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ABSTRACT

Recently deep neural networks have shown their capacity to memorize training
data, even with noisy labels, which hurts generalization performance. To mitigate
this issue, we propose a simple but effective method that is robust to noisy labels,
even with severe noise. Our objective involves a variance regularization term
that implicitly penalizes the Jacobian norm of the neural network on the whole
training set (including the noisy-labeled data), which encourages generalization
and prevents overfitting to the corrupted labels. Experiments on noisy benchmarks
demonstrate that our approach achieves state-of-the-art performance with a high
tolerance to severe noise.

1 INTRODUCTION

Recently deep neural networks (DNNs) have achieved remarkable performance on many tasks, such
as speech recognition Amodei et al. (2016), image classification He et al. (2016), object detection Ren
et al. (2015). However, DNNs usually need a large-scale training dataset to generalize well. Such
large-scale datasets can be collected by crowd-sourcing, web crawling and machine generation with
a relative low price, but the labeling may contain errors. Recent studies Zhang et al. (2016); Arpit
et al. (2017) reveal that mislabeled examples hurt generalization. Even worse, DNNs can memorize
the training data with completely randomly-flipped labels, which indicates that DNNs are prone to
overfit noisy training data. Therefore, it is crucial to develop algorithms robust to various amounts of
label noise that still obtain good generalization.

To address the degraded generalization of training with noisy labels, one direct approach is to reweigh
training examples Ren et al. (2018); Jiang et al. (2017); Han et al. (2018); Ma et al. (2018), which is
related to curriculum learning. The general idea is to assign important weights to examples with a
high chance of being correct. However, there are two major limitations of existing methods. First,
imagine an ideal weighting mechanism. It will only focus on the selected clean examples. For
those incorrectly labeled data samples, the weights should be near zero. If a dataset is under 80%
noise corruption, an ideal weighting mechanism assigns nonzero weights to only 20% examples and
abandons the information in a large amount of 80% examples. This leads to an insufficient usage
of training data. Second, previous methods usually need some prior knowledge on the noise ratio
or the availability of an additional clean unbiased validation dataset. But it is usually impractical to
get this extra information in real applications. Another approach is correction-based, estimating the
noisy corruption matrix and correcting the labels Patrini et al. (2017); Reed et al. (2014); Goldberger
& Ben-Reuven (2017). But it is often difficult to estimate the underlying noise corruption matrix
when the number of classes is large. Further, there may not be an underlying ground truth corruption
process but an open set of noisy labels in the real world. Although many complex approaches Jiang
et al. (2017); Ren et al. (2018); Han et al. (2018) have been proposed to deal with label noise, we
find that a simple yet effective baseline can achieve surprisingly good performance compared to the
strong competing methods.

In this paper, we first analyze the conditions for good generalization. A model with simpler hypothesis
and smoother decision boundaries can generalize better. Then we propose a new algorithm which
can satisfy the conditions and take advantage of the whole dataset including the noisy examples to
improve the generalization.

Our main contributions are:

1



Under review as a conference paper at ICLR 2019

• We build a connection between the generalization of models trained with noisy labels and
the smoothness of solutions, which is related to the subspace dimensionality.
• We propose a novel approach for training with noisy labels, which greatly mitigates over-

fitting. Our method is simple yet effective and can be applied to any neural network
architecture. Additional knowledge on the clean validation dataset is not required.
• A thorough empirical evaluation on various datasets (CIFAR-10, CIFAR-100) is conducted

and demonstrates a significant improvement over the competing strong baselines.

2 PRELIMINARIES

In this section, we briefly introduce some notations and settings in learning with noisy labels.

The target is to learn a robust K-class classifier f from a training dataset of images with noisy
supervision. Let D = {(x1, ỹ1), ..., (xN , ỹN )} denote a training dataset, where xn ∈ X is the n-th
image in sample space X (e.g., Rd) with its corresponding noisy label ỹn ∈ {1, 2, ...,K}.

2.1 LABEL NOISE

The label noise is often assumed to be class-conditional noise in previous work Natarajan et al. (2013);
Patrini et al. (2017), where the label y is flipped to ỹ ∈ Y with some probability p(ỹ|y). It means that
p(ỹ|x, y) = p(ỹ|y), , the corruption of labels is independent of the input x. This kind of assumption is
an abstract approximation to the real-world corruption process. For example, non-expert labelers may
fail to distinguish some specific species. The probability p(ỹ|y) is represented by a noise transition
matrix T ∈ [0, 1]K×K , where Tij = p(ỹ = j|y = i). The examples (xi, ỹi) in D are sampled from
p(x, ỹ) =

∑
y p(ỹ|y)p(y|x)p(x), a distribution that marginalizes over the unknown true label. A few

exceptions Xiao et al. (2015); Menon et al. (2016) also consider the input-dependent noise model
p(ỹ|x, y).

3 OUR APPROACH

In this section, we present a new robust training algorithm to deal with noisy labels. We argue that a
model with lower complexity is more robust to label noise and generalizes well. The dimensionality
of the learned subspace and the smoothness of decision boundaries can both indicate how complex
the model is. Therefore, we propose a method to regularize the predictive variance to achieve low
subspace dimensionality and smoothness, respectively.

3.1 VARIANCE-BASED REGULARIZATION

In order to alleviate over-fitting to the label noise, we propose a regularizer that is not dependent
on the labels. We induce the smoothness of decision boundaries along the data manifold, which is
shown to improve the generalization and robustness. If an example x is incorrectly labeled with ỹ, it
has a high probability to lie near the decision boundary or in the wrong cluster not belonging to y.
Therefore, the prediction variance can be high on the noisy examples. We propose to regularize the
variance term. The mapping function is smoothed and thus also the decision boundaries.

Concretely, the variance is estimated by the difference of predictions under perturbations ξ and ξ′
including the input noise like Gaussian noise and stochastic data augmentation, as well as the network
noise like dropout:

RV (θ) =
1

N

N∑
i=1

Eξ′,ξ ‖f(xi; θ′, ξ′)− f(xi; θ, ξ)‖2. (1)

We can show that RV (θ) is an unbiased estimation of the predictive variance if the perturbations are
treated as a part of the model uncertainty.

Relation to the generalization of DNNs. We show that this regularization helps to learn a low-
dimensional feature space that captures the underlying data distribution. The variance term implicitly
estimates the Jacobian norm, , the Frobenius norm of the Jacobian of the network output w.r.t. the
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inputs: ‖J(x)‖F . A simplified version is to assume ξ is sampled from a Gaussian distribution, i.e.,
ξ, ξ′ ∼ N (0, σ2I) and the perturbation is small and additive, , x̃ = x+ ξ where σ is near zero.

lim
σ→0

1

σ2
RV (θ) = lim

σ→0

1

σ2

1

N

N∑
i=1

Eξ′,ξ‖f(xi + ξ; θ)− f(xi + ξ′; θ)‖2 (2)

By first-order Taylor expansion, and let J(x) = ∂f
∂x

f(x+ ξ) = f(x) + J(x)ξ + o(ξ), (3)

and omitting the high-order terms, we have

lim
σ→0

1

σ2
RV (θ) =

1

N

N∑
i=1

Tr(J(xi)
>J(xi)) =

1

N

N∑
i=1

‖J(xi)‖2F .

If we further take expectation over N samples of xi, we get

lim
N→∞

lim
σ→0

1

σ2
RV (θ) = Ex‖J(x)‖2F . (4)

It can be proved that this is an unbiased estimator. For perturbations of natural images, similar
analysis applies. It was shown in Sokolić et al.; Novak et al. (2018) that the Jacobian norm is
related to the generalization performance both theoretically and empirically. Perturbations on the
data manifold can be approximated by stochastic data augmentation. Similar objectives have been
explored in semi-supervised learning Laine & Aila (2016); Tarvainen & Valpola (2017) but with
different motivations.

Relation to posterior regularization. Minimizing the predictive variance has been applied to re-
gression tasks Jean et al. (2018). It was pointed out that variance minimization can be explained
in the framework of posterior regularization. Optimizing the objective is equivalent to computing
a regularized posterior by solving a regularized Bayesian inference (RegBayes) optimization prob-
lem Zhu et al. (2014); Jean et al. (2018). It restricts the solution to be of some specific form, which
is equivalent to imposing some prior knowledge of the model structure. The regularizer serves as
an inductive bias on the structure of the feature space. By reducing the variance of predictions, the
neural network is encouraged to learn a low-dimensional feature space where the training examples
are far from the decision boundaries and tend to cluster together. This alleviates the possibility of the
model to increase its complexity to fit the noisy labels.

Therefore, the learning objective is simply

min
θ

N∑
i=1

`(f(xi; θ), ỹi) + λRV (θ), (5)

where the first term is any loss function including the cross-entropy loss or previously proposed
noise-robust losses. In Section 4, we show empirically that the objective can learn a model with low
subspace dimensionality and low hypothesis complexity.

4 EXPERIMENTS

In this section, we present both quantitative and qualitative results to demonstrate the effectiveness of
our method. Our method is independent of both the architecture and the dataset.

4.1 EXPERIMENTAL SETUP

We first provide results on the widely adopted benchmarks, CIFAR-10 and CIFAR-100. Results on
ImageNet and WebVision will be provided in Sec. 5.5 and Sec. 5.6. Following the settings in previous
work Jiang et al. (2017); Ren et al. (2018), we train wide residual networks WRN-28-10 Zagoruyko
& Komodakis (2016) for 200 epochs with mini-batch size 128. All the experiments are trained using
momentum 0.9 and weight decay 1× 10−4. We use learning rate 0.1 and a cosine annealing schedule
as suggested in Loshchilov & Hutter (2016). We use the implementation of WRN-28-10 in the official
code of AutoAugment Cubuk et al. (2018).
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Table 1: Averaged test error rates (%) and the standard deviations over 3 runs on CIFAR-10 under
different uniform noise fraction. † marks methods trained using additional clean validation images.
Best results are highlighted in bold.

Methods Noise Ratio η Network0 0.2 0.4 0.6 0.8

Bootstrap-hard Reed et al. (2014) 10.94 ± 0.9 20.81 ± 0.4 23.33 ± 0.8 29.43 ± 0.3 – 12-layer CNN

Forward-correction Patrini et al. (2017) 9.73 ± 0.0 15.39 ± 0.3 18.16 ± 0.1 27.59 ± 0.7 – 12-layer CNN

D2L Ma et al. (2018) 10.59 ± 0.2 14.87 ± 0.6 16.64 ± 0.5 27.16 ± 0.6 – 12-layer CNN

Generalized Cross Entropy Zhang & Sabuncu (2018) 6.5 10.13 ± 0.2 12.87 ± 0.22 17.46 ± 0.23 32.08 ± 0.6 ResNet-34

Co-teaching Han et al. (2018) 6.05 17.68 – – – 13-layer CNN

MentorNet Jiang et al. (2017)† 4 8 11 – 51 WRN-101-10

Learning to reweight Ren et al. (2018)† 3.87 – 13.08 ± 0.19 – – WRN-28-10

Ours 3.79 ± 0.13 3.87 ± 0.15 5.05 ± 0.24 6.42± 0.28 13.31 ± 0.45 WRN-28-10

Table 2: Test error rates (%) on CIFAR-100 under different uniform noise fraction. † marks methods
trained using additional clean images. Best results are highlighted in bold.

Methods Noise Ratio η Network0 0.2 0.4 0.6 0.8

Bootstrap-hard Reed et al. (2014) 31.69 ± 0.2 41.51 ± 0.4 53.56 ± 0.7 57.35 ± 0.9 – ResNet-44

Forward-correction Patrini et al. (2017) 31.46 ± 0.1 39.75 ± 0.2 48.73 ± 0.3 55.78 ± 0.7 – ResNet-44

D2L Ma et al. (2018) 31.40 ± 0.3 37.80 ± 0.5 46.99 ± 0.7 54.79 ± 0.4 – ResNet-44

Generalized Cross Entropy Zhang & Sabuncu (2018) 28.6 33.19 ± 0.42 38.23 ± 0.24 45.96 ± 0.56 52.34 ± 0.69 ResNet-34

Co-teaching Han et al. (2018) 29.15 45.77 – – – 13-layer CNN

MentorNet Jiang et al. (2017)† 21 27 32 – 65 WRN-101-10

Learning to reweight Ren et al. (2018)† 21.8 – 38.66 ± 2.06 – – WRN-28-10

Ours 18.6±0.15 19.45 ±0.22 25.73 ± 0.47 38.23 ±0.52 44.68 ± 0.75 WRN-28-10

4.2 INPUT-AGNOSTIC UNIFORM LABEL NOISE

First, we test on the uniform random label noise on CIFAR-10 and CIFAR-100. Following common
practice Patrini et al. (2017); Jiang et al. (2017); Zhang & Sabuncu (2018), a certain percentage η (0%,
20%, 40%, 60%, 80%) of true labels on the training dataset are replaced by random labels through
uniform sampling. We report the averaged error rates on test datasets over 3 runs. Experimental
results are summarized in Table 1 and 2. Note that different network architectures are used in the
competing methods, as pointed out in the table. The error rates of the base networks in each method
are shown in the second column of 0% noise (clean), where performance relative to the standard clean
settings can be observed. We fix the hyper-parameter λ = 300 in all the experiments for CIFAR-10
and λ = 3000 for CIFAR-100.

In all the experiments, our method achieves significantly better resistance to label noise from moderate
to severe levels. In particular, our approach attains a 13.31% error rate on CIFAR-10 with a noise
fraction of 80%, down from the previous best 32.08%. Using the same network architecture WRN-28-
10 as ours and 1000 clean validation images, learning to reweight Ren et al. (2018) achieves 38.66%
test error on CIFAR-100 with 40% noise while our method achieves a better 25.73% even without
any knowledge on the clean validation images. Figures 1 and 3 plot the test accuracy against the
number of epochs on the two datasets. We provide a simple baseline – CCE, standing for categorical
cross-entropy loss that treats all the noisy training examples as clean and trains a WRN-28-10. We
can see that the baseline tends to over-fit the label noise at the later stage of training while our method
does not suffer from the incorrect training signal.

5 CONCLUSION

We propose a simple but effective algorithm for robust deep learning with noisy labels. Our method
builds upon a variance regularizer that prevents the model from overfitting to the corrupted labels.
Extensive experiments given in the paper show that the generalization performance of DNNs trained
with corrupted labels can be improved significantly using our method, which can serve as a strong
baseline for deep learning with noisy labels.
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A RELATED WORK

Learning with noisy labels has been broadly studied in previous work, both theoretically Natarajan
et al. (2013) and empirically Reed et al. (2014); Han et al. (2018); Jiang et al. (2017). Here we focus
on the recent progress on deep learning with noisy labels. Since DNNs have high capacity to fit the
(noisy) data, it brings new challenges different from that in the traditional noisy label settings.

Generalization of DNNs. Previous works Zhang et al. (2016); Arpit et al. (2017); Shwartz-Ziv
& Tishby (2017) find that DNNs have different learning patterns for clean or noisy labels. Zhang
et al. (2016) shows that DNNs can easily memorize the training dataset even when the labels are
random noise. An early stage of pattern learning and later memorization of noisy labels are observed
in Arpit et al. (2017). Some previous work uses this kind of property to propose measures to modify
the training process, such as the learned subspace dimensionality and the distribution of the loss
values Ma et al. (2018); Han et al. (2018). Regularization techniques including dropout and early
stopping have been shown to be effective to prevent over-fitting to noisy labels Arpit et al. (2017).

Estimating noise distribution. Many noisy estimation models have been proposed Natarajan et al.
(2013); Xiao et al. (2015); Patrini et al. (2017); Vahdat (2017). Some works assume the true label is
modeled by a latent variable while the noisy label is observed. EM-like methods have been proposed
to alternate between the learning of noisy corruption process and the modeling. Backward and forward
corrections Patrini et al. (2017) use an estimated noise transition matrix to modify the loss function.
In general, the noise is assumed to be input-independent but class-dependent. Input-dependent noise
has been explored in Menon et al. (2016); Xiao et al. (2015).

Noise-robust loss functions. The mean absolute error (MAE) was proposed as a noise-robust
alternative to the cross-entropy loss Ghosh et al. (2017) but was known to be hard to converge. An
extension and generalization of MAE, generalized cross entropy, was recently developed Zhang &
Sabuncu (2018).

Identifying clean examples. Co-teaching Han et al. (2018) proposes to identify the examples
with small loss as clean examples. Learning to reweight Ren et al. (2018) equals to shifting the
training distribution p(x, y) to match the clean validation distribution q(x, y), that is to minimize
Dfθ (w(x, y)p(x, y), q(x, y)) where D is some distance measure implicitly learned by fθ and w(x, y)
is the density ratio, the learned weights for each example (x, y).

Using additional clean validation dataset. Azadi et al. (2015) proposed a regularization term to
encourage the model to select reliable examples. Hendrycks et al. (2018) proposed Golden Loss
Correction to use a set of trusted clean data to mitigate the effects of label noise. They estimate the
corruption matrix using the trained network with noisy labels and then re-train the network corrected
by the corruption matrix. Ren et al. (2018) also used a small clean validation dataset to determine
the weights of training examples. The success of these methods is based on the assumption that
clean data is from the same distribution as the corrupted data as well as the test data. However,
more realistic scenario are ones where (1) p(x) varies between the clean data and the noisy data,
e.g., imbalanced datasets. 2) There is class mismatch: p(y|x) differs. Similar problems exist in
semi-supervised learning. All these methods require a clean validation dataset to work well while the
proposed method does not require it.

We also plot label precision against number of epochs in Figure 4. Here we treat the 1− η ratio of
the training examples with minimal training losses as the clean examples. The label precision is
computed as the portion of true clean examples among them. The ideal algorithm without over-fitting
will have 100% label precision. The higher the label precision is, the better robustness the model
achieves. Figure 4 demonstrates that our method obtains a higher label precision.

A.1 CLASS-DEPENDENT ASYMMETRIC LABEL NOISE

A more realistic and more challenging noise type than the uniform noise is to corrupt between the
semantically similar classes. For CIFAR-10, the class-dependent asymmetric noise is simulated by
mapping TRUCK → AUTOMOBILE, BIRD → AIRPLANE, DEER → HORSE, CAT ↔ DOG, as done
in Patrini et al. (2017); Zhang & Sabuncu (2018). The noise strength is controlled by the flipping
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Figure 1: Test accuracy against the number of epochs on CIFAR-10 under different uniform noise
ratio trained with WRN-20-10. Our method is less prone to the label noise over-fitting.
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Figure 2: Test accuracy against the number of epochs on CIFAR-100 under different asymmetric
noise ratios trained with WRN-20-10.

probability η. The noise transition matrix is:

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
η 0 1− η 0 0 0 0 0 0 0
0 0 0 1− η 0 η 0 0 0 0
0 0 0 0 1− η 0 0 η 0 0
0 0 0 η 0 1− η 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 η 0 0 0 0 0 0 0 1− η


(6)
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Table 3: Results on CIFAR-10 and CIFAR-100 with class-dependent asymmetric noise. Averaged
accuracy and standard deviation over 3 runs are reported. The results of competing methods are
taken from Zhang & Sabuncu (2018). CCE stands for commonly-used categorical cross-entropy
loss function, MAE stands for mean absolute error. Forward T Patrini et al. (2017) uses the ground-
truth noise transition matrix while Forward T̂ Patrini et al. (2017) estimates T . Trunc Lq loss is a
noise-robust loss function proposed in Zhang & Sabuncu (2018).

Datasets Methods Noise Ratio η
0.1 0.2 0.3 0.4

CIFAR-10

CCE 90.69 ± 0.17 88.59 ± 0.34 86.14 ± 0.40 80.11 ± 1.44
MAE 82.61 ± 4.81 52.93 ± 3.60 50.36 ± 5.55 45.52 ± 0.13

Forward T Patrini et al. (2017) 91.32 ± 0.21 90.35 ± 0.26 89.25 ± 0.43 88.12 ± 0.32
Forward T̂ Patriniet al. (2017) 90.52 ± 0.26 89.09 ± 0.47 86.79 ± 0.36 83.55 ± 0.58

Trunc Lq Zhang & Sabuncu (2018) 90.43 ± 0.25 89.45 ± 0.29 87.10 ± 0.22 82.28 ± 0.67
Baseline (CCE) 94.31 ± 0.19 90.29 ± 0.35 84.61 ± 0.41 78.24 ± 0.82

Ours 95.69 ± 0.18 94.01 ± 0.22 92.44 ± 0.37 85.62 ± 0.77

CIFAR-100

CCE 66.54 ± 0.42 59.20 ± 0.18 51.40 ± 0.16 42.74 ± 0.61
MAE 13.38 ± 1.84 11.50 ± 1.16 8.91 ± 0.89 8.20 ± 1.04

Forward T Patrini et al. (2017) 71.05 ± 0.30 71.08 ± 0.22 70.76 ± 0.26 70.82 ± 0.45
Forward T̂ Patrini et al. (2017) 45.96 ± 1.21 42.46 ± 2.16 38.13 ± 2.97 34.44 ± 1.93

Trunc Lq Zhang & Sabuncu (2018) 68.86 ± 0.14 66.59 ± 0.23 61.87 ± 0.39 47.66 ± 0.69
Baseline (CCE) 79.40 ± 0.22 73.50 ± 0.21 63.02 ± 0.32 52.06 ± 0.71

Ours 82.55 ± 0.24 82.34 ± 0.20 80.55 ± 0.26 74.54 ± 0.64

0 25 50 75 100 125 150 175 200
Epochs

10

20

30

40

50

60

70

80

Te
st

 a
cc

ur
ac

y 
%

CIFAR-100, noise ratio = 0.2
Baseline
Ours

0 25 50 75 100 125 150 175 200
Epochs

10

20

30

40

50

60

70

Te
st

 a
cc

ur
ac

y 
%

CIFAR-100, noise ratio = 0.4

Baseline
Ours

0 25 50 75 100 125 150 175 200
Epochs

10

20

30

40

50

60

Te
st

 a
cc

ur
ac

y 
%

CIFAR-100, noise ratio = 0.6

Baseline
Ours

Figure 3: Test accuracy against the number of epochs on CIFAR-100 under different uniform noise
ratios trained with WRN-20-10. Our method is less prone to label noise over-fitting.

For CIFAR-100, class dependent noise is simulated by flipping each class into the next class with
probability η. The last class is flipped to the first class circularly, , the transition matrix has 1− η on
the diagonal and η off the diagonal:



1− η η 0 0 · · · 0
0 1− η η 0 · · · 0
0 0 1− η η · · · 0

...
...

...
. . .

...
...

0 0 0 0 1− η η
η 0 0 0 0 1− η


(7)

Results are presented in Table 3. We compare to a range of competing loss-correction methods whose
results are taken from Zhang & Sabuncu (2018) and our baseline trained with only CCE. We use
the same hyper-parameter λ = 300 among all the experiments for CIFAR-10 and λ = 3000 for
CIFAR-100. Note that Forward T is the forward correction Patrini et al. (2017) using the ground-truth
noise transition matrix, whose results are almost perfect. Our method does not use any ground-truth
knowledge of the noise corruption process. We can see that our method is robust to all the settings
and is less influenced by the variations of noise types. The test accuracy along the training process on
CIFAR-100 is also plotted in Figure 2.

A.2 HYPER-PARAMETER SENSITIVITY ANALYSIS

We assess the sensitivity of our algorithm with respect to the hyper-parameter λ and the results are
plotted in Figure 5. We can see that the performance of our method remains stable across a wide
range of hyper-parameter choices.
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Figure 4: Label precision against the number of epochs on CIFAR-10 (left) and CIFAR-100 (right)
with uniform noise, respectively. Here the label precision is computed by the percentage of clean
training examples within those having 1− η minimal training losses.

100 200 300 400 500 600
Hyper-parameter 

70

75

80

85

90

95

100

Te
st

 a
cc

ur
ac

y 
%

noise ratio 0.4
noise ratio 0.8

(a) CIFAR-10

1500 2000 2500 3000 3500 4000
Hyper-parameter 

40

50

60

70

80

90

Te
st

 a
cc

ur
ac

y 
%

noise ratio 0.2
noise ratio 0.6

(b) CIFAR-100

Figure 5: Hyper-parameter sensitivity analysis on CIFAR-10 and CIFAR-100 with uniform label
noise. Our method is insensitive to a wide range of values for λ.

A.3 VISUALIZATION

We visualize the embeddings of our algorithm on test data. Figure 6 shows the representations
h(x) ∈ R128 projected to 2 dimension using t-SNE Maaten & Hinton (2008).
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(a) CCE (b) Ours

Figure 6: t-SNE 2D embeddings of the test dataset on CIFAR-10 trained with 60% uniform label
noise. Each color represents a class. Our method learns a more separable feature space.
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