that ∀P,G : (1 + ε1)w(P,G) ≤ WU (P,G) ≤ (1 + ε2)w(P,G) and ∀P,G :
(1− ε2)w(P,G) ≤WL(P,G) ≤ (1− ε1)w(P,G) respectively, for some ε2 > ε1 > 0 and ε1 > ε2/3.
Then, using the sandwiched estimator Ws from (6), we can achieve tighter estimate of the Wasserstein
distance than using either one estimator, i.e.

∃s : |Ws(P,G)− w(P,G)| < min{|WU (P,G)− w(P,G)|, |WL(P,G)− w(P,G)|} (12)

13

Published as a workshop paper at ICLR 2019

Proof. We prove the claim by show that LHS is at most ε1, which is the lower bound for RHS.

|Ws(P,G)− w(P,G)|
= |(1− s)WU (P,G) + sWL(P,G)− w(P,G)|
= |(1− s)(WU (P,G)− w(P,G))− s(w(P,G)−WL(P,G))|
≤ max{(1− s) (WU (P,G)− w(P,G))︸ ︷︷ ︸

≤ε2

, s (w(P,G)−WL(P,G))︸ ︷︷ ︸
≤ε2

}

−min{(1− s) (WU (P,G)− w(P,G))︸ ︷︷ ︸
≥ε1

, s (w(P,G)−WL(P,G))︸ ︷︷ ︸
≥ε1

}

≤ max{(1− s), s}ε2 −min{(1− s), s}ε1

(13)

Without loss of generality we can assume λ < 0.5, which brings us to

|Ws(P,G)− w(P,G)| ≤ (1− λ)ε2 − λε1 (14)

Now if we chose ε2−ε1
ε2+ε1

< λ < 0.5, then |Ws(P,G)− w(P,G)| < ε1 as desired.

Lemma 2. There exists k > 0 such that

max
f∈Ωc∩Ωφ

Ex∼P [fφ(x)]− Ex∼G[fφ(x)] ≤ 1

k
w(P,G) (15)

Proof. Since there exists k such that maxf∈Ωc Ex∼P [fφ(x)]−Ex∼G[fφ(x)] ≤ 1
kw(P,G), it is clear

that

max
f∈Ωc∩Ωφ

Ex∼P [fφ(x)]− Ex∼G[fφ(x)] ≤ max
f∈Ωc

Ex∼P [fφ(x)]− Ex∼G[fφ(x)] ≤ 1

k
w(P,G). (16)

C LARGER RESULTS

The larger and more hierarchical sampling discussed in Section 5.2 can be found in Figure 10. The
reconstruction results on unseen classes are shown in Figure 11.

D ADDITIONAL STUDY

D.1 INTERPOLATION BETWEEN ROTATIONS

It is also popular to show intra-class interpolation. In addition show simple intra-class interpolations,
where the objects are almost aligned, we present an interesting study on interpolations between
rotations. During the training, we only rotate data with 8 possible angles for augmentation, here we
show it generalizes to other unseen rotations as shown in Figure 12.

However, if we linearly interpolate the code, the resulted change is scattered and not smooth as shown
in Figure 12. Instead of using linear interpolation, We train a 2-layer MLP with limited hidden layer
size to be 16, where the input is the angle, output is the corresponding latent representation of rotated
object. We then generate the code for rotated planes with this trained MLP. It suggests although
the transformation path of rotation on the latent space is not linear, it follows a smooth trajectory2.
It may also suggest the geodesic path of the learned manifold may not be nearly linear between
rotations. Finding the geodesic path with a principal method (Shao et al., 2017) and Understanding
the geometry of the manifold for point cloud worth more deeper study as future work.

D.2 CLASSIFICATION RESULTS

We evaluate the quality of the representation acquired from the learned inference network Q. We
train the inference network Q and the generator Gx on the training split of ModelNet40 with data

2By the capability of 1-layer MLP.

14

Published as a workshop paper at ICLR 2019

Figure 10: Randomly sampled objects and corresponding point cloud from the hierarchical sampling.
Even if there are some defects, the objects are smooth, symmetric and structured. It suggests PC-GAN
captures inherent patterns and learns basic building blocks of objects.

augmentation as mentioned above for learning generative models without label information. We then
extract the latent representation Q(X) for each point clouds and train linear SVM on the that with its
label. We apply the same setting to a linear classifier on the latent code of Achlioptas et al. (2017).

We only sample 1000 as input for our inference network Q. Benefited by the Deep Sets architecture
for the inference network, which is invariant to number of points. Therefore, we are allowed to sample
different number of points as input to the trained inference network for evaluation. Because of the
randomness of sampling points for extracting latent representation, we repeat the experiments 20
times and report the average accuracy and standard deviation on the testing split in Table 2. By using
1000 points, we are already better than Achlioptas et al. (2017) with 2048 points, and competitive
with the supervised learning algorithm Deep Sets. We also follow the same protocol as Achlioptas
et al. (2017); Wu et al. (2016) that we train on ShapeNet55 and test the accuracy on ModelNet40.
Compared with existing unsupervised learning algorithms, PC-GAN has the best performance as
shown in Table 3.

Method # points Accuracy
PC-GAN 1000 87.5± .6%
PC-GAN 2048 87.8± .2%

AAE (Achlioptas et al., 2017) 2048 85.5± .3%
Deep Sets (Zaheer et al., 2017) 1000 87± 1%
Deep Sets (Zaheer et al., 2017) 5000 90± .3%

Table 2: Classification accuracy results.

We note that Yang et al. (2018) using additional geometry features by appending pre-calculated
features with 3-dimensional coordinate as input or using more advanced grouping structure to achieve
better performance. Those techniques are all applicable to PC-GAN and leave it for future works by
leveraging geometry information into the proposed PC-GAN framework.

15

Published as a workshop paper at ICLR 2019

(a) Sofa (b) Stool

(c) Table (d) Toilet

(e) TV Stand (f) Vase

Figure 11: The reconstructed objects from unseen categories. In each plot, LHS is true data while
RHS is PC-GAN. PC-GAN generalizes well as it can match patterns and symmetries from categories
seen in the past to new unseen categories.

Figure 12: Interpolating between rotation of an aeroplane, using our latent space representation.

D.3 IMAGES TO POINT CLOUD

Here we demonstrate a potential extension of the proposed PC-GAN for images to point cloud
applications. After training Q as described in 3 and Appendix A.1, instead of learning Gθ for
hierarchical sampling, we train a regressor R, where the input is the different views of the point
cloud X , and the output is Q(X). In this proof of concept experiment, we use the 12 view data
and the Res18 architecture in Su et al. (2015), while we change the output size to be 256. Some
example results on reconstructing testing data is shown in Figure 13. A straightforward extension is
using end-to-end training instead of two-staged approached adopted here. Also, after aligning objects
and take representative view along with traditional ICP techniques, we can also do single view to
point cloud transformation as Choy et al. (2016); Fan et al. (2017); Häne et al. (2017); Groueix et al.
(2018a), which is not the main focus of this paper and we leave it for future work.

16

Published as a workshop paper at ICLR 2019

Method Accuracy
SPH (Kazhdan et al., 2003) 68.2%

T-L Network (Girdhar et al., 2016) 74.4%
LFD (Chen et al., 2003) 75.5%

VConv-DAE (Sharma et al., 2016) 75.5%
3D GAN (Wu et al., 2016) 83.3%

AAE (Achlioptas et al., 2017) 84.5%
PC-GAN 86.9%

Table 3: Classification accuracy results (Trained on ShapeNet55).

(a) Lamp (b) Chair (c) Plane

Figure 13: Image to Point Cloud

E DEEP SETS (PERMUTATION EQUIVARIANCE LAYERS)

We briefly review the notion of Permutation Equivariance Layers proposed by Zaheer et al. (2017) as
a background required for this paper. For more details, please refer to Zaheer et al. (2017).

Zaheer et al. (2017) propose a generic framework of deep learning for set data. The building block
which can be stacked to be deep neural networks is called Permutation Equivariance Layer. One
Permutation Equivariance Layer example is defined as

f(xi) = σ(xi + γmaxpool(X)),

where σ can be any functions (e.g. parametrized by neural networks) and X = x1, . . . , xn is an input
set. Also, the mox pooling operation can be replaced with mean pooling. We note that PointNetQi
et al. (2017a) is a special case of using Permutation Equivariance Layer by properly defining σ(·).
In our experiments, we follow Zaheer et al. (2017) to set σ to be a linear layer with output size h
followed by any nonlinear activation function.

F EXPERIMENT SETTINGS

F.1 SYNTHETIC DATA

The batch size is fixed to be 64. We sampled 10,000 samples for training and testing.

For the inference network, we stack 3 mean Permutation Equivariance Layer (Zaheer et al., 2017),
where the hidden layer size (the output of the first two layers) is 30 and the final output size is 15.
The activation function are used SoftPlus. For the generater is a 5 layer MLP, where the hidden layer
size is set to be 30. The discirminator is 4 layer MLP with hidden layer size to be 30. For Achlioptas
et al. (2017), we change their implementation by replcing the number of filters for encoder to be
[30, 30, 30, 30, 15], while the hidden layer width for decoder is 10 or 20 except for the output layer.
The decoder is increased from 3 to 4 layers to have more capacity.

F.2 MODELNET40

We follow Zaheer et al. (2017) to do pre-processing. For each object, we sampled 10, 000 points
from the mesh representation and normalize it to have zero mean (for each axis) and unit (global)
variance. During the training, we augment the data by uniformly rotating 0, π/8, . . . , 7π/8 rad on the
x-y plane. The random noise z2 of PC-GAN is fixed to be 10 dimensional for all experiments.

For Q of single class model, we stack 3 max Permutation Equivariance Layer with output size to
be 128 for every layer. On the top of the satck, we have a 2 layer MLP with the same width and the
output . The generator Gx is a 4 layer MLP where the hidden layer size is 128 and output size is 3.

17

Published as a workshop paper at ICLR 2019

The discirminator is 4 layer MLP with hidden layer size to be 128. The random source u and z are
set to be 64 and 10 dimensional and sampled from standard normal distributions.

For training whole ModelNet40 training set, we increae the width to be 256. The generator Gx is a 5
layer MLP where the hidden layer size is 256 and output size is 3. The discirminator is 5 layer MLP
with hidden layer size to be 256. For hirarchical sampling, the top generator Gθ and discriminator are
all 5-layer MLP with hidden layer size to be 256.

For AAE, we follow every setting used in Achlioptas et al. (2017), where the latent code size is 128
and 256 for single class model and whole ModelNet40 models.

18

	Introduction
	Problem Definition and Difficulty
	Proposed Method
	Different Divergences for Matching Point Clouds
	Tighter Solutions via Sandwiching
	Upper and Lower Bound Implementation

	Related Works
	Experiments
	Synthetic Datasets
	Study on ModelNet40

	Conclusion
	Details of the Proposed Method
	Neural Network Realization of Inference Network
	Upper Implementation
	Lower Implementation

	Technical Proof
	Larger Results
	Additional Study
	Interpolation between Rotations
	Classification Results
	Images to Point Cloud

	Deep Sets (Permutation Equivariance Layers)
	Experiment Settings
	Synthetic Data
	ModelNet40

