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ABSTRACT

Over the last few years, the phenomenon of adversarial examples — maliciously
constructed inputs that fool trained machine learning models — has captured the
attention of the research community, especially when the adversary is restricted
to making small modifications of a correctly handled input. At the same time,
less surprisingly, image classifiers lack human-level performance on randomly
corrupted images, such as images with additive Gaussian noise. In this work, we
show that these are two manifestations of the same underlying phenomenon. We
establish this connection in several ways. First, we find that adversarial examples
exist at the same distance scales we would expect from a linear model with the same
performance on corrupted images. Next, we show that Gaussian data augmentation
during training improves robustness to small adversarial perturbations and that
adversarial training improves robustness to several types of image corruptions.
Finally, we present a model-independent upper bound on the distance from a
corrupted image to its nearest error given test performance and show that in practice
we already come close to achieving the bound, so that improving robustness further
for the corrupted image distribution requires significantly reducing test error. All
of this suggests that improving adversarial robustness should go hand in hand
with improving performance in the presence of more general and realistic image
corruptions. This yields a computationally tractable evaluation metric for defenses
to consider: test error in noisy image distributions.

1 INTRODUCTION

State-of-the-art computer vision models can achieve superhuman performance on many image
classification tasks. Despite this, these same models still lack the robustness of the human visual
system to various forms of image corruptions. For example, they are distinctly subhuman when
classifying images distorted with additive Gaussian noise (Dodge & Karam, 2017b), they lack
robustness to different types of blur, pixelation, and changes in brightness (Hendrycks & Dietterich,
2018), lack robustness to random translations of the input (Azulay & Weiss, 2018), and even make
errors when foreign objects are inserted into the field of view (Rosenfeld et al., 2018). At the same
time, they also are sensitive to small, worst-case perturbations of the input, so-called “adversarial
examples” (Szegedy et al., 2014). This latter phenomenon has struck many in the machine learning
community as surprising and has attracted a great deal of research interest, while the former seems to
inspire less surprise and has received considerably less attention.

Our classification models make errors on two different sorts of inputs: those found by randomly
sampling from some predetermined distribution, and those found by an adversary deliberately
searching for the closest error to a given point. In this work, we ask what, if anything, is the difference
between these two types of error. Given that our classifiers make errors in these corrupted image
distributions, there must be a closest such error; do we find that this closest error appears at the
distance we would expect from the model’s performance in noise, or is it in fact “surprisingly” close?

The answer to this question has strong implications for the way we approach the task of eliminating
these two types of errors. An assumption underlying most of the work on adversarial examples is
that solving it requires a different set of methods than the ones being developed to improve model
generalization. The adversarial defense literature focuses primarily on improving robustness to small
perturbations of the input and rarely reports improved generalization in any distribution.
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We claim that, on the contrary, adversarial examples are found at the same distance scales that one
should expect given the performance on noise that we see in practice. We explore the connection
between small perturbation adversarial examples and test error in noise in two different ways.

First, in Sections 4 and 5, we provide empirical evidence of a close relationship between test
performance in Gaussian noise and adversarial perturbations. We show that the errors we find close to
the clean image and the errors we sample under Gaussian noise are part of the same large set and show
some visualizations that illustrate this relationship. (This analysis builds upon prior work (Fawzi
et al., 2018; 2016) which makes smoothness assumptions on the decision boundary to relate these
two quantities.) This suggests that training procedures designed to improve adversarial robustness
might reduce test error in noise and vice versa. We provide results from experiments which show
that this is indeed the case: for every model we examined, either both quantities improved or neither
did. In particular, a model trained on Gaussian noise shows significant improvements in adversarial
robustness, comparable to (but not quite as strong as) a model trained on adversarial examples. We
also found that an adversarially trained model on CIFAR-10 shows improved robustness to random
image corruptions.

Finally, in Section 6, we establish a relationship between the error rate of an image classification
model in the presence of Gaussian noise and the existence of adversarial examples for noisy versions
of test set images. In this setting we can actually prove a rigorous, model-independent bound relating
these two quantities that is achieved when the error set is a half space, and we see that the models we
tested are already quite close to this optimum. Therefore, for these noisy image distributions, our
models are already almost as adversarially robust as they can be given the error rates we see, so the
only way to defend against adversarial examples is to reduce test error.

In this work we will investigate several different models trained on the MNIST, CIFAR-10 and
ImageNet datasets. For MNIST and CIFAR-10 we look at the naturally trained and adversarially
trained models which have been open-sourced by Madry et al. (2017). We also trained the same model
on CIFAR-10 with Gaussian data augmentation. For ImageNet, we investigate Wide ResNet-50
trai]ned with Gaussian data augmentation. We were unable to study the effects of adversarial training
on ImageNet because no robust open sourced model exists (we considered the models released in
Tramèr et al. (2017) but found that they only minimally improve robustness to the white box PGD
adversaries we consider here). Additional training details can be found in Appendix A.

2 RELATED WORK

The broader field of adversarial machine learning studies general ways in which an adversary may
interact with an ML system, and dates back to 2004 (Dalvi et al., 2004; Biggio & Roli, 2018). Since
the work of Szegedy et al. (2014), a subfield has focused specifically on the phenomenon of small
adversarial perturbations of the input, or “adversarial examples.” In Szegedy et al. (2014) it was
proposed these adversarial examples occupy a dense, measure-zero subset of image space. However,
more recent work has provided evidence that this is not true. For example, Fawzi et al. (2016);
Franceschi et al. (2018) shows that under linearity assumptions of the decision boundary small
adversarial perturbations exist when test error in noise is non-zero. Gilmer et al. (2018b) showed
for a specific data distribution that there is a fundamental upper bound on adversarial robustness in
terms of test error. Mahloujifar et al. (2018) has generalized these results to a much broader class of
distributions.

Recent work has proven for a synthetic data distribution that adversarially robust generalization
requires more data (Schmidt et al., 2018). The distribution they consider when proving this result is a
mixture of high dimensional Gaussians. As we will soon discuss, every set E of small measure in
the high dimensional Gaussian distribution has large boundary measure. Therefore, at least for the
data distribution considered, the main conclusion of this work, “adversarially robust generalization
requires more data”, is a direct corollary of the statement “generalization requires more data.”

3 TEST ERROR AND ADVERSARIAL ROBUSTNESS

Understanding the relationship between nearby errors and model generalization requires understand-
ing the geometry of the error set of a statistical classifier, that is, the set of points in the input space
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on which the classifier makes an incorrect prediction. In particular, the assertion that these adversarial
examples are a distinct phenomenon from test error is equivalent to stating that the error set is in
some sense poorly behaved. We study two functions of a model’s error set E.

The first quantity, test error under a given distribution of inputs q(x), is the probability that a random
sample from the distribution q is in E. We will denote this Px∼q[x ∈ E]; reducing this quantity when
q is the natural data distribution is the goal of supervised learning. While one usually takes q to be
the distribution from which the training set was sampled, we will also consider other distributions
over the course of this paper.

When q includes points from outside the natural data distribution, a decision needs to be made
about the labels in order to define E. The only such cases we will consider in this paper are noisy
perturbations of training or test points, and we will always assume that the noise is at a scale which
is small enough not to change the label. This assumption is commonly made in works which study
model robustness to random corruptions of the input (Hendrycks & Dietterich, 2018; Dodge & Karam,
2017b). Some examples noisy images can be found in Figure 7 in the appendix.

The second quantity is called adversarial robustness. For an input x and a metric on the input space
d, let d(x,E) denote the distance from x to the nearest point of E. For any ε, let Eε denote the set
{x : d(x,E) < ε}, the set of points within ε of an error. The adversarial robustness of the model is
then Px∼q[x ∈ Eε], the probability that a random sample from q is within distance ε of some point in
the error set. Reducing this quantity is the goal of much of the adversarial defense literature. When
we refer to “adversarial examples” in this paper, we will always mean these nearby errors.

In geometric terms we can think of Px∼q[x ∈ E] as a sort of volume of the error set while Px∼q[x ∈
Eε] is related to its surface area. More directly, Px∼q[x ∈ Eε] is what we will call the ε-boundary
measure, the volume under q of the region within ε of the surface or the interior.

The adversarial example phenomenon is then simply that, for small ε, Px∼q[x ∈ Eε] can be large
even when Px∼q[x ∈ E] is small. In other words, most correctly classified inputs are very close
to a misclassified point, even though the model is very accurate. In high-dimensional spaces this
phenomenon is not isolated to the error sets of statistical classifiers. In fact almost every nonempty set
of small volume has large ε-boundary measure, even sets that seem very well-behaved. As a simple
example, consider the measure of the set E = {x ∈ Rn : ||x||2 < 1} under the Gaussian distribution
q = N (0, σ2I). For n = 1000, σ = 1.05/

√
n, and ε = 0.1, we have Px∼q[x ∈ E] ≈ 0.02 and

Px∼q[x ∈ Eε] ≈ 0.98, so most samples from q will be close to E despite the fact that E has relatively
little measure under the Gaussian distribution. If we relied only on our low-dimensional spatial
intuition, we might be surprised to find how consistently small adversarial perturbations could be
found — 98% of our test points would have an error at distance 0.1 or less even though only 2% are
misclassified.

In high dimensions, it is much easier for most points to be close to some set even if that set itself has
a small volume. Contrary to what one might expect from our low-dimensional intuition, this does not
require the set in question to be somehow pathological; in our example, it was just a ball. Therefore,
when we see that some image classifier has errors in some noise distribution q (so that Px∼q[x ∈ E]
is appreciably bigger than zero) it is possible that Eε is much larger even if E is quite simple, so the
existence of small worst-case perturbations should be expected given imperfect robustness to large
average-case corruptions. In the sections that follow we will make this precise.

4 ERRORS IN NOISE SUGGEST ADVERSARIAL EXAMPLES FOR CLEAN
IMAGES

The Linear Case. For linear models, the relationship between errors in Gaussian noise and small
perturbations of a clean image is exact. For an image x, let d(x) be the distance from x to decision
boundary and let σ(x, µ) be the σ for which Px∼q[x ∈ E] is some fixed error rate µ. (As we
mentioned in the introduction, we assume that σ is small enough that adding this noise does not
change the “correct” label.) Then we have d(x) = −σ(x, µ)Φ−1(µ), where

Φ(t) =
1√
2π

∫ t

−∞
exp(−x2/2)dx

is the cdf of the univariate standard normal distribution.
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Figure 1: Comparing the distance to decision boundary with the σ for which the error rate in Gaussian
noise is 1%. Each point represents 50 images from the test set, and the median values for each
coordinate are shown. (The PGD attack was run with ε = 1, so the distances to the decision boundary
reported here are cut off at 1.) We also see histograms of the x coordinates. (A misclassified point is
assigned σ = 0.)

Note that this equality depends only on the error rate µ and the standard deviation σ of a single
component, and not directly on the dimension. This might seem at odds with the emphasis on
high-dimensional geometry in Section 3. The dimension does appear if we consider the norm of a
typical sample fromN (0, σ2I), which is σ

√
n. As the dimension increases, so does the ratio between

the distance to a noisy image and the distance to the decision boundary.

The decision boundary of a neural network is, of course, not linear. However, by computing the
ratio between d(x) and σ(x, µ) for neural networks and comparing it to what it would be for a linear
model, we can investigate the question posed in the introduction: do we see adversarial examples at
the distances we do because of pathologies in the shape of the error set, or do we find them at about
the distances we would expect given the error rates we see in noise? We ran experiments on the error
sets of several neural image classifiers and found evidence that is much more consistent with the
second of these two possibilities. This relationship was also explored in Fawzi et al. (2016; 2018);
here we additionally measure how data augmentation affects this relationship.

We examined this relationship for neural networks when µ = 0.01. For each test point, we compared
σ(x, µ) to an estimate of d(x). It is not actually possible to compute d(x) precisely for the error set
of a neural network. In fact, finding the distance to the nearest error is NP-hard (Katz et al., 2017).
Instead, the best we can do is to search for an error using a method like PGD (Madry et al., 2017) and
report the nearest error we can find.

Figure 1 shows the results for several CIFAR-10 and ImageNet models, including ordinary trained
models, models trained on noise with σ = 0.4, and an adversarially trained CIFAR-10 model. We
also included a line representing how these quantities would be related for a linear model.

We can see that none of the models we examined have nearby errors at a scale much smaller than we
would expect from a linear model. Indeed, while the adversarially trained model does deviate from
the linear case to a greater extent than the others, it does so in the direction of greater distances to
the decision boundary. Moreover, we can see from the histograms that both of the interventions that
increase d(x) also increase σ(x, µ). So, to explain the distances to the errors we can find using PGD,
it is not necessary to rely on any great complexity in the shape of the error set; a linear model with
the same error rates in noise would have errors just as close.
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Figure 2: Two-dimensional slices of image space through different triples of points together with the
classes assigned by a trained model. The black circle in both images has radius 31.4, corresponding
to noise with σ = 31.4/

√
n = 0.08.

Left: An image from the test set (black), a random misclassified Gaussian perturbation at standard
deviation 0.08 (blue), and an error found using PGD (red). The estimated measure of the cyan region
(“miniature poodle”) in the Gaussian distribution is about 0.1%. The small diamond-shaped region in
the center of the image is the l∞ ball of radius 8/255.
Right: A slice at a larger scale with the same black point, together with an error from the clean
set (blue) and an adversarially constructed error (red) which are both assigned to the same class
(“elephant”).

Visualizing the Decision Boundary. In Figure 2 we drew some pictures of two-dimensional slices
of image space through several different triples of points. (Similar visualizations have previously
appeared in Fawzi et al. (2018), and are called “church window plots.”)

We see some common themes. In the figure on the left, we see that an error found in Gaussian noise
lies in the same connected component of the error set as an error found using PGD, and that at this
scale that component visually resembles a half space. This figure also illustrates the relationship
between test error and adversarial robustness. To measure adversarial robustness is to ask whether or
not there are any errors in the l∞ ball — the small diamond-shaped region in the center of the image
— and to measure test error in noise is to measure the volume of the error set in the defined noise
distribution. At least in this slice, nothing distinguishes the PGD error from any other point in the
error set apart from its proximity to the center point.

The figure on the right shows a different slice through the same test point but at a larger scale.
This slice includes an ordinary test error along with an adversarial perturbation of the center image
constructed with the goal of maintaining visual similarity while having a large l2 distance. The
two errors are both classified (incorrectly) by the model as “elephant.” This adversarial error is
actually farther from the center than the test error, but they still clearly belong to the same connected
component. This suggests that defending against worst-case content-preserving perturbations (Gilmer
et al., 2018a) requires removing all errors at a scale comparable to the distance between unrelated
pairs of images. Many more church window plots can be found in Appendix G.

5 COMPARING ADVERSARIAL TRAINING TO TRAINING ON NOISE

For a linear model, improving generalization in the presence of noise is equivalent to increasing
the distance to the decision boundary. The results from the previous section suggest that a similar
relationship should hold for other statistical classifiers, including neural networks. That is, augmenting
the training data distribution with noisy images ought to increase the distance to the decision boundary,
and augmenting the training distribution with small-perturbation adversarial examples should improve
performance in noise. Here we present evidence that this is the case.

We analyzed the performance of the models described in Section 1 on four different noise distributions:
two types of Gaussian noise, pepper noise (Hendrycks & Dietterich, 2018), and a randomized variant
of the stAdv adversarial attack introduced in Xiao et al. (2018). We used both ordinary, spherical
Gaussian noise and what we call “PCA noise,” which is Gaussian noise supported only on the
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Dataset CIFAR-10 ImageNet
Training Vanilla Noise Noise Adv Vanilla Noise Noise

σ = 0.1 σ = 0.4 σ = 0.4 σ = 0.8
Noise Type

Clean 95.0% 93.5% 84.0% 87.3% 76.0% 74.4% 72.6%
PCA100, σ = 0.2 93.2% 92.3% 83.6% 86.5% 45.5% 56.5% 59.7%
PCA100, σ = 0.4 82.6% 83.1% 81.0% 80.6% 13.5% 17.7% 19.7%

Pepper, p = 0.1 20.2% 53.3% 81.2% 38.4% 31.3% 70.0% 69.1%
Pepper, p = 0.3 12.3% 18.9% 58.0% 21.1% 5.4% 56.0% 61.5%

Gaussian, σ = 0.1 29.1% 89.0% 85.1% 77.8% 60.7% 73.3% 71.7%
Gaussian, σ = 0.2 13.5% 38.8% 83.5% 42.1% 27.9% 70.5% 69.3%

stAdv, σ = 0.5 52.3% 84.4% 77.9% 81.7% 57.3% 67.3% 69.0%
stAdv, σ = 2.0 17.4% 30.6% 52.1% 27.0% 11.4% 27.2% 31.3%
lp robustness
l2, ε = 0.5 0.3% 39.2% 54.5% 58.3% 7.9% 43.8% 47.7%
l2, ε = 1.0 0.0% 9.5% 25.1% 29.7% 0.5% 16.8% 22.5%

l∞, ε = 1/255 26.2% 84.4% 76.6% 83.5% 0.8% 20.1% 25.0%
l∞, ε = 4/255 0.4% 39.8% 49.6% 68.3% 0.0% 0.1% 0.1%
l∞, ε = 8/255 0.0% 10.3% 20.0% 45.4% 0.0% 0.0% 0.0%

Table 1: The performance of the models we considered under various noise distributions, together
with our measurements of those models’ robustness to small lp perturbations. For all the robustness
tests we used PGD with 100 steps and a step size of ε/25. The adversarially trained CIFAR-10 model
is the open sourced model from Madry et al. (2017).

subspace spanned by the first 100 principal components of the training set. Pepper noise randomly
assigns channels of the image to 1 with some fixed probability. Details of the stAdv attack can be
found in Appendix B, but it visually similar to Gaussian blurring where σ controls the severity of
the blurring. Example images that have undergone each of the noise transformations we used can be
found in Appendix I. Each model was also tested for lp robustness with a variety of norms and ε’s
using the same PGD attack as in Section 4.

For CIFAR-10, standard Gaussian data augmentation yields comparable (but slightly worse) results
to adversarial training on all considered metrics. For ImageNet we found that Gaussian data augmen-
tation improves robustness to small l2 perturbations as well as robustness to other noise corruptions.
The results are shown in Table 1. This holds both for generalization in all noises considered and for
robustness to small perturbations. We found that performing data augmentation with heavy Gaussian
noise (σ = 0.4 for CIFAR-10 and σ = 0.8 for ImageNet) worked best. The adversarially trained
CIFAR-10 models were trained in the l∞ metric and they performed especially well on worst-case
perturbations in this metric. Prior work has observed that Gaussian data augmentation helps small
perturbation robustness on MNIST (Kannan et al., 2018), but to our knowledge we are the first to
measure this on CIFAR-10 and ImageNet.

Neither augmentation method shows much improved generalization in PCA noise. We hypothesize
that adversarially trained models learn to project away the high-frequency information in the input,
which would do little to improve performance in PCA noise, which is supported in the low-frequency
subspace of the data distribution. Further work would be required to establish this.

We also considered the MNIST adversarially trained model from Madry et al. (2017), and found it to
be a special case where although robustness to small perturbations was increased generalization in
noise was not improved. This is because this model violates the linearity assumption discussed in
Section 4. This overfitting to the l∞ metric has been observed in prior work (Sharma & Chen, 2017).
More details can be found in Appendix D.

Although no lp-robust open sourced ImageNet model exists, recent work has found that the adversari-
ally trained models on Tiny ImageNet from Kannan et al. (2018) generalize very well on a large suite
of common image corruptions (Hendrycks & Dietterich, 2018).

Failed Adversarial Defenses Do Not Improve Generalization in Noise. We performed a similar
analysis on seven previously published adversarial defense strategies. These methods have already
been shown to result in masking gradients, which cause standard optimization procedures to fail to find
errors, rather than actually improving small perturbation robustness (Athalye et al., 2018). We find
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Figure 3: The performance in Gaussian noise of several previously published defenses for ImageNet,
along with a model trained on Gaussian noise at σ = 0.4 for comparison. For each point we ran
ten trials; the error bars show one standard deviation. All of these defenses are now known not
to improve adversarial robustness (Athalye et al., 2018). The defense strategies include bitdepth
reduction (Guo et al., 2017), JPEG compression (Guo et al., 2017; Dziugaite et al., 2016; Liu et al.,
2018; Aydemir et al., 2018; Das et al., 2018; 2017), Pixel Deflection (Prakash et al., 2018), total
variance minimization (Guo et al., 2017), respresentation-guided denoising (Liao et al., 2018), and
random resizing and random padding of the input image (Xie et al., 2017).

that these methods also show no improved generalization in Gaussian noise. The results are shown in
Figure 3. Given how easy it is for a method to show improved robustness to standard optimization
procedures without changing the decision boundary in any meaningful way, we strongly recommend
that future defense efforts evaluate on out-of-distribution inputs such as the noise distributions we
consider here. The current standard practice of evaluating solely on gradient-based attack algorithms
is making progress more difficult to measure.

Obtaining Zero Test Error in Noise is Nontrivial. It is important to note that applying Gaussian
data augmentation does not reduce error rates in Gaussian noise to zero. For example, we performed
Gaussian data augmentation on CIFAR-10 at σ = .15 and obtained 99.9% training accuracy but
77.5% test accuracy in the same noise distribution. (For comparison, the naturally trained obtains 95%
clean test accuracy.) Previous work (Dodge & Karam, 2017b) has also observed that obtaining perfect
generalization in large Gaussian noise is nontrivial. This mirrors Schmidt et al. (2018), which found
that small perturbation robustness did not generalize to the test set. This is perhaps not surprising
given that error rates on the clean test set are also non-zero. Although the model is in some sense
“superhuman” with respect to clean test accuracy, it still makes many mistakes on the clean test set
that a human would never make. We collected some examples in Appendix I. More detailed results
on training and testing in noise can be found in Appendices C and H.

6 ERRORS IN NOISE IMPLY ADVERSARIAL EXAMPLES FOR NOISY IMAGES

The Gaussian Isoperimetric Inequality. Let x be a correctly classified image and consider the
distribution q of Gaussian perturbations of x with some fixed variance σ2I . For this distribution, there
is a precise sense in which small adversarial perturbations exist only because test error is nonzero.
That is, given the error rates we actually observe on noisy images, most noisy images must be close
to the error set. This result holds completely independently of any assumptions about the model and
follows from a fundamental geometric property of the high-dimensional Gaussian distribution, which
we will now make precise.

For an image x and the corresponding noisy image distribution q, let ε∗q(E) be the median distance
from one of these noisy images to the nearest error. (In other words, it is the ε for which Px∼q[x ∈
Eε] = 1

2 .) As before, let Px∼q[x ∈ E] be the probability that a random Gaussian perturbation
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Figure 4: The adversarial example phenomenon occurs for noisy images as well as clean ones. Start-
ing with a noisy image that that is correctly classified, one can apply carefully crafted imperceptible
noise to it which causes the model to output an incorrect answer. This occurs even though the error
rate among random Gaussian perturbations of this image is small (less than .1% for the ImageNet
panda shown above). In fact, we prove that the presence of errors in Gaussian noise logically implies
that small adversarial perturbations exists around noisy images. The only way to “defend” against
such adversarial perturbations is to reduce the error rate in Gaussian noise.

of x lies in E. It is possible to deduce a bound relating these two quantities from the Gaussian
isoperimetric inequality (Borell, 1975). The form we will use is:

Theorem (Gaussian Isoperimetric Inequality). Let q = N (0, σ2I) be the Gaussian distribution on
Rn with variance σ2I , and let µ = Px∼q[x ∈ E].

Write Φ(t) = 1√
2π

∫ t
−∞ exp(−x2/2)dx, the cdf of the univariate standard normal distribution. If

µ ≥ 1
2 , then ε∗q(E) = 0. Otherwise, ε∗q(E) ≤ −σΦ−1(µ), with equality when E is a half space.

In particular, for any machine learning model for which the error rate in the distribution q is at least
µ, the median distance to the nearest error is at most −σΦ−1(µ). (Note that Φ−1(µ) is negative
when µ < 1

2 .) Because each coordinate of a multivariate normal is a univariate normal, −Φ−1(µ) is
the distance to a half space for which the error rate is µ when σ = 1. (We have the same indirect
dependence on dimension here as we saw in Section 4: the distance to a typical sample from the
Gaussian is σ

√
n.)

In Appendix E we will give the more common statement of the Gaussian isoperimetric inequality
along with a proof of the version presented here. In geometric terms, we can say that a half space
is the set E of a fixed volume that minimizes the surface area under the Gaussian measure, similar
to how a circle is the set of fixed area that minimizes the perimeter. So among models with some
fixed test error Px∼q[x ∈ E], the most robust on this distribution are the ones whose error set is a
half space.

Comparing Neural Networks to the Isoperimetric Bound. We evaluated these quantities for
several models and many images from the CIFAR-10 and ImageNet test sets. Just like for clean
images, we found that most noisy images are both correctly classified and very close to a visually
similar image which is not. (See Figure 4.)

As we mentioned in Section 4, it is not actually possible to compute ε∗q precisely for the error set of a
neural network, so we again report an estimate. For each test image, we took 1,000 samples from the
corresponding Gaussian and estimated ε∗q using PGD with 200 steps on each sample and reported the
median.

We find that for the five models we considered on CIFAR-10 and ImageNet, the relationship between
our estimate of ε∗q(E) and Px∼q[x ∈ E] is already close to optimal. This is visualized in Figure 5.
Note that in both cases, adversarial training does improve robustness to small perturbations, but
the gains are primarily because error rates in Gaussian noise were dramatically improved, and less
because the surface area of the error set was decreased. In particular, many test points do not appear
on these graphs because error rates in noise were so low that we did not find any errors among the
100,000 samples we used. For example, for the naturally trained CIFAR model, about 1% of the
points lie off the left edge of the plot, compared to about 59% for the adversarially trained model
and 70% for the model trained on noise. This shows that adversarial training on small perturbations
improved generalization to large random perturbations, as the isoperimetric inequality says it must.
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Figure 5: These plots give two ways to visualize the relationship between the error rate in noise
and the distance from noisy points to the decision boundary (found using PGD). Each point on each
plot represents one image from the test set. On the left, we compare the error rate of the model on
Gaussian perturbations at σ = 0.1 to the distance from the median noisy point to its nearest error.
On the right, we compare the σ at which the error rate is 0.01 to this same median distance. (The
plots on the right are therefore similar to the plots in Figure 1.) The thick black line at the top of each
plot is the upper bound provided by the Gaussian isoperimetric inequality. We include data from a
model trained on clean images, an adversarially trained model, and a model trained on Gaussian noise
(σ = 0.4.) As mentioned in Section 1, we were unable to run this experiment on an adversarially
robust ImageNet model.

Not all models or functions will be this close to optimal. As a simple example, if we took one of the
CIFAR models shown in Figure 5 and modified it so that the model outputs an error whenever each
coordinate of the input is an integer multiple of 10−6, the resulting model would have an error within√

1
2 · 10−6 · dim(CIFAR) ≈ 0.039 of every point. In this case, adversarial examples would be a

distinct phenomenon from test performance, since ε∗q(E) would be far from optimal.

The contrast between these two settings is important for adversarial defense design. If adversarial
examples arose from a badly behaved decision boundary (as in the latter case), then it would make
sense to design defenses which attempt to smooth out the decision boundary in some way. However,
because we observe that image models are already close to the optimal bound on robustness for a
fixed error rate in noise, future defense design should attempt to improve generalization in noise.
Currently there is a considerable subset of the adversarial defense literature which develops methods
that would remove any small “pockets” of errors but which don’t improve model generalization. One
example is Xie et al. (2017) which proposes randomly resizing the input to the network as a defense
strategy. Unfortunately, this defense, like many others, has been shown to be ineffective against
stronger adversaries (Carlini & Wagner, 2017a;b; Athalye et al., 2018).

7 CONCLUSION

We proved a fundamental relationship between generalization in noisy image distributions and the
existence of small adversarial perturbations. By appealing to the Gaussian isoperimetric inequality,
we formalized the notion of what it means for a decision boundary to be badly behaved. We showed
that, for noisy images, there is very little room to improve robustness without also decreasing the
volume of the error set, and we provided evidence that small perturbations of clean images can also
be explained in a similar way. These results show that small-perturbation adversarial robustness is
closely related to generalization in the presence of noise and that future defense efforts can measure
progress by measuring test error in different noise distributions.
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Indeed, several such noise distributions have already been proposed, and other researchers have
developed methods which improve generalization in these distributions (Hendrycks & Dietterich,
2018; Dodge & Karam, 2017b;a; Vasiljevic et al., 2016; Zheng et al., 2016). Our work suggests that
adversarial defense and improving generalization in noise involve attacking the same set of errors in
two different ways — the first community tries to remove the errors on the boundary of the error set
while the second community tries to reduce the volume of the error set. The isoperimetric inequality
connects these two perspectives, and suggests that improvements in adversarial robustness should
result in improved generalization in noise and vice versa. Adversarial training on small perturbations
on CIFAR-10 also improved generalization in noise, and training on noise improved robustness to
small perturbations.

In the introduction we referred to a question from Szegedy et al. (2014) about why we find errors
so close to our test points while the test error itself is so low. We can now suggest an answer:
despite what our low-dimensional visual intuition may lead us to believe, these errors are not in fact
unnaturally close given the error rates we observe in noise. There is a sense, then, in which we simply
haven’t reduced the test error enough to expect to have removed most nearby errors.

While we focused on the Gaussian distribution, similar conclusions can be made about other distri-
butions. In general, in high dimensions, the ε-boundary measure of a typical set is large even when
its volume is small, and this observation does not depend on anything specific about the Gaussian
distribution. The Gaussian distribution is a special case in that we can easily prove that all sets will
have large ε-boundary measure. Mahloujifar et al. (2018) proved a similar theorem for a larger class
of distributions. For other data distributions not every set has large ε-boundary measure, but under
some additional assumptions it still holds that most sets do. An investigation of this relationship on
the MNIST distribution can be found in Gilmer et al. (2018b, Appendix G).

We believe it would be beneficial for the adversarial defense literature to start reporting generalization
in noisy image distributions, such as the common corruption benchmark introduced in Hendrycks &
Dietterich (2018), rather than the current practice of only reporting empirical estimates of adversarial
robustness. There are several reasons for this recommendation.

1. Measuring test error in noise is significantly easier than measuring adversarial robustness —
computing adversarial robustness perfectly requires solving an NP-hard problem for every
point in the test set (Katz et al., 2017). Since Szegedy et al. (2014), hundreds of adversarial
defense papers have been published. To our knowledge, only one (Madry et al., 2017) has
reported robustness numbers which were confirmed by a third party. We believe the difficulty
of measuring robustness under the usual definition has contributed to this unproductive
situation.

2. Measuring test error in noise would also allow us to determine whether or not these methods
improve robustness in a trivial way, such as how the robust MNIST model learned to
threshold the input, or whether they have actually succeeded in improving generalization
outside the natural data distribution.

3. All of the failed defense strategies we examined failed to improve generalization in noise.
For this reason, we should be highly skeptical of defense strategies that only claim improved
lp-robustness but do not demonstrate robustness in more general settings.

4. Finally, if the goal is improving the security of our models in adversarial settings, errors
in the presence of noise are already indicative that our models are not secure. Until our
models are perfectly robust in the presence of average-case corruptions, they will not be
robust in worst-case settings. The usefulness of lp-robustness in realistic threat models is
limited when attackers are not constrained to making small modifications.

The interest in measuring lp robustness arose from a sense of surprise that errors could be found so
close to correctly classified points. But from the perspective described in this paper, the phenomenon
is less surprising. Statistical classifiers make a large number of errors outside the data on which they
were trained, and small adversarial perturbations are simply the nearest ones.
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σ 0.00625 0.0125 0.025 0.075 0.15 0.25
Training Accuracy 100% 100% 100% 100% 99.9% 99.4%
Test Accuracy 96.0% 95.5% 94.8% 90.4% 77.5% 62.2%

Table 2: Wide ResNet-28-10 (Zagoruyko & Komodakis, 2016) trained and tested on CIFAR-10 with
Gaussian noise with standard deviation σ.

σ 0 0.1 0.2 0.4 0.6 0.8
Clean Training Accuracy 91.5% 90.8% 89.9% 87.7% 86.1% 84.6%
Clean Test Accuracy 75.9% 75.5% 75.2% 74.2% 73.3% 72.4%
Noisy Training Accuracy − 89.0% 85.7% 78.3% 71.7% 65.2%
Noisy Test Accuracy − 73.9% 70.9% 65.2% 59.7% 54.0%

Table 3: The models from Section 1 trained and tested on ImageNet with Gaussian noise with standard
deviation σ; the column labeled 0 refers to a model trained only on clean images.

A TRAINING DETAILS

Models trained on CIFAR-10. We trained the Wide-ResNet-28-10 model (Zagoruyko & Komodakis,
2016) using standard data augmentation of flips, horizontal shifts and crops in addition to Gaussian
noise independently sampled for each image in every minibatch. The models were trained with the
open-source code by Cubuk et al. (2018) for 200 epochs, using the same hyperparameters which we
summarize here: a weight decay of 5e-4, learning rate of 0.1, batch size of 128. The learning rate
was decayed by a factor of 0.2 at epochs 60, 120, 160.

Models trained on ImageNet. The ResNet-50 model (He et al., 2016) was trained with a learning
rate of 1.6, batch size of 4096, and weight decay of 1e-4. During training, random crops and horizontal
flips were used, in addition to the Gaussian noise independently sampled for each image in every
minibatch. The models were trained for 90 epochs, where the learning rate was decayed by a factor
of 0.1 at epochs 30, 60, and 80. Learning rate was linearly increased from 0 to the value of 1.6 over
the first 5 epochs.

B NOISE ATTACK DETAILS

Here we provide more detail for the noise distributions considered in Section 5. The stAdv attack
defines a flow field over the pixels of the image and shifts the pixels according to this flow. The field
is parameterized by a latent Z. When we measure accuracy against our randomized variant of this
attack, we randomly sample Z from a multivariate Gaussian distribution with standard deviation σ.
To implement this attack we used the open sourced code from Xiao et al. (2018). PCA-100 noise
first samples noise from a Gaussian distribution N (0, σ), and then projects this noise onto the first
100 PCA components of the data. For ImageNet, the input dimension is too large to perform a PCA
decomposition on the entire dataset. So we first perform a PCA decomposition on 30x30x1 patches
taken from different color channels of the data. To general the noise we first sample from a 900
dimensional Gaussian, then project this into the basis spanned by the top 100 PCA components, then
finally tile this projects to the full 299x299 dimension of the input. Each color channel is constructed
independently in this fashion.

C TRAINING AND TESTING ON GAUSSIAN NOISE

In Section 5, we mentioned that it is not trivial to learn the distribution of noisy images simply by
augmenting the training data distribution. In Tables 2 and 3 we present more information about the
performance of the models we trained and tested on various scales of Gaussian noise.
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Pepper Gaussian stAdv PCA-100
Clean p = 0.2 σ = 0.3 σ = 1.0 σ = 0.3

Model Accuracy Accuracy Accuracy Accuracy Accuracy
Clean 99.2% 81.4% 96.9% 89.5% 63.3%

Adv 98.4% 27.5% 78.2% 93.2% 47.1%

Table 4: The performance of ordinarily and adversarially trained MNIST models on various noise
distributions.

D RESULTS ON MNIST

MNIST is a special case when it comes to the relationship between small adversarial perturbations
and generalization in noise. Indeed prior has already observed that an MNIST model can trivially
become robust to small l∞ perturbations by learning to threshold the input (Schmidt et al., 2018), and
observed that the model from Madry et al. (2017) indeed seems to do this. When we investigated this
model in different noise distributions we found it generalizes worse than a naturally trained model,
results are shown in Table 4. Given that it is possible for a defense to overfit to a particular lp metric,
future work would be strengthened by demonstrating improved generalization outside the natural
data distribution.

E THE GAUSSIAN ISOPERIMETRIC INEQUALITY

Here we will discuss the Gaussian isoperimetric inequality more thoroughly than we did in the text.
We will present some of the geometric intuition behind the theorem, and in the end we will show how
the version quoted in the text follows from the form in which the inequality is usually stated.

The historically earliest version of the isoperimetric inequality, and probably the easiest to understand,
is about areas of subsets of the plane and has nothing to do with Gaussians at all. It is concerned with
the following problem: among all measurable subsets of the plane with area A, which ones have the
smallest possible perimeter?1 One picture to keep in mind is to imagine that you are required to fence
off some region of the plane with area A and you would like to use as little fence as possible. The
isoperimetric inequality says that the sets which are most “efficient” in this sense are balls.

Some care needs to be taken with the definition of the word “perimeter” here — what do we mean by
the perimeter of some arbitrary subset of R2? The definition that we will use involves the concept of
the ε-boundary measure we discussed in the text. For any set E and any ε > 0, recall that we defined
the ε-extension of E, written Eε, to be the set of all points which are within ε of a point in E; writing
A(E) for the area of E, we then define the perimeter of E to be

surf(E) := lim inf
ε→0

1

ε
(A(Eε)−A(E)) .

A good way to convince yourself that this is reasonable is to notice that, for small ε, Eε −E looks
like a small band around the perimeter of E with width ε. The isoperimetric inequality can then be
formally expressed as giving a bound on the quantity inside the limit in terms of what it would be for
a ball. (This is slightly stronger than just bounding the perimeter, that is, bounding the limit itself, but
this stronger version is still true.) That is, for any measurable set E ⊆ R2,

1

ε
(A(Eε)−A(E)) ≥ 2

√
πA(E) + επ.

It is a good exercise to check that we have equality here when E is a ball.

There are many generalizations of the isoperimetric inequality. For example, balls are also the
subsets in Rn which have minimal surface area for a given fixed volume, and the corresponding
set on the surface of a sphere is a “spherical cap,” the set of points inside a circle drawn on the
surface of the sphere. The version we are most concerned with in this paper is the generalization to a
Gaussian distribution. Rather than trying to relate the volume of E to the volume of Eε, the Gaussian

1The name “isoperimetric” comes from a different, but completely equivalent, way of stating the question:
among all sets with the same fixed perimeter, which ones have the largest possible area?
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Figure 6: The Gaussian isoperimetric inequality relates the amount of probability mass contained
in a set E to the amount contained in its ε-extension Eε. A sample from the Gaussian is equally
likely to land in the pink set on the left or the pink set on the right, but the set on the right has a
larger ε-extension. The Gaussian isoperimetric inequality says that the sets with the smallest possible
ε-extensions are half spaces.

isoperimetric inequality is about the relationship between the probability that a random sample from
the Gaussian distribution lands in E or Eε. Other than this, though, the question we are trying to
answer is the same: for a given probability p, among all sets E for which the probability of landing
in E is p, when is the probability of landing in Eε as small as possible?

The Gaussian isoperimetric inequality says that the sets that do this are half spaces. (See Figure 6.)
Just as we did in the plane, it is convenient to express this as a bound on the probability of landing in
Eε for an arbitrary measurable set E. This can be stated as follows:
Theorem. Consider the standard normal distribution q on Rn, and let E be a measurable subset of
Rn. Write

Φ(t) =
1√
2π

∫ t

−∞
exp(x2/2)dx,

the cdf of the one-variable standard normal distribution.

For a measurable subset E ⊆ Rn, write α(E) = Φ−1(Px∼q[x ∈ E]). Then for any ε ≥ 0,

Px∼q[x ∈ Eε] ≥ Φ(α(E) + ε).

The version we stated in the text involved ε∗q(E), the median distance from a random sample from
q to the closest point in E. This is the same as the smallest ε for which Px∼q[x ∈ Eε] = 1

2 . So,
when ε = ε∗q(E), the left-hand side of the Gaussian isoperimetric inequality is 1

2 , giving us that
Φ(α+ ε∗q(E)) ≤ 1

2 .

Since Φ−1 is a strictly increasing function, applying it to both sides preserves the direction of this
inequality. But Φ−1( 1

2 ) = 0, so we in fact have that ε∗q(E) ≤ −α, which is the statement we wanted.

F VISUALIZING THE OPTIMAL CURVES

The optimal bound according to the isoperimetric inequality gives surprisingly strong bounds in
terms of the existence of worst-case l2 perturbations and error rates in Gaussian noise. In Figure 7
we plot the optimal curves for various values of σ, visualize images sampled from x + N(0, σ),
and visualize images at various l2 distance from the unperturbed clean image. Even for very large
noise (σ = .6), test error needs to be less than 10−15 in order to have worst-case perturbations be
larger than 5.0. In order to visualize worst-case perturbations at varying l2 distances, we visualize an
image that minimizes similarity according to the SSIM metric (Wang & Bovik, 2009). These images
are found by performing gradient descent to minimize the SSIM metric subject to the containt that
||x− xadv||2 < ε.
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Figure 7: Top: The optimal curves on Imagenet for different values of σ. Middle: Visualizing
different coordinates of the optimal curves. First, random samples from x+N(0, σI) for different
values of σ. Bottom: Images at different l2 distances from the unperturbed clean image. Each image
visualized is the image at the given l2 distance which minimizes visual similarity according to the
SSIM metric. Note that images at l2 < 5 have almost no perceptible change from the clean image
despite the fact that SSIM visual similarity is minimized.
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G CHURCH WINDOW PLOTS

In this section we include many more visualizations of the sorts of church window plots we discussed
briefly in Section 4. We will show an ordinarily trained model’s predictions on several different slices
through the same CIFAR test point which illustrate different aspects of the story told in this paper.
These images are best viewed in color.

Figure 8: A slice through a clean test point (black, center image), the closest error found using PGD
(blue, top image), and a random error found using Gaussian noise (red, bottom image). For this
visualization, and all others in this section involving Gaussian noise, we used noise with σ = 0.05, at
which the error rate was about 1.7%. In all of these images, the black circle indicates the distance at
which the typical such Gaussian sample will lie. The plot on the right shows the probability that the
model assigned to its chosen class. Green indicates a correct prediction, gray or white is an incorrect
prediction, and brighter means more confident.
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Figure 9: A slice through a clean test point (black, center image), the closest error found using PGD
(blue, top image), and the average of a large number of errors randomly found using Gaussian noise
(red, bottom image). The distance from the clean image to the PGD error was 0.12, and the distance
from the clean image to the averaged error was 0.33. The clean image is assigned the correct class
with probability 99.9995% and the average and PGD errors are assigned the incorrect class with
probabilities 55.3% and 61.4% respectively. However, it is clear from this image that moving even a
small amount into the orange region will increase these latter numbers significantly. For example, the
probability assigned to the PGD error can be increased to 99% by moving it further from the clean
image in the same direction by a distance of 0.07.

Figure 10: A slice through a clean test point (black, center image), a random error found using
Gaussian noise (blue, top image), and the average of a large number of errors randomly found using
Gaussian noise (red, bottom image).
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Figure 11: A slice through a clean test point (black, center image) and two random errors found using
Gaussian noise (blue and red, top and bottom images). Note that both random errors lie very close to
the decision boundary, and in this slice the decision boundary does not appear to come close to the
clean image.

Figure 12: A slice through three random errors found using Gaussian noise. (Note, in particular, that
the black point in this visualization does not correspond to the clean image.)

Figure 13: A completely random slice through the clean image.
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Figure 15: The cdf of the error rates in noise for images in the test set. The blue curve corresponds
to a model trained and tested on noise with σ = 0.1, and the green curve is for a model trained and
tested at σ = 0.3. For example, the left most point on the blue curve indicates that about 40% of test
images had an error rate of at least 10−3.

Figure 14: Some visualizations of the same phenomenon, but using the “pepper noise” discussed
in Section 5 rather than Gaussian noise. In all of these visualizations, we see the slice through the
clean image (black, center image), the same PGD error as above (red, bottom image), and a random
error found using pepper noise (blue, top image). In the visualization on the left, we used an amount
of noise that places the noisy image further from the clean image than in the Gaussian cases we
considered above. In the visualization in the center, we selected a noisy image which was assigned to
neither the correct class nor the class of the PGD error. In the visualization on the right, we selected a
noisy image which was assigned to the same class as the PGD error.

H THE DISTRIBUTION OF ERROR RATES IN NOISE

Using some of the models that were trained on noise, we computed, for each image in the CIFAR test
set, the probably that a random Gaussian perturbation will be misclassified. A histogram is shown
in Figure 15. Note that, even though these models were trained on noise, there are still many errors
around most images in the test set. While it would have been possible for the reduced performance in
noise to be due to only a few test points, we see clearly that this is not the case.
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I A COLLECTION OF MODEL ERRORS

In this section we first show a collection of iid test errors for the ResNet-50 model on the ImageNet
validation set. We also visualize the severity of the different noise distributions considered in this
work, along with model errors found by random sampling in these distributions.

Figure 16: A collection of adversarially chosen model errors. These errors appeared in the ImageNet
validation set. Despite the high accuracy of the model there remain plenty of errors in the test set that
a human would not make.

Figure 17: A collection of adversarially chosen model errors. These errors appeared in the ImageNet
validation set. Despite the high accuracy of the model there remain plenty of errors in the test set that
a human would not make.
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Figure 18: Visualizing the severity of PCA noise, along with model errors found in this noise
distribution.

Figure 19: Visualizing the severity of Gaussian noise, along with model errors found in this noise
distribution. Note the model shown here was trained at noise level σ = .6.

Figure 20: Visualizing the severity of pepper noise.

Figure 21: Visualizing the severity of the randomized stAdv attack.
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