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ABSTRACT

Although few-shot learning research has advanced rapidly with the help of meta-
learning, its practical usefulness is still limited because most of the researches
assumed that all meta-training and meta-testing examples came from a single do-
main. We propose a simple but effective way for few-shot classification in which a
task distribution spans multiple domains including previously unseen ones during
meta-training.

The key idea is to build a pool of models, each of which is responsible for a
different group of tasks, and to learn to select the best one for a particular task
through multi-domain meta-learning. This reduces task-specific adaptation over
a complex task distribution to a simple selection problem rather than modifying
the model with a number of parameters at meta-testing time. Inspired by common
multi-task learning techniques, we let all models in the pool share a base network
and add a separate modulator to each model to refine the base network in its own
way. This architecture allows the pool to maintain representational diversity and
each model to have domain-invariant representation as well.

Experiments show that our selection scheme outperforms other few-shot classifi-
cation algorithms when target tasks come from many different domains. They also
reveal that aggregating outputs from all constituent models is effective for tasks
from unseen domains indicating the effectiveness of our framework.

1 INTRODUCTION

Few-shot learning in the perspective of meta-learning aims to train models which can quickly solve
novel tasks or adapt to new environments with limited number of examples. In case of few-shot
classification, models are usually evaluated on a held-out dataset which does not have any common
class with the training dataset. In the real world, however, we often face harder problems in which
novel tasks arise arbitrarily from many different domains even including previously unseen ones.

In this study, we propose a more practical few-shot classification algorithm to generalize across do-
mains beyond the common assumption, i.e., meta-training and meta-testing within a single domain.
Our approach to cover a complex multi-domain task distribution is to construct a pool of multi-
ple models and learn to select the best one given a novel task through meta-training over various
domains. This recasts task-specific adaption across domains as a simple selection problem, which
could be much easier than manipulating high-dimensional parameters or representations of a single
model to adapt to a novel task.

Furthermore, we enforce all models to share some of the parameters and train per-model modula-
tors with model-specific parameters on top of that. By doing so, each model could keep important
domain-invariant features while the model pool has representational diversity as a whole without a
significant increase of model parameters.

We train and test our algorithms on various image classification datasets with different characteris-
tics. Experimental results show that the proposed selection scheme outperforms other state-of-the-
art algorithms in few-shot classification tasks from many different domains without being given
any knowledge of the domain which the task belongs to. We also show that even few-shot clas-
sification tasks from previously unseen domains, i.e., domains which have never appeared during
meta-training, can be done successfully by averaging outputs of all models.
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Figure 1: Training (a) a base network fg(-; 0, ), (b) modulators fg(+; -, «;), (c) a selection network
fs(; @). (x1 - an example, y, : a label, g : a prediction, 2, : an embedded vector of a support (n=s)
or query (n=q) set in a domain m.)

2 METHODS

2.1 PROBLEM STATEMENT

We follow the common setting of few-shot classification in the meta-learning community (Vinyals
et al., 2016). For a N-way, K-shot classification task an episode which consists of a support set
S = {(zf,y5)}NE and a query set Q = {(zf,y!)}, is sampled from a given dataset, where
xf, xl, y7 and y; represent examples and their correct labels respectively and 7' is the number of
query examples. Once a model has been trained with respect to a number of random episodes at
meta-training time, it is expected to predict a correct label for an unlabeled query given only a few
labeled examples (i.e., support set) even if all these came from classes which have never appeared
during meta-training.

Based on this setting, we try to build a domain-agnostic meta-learner beyond the common meta-
learning assumptions, i.e., meta-training within a single domain and meta-testing within the same
domain. We perform meta-training over multiple diverse domains, which we call source domains
Dg,,Ds,, -+ ,Dg,,, where M is the number of source domains, expecting to obtain a domain-
generalized meta-learner. Since we presume that one particular dataset defines its own domain, we
realize this idea by training this meta-learner on various tasks from many different datasets.

In our study, the trained meta-learner is meta-tested on a target domain D7 for two types of cross-
domain few-shot classification tasks. One is a task which is required to classify from held-out classes
of multiple source domains (i.e., Dy € {Dg,,Ds,, - ,Ds,, }) without knowing from which
dataset each task is sampled. This could be used to evaluate whether the meta-learner is capable
of adapting to a complex task distribution across multiple domains. We also tackle a task sampled
from previously unseen datasets during the meta-training (i.e., Dg, N Dy = ( for all ), which
requires to generalize over out-of-distribution tasks in domain-level.

2.2 BUILDING A POOL OF EMBEDDING MODELS WITH DISPARATE MODULATORS

Basically, we perform metric-based meta-learning to learn a good metric space in which the support
and query examples from the same class are located closely over various domains. While recent
meta-learning methods have been proposed to train a single model commonly applicable to various
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Figure 2: Architecture of one embedding model fg(+; 0, a;).

potential tasks and to learn to adjust the model to a particular task for further improvement (Rusu
et al.| 2019; Oreshkin et al.| 2018 [Ye et al.|[2018;; Triantafillou et al.l|2019), we train a pool of mul-
tiple embedding models each of which defines a different metric space and a meta-model to select
the best model from them given a novel task. This makes task-specific adaptation easier and more
effective to learn because our approach is required to solve only a simple classification problem,
i.e., choose one of all pre-trained models, instead of learning to manipulate high-dimensional model
components, such as model parameters or activations, directly to adapt to novel tasks from various
domains.

Rather than training each model separately, we take an approach that all models share a considerable
amount of parameters and they are differentiated by adding per-model modulators as done usually
in multi-task learning (Ruder},2017). The rationale behind this is to let our model pool capture good
domain-invariant features by the shared parameters as well as have diversity, which is desirable to
represent the complex cross-domain task distribution, without a significant increase of the number
of parameters.

To realize this idea, we first build a base network fz(+; 6) shared among all models. One large virtual
dataset is constructed by aggregating all source datasets. The base network is trained on this dataset
following typical supervised learning procedure (Figure [I[a)). In the next step, we build one model
per source domain by adding a per-model modulator with a parameter set «; on top of the frozen
base network. We then train each modulator on one dataset Dg, by performing metric-based meta-
learning in the same way as the Prototypical Networks (ProtoNet) (Snell et al.,[2017) (Figure b)).
Finally, we have a pool of embedding models which are ready for non-parametric classification in
the same way as ProtoNet.

As shown in Figure [2] we add the modulator components to the base network in a per-layer basis
following the idea proposed in (Rebuffi et al. [2018)). This way has turned out to be more effective
than the conventional approach, i.e., adding a few extra layers for each model, for domain-specific
representation. Moreover, this allows each modulated model to have the same computational cost at
inference time as the base network’s because all modulator components can be fused into existing
convolution 3 x 3 operations. We try two modulator architectures, convolution 1x 1 and channel-wise
transform (i.e., per-channel trainable scale and bias). The former shows slightly better performance
whereas the latter uses much less parameters only incurring negligible memory overhead to the pool.
More details of the architecture including the number of parameters can be found in Appendix [B]

2.3  LEARNING TO SELECT THE BEST MODEL FOR A TARGET TASK

After the construction of the pool, we build a meta-model to predict the most suitable model from
all constituent models in the pool for a given task as the final step of our training. By training this
model over a number of episodes sampled randomly from all available source datasets, we expect
this ability to be generalized to novel tasks from various domains including unseen ones during
meta-training.
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As depicted in Figure [T[c), this meta-model parameterized by ¢, which we call a model selection
network, is trained in order to map a task representation z;,s; for a particular task to an index of
the best model in the model pool. The task representation is obtained by passing all examples in
the support set of the task through the base network and taking a mean of all resulting embedded
vectors to form a fixed-length summary of the given task. During meta-training, the index of the best
model, which is the ground truth label for training the selection network, is generated by measuring
the classification accuracy values of all models in the pool given the query set and picking an index
of one which has the highest accuracy.

In our setup, the task-specific adaptation is reduced to a (M+1)-way classification problem when
we have M+1 embedding models including the base network learned from M available source
datasets. Learning this classifier could be far simpler than learning to adapt model parameters (Rusu
et al.| 2019), embedded vectors (Ye et al.,|2018) or per-layer activations (Oreshkin et al.| 2018)) to a
particular task because their dimensions are usually much larger than that of our selection network
outputs, i.e., the number of the pre-trained models.

The overall training procedure for constructing the pool and training the selection network is sum-
marized in Algorithm[I]in Appendix[C]

2.4 INFERENCE WITH THE POOL AT META-TESTING TIME

(a) (b)
Model pool Model pool

Figure 3: Inference (a) with one model chosen by the selection network fs(-; ¢) (b) by averaging
output probabilities from all constituent models in the pool.

One way of the inference is to predict a class with the best single model chosen by the selection
network fs(+; ¢) for a given support set (Figure a)). Following the method proposed in ProtoNet
as shown in Equation[T] a class prediction § to a query example 7 is made by finding a class whose
prototype ¢, is the closest one to an embedded vector of the given query example. Specifically, the
prototype for the class ¥ is defined as a mean of embedded vectors of all examples in the support set
belonging to a class y and squared Euclidean distances d? to these prototypes are compared between
the classes.

§ = argmin d! (29) = argmin ||c, — fr(29;0, a;)||*.
Y Y

(D

Another way to benefit from the model pool is to combine outputs from all available embedding
models for inference (Figure [3[b)). We take the simplest approach to average outputs of all models
in the level of class prediction probability. As described in Equation[Z] we collect output probabilities
p(y | x%;1) based on the relative distances to class prototypes d? for a given task. Then, our final
prediction § would be a class to maximize a mean of these probabilities from all M + 1 models.

M M

M1 ;p(y | 2954) = arg?r/nax Y ; softmax (—dY (x?)) 2

7 = argmax
Yy

As the last step, we adopt test-time ‘further adaptation’ proposed in (Chen et al., 2019), which turned
out to make additional performance improvement in most cases. Both experimental results with and
without the further adaptation are presented in Section [3|and Appendix [D] with its implementation
details in Appendix[C]
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3 EXPERIMENTS

3.1 SETUP
3.1.1 DATASETS

We use eight image classification datasets, denoted as Aircraft, CIFAR100, DTD, GTSRB, Ima-
geNet12, Omniglot, SVHN, UCF101 and Flowers, introduced in the Visual Decathlon Challenge
(Rebuffi et al.l |2017) for evaluation. These are considered as eight different domains in our exper-
iments. All datasets are resplit for the few-shot classification, i.e., no overlap of classes between
meta-training and meta-testing. More details about the datatsets can be found in Appendix

3.1.2 ALGORITHMS

We denote our methods using the model picked by the selection network as DoS (Domain-
generalized method by Selection) and DoS-Ch, which modulate the base network with convolution
1x1 and channel-wise transform respectively. We also explore our averaging-based methods, DoA
(Domain-generalized method by Averaging) and DoA-Ch, which generate an output by averaging
class prediction probabilities of all constituent models modulated by the proposed two types of mod-
ulators.

Our algorithms are compared with Fine-tune, Simple-Avg, ProtoNet (Snell et al., 2017), FEAT (Ye
et al., 2018) and ProtoMAML (Triantafillou et al., 2019). Fine-tune is a baseline method, which adds
a linear classifier on top of the pre-trained base network and fine-tune it with the support set examples
for 100 epochs at meta-testing. In Simple-Avg, we train an embedding model independently on each
source domain without sharing any parameters and perform inference by averaging class prediction
probabilities of all these models. FEAT and ProtoMAML are the state-of-the-art algorithms focusing
on single domain and cross-domain setups respectively. TADAM (Oreshkin et al., 2018) was also
tested but excluded from the results because its training did not converge in our setup. All these
algorithms are tested by our own implementations.

3.1.3 TRAINING AND TESTING

We pre-train all models of the compared algorithms with our base network since the pre-training has
shown additional performance gain empirically. Then, we meta-train these models in an algorithm-
specific way on randomly generated episodes except the Fine-tune, the non-episodic baseline. At
each episode, a target domain is chosen randomly from source domains, then a target task is sampled
from that domain. The trained models are tested for 5-way classification tasks with 1-shot and 5-shot
configurations.The test results are averaged over 600 test episodes with 10 queries per class. Other
details about the training are explained in Appendix [C|

3.2 RESULTS
3.2.1 FEW-SHOT CLASSIFICATION ON SEEN DOMAINS

We evaluate the above-mentioned algorithms in a multi-domain test setup constructed using all
available datasets. Specifically, we meta-train a model for each algorithm on all available eight
datasets. Then, we meta-test the trained model for various tasks sampled from these eight datasets
without knowing which dataset the task comes from. Figure [4] depicts test accuracy for each target
dataset and the average accuracy over the eight datasets.

Our selection methods, DoS and DoS-Ch, outperform other few-shot classification methods in most
cases. Two state-of-the art algorithms, FEAT and ProtoMAML, do not seem as effective as ours under
this complex task distribution across domains. ProtoMAML shows comparable or better results in
some cases, but much inferior results in other cases. ProtoNet seems relatively stable, but does not
produce better results in any case. FEAT works worse than these two algorithms in most cases.

Although our averaging methods, DoA and DoA-Ch, seem competitive in many cases, they are out-
performed by the selection methods always. This implies that the learned selection network is work-
ing properly, which is highly likely to select the model with the modulator trained on the same
domain as the given task even without any information about the domain at testing time. Another
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Figure 4: Test accuracy on various seen domains. (Accuracy values are shown in Table )
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Figure 5: Test accuracy on various unseen domains. (Accuracy values are shown in Table @)

implication is that the best single model might be better than the averaging approach if a model from
the same domain exists. It is also worth noting that DoS-Ch is quite competitive despite much less
number of parameters than DoS.

3.2.2 FEW-SHOT CLASSIFICATION ON UNSEEN DOMAINS

We also report the results on unseen domains in Figure[5] Given a target dataset for test, we train all
models on other seven datasets. Therefore, we end up with eight different models for each algorithm
because there exist eight different combinations of the source datasets.

Our methods still outperform other algorithms in this more challenging setting. This reveals that
our approach can be generalized to novel domains as well. Differently from the seen domain cases,
our averaging methods, DoA and DoA-Ch, perform better than all other algorithms including our
selection methods. It seems to make sense since the averaging could induce natural synergy be-
tween beneficial models even if we do not know which models are good for a given task. However,
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our averaging methods significantly outperform Simple-Avg, which implies that our way of the pool
construction to encourage keeping domain-invariant features is another key factor to the high per-
formance of our averaging methods.

3.2.3 FEW-SHOT CLASSIFICATION ON VARYING NUMBER OF SOURCE DOMAINS

We conduct experiments with varying number of source datasets. Following the common real-world
situation, we add from the largest dataset to the smallest one to our sources for meta-training. Tables
|I| and|2| show the experimental results with 2, 4, and 6 source datasets on seen and unseen domains
respectively.

Our selection and averaging methods outperform others consistently on seen and unseen domains
similarly to the previous results. Apart from comparing between the algorithms, it is commonly
observed over all algorithms that the added source often harms the performance. For example, the
CIFARI100 tasks tend to work poorer as the number of source datasets increases in the seen domain
case. This means that we should pay more attention to avoiding negative transfer between heteroge-
neous domains.

Table 1: Few-shot classification accuracy of varying number of sources on seen target domains.

METHODS
S T FINE-TUNE PROTONET FEAT PROTOMAML DoS DoS-CH DoA DOA-CH
Ccl C 54.72% 65.47% 65.39% 69.51% 73.04% 72.63% 71.19% 69.58%
? I 57.50% 55.88% 52.53% 56.37% 57.71% 57.84% 59.39% 58.05%
AVERAGE 56.11% 60.68% 58.96% 62.94% 65.38% 65.24% 65.29% 63.82%
C 54.24% 58.31% 63.82% 68.93% 71.11% 70.15% 68.14% 66.67%
cgio © 81.21% 90.58% 95.40% 96.61% 96.96% 96.36% 92.94% 91.55%
Y I 55.70% 52.04% 50.58% 53.72% 55.78% 56.10% 58.04% 57.74%
(6] 94.82% 97.14% 95.10% 99.52% 98.94% 98.73% 97.86% 97.64%
AVERAGE 71.49% 74.52% 76.23% 79.70% 80.70% 80.33% 79.25% 78.40%
A 40.68% 51.92% 62.77% 70.78% 61.94% 57.49% 47.77% 46.86%
C 54.03% 58.68% 56.56% 60.47% 69.54% 70.32% 66.48% 65.41%
A,C,G, G 76.35% 89.95% 95.64% 96.50% 97.71% 96.78% 89.65% 89.62%
1,O,U I 53.37% 52.80% 48.62% 51.74% 54.59% 56.03% 57.34% 58.03%
(6] 94.06% 96.94% 95.30% 99.11% 98.89% 98.76% 97.20% 97.92%
U 62.01% 65.49% 62.20% 67.11% 70.44% 70.23% 69.16% 71.42%
AVERAGE 63.42% 69.30% 70.18% 74.29% 75.52% 74.94% 71.27% 71.54%

S: source datasets, T: target dataset
A: Aircraft, C: CIFAR100, G: GTSRB, I: ImageNet12, O: Omniglot, U: UCF101, F: Flowers

Table 2: Few-shot classification accuracy of varying number of sources on unseen target domains.

METHODS
S T FINE-TUNE ~ PROTONET FEAT PROTOMAML DoS Dos-CH DoA DOA-CH
A 38.65% 39.38% 36.71% 35.37% 38.43% 39.27% 39.14% 40.57%
D 53.89% 55.27% 52.39% 51.04% 54.80% 54.90% 57.15% 56.99%
cl G 70.01% 81.37% 77.67% 81.25% 83.83% 82.65% 80.13% 79.93%
’ o 92.72% 92.62% 90.61% 91.37% 93.11% 93.31% 94.00% 94.34%
18 63.80% 63.25% 60.04% 59.89% 63.67% 64.81% 66.28% 67.15%
F 79.28% 81.77% 78.86% 80.50% 81.26% 80.84% 82.96% 82.85%
AVERAGE 66.39% 68.94% 66.05% 66.63% 69.18% 69.30% 69.94% 70.31%
A 38.12% 36.88% 35.11% 34.96% 37.90% 38.04% 39.66% 39.99%
C.G1O D 55.04% 49.96% 49.55% 49.79% 55.85% 56.53% 56.73% 55.67%
T 18 63.25% 56.53% 60.93% 64.12% 64.32% 64.84% 67.58% 67.69%
F 79.88% 76.79% 77.67% 81.40% 80.69% 79.54% 83.25% 82.20%
AVERAGE 59.07% 55.04% 55.82% 57.57% 59.69% 59.74% 61.81% 61.39%
A,C.G D 53.60% 51.52% 51.86% 50.94% 55.54% 55.69% 56.71% 57.07%
I,O,U F 80.80% 80.58% 79.70% 79.40% 81.62% 81.66% 84.30% 84.50%
AVERAGE 67.20% 66.05% 65.78% 65.17% 68.58% 68.68% 70.51% 70.79%

S: source datasets, T: target dataset
A: Aircraft, C: CIFAR100, G: GTSRB, I: ImageNet12, O: Omniglot, U: UCF101, F: Flowers
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4 RELATED WORKS

Few-shot learning has been studied actively as an effective means for a better understanding of
human learning or as a practical learning method only requiring a small number of training examples
(Lake et al.,|2015; |Li et al., |2006). Meta-learning is one of the most popular techniques to solve the
few-shot learning problems, which include learning a task-invariant metric space (Snell et al., 2017;
Vinyals et al.,[2016), learning to optimize (Andrychowicz et al.,[2016; |Ravi & Larochelle, |2017) or
learning good weight initialization (Finn et al., 2017} Nichol et al., [2018)) for forthcoming tasks.

Follow-up studies showed that the metric-based meta-learning could be improved further by learning
to modulate that metric space in a task-specific manner (Gidaris & Komodakis,[2018;|Oreshkin et al.,
2018;|Q1ao et al., [2018}|Ye et al., 2018). Similarly, it has been reported that the task-common initial
parameters could be refined for a given task producing task-specific initialization (Rusu et al.|[2019
Vuorio et al., 2018 [Yao et al., [2019).

Recent few-shot learning studies have tried to tackle challenging problems under more realistic
assumptions. Some studies dealt with few-shot learning under domain shift between training and
testing (Kang & Feng, 2018; [Wang & Hebert, 2016). A more realistic evaluation method was pro-
posed for few-shot learning to overcome limitations of the current popular benchmarks including
the lack of domain divergence (Triantafillou et al.,2019). One study performed an extensive and fair
comparative analysis of well-known few-shot learning methods (Chen et al.,2019).

Our network architecture is inspired by the parameter sharing strategies for multi-task learning
(Ruder] 2017) and multi-domain learning with domain-specific adaptation (Rebuffi et al., 2018)
because they have been known to lead to efficient parameterization and positive knowledge trans-
fer between heterogeneous entities. Similar to our approach, a few suggestions combined multiple
models to benefit from their diversity (Dvornik et al.l 2019} |Liu et al.,|2019; [Park et al., 2019). Our
work also has something in common with the mixture-of-experts approach (Shazeer et al., [2017) in
a sense that a part of a large scale model would be executed conditionally benefiting from a large
amount of the learned knowledge at low computational cost.

Our research is also related to domain adaptation or generalization (Ganin et al., 2016; Motiian
et al.|[2017). However, most of the researches about these topics assume tasks with the same classes
in both training and testing whereas our methods do not impose such limitations. Interestingly, some
studies showed that the episodic training which is commonly adopted in many few-shot learning
techniques, was also useful for domain generalization (Li et al.| 2018}2019).

5 CONCLUSION AND FUTURE WORKS

We proposed a new few-shot classification method which is capable of dealing with many different
domains including unseen domains. The core idea was to build a pool of embedding models, each
of which was diversified by its own modulator while sharing most of parameters with others, and
to learn to select the best model for a target task through cross-domain meta-learning. The simpli-
fication of the task-specific adaptation as a small classification problem made our selection-based
algorithm easy to learn, which in turn helped the learned model to work more effectively for multi-
domain few-shot classification. The architecture with one shared model and disparate modulators
encouraged our pool to maintain domain-invariant knowledge as well as cross-domain diversity. It
helped our algorithms to generalize to heterogeneous domains including unseen ones even when we
used one best model solely or all models collectively.

We believe that there is still a large room for improvement in this challenging task. It would be one
promising extension to find the optimal way to build the pool without the constraint on the number
of models (i.e., one model per dataset) so that it can work even with a single source dataset with
large diversity. Soft selection or weighted averaging can be also thought as one of future research
directions because a single model or uniform averaging is less likely to be optimal. We can also
consider a more scalable extension to allow continual expansion of the pool only by training a mod-
ulator for an incoming source domain without re-training all existing models in the pool. Although
the number of parameters does not increase much by virtue of the parameter sharing between mod-
els, the computational cost in the averaging-based methods needs to be improved over the current
linear increase with the number of models.
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A  DATASETS

In our experiments, we use the Visual Decathlon Challenge dataset (Rebuffi et al.| 2017) which
consists of ten datasets for image classification listed below.

e FGVC-Aircraft Benchmark (Aircraft, A) (Maji et al., 2013)

e CIFAR100 (CIFAR100, C) (Krizhevsky}, 2009)

e Daimler Mono Pedestrian Classification Benchmark (DMPCB) (Munder & Gavrilal, [2006))
e Describable Texture Dataset (DTD, D) (Cimpoi et al., 2014)

e German Traffic Sign Recognition Benchmark (GTSRB, G) (Stallkamp et al., 2012)

e ImageNet ILSVRC12 (ImageNet12, I) (Russakovsky et al.,2015))

e Omniglot (Omniglot, O) (Lake et al., 2015)

e Street View House Numbers (SVHN) (Netzer et al.,[2011))

e UCF101 (UCF101, U) (Soomro et al.,|2012))

e Flowers102 (Flowers, F) (Nilsback & Zisserman), |2008))

The categories and the number of images of each dataset as well as the image sizes are significantly
different. All images have been resized isotropically to 72 x 72 pixels so that each image from
various domains has the same size.

Daimler Mono Pedestrian Classification has only 2 classes, pedestrian and non-pedestrian. We ex-
cluded it from our experiments as we are considering 5-way classification tasks. SVHN was also
excluded since SVHN has only 10 digit classes from 0 to 9, which were too few to split for meta-
training and meta-testing. To use the remaining eight datasets for multi-domain few-shot classifica-
tion, we divide the examples into roughly 70% training, 15% validation, and 15% testing classes.
For ILSVRC12, we follow the split of Triantafillou ef al. (Triantafillou et al.,2019) to adopt class
hierarchy, and we use random class splits for other datasets. The number of classes at each split is
shown in Table[AT] We only use train and validation sets of the Visual Decathlon because the labels
of the test set is not publicly available.

Aircraft

CIFAR-100 Describable Textures ~ German Traffic Sign ImageNet 2012 VGG-Flowers Omniglot UCF101 Dynamic Images

Table A1l: The details of datasets used in our experiments.

SPLITS

DATASET # DATA  # CLASSES TRAIN VAL TEST
AIRCRAFT 6667 100 70 15 15
CIFAR100 50000 100 70 15 15
DTD 3760 47 32 7 8
GTSRB 39209 43 30 6 7
IMAGENET12 1281167 1000 712 158 130
OMNIGLOT 25968 1623 1136 243 244
UCF101 9537 101 70 15 16
FLOWERS 2040 102 70 16 16

B ARCHITECTURES

Figure [2| shows the architecture of the embedding network fg(-; 6, ;), which processes an input
image and produces a 512-dimensional embedding vector. The embedding network is based on the
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CONVOLUTION 1X1 CHANNEL-WISE TRANSFORM

MODULATORS {a; }%_; 9,795,584 61,440
BASE NETWORK ¢ 11,176,512 11,176,512

SELECTION NETWORK ¢ 66, 696 66,696
Sum 21,038,792 11, 304, 648

Table A2: The comparison of the number of parameters for convolution 1 x 1 and channel-wise
transform modulators. This is the case when the number of source domains is 8.

ResNet-18 architecture (He et al., [2016), which consists of one convolutional layer with 64 7 x 7
filters followed by 4 macro blocks, each having 64-128-256-512 3 x 3 filters. Figure 2[a) and Figure
[2(b) depict how the base network is modulated by the convolution 1 x 1 modulator and the channel-
wise transform modulator, respectively. These modulators are placed within each residual block of
the macro blocks, same as the previous works in (Rebuffi et al., 2018) and (Perez et al., [2018]).

The number of parameters for two modulators are shown in Table[A2] The values on the first row are
the number of modulator parameters that are additionally applied to the embedding network. Note
that the channel-wise transform modulator has much fewer parameters than the convolution 1x1
modulator. In particular, the channel-wise transform modulator has negligible number of parameters
compared to that of the base network, i.e., ResNet-18. For each embedding model, the convolution
1 x 1 modulator has about 10% of the number of parameters that the base network has whereas the
channel-wise transform modulator requires only less than 1%.

The selection network fg(+; ¢) is a two-layered MLP (multi-layer perceptron) network, which re-
ceives an embedding vector produced by the embedding network as an input and performs the best
model index prediction. Two layers are a linear layer of 512 x 128 and a linear layer of 128 x (M +1),
where M is the number of source domains.

C TRAINING DETAILS

Algorithm [T] describes the overall training procedure to construct the model pool and the selection
network. Although we trained three components in a sequential manner, joint training of these com-
ponents seems to make sense also.

For the fair comparison with Fine-tune method, we also apply algorithm-specific refinement at meta-
testing time, inspired by ‘further adaptation’ in (Chen et al.,|2019), to all other algorithms including
ours. A linear classifier is placed on top of the embedding network of the ProtoNet, the self-attention
module of the FEAT or the modulated embedding network of our models. During meta-testing, other
parameters are fixed and the classifier is fine-tuned using the support examples for 100 iterations
per episode. In case of FEAT, the classifier is trained for 100 epochs per query example not per
episode because FEAT modulates a representation space for each query. We also adjust the number
of adaptation of the ProtoMAML to 100 for the better task-adaptation as done in (Chen et al.,[2019).

The hyperparameters including the learning rate are selected by grid search based on the validation
accuracy. For FEAT and ProtoMAML, Adam optimizer is used for training and the learning rate and
weight decay are set to be 0.0001. Other models are also trained using Adam optimizer with the
learning rate 0.001 but without any regularization including the weight decay.

In Simple-Avg, each embedding model is trained on a separate source dataset following the method
proposed in the Prototypical Networks (Snell et al.,2017)). We can obtain a little higher performance
with this approach than training each model following the standard supervised learning procedure.

All reported test accuracy values are averaged over 600 test episodes with 10 queries per class.
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Algorithm 1 The overall training procedure

Input: Training data from Dg = {Dg, } M, embedding networks fz(-), a selection network fs(-).
Output: Learned parameters 6, {a; },, .
Step 1: Build a base network
1: Build one large classification dataset (Zqgq, Yagq) by aggregating all classes from Dg.
2: Learn 6 by optimizing fg(x; 6, ) for the aggregated dataset (ci: no modulation).
Step 2: Add modulators through intra-domain episodic training
1: while not converged do
2:  Sample one domain Dg, from Dg, then sample one episode (.5, Q)) from Dy, .
3:  Learn «; by optimizing fg(x; 6, «;) for (S, Q) while keeping 6 fixed.
4: end while
Step 3: Build a selection network through cross-domain episodic training
1: while not converged do
2:  Sample one domain Dg, from Dg, then sample one episode (.5, Q) from Dy, .
Get a task representation 2y, by averaging embedding vectors of S from the base network.
Measure accuracies of M + 1 available embedding models { fz(x; 0, a;) }, for (S, Q).
Set the best model index y,; to the index of the model with the highest accuracy.
Learn ¢ by training fgs(2task; @) so as to predict ys¢; for (S, Q).
end while

A A

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 RESULTS WITHOUT FURTHER ADAPTATION

We present the experimental results when we do not apply the further adaptation scheme introduced
in (Chen et al} |[2019). Specifically, ProtoNet, FEAT, and our models are tested without additional
linear classifiers f.(-;4). The number of parameter update steps in ProtoMAML is reduced to 3,
which is not enough to have the models fine-tuned. Tables and show the results tested on
seen and unseen domains, respectively. We can see that accuracy drops in almost all cases compared
to corresponding cases with further adaptation whose results are in Section [3|in the main text, but

our models generally do better than other methods in any experimental settings.

Table A3: 5-way 5-shot classification accuracy on seen domains without further adaptation.

METHODS
TARGET F-T PrROTO FEAT PMAML S-AVG DoS DoS-CH DoA DoA-CH

39.53%  49.61%  58.53% 66.39%  37.04% 62.86% 59.39% 42.82% 42.91%
53.94%  57.48%  53.85% 59.37% 48.60% 69.94% 71.57% 62.96% 64.37%
55.68%  53.51%  52.91% 50.81% 42.98%  58.65% 56.50% 58.43% 56.54%
78.67%  86.21%  92.74% 95.22% 74.39% 96.49% 96.63% 82.93% 83.31%
54.64%  52.23%  49.91% 46.80% 41.69% 55.73% 55.49% 57.83% 57.42%
92.96%  96.20%  93.18% 98.98% 94.44% 98.86% 98.80% 95.54% 96.70%
62.78%  66.31%  64.76% 66.17% 59.15%  69.78% 69.45% 69.68% 68.93%
79.92%  83.46%  74.80% 75.84% 69.98% 83.60% 84.12% 83.63% 83.28%

AVERAGE ~ 64.76%  68.13%  67.58% 69.95% 58.53%  74.49% 73.99% 69.23% 69.18%

A: Aircraft, C: CIFAR100, G: GTSRB, I: ImageNet12, O:Omniglot, U:UCF101, F:VGG-Flowers
F-T: Fine-tune, Proto: ProtoNet, PMAML: ProtoMAML, S-Avg: Simple-Avg

TMCO~QUAO»>

D.2 TEST ACCURACY IN A NUMERIC FORM

In Table[A5|and [A6] we present the exact values of test accuracy with the largest number of source
domains, which are shown in Figures ] and [5]in the main text.

D.3 COMPARATIVE ANALYSIS ABOUT THE AVERAGING METHODS

As an effort for better understanding the averaging methods, we investigate how each model in the
pool contributes to the final prediction. Figures[AT]a) and[AT(b) show how many correct predictions
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Table A4: 5-way 5-shot classification accuracy on unseen domains without further adaptation.

METHODS
TARGET F-T ProTto FEAT PMAML S-AVG DoS DoS-CH DoA DoA-CH

36.40% 35.42%  33.30% 32.87% 33.48% 34.73% 35.63% 36.93% 37.28%
53.26% 55.17%  52.60% 58.01% 49.23% 55.79% 50.09% 58.30% 59.22%
55.18% 51.03%  50.37% 45.46% 45.99% 54.11%  48.81% 54.88% 54.37%
78.01% 76.33%  75.79%  78.81% 69.49% 77.03% 77.18% 77.36% 77.31%
34.81% 32.90%  33.50% 36.46% 37.79%  34.34% 32.73% 34.36% 35.27%
92.69% 92.64%  91.99% 83.80% 91.45% 93.68% 91.99% 94.95% 94.84%
62.16% 59.74%  58.54% 58.40% 59.06% 62.04% 62.21% 65.93% 67.25%
81.00% 79.42%  80.82% 69.47% 75.39% 81.85% 82.69% 82.71% 83.89%

AVERAGE  61.69%  60.33%  59.62% 57.91% 57.74%  61.70%  60.17% 63.19%  63.68%

A: Aircraft, C: CIFAR100, G: GTSRB, I: ImageNet12, O:Omniglot, U:UCF101, F:VGG-Flowers
F-T: Fine-tune, Proto: ProtoNet, PMAML: ProtoMAML, S-Avg: Simple-Avg

TCO~QUO»>

Table AS: Few-shot classification accuracy on seen domains. All eight domains were used for train-
ing.

(a) 5-way 1-shot test accuracy.

METHODS
TARGET F-T PrROTO FEAT PMAML S-AvG DoS Dos-CH DoA DoA-CH

27.90%  39.06%  45.39%  53.083%  30.45% 49.14% 44.02% 32.93% 32.63%
36.08%  38.65%  34.51% 40.41% 33.22%  50.41% 49.58% 42.84% 43.90%
38.07%  38.77%  34.16% 38.45% 29.52%  41.15% 40.53% 39.35% 38.86%
54.37%  78.57%  84.85% 88.85% 67.97%  91.08% 89.02% 71.60% 70.68%
37.92%  38.17%  33.44% 33.53% 31.03% 40.60% 40.76% 41.55%  41.56%
75.52%  86.35%  81.44% 94.30% 86.88%  95.37% 95.25% 87.69% 89.74%
44.46%  48.40%  46.63% 51.46% 40.36% 50.16% 53.19%  50.03% 49.22%
59.32%  62.11%  54.05% 57.20% 49.62% 65.36% 66.94%  65.34% 65.93%

AVERAGE  46.71%  53.76%  51.81% 57.15% 46.13%  60.41% 59.91% 53.92% 54.06%

A: Aircraft, C: CIFAR100, G: GTSRB, I: ImageNet12, O:Omniglot, U:UCF101, F:VGG-Flowers
F-T: Fine-tune, Proto: ProtoNet, PMAML: ProtoMAML, S-Avg: Simple-Avg

mMCOoO—~QUAO»

(b) 5-way 5-shot test accuracy.

METHODS
TARGET F-T PrOTO FEAT PMAML S-AvG DoS Dos-CH DoA DOA-CH

39.53%  49.82%  57.62% 65.89% 40.79%  62.65% 59.31% 47.09% 46.51%
53.94%  57.45%  53.30% 60.90% 49.86% 70.73% 71.29% 64.21% 65.70%
55.68%  52.43%  52.49% 50.94% 44.42% 59.27% 56.80% 59.68% 57.74%
78.67%  89.28%  92.19% 95.25% 81.59% 96.82% 96.91% 89.38% 89.24%
54.64%  51.86%  48.79% 47.26% 42.35% 54.95% 55.36% 58.04% 56.74%
92.96%  96.65%  93.10% 98.92%  95.36% 98.78% 98.88% 96.53% 97.55%
62.76%  66.02%  64.77% 66.09% 62.66% 70.32% 70.46% 69.93% 70.57%
79.92%  83.30%  74.38% 75.17% 72.00% 84.90% 84.68% 85.11% 84.46%

AVERAGE ~ 64.76%  68.35%  67.08% 70.05% 61.13%  74.80% 74.21% 71.25% 71.06%

A: Aircraft, C: CIFAR100, G: GTSRB, I: ImageNet12, O:Omniglot, U:UCF101, F:VGG-Flowers
F-T: Fine-tune, Proto: ProtoNet, PMAML: ProtoMAML, S-Avg: Simple-Avg

mMCO—~QUa»

are made by each model with the Simple-Avg and our DoA methods respectively given 50 queries
per episode for 40 episodes.

The measured numbers show that the individual models of our DoA perform better than those in
the Simple-Avg, which explains the higher performance of the proposed method partly. Additionally,
we can observe that major contributors (i.e., the models with higher accuracy) tend to change every
episode in our DoA whereas only two models seem to play dominant roles regardless of the given
episode. This implies that our method for constructing the model pool provides the averaging model
with more beneficial diversity.
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Table A6: Few-shot classification accuracy on unseen domains. Seven domains other than the target
domain were used for training.

(a) 5-way 1-shot test accuracy.

METHODS
TARGET F-T PrOTO FEAT PMAML S-AVG DoS DoS-CH DoA DOA-CH

26.78%  26.88%  27.50% 25.38% 26.05%  27.05% 26.76% 27.82% 28.01%
36.43%  35.35%  37.63% 30.04% 31.57%  34.56% 30.93% 40.05% 39.78%
37.73%  34.25%  35.18% 30.61% 29.06%  37.26% 36.56% 38.97% 37.24%
53.40%  54.07%  47.83% 50.68% 45.10%  55.77% 56.96% 58.81% 57.28%
27.18%  26.03%  25.97% 27.18% 27.53%  25.58% 26.45% 27.56% 27.88%
75.11%  68.58%  75.09% 55.28% 71.16%  70.73% 71.26% 80.26% 80.06%
42.11%  39.06%  38.12% 37.16% 34.63%  39.62% 43.04% 46.20% 45.88%
59.32%  55.94%  56.34% 45.93% 46.02%  56.38% 58.98% 64.56% 63.51%

AVERAGE ~ 44.76%  42.52%  42.96% 37.78% 38.89%  43.37% 43.87% 48.03% 47.45%

A: Aircraft, C: CIFAR100, G: GTSRB, I: ImageNet12, O:Omniglot, U:UCF101, F:VGG-Flowers
F-T: Fine-tune, Proto: ProtoNet, PMAML: ProtoMAML, S-Avg: Simple-Avg

mCOoO—~QUa»

(b) 5-way 5-shot test accuracy.

METHODS
TARGET F-T PROTO FEAT PMAML S-AvVG DoS DoS-CH DOA DOA-CH

36.40%  36.12%  34.81%  33.32%  34.75%  36.68%  37.87%  39.03%  39.41%
53.26%  54.98%  52.40% 56.14%  48.52%  57.25%  51.11% 59.83%  60.99%
55.18%  51.91%  51.90%  45.40%  45.12%  55.49%  51.65%  56.47%  55.25%
78.01%  80.23%  76.20%  79.96%  76.29%  80.98%  81.21%  81.90%  82.00%
34.81%  32.42%  31.27%  36.50%  38.15%  34.16%  32.68%  35.33%  36.31%
92.69%  92.87%  89.93%  83.29%  91.79%  94.08% = 92.34%  95.29%  95.71%
62.16%  60.32%  57.53%  57.49%  59.12%  62.33%  62.31%  67.57%  67.92%
81.00%  79.81%  76.62%  69.55%  76.57%  83.39%  82.37%  84.41%  84.58%

AVERAGE ~ 61.69%  61.08%  58.83% 57.71% 58.79%  63.05% 61.44% 64.98% 65.27%

A: Aircraft, C: CIFAR100, G: GTSRB, I: ImageNet12, O:Omniglot, U:UCF101, F:VGG-Flowers
F-T: Fine-tune, Proto: ProtoNet, PMAML: ProtoMAML, S-Avg: Simple-Avg

mMCO—~QUaO»

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Model 0 |41 40 32 43 42 36 37 35 41 36 43 41 36 |47 45 45 41 |48 37 43 40 39 |47 43 40 43 40 45 37 41 38 44 37 40 45 39 40 42 39 40
Model 1 |21 2115 14 31 24 25 23 21 15 24 17 15 21 16 18 26 31 16 30 19 19 24 24 18 22 18 29 24 22 21 23 16 18 18 23 20 18 15 17
Model 2 |35 39 31 33 34 34 30 26 32 33 30 25 27 37 38 38 35 36 23 41 37 30 31 37 28 36 21 37 31 33 35 30 22 34 36 29 28 37 28 30
Model 3 |26 27 20 26 27 18 20 21 23 24 21 19 16 25 23 22 32 26 (13 23 22 17 20 30 20 24 17 23 22 30 24 13 15 16 24 16 24 25 14 22
Model 4 |22 32 (17 29 30 16 20 24 21 17 28 22 23 19 32 28 26 24 17 28 23 19 29 31 26 23 24 36 28 31 26 23 21 27 28 28 21 27 17 21
Model 5 (39 42 36 41 42 35 41 38 44 35 45 47 38 45 48] 43 44 44 42 4546 41 (4546 40 44 41 [46] 40 40 42 44 42 (45 45 38 41 [49]/44 38
Model 6 |21 13/ 18 818 20 (12 14 1212 17 14 16 12 19 13 18 18 19 19 19 15 20 21 18 16 14 17 19 16 13 1510 11 20 16 16 12 16 16
Model 7 |21 23 18 16 22 17 18 18 20 23 21 16 15 22 25 17 29 20 22 31 22 21 20 31 17 21 16 24 23 28 22 19 13 20 23 18 19 11 15 27

(a) Simple averaging (Simple-Avg)
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Model 0 |42 36 41 40 38 42 37 41 48 42 42 46 38 41 45 40 36 42 41 37 42 41 43 34 (46 44 43 45 40 35 38 40 41 40 36 43 40 41 33 47
Model 1 42 40 4143 36 34 34 41 43 39 37 37 31 44 44 31 36 4145 36 42 45 41 34 44 43 41 39 36 30 37 38 43 43 39 40 41 41 32 45
Model2 40 38 40 [45] 30 35 37 43 43 39 40 40 35 41 41 41 33 35 43 35 41 38 43 35 30 38 30 44 33 38 36 38 43 40 32 37 38 38 34 42
Model 3 |42 40 41 |47 38 40 37 41 47 41 38 39 35 45 45 35 36 42 41 36 37 44 39 33 43 42 47 |47 33 38 38 40 43 42 37 39 43 42 34 |48
Model 4 (42 36 30 44 37 40 35 42 41 41 40 36 34 44 42 38 32 36 42 36 39 40 40 36 44 41 44 40 37 36 40 37 42 42 30 42 40 42 34 42
Model 5 |42 37 41 45 41 44 36 41 46 42 36 42 35 42 45 39 36 41 43 37 |45 41 43 34 44 44 45 45 43 37 37 41 41 42 42 46 43 44 34 47
Model 6 (44 36 40 46 40 42 39 44 46 40 39 43 39 43 41 39 37 43 42 36 39 43 41 35 42 44 45 44 41 33 37 37 40 41 36 45 40 39 34 46
Model 7 [45 41 41 [46] 36 40 34 [45/45 40 39 40 36 4145 30 37 43 41 38 42 43 42 38 [46] 43 44 |45 37 42 38 40 |44 44 41 45 40 41 31 [48

(b) Proposed averaging (DoA)

Figure A1: Contributions of individual models in model averaging methods.

E THE LOSS FUNCTION FOR THE SELECTION NETWORK

) shows the loss (lossse;) used to train the selection network fs(-;¢). Here, acc,, is
the classification accuracy of the model with the modulator parameterized by «,, in the pool. The
accuracy is measured for query examples in a given episode by making a prediction in the same way
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with the Protypical Networks (Snell et al., 2017, where the class whose prototype is the closest to
the embedding vector of a given query example is picked as the final prediction.

1 NK
Ztask — ﬁzle(xf79)

ysel = SOftmaX(fS(Ztask; (b)) (3)
Yser = argmax({acen ({2, y; 15 {22, v} =) bo)

l08Sge1 = cross_entropy (Yseis Ysel)
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