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ABSTRACT

In this work the authors show that Bayesian Neural Networks (BNNs) can be
efficiently applied to calibrate state-of-the-art Deep Neural Networks (DNN). Our
approach acts offline, i.e., it is decoupled from the training of the DNN to be cali-
brated. This offline approach allow us to apply our BNN calibration to any model
regardless of the limitations that the model may present during training. Note that
this offline setting is also appropriate in order to deal with privacy concerns of
DNN training data or implementation, among others. We show that our approach
clearly outperforms other simple maximum likelihood based solutions that have
recently shown very good performance, as temperature scaling (Guo et al., 2017).
As an example, we reduce the Expected Calibration Error (ECE%) from 0.52 to
0.24 on CIFAR-10 and from 4.28 to 2.46 on CIFAR-100 on two Wide ResNet
with 96.13% and 80.39% accuracy respectively, which are among the best results
published for these tasks. Moreover, we show that our approach improves the per-
formance of online methods directly applied to the DNN, e.g. Gaussian processes
or Bayesian Convolutional Neural Networks. Finally, this decoupled approach
allows us to apply any further improvement to the BNN without considering the
computational restrictions imposed by the deep model. In this sense, this offline
setting is a practical application where BNNs can be considered, which is one of
the main criticisms to these techniques. In terms of reproducibility, we provide all
the implementation details in https://github.com/2019submission/bnn.2019.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved state of art performance in many task such as Image
Recognition (Huang et al., 2017; Szegedy et al., 2017; Zagoruyko & Komodakis, 2016), language
modeling (Mikolov et al., 2013a;b), machine translation (Vaswani et al., 2017) or speech (Hinton et al.,
2012). For that reason, neural networks are now used in many applications. However, this state-of-the-
art performance is measured in terms of accuracy, but there are many tasks in which the probabilistic
information must be also reliable. For example, a probabilistic classifier can be incorporated into a
more complex model considering multiple sources of information, by the use of e.g., probabilistic
graphical models (Koller & Friedman, 2009), or by combining neural networks with language models
in natural language processing tasks (Gulcehre et al., 2017). In addition, probabilistic outputs of
classifiers have proven to be useful in many areas apart from classical machine learning tasks, such
as language recognition (Brümmer & van Leeuwen, 2006), language models for speech recognition
(Tüske et al., 2018) or medical diagnosis (Caruana et al., 2015).

In Bayesian statistics, the reliability of probabilities is measured by their calibration. As a conse-
quence, the machine learning community has been exploring methods to calibrate the output of
classifiers to achieve the many beneficial properties of well-calibrated probabilities (Zadrozny &
Elkan, 2002a; Cohen & Goldszmidt, 2004; Niculescu-Mizil & Caruana, 2005). Nowadays, there is
an increasing interest in obtaining reliable probabilities in the deep learning community. In the past,
neural networks trained with a cross-entropy criterion tended to present relatively good calibration.
However, a relevant recent work in Guo et al. (2017) has evidenced that modern state-of-the-art
neural networks are badly calibrated in general. Moreover, the same work shows that calibration
can be dramatically improved by very simple maximum-likelihood parametric techniques, among
which Temperature Scaling (TS) is highlighted as the preferred choice, due to its extreme simplicity,
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ResNet-101: 93.46% accuracy (CIFAR10)

WideResNet-40x10: 76.74% accuracy (CIFAR100)

Figure 1: Reliability diagrams (Guo et al., 2017) for two networks trained on CIFAR-10 and CIFAR-
100. The red line represents perfect calibration. We plot the Expected Calibration Error (ECE %) for
15 bins (see section 5 for a description). The lower the better.

very good behavior in general and computational efficiency. In fact, TS outperforms more complex
techniques in most cases, leading to the conclusion that good calibration can be better achieved
with simpler techniques. This conclusion follows the hypothesis that the space configured by the
outputs of a deep model is relatively simple, and therefore good performance, measured as Expected
Calibration Error (ECE), can be achieved with very simple models. In fact, TS is a technique that
performs nicely in complex multiclass tasks (Guo et al., 2017).

In general, there are two main approaches to reduce overconfidence: implicit or online and explicit or
offline. An implicit method aims at obtaining calibrated distributions directly at the output of the
model, while explicit methods post-process the output of the model to be calibrated. In this paper
we propose an offline method based on a Bayesian Neural Networks (BNNs) to obtain calibrated
probabilities, see figure 2. We use BNNs as we aim at being benefited from two key properties of
Bayesian statistics and neural networks: the high expressiveness of neural network models and the
capabilities of the Bayesian statistics to model the uncertainty. We assume the hypothesis that as long
as the uncertainty is correctly modelled, we can use high expressive function approximators for the
task of calibration. These high expressive models are required since we assume that the calibration
space is not simple. However, the generalization capability of these models are achieved through
proper uncertainty consideration. Figure 1 shows reliability diagrams comparing our BNN method to
TS.

This work is organized as follows. We first provide an insight on why Bayesian Statistics and neural
networks are suitable to adjust confidence in output probabilities. We then describe our offline
calibration approach based on BNNs. We end up comparing our method to TS and reporting clear
performance improvements. Finally, we discuss our approach against recent published techniques,
enumerate some beneficial properties and propose possible improvements over this contribution.
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2 BAYESIAN MODELLING AND CALIBRATION

In a classification scenario, calibration can be interpreted as the agreement between the probabilities
of a class assigned by a model to a set of samples, and the proportion of those samples where that
class is actually the true one.

One way of achieving calibration is to reliably modelling the probabilistic distributions of the data
from the classes involved. This is the main strength of Bayesian models, which manage uncertainty
properly, in contrast to point-estimate approaches (i.e. Maximum Likelihood or Maximum Posterior).
In the former, the uncertainty is incorporated by taking an average of all the likelihood models under
the posterior distribution on the parameters, given an observed set of data:

p(t|x) = Ep(θ|O){p(t|x, θ)}, (1)

where θ are model parameters, x represent a sample for which we want to predict a label t and
O = {(xi, ti)}Ni=1 is the set of observed samples1. In Bayesian approaches, it is indeed the observed
data what model how representative a likelihood model is for a particular task, and thus how it
influences the predictions. On the other hand, in point-estimate models all the decision is based on a
choice of the parameter once the model is trained.

For instance, consider the case of a MAP network (e.g., a typical deep convolutional model trained
with cross-entropy loss and L2 regularization). This model explains the data based on a point-estimate
training, i.e., by representing what is more likely to appear. Nowadays, this gives outstanding accuracy
in classification tasks, but it is easy to train an over/under-confident model, i.e., the one that outputs
too extreme probabilities, even for unfavourable cases like e.g. when data that has conditions not
unseen in the training set, or not explained by the expressiveness of the model itself. This could
happen if the true distribution does not lie in the family of parametric models p(t|x, θ). We will refer
to both conditions as mismatch. This is very harmful for the calibration, because in those mismatch
cases, the model should yield more moderate probabilities, otherwise the classification errors will
be more catastrophic. In other words, in tasks where calibration matters, a classification error has
unequal consequences if the probabilities are moderate or extreme. Thus, for example, if there exists
such mismatching conditions, what is likely to happen, a point estimate will not represent the data
(i.e. the probability assigned) in the way it should, possibly leading to over-or under-estimation
of probabilities. On the other hand, in the Bayesian framework, a posterior distribution on the
parameters could consider networks explaining these mismatching conditions. By averaging different
contributions, the model ideally moderates probabilities on unfavourable data. For the sake of
illustration, we provide a simple example in appendix A. We encourage unfamiliar readers with
Bayesian statistics and calibration to read this appendix.

Regarding the accuracy of Bayesian models, in Bayesian decision theory, if the model used to generate
the data is known, the optimal error can be achieved, which also means optimal accuracy if all decision
costs are equal. This suggests that a proper way of assigning probabilities is also paramount for the
accuracy. Thus, by choosing appropriate densities for the class-conditional probabilities p(t|x), such
as factorized multivariate Bernoulli distributions like in point estimate models, the accuracy will
also be correctly modelled. Moreover, it is well known that Bayesian models asymptotically tend
to point estimate models as the data increases in size, see Duda et al. (2000) section 3.4. Therefore,
it is expected that good accuracy performance achieved by point-estimate models should be also
achievable by Bayesian models, at least for sufficient amounts of data.

3 OFFLINE CALIBRATION WITH BAYESIAN NEURAL NETWORKS

The architecture proposed in this work is shown in Figure 2. We apply a BNN to the potentially
uncalibrated outputs of a DNN model. The goal is to improve the calibration minimizing the accuracy
degradation of the original DNN model. Our approach works offline, meaning that given a DNN
model, we project the available data to the space defined by the outputs of the model in the form
of logit, i.e. pre-softmax values. This new representation is then the input to our BNN. The BNN
aims at taking this uncalibrated so-called logit space and project it to a new calibrated one. The same
procedure is applied for the TS method.

1This is a particularization of Bayesian learning for class-conditional modelling.
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Figure 2: Exemplary representation of the architecture of our proposed model. On the left, an
expensive pretrained DNN on ImageNet is trained on a specific dataset (transfer learning). Then, the
(uncalibrated) output of such DNN is the input to the BNN calibration stage. This stage is trained
by the maximization of the Expected Lower Bound (ELBO) and predictions are done using Monte
Carlo integration. The inputs and outputs of the Bayesian stage have same dimension (given by the
number of classes), and lie in the so-called logit space. Orange Gaussians on each arrow represent
variational distributions on parameters. We do not plot all the arrows for clarity. This Bayesian stage
is independent of the previous one as we only require access to the logits of an already trained model.

This off-line set-up presents clear advantages. First, the approach is efficient, since the DNN model
does not need to be re-trained for re-calibration. Furthermore, we can incorporate future improvements
to the BNN calibration stage without affecting the previous DNN model. Second, our proposal is
extremely flexible, as the proposed BNN calibration stage will work with any probabilistic model,
even implicitly-calibrated models, with potential benefits on calibration performance. And finally,
our proposal preserves privacy, because there is no need to access the original data used to train the
DNN model, or even the DNN topology: to be trained, the BNN only needs the data projected to the
outputs of the DNN on the logit space, and the original targets t.

For these Bayesian approaches one has to compute the posterior distribution p(θ|O) and the expecta-
tion in equation 1. Using configurations that yield to analytic solutions to both problems result in
low-expression models for this task. We solve this problem by choosing Neural Networks to parame-
terize the likelihood p(t|x, θ) of our BNN, and therefore taking advantage of the high expressiveness
of these models. In this case, several intractabilities arise that must be addressed.

In this work we approximate expectations on equation 1 with Monte Carlo integration, and the
posterior is approximated by a variational distribution in terms of the Kulback-Lieber Divergence.
This is done by the maximization the Evidence Lower Bound (ELBO). We use stochastic optimization
based on the reparameterization trick (Kingma & Welling, 2014; Rezende et al., 2014) to approximate
the expectation under the variational distribution, and also mini-batch stochastic optimization for
expectations under data distribution. Thus, our training criteria is given by:

ELBO =
1

N

∑
(x,t)∼pd(x,t)

[ 1

K

∑
θ∼qφ(θ)

[log p(t|x, θ)]− β ·DKL{qφ(θ)//p(θ)}
]
, (2)

where we introduce β following Blundell et al. (2015).

Our variational distribution is a factorized Gaussian distribution and for that reason we refer to our
BNN approach as a basic approach, as we do not incorporate any improvement recently proposed
for BNN models, such as normalizing flows, local reparameterization, and so on. Also, we use
a standard normal density for the prior. We choose this simple approximation to demonstrate
our starting hypothesis: that BNNs can be applied to improve the calibration of state-of-the-art
DNN in a very efficient way. Our basic BNN model can be improved by using normalizing flows
(Rezende & Mohamed, 2015; Kingma et al., 2016; Huang et al., 2018; van den Berg et al., 2018),
auxiliary variables (Agakov & Barber, 2004; Ranganath et al., 2016; Maaløe et al., 2016), local
reparameterization (Kingma et al., 2015), combinations of all of them (Louizos & Welling, 2017)
or deterministic models (Wu et al., 2018). Also, Cremer et al. (2018) has recently pointed out that

4



Under review as a conference paper at ICLR 2019

amortized inference leads to an additional gap in the bound, in addition to the DKL gap between the
true and variational posteriors; and we can also use other proposals to mitigate this effect (Shu et al.,
2018; Kim et al., 2018).

Finally, class predictions are assigned by first computing the logits of a test sample using the first
DNN stage B, and then using them as inputs of our BNN to yield calibrated probabilities, which can
be formalized as follows:

l = B(x)

p(t|x,O) ≈ 1

M

M∑
i=1

p(t|l, θi) ; θi ∼ qφ(θ), (3)

where M is a value chosen on validation. Note that our proposed BNN is not as efficient as
TS for calibration. However, the contributions to the weighted average can be fully parallelized
computationally, as predictions do not depend on each other. Thus, we can use modern GPU libraries
such as CUBLAS and batch-based operations to dramatically speed-up the process.

4 RELATED WORK

To our knowledge, TS (Guo et al., 2017) has been consistently reported as the best technique to
improve calibration over a list of classical ways of improving calibration, such as histogram binning
(Zadrozny & Elkan, 2001), isotonic regression (Zadrozny & Elkan, 2002b), Platt scaling (Platt, 1999)
or Bayesian binning into quantiles (Naeini et al., 2015) among others. For a recent description
and performance comparison with modern neural networks, see Guo et al. (2017). On the other
hand, there are several works that study overconfident predictions and model uncertainty in different
contexts, but without reporting an explicit measurement of calibration performance in deep neural
models. For instance, Gal & Ghahramani (2015) connect Bernoulli dropout with BNNs, and Gal &
Ghahramani (2016) links Gaussian processes with classical dropout regularized networks, showing
how uncertainty estimates can be obtained from this networks. In the latter, the authors state that
these Bayesian outputs are not calibrated. In Pereyra et al. (2017), an entropy term is added to the
log-likelihood to relax overconfidence. Lakshminarayanan et al. (2017) propose training network
ensembles with adversarial noise samples to output confident scores. Chen et al. (2018) propose a
model that uses probes of the individual layers of the neural network classifier to create a confidence
score for the network output. DeVries & Taylor (2018) train a second output obtained from the
penultimate layer of the classifier to be confident by interpolation of the softmax output and the
true value, scaled by this score. Lee et al. (2018) proposed a generative approach for detecting out-
of-distribution samples but evaluates calibration performance comparing their method with normal
cross-entropy minimization, using TS as the calibration technique.

On the side of BNNs, Kingma et al. (2015) formalize Gaussian dropout as a Bayesian approach. In
Louizos & Welling (2017), novel BNNs are proposed, mixing inverse autoregressive flows (Kingma
et al., 2016), auxiliary variables (Maaløe et al., 2016) and local reparameretization (Kingma et al.,
2015). None of these approaches measure calibration explicitly on deep neural models, as we do.
For instance, Louizos & Welling (2017) and Lakshminarayanan et al. (2017) evaluate uncertainty
by training on one dataset and use it on another, expecting a maximum entropy output distribution.
More recently, Zhang et al. (2018) propose an scalable inference algorithm that is also asymptotically
accurate as MCMC algorithms.

We compare our proposed BNN approach against TS, as to our knowledge it is the state of the art in
calibration tasks involving deep neural models, according to the reviewed previous work. TS widely
improves calibration without affecting the accuracy, and can be efficiently applied to any model.
Formally, given O, TS maximizes the log-likelihood of the conditional distribution p(t|x/T ) w.r.t.
the parameter T . In this case, x also represents the output logits of the deep convolutional model.

In Section 6, we will comparatively discuss the properties and results of our proposal with other
works recently found in the literature for calibration on deep models, some of them based on implicit
and explicit models.
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5 EXPERIMENTS

We demonstrate calibration performance on several computer vision models on several datasets. We
have used CIFAR10 and CIFAR100 databases (Krizhevsky et al., a;b); SVHN (Netzer et al., 2011);
and a GENDER recognition task (Eidinger et al., 2014). We use a validation set randomly taken
from the training set with 5000 samples for CIFAR10 and CIFAR100, 10000 samples for SVHN and
4005 for GENDER. This validation set is used to train the TS parameter and to choose the number of
Monte Carlo samples, M in equation 2. We report results for the best model on validation for all the
tested configurations. We optimize the ELBO using adam optimization (Kingma & Ba, 2014), since
it performed better than stochastic gradient descent on our previous experiments. We used β = 0.1
from the set {1, 0.1, 0.01} as it behaves better on validation.

In order to compare our experiments with uncalibrated and TS calibrated probabilities, we used an
unbiased estimator of the Expected Calibration Error (ECE) computed as in Guo et al. (2017), with
15 bins. The ECE measures the expected value of the difference between accuracy and confidence:

ECE =

15∑
i=1

|Bi|
N
|acc(Bi)− conf(Bi)| (4)

where N is the number of total samples; Bi represents the set of samples whose predictions t
confidence lie in bin i; conf(Bi) is the average confidence and acc(Bi) is the accuracy of that bin. We
also report the accuracy of our models. This is because a classifier can be perfectly calibrated, but
useless from a classification point of view.

Note that we evaluate our proposed method on several state of art configurations of computer vision
neural networks over the mentioned datasets: Wide Residual Networks (Zagoruyko & Komodakis,
2016), Residual Networks (He et al., 2016b), Densely Connected Neural Networks (Huang et al.,
2017), Pre-Activation Residual Networks (He et al., 2016a), Dual Path Networks (Chen et al., 2017),
VGG (Simonyan & Zisserman, 2014) and ResNext (Xie et al., 2017). The results reported in this
work are obtained from some pretrained neural networks.

5.1 RESULTS

Table 1 shows the results for the different datasets, original DNNs and calibration approaches. We
presents results in %, i.e. multiplying by 100 the result obtained in equation 4. The most important
point is that calibration is improved by a wide margin in every model except for two models in
CIFAR100 and one model in SVHN. Table 1 shows that in average our proposed calibration method
outperforms TS with an insignificant accuracy loss. This means that high expressive models can
cope with the calibration task as long as uncertainty is correctly modelled. Therefore, we propose
an alternative hypothesis to the one given in Guo et al. (2017) where the authors argued that the
calibration space is simple. We argue that if highly complex models outperform simple ones is
because the distribution of the calibration space is also complex but the low dimensionality of the
logit space makes high expressive models overfit.

We realized that more expressive models are needed by more complex tasks, like CIFAR100. For
instance, ResNet-18 GENDER uses BNNs of two layers with two neurons per layer, while WideRes-
Net 40x10 on CIFAR100 uses two layers of 2000 neurons. This reflects that, when dimensionality
increases, more expressiveness is needed. Another important point observed in SVHN (see Densenet-
169, ResNet-50 and WideResNet 16x8) is that TS has degraded calibration by a factor of three in the
worst case. In general BNNs do not degrade the calibration.

One drawback of our basic approach is that in some cases we obtain slight accuracy degradation.
Accuracy degradation is more relevant only for CIFAR100, however our BNN method reduces ECE15
by a factor of two in some experiments in this task. Moreover, in some cases we are able to improve
both, accuracy and calibration, see WideResNet 40x10 for CIFAR10 or ResNet-18 for GENDER
dataset. Thus, we cannot conclude that BNNs are calibrating at the cost of losing accuracy. This
motivates us towards further research on this accuracy degradation, as we expect to solve it with
more sophisticated approximations in future work. Possible hypothesis for this degradation are that
either the gap between the variational and the true posterior is still large, the variance of the ELBO
estimator is large and does not allow us to converge to a better optimal, or the expressiveness of the
likelihood model is not enough to deal with the particular logit space distribution. We found that for
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Table 1: ECE 15(%) and Accuracy (%) comparing model uncalibrated, calibrated with TS and with
BNN

CIFAR10
uncalibrated Temp Scal BNN

Acc ECE Acc ECE Acc ECE

WideResNet 28x10 96.13 1.835 96.13 0.518 96.08 0.243
DenseNet 121 95.49 2.643 95.49 1.011 95.26 0.600
DenseNet 169 95.49 2.664 95.49 0.826 95.29 0.511

Dual Path Network 92 95.18 2.995 95.18 1.072 95.03 0.730
ResNet 101 93.46 4.268 93.46 1.196 93.38 0.776

VGG 19 93.68 4.412 93.68 1.708 93.67 0.843
Preactivation ResNet 18 94.93 3.155 94.93 0.570 94.73 0.455
Preactivation ResNet 164 93.91 4.102 93.91 0.437 93.82 0.331

ResNext 29_8x16 94.79 2.833 94.79 0.741 94.61 0.728
Wide ResNet 40x10 95.01 3.001 95.01 0.921 95.08 0.594

average 94.81 3.191 94.81 0.9 94.70 0.581

SVHN
uncalibrated Temp Scal BNN

Acc ECE Acc ECE Acc ECE

WideResNet 40x10 96.95 1.26 96.95 1.17 96.90 1.15
Densenet-121 96.76 2.021 96.76 1.092 96.69 0.716
Densenet-169 96.70 0.363 96.70 1.016 96.59 0.453

ResNet 50 96.47 0.886 96.47 1.030 96.33 0.857
Preactivation ResNet 164 96.20 2.539 96.20 1.079 96.08 0.921

Wide ResNet 16x8 96.88 0.710 96.88 1.318 96.82 0.739
Preactivation ResNet 18 96.15 1.574 96.15 0.645 96.05 1.096

average 96,587 1,336 96,587 1.05 96,494 0.847

CIFAR100
uncalibrated Temp Scal BNN

Acc ECE Acc ECE Acc ECE

WideResNet 28x10 80.39 4.853 80.39 4.276 77.59 2.456
DenseNet 121 78.8 8.724 78.8 3.476 75.9 2.534
ResNet 101 72 11.413 72 1.533 68.7 1.612

VGG 19 72.7 17.631 72.7 4.798 71.94 6
Preactivation ResNet 18 76.6 10.780 76.9 3.152 74.3 1.763

Preactivation ResNet 164 73.28 15.754 73.28 2.046 70.77 1.461
ResNext 29_8x16 77.88 9.678 77.88 2.811 73.97 2.581

DenseNet 169 79.05 8.883 79.05 3.758 75.58 2.393
Wide ResNet 40x10 76.74 14.767 76.74 3.765 76.17 1.876

average 76,36 11,387 76,36 3,291 73,88 2,520

GENDER
uncalibrated Temp Scal BNN

Acc ECE Acc ECE Acc ECE

VGG-19 90.60 8.08 90.60 3.96 90.50 2.70
DenseNet 121 90.035 8.803 90.035 3.077 89.961 1.547

ResNet 18 90.42 8.45 90.42 3.8 90.44 3.082
average 90.352 8.444 90.352 3.612 90.30 2.443
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Figure 3: This figures compares the ECE performance for TS and BNN in test and validation. On the
left (CIFAR10) we show the performance of different training parameters. For example 30MC_500
means that the ELBO was optimized using 30 MC steps to estimate the expectation and 500 epochs
of Adam optimization. On the right (CIFAR100) we show the performance of a BNN trained with
different number of epochs up to 2000, showing the robustness against the course of learning.

more complex logit space distribution (100 dimensional in CIFAR100) we could get better accuracy
and better ECE increasing the expressiveness of the model. On the other hand in simpler logit space
distribution (2 dimensional in GENDER) we found that the expressiveness must be reduced.

Finally, we realized that the BNNs are suitable and robust in the experiments carried out. In many
experiments we found that all the tested configurations clearly outperform TS, as an example see
figure 3.

6 DISCUSSION AND CONTRIBUTIONS

There is an increasing interest in adjusting confidence in deep learning, as this models are now
becoming part of complex decision systems and critical applications. In the machine learning
community there are two main approaches for reducing over-confidence, each one with its own
pros and cons: implicit/online and explicit/offline. An implicit method aim at obtaining calibrated
distributions directly at the output of the model, while explicit methods post-process the output of
the model to be calibrated. Moreover both approaches can use either point estimate or Bayesian
probabilistic models.

Explicit approaches have several advantages. First, one can calibrate pre-softmax values provided
by other practitioners. Therefore, privacy concerns regarding the model or the original data used to
train that model are considered. Second, explicit approaches can be combined with implicit ones
(Lakshminarayanan et al., 2017; Seo et al., 2018; Kumar et al., 2018; Chen et al., 2018; DeVries &
Taylor, 2018) to further improve calibration, as example see (Kumar et al., 2018; Lee et al., 2018),
where TS is used within implicit approaches. Third, one can use impractical models applied directly
to a deep model in this offline stage, e.g Bayesian Neural or Gaussian Processed. Fourth, we do not
need deep architectures for the Bayesian stage as the input includes the already learned representation
of the DNN. This stage only focus on adjusting probabilities. A two layer BNN is unable to reach
the same accuracy as a deep convolutional model by its own, however, combined with it, can yield
to state-of-the-art accuracy and calibration results, as we showed. Fifth, models to be calibrated
does not need to be retrained. This easily let us calibrate, as example, models that make use of
pretrained DNN (transfer learning applications). Sixth, any probabilistic model can be calibrated:
CNN, LSTM-RNN, BLSTM-RNN, SVM, network ensembles... Seventh, some implicit methods,
such as Gal & Ghahramani (2016); Seo et al. (2018) require us to train our deep models with Dropout
or stochastic depth, respectively, while ours is totally independent on how the deep model is trained.
On the other hand, implicit approaches are less sensible to overfitting. Guo et al. (2017) shows
that more complex models yield worse calibration performance. However, we have demonstrated
that correctly managing uncertainty allow us using complex models for post-processing, improving
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state-of-the-art explicit approaches, and getting competitive results with the most recent published
implicit ones.

Regarding the calibration performance applied to deep learning models. Our method reaches competi-
tive results with state-of-the-art implicit approaches on deep learning models (Seo et al., 2018; Kumar
et al., 2018), and outperforms other proposed explicit (Guo et al., 2017) and implicit (Tran et al., 2018)
techniques. In fact, Kumar et al. (2018) obtain competitive results when combining their implicit
method with TS, which again shows that offline calibration is a desirable and flexible choice to be
combined with implicit models. In fact, we have been able to apply BNNs to a task of interest for the
machine learning community, which is the main criticism to these techniques. Kuleshov et al. (2018),
which propose a procedure for calibrating Bayesian algorithms only for regression problems, and
Lakshminarayanan et al. (2017) argue that a Bayesian treatment do not output calibrated distributions,
as the Bayesian deep learning has several restrictions that the machine learning community is trying
to overcome. However, this work demonstrates that if we let the major complexity of the task to a
deep model, a simple Bayesian approach can adjust probabilities in an efficient way. As shown in our
github, 2-layers Bayesian neural nets are enough to adjust probabilities.

In terms of efficiency our BNN method presents several benefits in comparison to other Bayesian or
point estimate methods. Although making predictions is more expensive than with TS, this predictions
can be fully parallelized, as noted above, computing predictions in only one step. Moreover, a forward
through a deep model and a shallow BNN is less computational expensive than a forward through
a deep Bayesian convolutional model that requires several forward (and backward) for test (and
training). For instance we have models based on BNNs (Gal & Ghahramani, 2015) and based on
Gaussian processes (Tran et al., 2018; Milios et al., 2018). Network ensembles (Lakshminarayanan
et al., 2017) reduce overconfidence and output calibrated distributions, but it is not measure in a deep
model application, and only compared to Monte Carlo Dropout and to the number of ensembles.
Ensembles can be also paralellized but in case of deep learning models, which is our field of study,
the performance is compromised by the deepness of the different ensembles. As the authors state,
computation restriction arises when evaluation of ensembles is done on ImageNet with the Inception
network. Our model not only uses shallow neural nets but is only compromised by the number of
classes of the task to be performed, and not by the complexity of the task at hand, as once we are able
to reach a good accuracy we only focus on adjusting probabilities. Other implicit approaches such as
Seo et al. (2018), that compute the cost to be optimized based on several predictions of the model,
require to perform as many forwards per training samples as samples we want to estimate the cost
parameter. This also compromise performance in deep models.

Finally, Lakshminarayanan et al. (2017) propose to train models with proper scoring rules, such
as negative log-likelihood. However, as demonstrated by Guo et al. (2017) it is not clear if deep
generative models trained with this criteria presents uncalibrated distributions, at least in implicit
approaches.

7 CONCLUSION AND FUTURE WORK

This work has shown the many beneficial properties of offline calibration with a Bayesian reasoning.
We open future perspectives which include: incorporate Bayesian improvements on the variational
posterior with the objective of reducing topologies (efficiency in training and test time), better
calibration and accuracy; be able to analyze how the logit dimension influences the expressiveness
needed by the likelihood model and which key factors of Bayesian algorithms are critical for good
performance; how can we model prior information on the parameters to yield better results; other
offline approaches based on Gaussian processes, as example; incorporate training based on different
proper scoring rules; measure robustness against adversarial examples; and implement these models
in task where having good calibration is critical.
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APPENDIX A: TOY EXAMPLE ON BAYESIAN CALIBRATION

In this case we consider a problem of density assignment. Formally, we have a set of data O =
{xi}Ni=1, x ∈ R2 belonging to class c1, where its true distribution belongs to the family of bimodal
Gaussian distributions. We want to assign a unimodal Gaussian parametric model p(x|θ) where θ =
(µ,Σ). Note that in this case the parametric model would be unable to recover the true distribution,
which is likely to happen in deep learning models due to the complexity of the distributions these
models cope with.

In the Bayesian framework the density is computed by averaging each possible model parameterized
by θ, using the posterior distribution computed from the observed data as the distribution over which
we take the expectation:

p(x|O, c1) =

∫
dθ1 p(x|θ1) · p(θ1|O) (5)

On the other hand, maximum likelihood would represent the data using the ML estimator θML. In
this setting, it can be computed uniquely as the loss function has a global optimum.

Figure 4 shows an example of how model averaging improves the assignments of probabilities, and
therefore model calibration, contrary to ML. The figure shows some data points generated by our
training distribution, where the color of each point is different for each of the Gaussian mixtures.
A point-estimate maximum likelihood (ML) model p(x|θML

1 ) (we use θML
1 to refer to the model

assigned to c1 datapoints) is fitted and represented as red contour lines. It can be seen that the ML
model fails to accurately represent the true data distribution, although it can represent one of the two
clusters of data moderately well. Two samples not observed in the training set are shown as a black
and a gray dot. Also, different plausible likelihood models are represented in dashed contour plots.

We now assume that we have another set of data belonging to class c2, but not represented in this
figure as it is far in the data space. We fit p(x|θML

2 ) for this dataset. We assume the prior distribution
over the classes to be equal for both classes, and based on Bayes theory decision, our decision rule is
given by:

Figure 4: Bimodal distribution of 2-dimensional training data (orange and blue points) with Maximum
Likelihood estimation of a Gaussian distribution (red contour) and other possible likelihood models
explaining the data (dashed plots). Green and black dots represent data not seen in the training data,
for which densities are to be assigned. Best viewed in color.
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P (c1|x)

P (c2|x)
=
p(x|c1)

p(x|c2)
, (6)

where for generality we do not explicitly indicate if the model p(x|c) is computed in the ML or
Bayesian setting. As long as p(x|c1) > p(x|c2) we will assign c1 to a given sample x. It is clearly
seen that for both the black and gray test samples, the density assigned by p(x|c1) is greater and thus
these samples are assigned to class c1. In fact, if both samples belong to this class we will have a
perfect performance in terms of accuracy.

However, although the black dot is correctly assigned to c1, the red ML model assigns extremely low
density to it which is undesirable, as it has been actually generated like the rest of the data. This is
not a desired behaviour, since it is in fact likely to belong to the blue component of the distribution
as it is close to blue training samples in the data space. For that reason, if we compute probabilities
under this model, the ultimate confidence would not reflect the true underlying process, and the
calibration of the model will be affected. This effect is what we argue is happening in a classification
framework: although we correctly choose the class (the cluster c1) the ML model does not assign a
correct probability.

On the other hand, if we take average of all the different models parameterized by θ = (µ,Σ);µ ∈
R2,Σ ∈ R2x2 (see dashed plots in the figure), the density assigned to the black dot would be raised by
some of the models that explain the blue data points. The importance given to each likelihood is given
by the posterior p(θ|O). Therefore, other possibilities apart from the ML density will be considered,
and thus we will be better modelling the probabilistic information. For an exact theoretical example
on this same density estimation problem see (Minka, 2001). There you can find the exact posterior
distribution using non-informative priors on the parameters.
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