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Abstract

Conducting reinforcement-learning experiments can be a complex and timely pro-1

cess. A full experimental pipeline will typically consist of a simulation of an en-2

vironment, an implementation of one or many learning algorithms, a variety of3

additional components designed to facilitate the agent-environment interplay, and4

any requisite analysis, plotting, and logging thereof. In light of this complexity,5

this paper introduces simple rl1, a new open source library for carrying out rein-6

forcement learning experiments in Python 2 and 3 with a focus on simplicity. The7

goal of simple rl is to support seamless, reproducible methods for running rein-8

forcement learning experiments. This paper gives an overview of the core design9

philosophy of the package, how it differs from existing libraries, and showcases10

its central features.11
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Figure 1: The core functionality of simple rl: Create agents and an MDP, then run and plot their
resulting interactions. Running an experiment also creates an experiment log (stored as a JSON file),
which can be used to rerun the exact same experiment, thereby facilitating simple reproduction of
results. All practitioners need to do, in theory, is share a copy of the experiment file to someone with
the library to ensure result reproduction.

1https://github.com/david-abel/simple_rl
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1 from simple_rl.agents import QLearningAgent, RandomAgent
2 from simple_rl.tasks import GridWorldMDP
3 from simple_rl.run_experiments import run_agents_on_mdp
4

5 # Setup MDP.
6 mdp = GridWorldMDP(width=4, height=3, init_loc=(1, 1), goal_locs=[(4, 3)])
7

8 # Make agents.
9 ql_agent = QLearningAgent(actions=mdp.get_actions())

10 rand_agent = RandomAgent(actions=mdp.get_actions())
11

12 # Run experiment and make plot.
13 run_agents_on_mdp([ql_agent, rand_agent], mdp, instances=5, episodes=50,

steps=10)

Figure 2: Example code for running a basic experiment. First, define a grid-world MDP (line 6),
then make our agents (line 9-10), and then run the experiment (line 13). Running the above will
generate the plot shown in Figure 4.

1 Introduction12

Reinforcement learning (RL) has recently soared in popularity due in large part to recent success13

in challenging domains, including learning to play Atari games from image input [27], beating the14

world champion in Go [32], and robotic control from high dimensional sensors [21]. In concert with15

the field’s growth, experiments have become more complex, leading to new challenges for empir-16

ical evaluation of RL methods. Recent work by Henderson et al. [16] highlighted many of the is-17

sues involved with handling this new complexity, raising concerns about emerging RL experimental18

practices. Additionally, Python has become a prominent programming language used by machine-19

learning researchers due to the availability of powerful deep learning libraries like PyTorch [29] and20

tensorflow [1], along with scipy [19] and numpy [28].21

To accommodate this growth, there is a need for a simple, lightweight library that supports quick22

execution and analysis of RL experiments in Python. Certainly, many libraries already fulfill this23

need for many uses cases—-as will be discussed in Section 2, many effective RL libraries for Python24

already exist. However, the design philosophy and ultimate end user of these packages is distinct25

from those targeted by simple rl: those users who seek to quickly run simple experiments, look at26

a plot that summarizes results, and allow for the quick sharing and reproduction of these findings.27

The core design principle of simple rl is that of simplicity, per its name. The library is stripped28

down to the bare necessities required to run basic RL experiments. The focus of the library is on29

traditional, tabular domains, though it does have the capacity to cooperate with high-dimensional30

environments like those offered by the OpenAI Gym [6]. The assumed objective of a practitioner31

using the library is to define (1) an RL agent (or collection of agents), (2) an environment (an32

MDP, POMDP, or similar Markov model), (3) let the agent(s) interact with the environment, and33

(4) view and analyze the results of this interaction. This basic pipeline serves as the “end-game” of34

simple rl, and dictates much of the design and its core features. A block diagram of this process35

is presented in Figure 1: run an experiment, see the results, and reproduce these results according36

to an auto-generated JSON file logging the experimental details. The actual code of the experiment37

run is shown in Figure 2: in around five lines, we define a Q-Learning instance, a random actor, and38

a simple grid-world domain, and let these agents interact with the environment for a set number of39

instances. As mentioned, running this code produces both a JSON file tracking the experiment that40

can be used (or shared) to run the same experiment again, and regenerate the plot seen in Figure 4a.41

2 Relation To Other Libraries42

Many excellent libraries already exist in Python for carrying out RL experiments. What separates43

simple rl? As the name suggests, its distinguishing feature is its emphasis on simplicity, which44

also brings a shortage of certain features. We here describe the objectives of other RL libraries in45
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Python, and briefly cover what some have implemented in case those are a better fit for the needs of46

different programmers.47

2.1 RLPy48

RLPy offers a well documented, expansive library for RL and planning experiments in Python 2 [15].49

The library includes a similar overall structure to that of simple rl: the core entities are agents,50

environments, experiments, policies, and representations. The main focus of RLPy is on value-51

function approximation, but the library also offers several MDP solvers in the form of the usual52

dynamic programming algorithms like value iteration [4] and policy iteration [18]. Notably, the53

library also includes a large number of canonical RL tasks, including Mountain Car, Acrobot, Puddle54

World, Swimmer, and Cart Pole.55

Get it here: https://github.com/rlpy/rlpy56

2.2 mushroom57

Mushroom is a new library aimed at simplifying RL experimentation with OpenAI gym and tensor-58

flow, but also offers support for traditional tabular experiments [13]. Mushroom offers implemen-59

tations of many recent Deep RL algorithms, including DQN [27], Stochastic Actor-Critic [12], and60

a template for Policy Gradient algorithms. All of its neural network code is based on tensorflow.61

Additionally, Mushroom comes with noteworthy RL tasks like Mountain Car, Inverted Pendulum,62

and a classic Linear-Quadratic Regulator control task.63

Get it here: https://github.com/AIRLab-POLIMI/mushroom64

2.3 PyBrain65

PyBrain is an established, expansive, general purpose library for machine learning in Python [30],66

but also offers infrastructure for conducting RL experiments with a similar focus to RLPy. The67

library includes a number of the standard environments and agents, with a large number of model-68

free algorithms.69

Get it here: http://www.pybrain.org/70

2.4 keras-rl71

keras-rl provides integration between Keras [9] and many popular Deep RL algorithms.72

keras-rl offers an expansive list of implemented Deep RL algorithms in one place, including:73

DQN, Double DQN [37], Deep Deterministic Policy Gradient [23], and Dueling DQN [38]. For74

those that use Keras for deep learning and mostly want to focus on deep RL, keras-rl library is a75

great choice.76

Get it here: https://github.com/keras-rl/keras-rl77

2.5 python-rl78

python-rl [11] provides integration with the classic language-agnostic framework RL-Glue [36].79

The main goal of this library is to bring RL-Glue up to date with a few somewhat more recent80

features, agents, and environments in common RL experiments.81

Get it here: https://github.com/amarack/python-rl82

2.6 reinforcement-learning83

reinforcement-learning offers an excellent resource for RL education—it is designed to84

be paired with David Silver’s online RL course2 [5]. The library contains many central al-85

gorithms, including value iteration, policy iteration, Q-Learning [39], SARSA [33], and Pol-86

2https://www.youtube.com/watch?v=2pWv7GOvuf0
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icy Gradient [40, 35]. Programmers planning to go through David Silver’s course may find the87

reinforcement-learning library the most suitable package.88

Get it here: https://github.com/dennybritz/reinforcement-learning89

2.7 dopamine90

dopamine is a recently released library [3] offering many of the most recent deep RL algorithms91

including Rainbow [17], Prioritized Experience Replay [31], and Distributional RL [2], with an eye92

for reproducibility in the ALE based on the suggestions given by [25]. dopamine offers a lot for93

people whose main agenda is to run experiments in the ALE or perform new research in deep RL.94

Get it here: https://github.com/google/dopamine95

96

To summarize: Many great packages are already out there. The main differentiating features of97

simple rl are (1) quick generation of plots, (2) focus on reproducibility, and (3) emphasis on98

simplicity, both in terms of algorithmic development and its attachment to classical RL problems99

(like grid worlds).100

3 Overview of Features101

We begin by unpacking the example in Figure 2 to showcase the main design philosophy of102

simple rl.103

3.1 The Core: Agents and MDPs104

The library primarily consists of agents and environments (called “tasks” in the library).105

Agents, by default, are all subclasses of the abstract class, Agent, which is only responsible for106

a method act(self, state, reward) → action. A list of agents, planning algorithms, and107

tasks currently implemented is presented in Table 1.108

Tasks, for the most part, all inherit from the abstract MDP class, MDP. The core of an MDP is109

its transition function and reward function, captured in the abstract class by class-wide variables,110

transition func and reward func:111

transition func(state, action)→ state, (1)
reward func(state, action)→ reward. (2)

When defining an MDP instance, you must pass in functions of T and R that output a state and re-112

ward, respectively. In this way, no MDP is ever responsible for enumerating either S orA explicitly,113

thereby allowing for (1) simple specification of these two functions, and (2) efficient implementation114

of high-dimensional domains—we need only represent and store the states that are visited during115

experimentation.116

Naturally, MDP subclasses have a variety of arguments—in the earlier grid-world example, we saw117

the GridWorldMDP class take as input the dimensions of the grid, a starting location, and a list of118

goal locations. Such inputs are typical to MDP classes in simple rl.119

3.1.1 Running Simple Experiments120

Defining an agent and an MDP is almost all that is needed to run an experiment. The final component121

required is an experiment function from the run experiments.py file. This file contains a number122

of different experiment types that are catered to the different environment types (POMDPs, Markov123

Games, and so on). For now, let us focus on run agents on mdp function, which is the most124

canonical. As per the example in Figure 2, this function takes as input at minimum a list of agents125

and an MDP instance. A user can also specify experimental parameters like instances, episodes,126

and steps, which indicate the following:127

• instances: The number of times to repeat the entire experiment (will be used to form128

95% confidence intervals for all experiments conducted).129
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RL Agents Q-Learning, RMax, DelayedQ, DoubleQ, Random, Fixed
Linear Q-Learning, DQN, LinUCB.

Planning Algorithms Value Iteration, Bounded RTDP, MCTS

MDPs Chain, Grid World, Randomized Graph, Open AI Gym
Combo Lock, Puddle, Hanoi, Bandit

OOMDPs Taxi, Trench, Cleanup
POMDPs Maze
Markov Games Grid Games, Rock Paper Scissors, Prisoner’s Dilemma, Gather

Table 1: An overview of Agents and MDPs in simple rl.

1 from simple_rl.tasks import GymMDP
2 from simple_rl.agents import RandomAgent, LinearQAgent
3 from simple_rl.run_experiments import run_agents_on_mdp
4

5 # Gym MDP
6 gym_mdp = GymMDP(env_name=’CartPole-v1’, render=True)
7 num_feats = gym_mdp.get_num_state_feats()
8

9 # Setup agents and run.
10 rand_agent = RandomAgent(gym_mdp.get_actions())
11 lin_q_agent = LinearQAgent(gym_mdp.get_actions(), num_feats, rbf=True)
12 agents = [lin_q_agent, rand_agent]
13

14 # Run.
15 run_agents_on_mdp(agents, gym_mdp, instances=5, episodes=5000, steps=200)

Figure 3: Running experiments in the OpenAI Gym.

• episodes: The number of episodes per instance. An episode will consist of steps number130

of steps, after which the agent is reset to the start state (but gets to remember what it has131

learned so far).132

• steps: The number of steps per episode.133

The plotting is set up to plot all of the above appropriately. For instance, if a user sets episodes=1134

but steps=50, then the library produces a step-wise plot (that is, the x-axis is steps, not episodes).135

Running the function run agents on mdp will create a JSON file detailing all of the components136

of the experiment needed to rerun it. Then, it will create a folder locally, “results”, store each137

agent’s stream of received rewards, and print out the status of the experiment to console. When138

the experiment concludes, a learning curve with 95% confidence intervals will be generated (via139

simple rl/utils/chart utils.py and opened. The JSON file lets users of the library recon-140

struct and rerun the original experiment using another function from the run experiments.py141

script. In this way, the JSON file is effectively a certificate that this plot can be reproduced if the142

same experiment were run again. We provide more detail on this feature in Section 3.2.143

We can also run a similar experiment in the OpenAI Gym (Figure 3).144

As can be seen in Figure 3, the structure of the experiment is identical. Since we define a GymMDP,145

we pass as input the name of the environment we’d like to produce: In this case, we’re running ex-146

periments in CartPole-v1, but any of the usual Gym environment names will work. We can also pass147

in the render boolean flag, indicating whether or not we’d like to visualize the learning process. Al-148

ternatively, we can pass in the render every n episodes flag (along with render=True), which149

will only render the agent’s learning process every N episodes.150
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On longer experiments, we may want additional feedback about the learning process. For this pur-151

pose, the run agents on mdp function also takes as input a Boolean flag verbose, which, if true,152

will provide detailed episode-by-episode tracking of the progress of the experiment to the console.153

There are a number of other ways to run experiments, but these examples capture the core experi-154

mental cycle.155

Other Environment Types The library offers support for other types of environments beyond typ-156

ical MDPs, including classes for Object-Oriented MDPs or OOMDPs [14], k-Armed Bandits [8],157

Partially Observable MDPs or POMDPs [20], a probability distribution over MDPs for lifelong158

learning [7], and Markov Games [24]. Aspects of these classes are handled slightly differently to159

accommodate the different kinds of decision-making problems they capture, but the interface to run160

experiments with each type is nearly identical. Examples for how to run experiments with each type161

of environment are included in the examples directory in the repository along with a test script that162

ensures each example can run on a given machine. Running experiments with these other environ-163

ment types is the same as the pipeline so far described: a function in the run experiments.py164

script will handle all of the interactions between agent(s) and environment and produce a plot when165

the experiment finishes. Notably, the reproducibility feature is not yet fully developed for all envi-166

ronment types. This is a major direction for future development of the library.167

3.2 Reproducibility168

Due to its simplicity, the library is naturally suited for reproducing results from previously run ex-169

periments. As mentioned, every experiment that is conducted using the library will create a directory170

with the experiment name containing a JSON file “full experiment data.json” that enumer-171

ates every parameter, agent, MDP, and type needed to launch the exact same experiment another172

time. The idea is that these files can be shared across users of the library—if a user gives someone173

else this file (and the necessary agents and environments), it is a contract that they can rerun exactly174

the same experiment just run using simple rl.175

Using one of these experiment files, the function reproduce from exp file(exp name), will176

read the experiment file, reconstruct all the necessary components, rerun the entire experiment, and177

remake the plot. Thus, providing one of these JSON files is to be interpreted as a certificate that this178

experiment is guaranteed to produce similar results.179

As an example, consider again the code from Figure 2. Running this code will create: (1)180

the “results” directory, (2) the “gridworld h-3 w-4” directory within results, and (3) the181

“full experiment data.json file, which contains all necessary parameters to rerun the experi-182

ment.183

Suppose someone provided the directory gridworld h-3 w-4 containing the experiment file for184

the above grid-world experiment. Then, we could run the following code:185

186
1 from simple_rl.run_experiments import reproduce_from_exp_file187

2188

3 reproduce_from_exp_file("gridworld_h-3_w-4")189190

Which will automatically generate the plot in Figure 4b.191

To ensure reproducibility of new subclasses or other bells and whistles attached to the library, any192

agent or MDP must implement the “get parameters(self)” method that returns a dictionary193

containing all relevant parameters for the instance to be reconstructed. For example, consider the194

QLearningAgent class in Figure 5.195

Any introduced subclass that wants to play along well with the reproduction infrastructure in196

simple rl must have such a method.197

We stipulate that this is a lightweight means of ensuring reproduction for three reasons: 1) it is198

entirely obfuscated from the programmer, as all tracking of experimental parameters is done auto-199

matically, 2) a single, universally formatted document (JSON) contains all the information needed to200

guarantee reproduction of results (along with a copy of the library itself, and any new agents/MDPs),201

and 3) the library is simple enough that most experiments consist of only a small number of moving202
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Figure 4: Original results (left) and results generated by reproducing the experiment (right).

1 def get_parameters(self):
2 ’’’
3 Returns:
4 (dict) key=param_name (str) --> val=param_val (object).
5 ’’’
6 param_dict = defaultdict(int)
7

8 param_dict["alpha"] = self.alpha
9 param_dict["gamma"] = self.gamma

10 param_dict["epsilon"] = self.epsilon_init
11 param_dict["anneal"] = self.anneal
12 param_dict["explore"] = self.explore
13

14 return param_dict

Figure 5: The get parameters method of QLearningAgent.

parts. The feature to reproduce from a JSON does not yet fully support all environment types, but it203

is an active area of development for the library.204

To recap, the introduced components define the essence of the library:205

• Center everything around agents, MDPs, and interactions thereof.206

• Completely obscure the complexity of plotting and experiment tracking from the program-207

mer, while making it simple to plot and reproduce results if needed.208

• Simplicity above all else.209

• Treat things generatively—namely, MDPs transition models and reward functions are best210

implemented as functions that return a state or reward, rather than enumerate all state–211

actions pairs.212

3.3 Utilities213

In addition to the core experimental pipeline described above, the library is well stocked with other214

utilities useful for RL and planning.215

Plotting As is shown by Figure 1, plotting is tightly coupled with running experiments.216

Each experiment type is connected with the same plotting script, stored in the library in217

utils/chart utils.py. The basic plot shows some measure of time along the x-axis (either in218

episodes run or steps taken), with cumulative reward shown in the y-axis for each given algorithm.219

While this plot is the default learning curve generated, the experimental pipeline gives the end pro-220

grammer control over the type of plot generated. First, the flag cumulative plot for all of the core221
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Figure 6: Example visual generated by the library

experiment functions is set to True by default (as in run agents on mdp, run agents lifelong).222

Thus, if we simply run the experiment with this flag set to False, we’ll produce an average reward223

plot instead. Second, the default y-axis is cumulative reward—sometimes, though, we’d like to224

measure the discounted reward acquired by the agent. To do so, we set the track disc reward225

flag of any of the core experimental functions to True. There are also mechanisms for plotting the226

wall-clock time taken by each agent, and plotting the percentage of successful runs of each agent,227

where success is defined according to a user defined function on the reward stream received by the228

agent. For more details on plotting, see the chart utils.py script.229

Visuals The library offers bare bones visuals for the grid world domains using pygame3. An230

example is presented in Figure 6; in this case, the learning process is visualized while the experiment231

runs. The library also supports visualizing policies and value functions, so long as an MDP comes232

along with a draw state method, and an interactive mode where the user can control the agent via233

keyboard input. However, visuals are very much an underdeveloped aspect of the library. A major234

point of future development is to equip simple rl with a comprehensive suite of visualization and235

analysis tools.236

Abstraction A core approach to RL involves forming abstractions, either of state [22] or ac-237

tion [34]. simple rl contains support for planning or learning with either state aggregation func-238

tions, which compress a given MDP’s state space into a smaller one, and options, which encode long239

horizon sequences of actions, useful for targeted exploration and efficient planning.240

Planning The library includes several default planning algorithms such as Value Iteration, Monte241

Carlo Tree Search [10], and Bounded Real Time Dynamic Programming [26]. Planners can be used242

to compute the value function, the optimal (or near-optimal) policy, or enumerate a state-action243

space (see planning example.py in the repository).244

4 Conclusion245

simple rl offers a lightweight suite of tools for conducting RL experiments in Python 2 and 3.246

Its design philosophy focuses on obfuscating complexity from the end user, including the tracking247

of experimental details, generation of plots, and construction of agents and MDPs. This leads to a248

package that is relatively light in features but comes with an ease of use that lets only a few lines249

of code generate learning curves that are guaranteed to be reproducible. The library is available250

on the Python package index, and thus can be installed with the usual pip install simple rl.251

In progress documentation is available as well.4 Many features are currently under development:252

the most important near term goal is to expand the suite of reproducibility tools to account for253

more variety across different operating systems and other variables that might impact experiments.254

Additionally, the library lacks a suite of basic deep RL algorithms for use in experimentation, a255

general interface for visualizing MDPs (and other environments), and a more expansive collection256

of tasks, RL algorithms, and planning algorithms.257

3https://pygame.org
4https://david-abel.github.io/simple_rl/docs/index.html
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