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ABSTRACT

Imitation Learning (IL) is a machine learning approach to learn a policy from a
set of demonstrations. IL can be useful to kick-start learning before applying re-
inforcement learning (RL) but it can also be useful on its own, e.g. to learn to
imitate human players in video games. However, a major limitation of current IL
approaches is that they learn only a single “average” policy based on a dataset
that possibly contains demonstrations of numerous different types of behaviors.
In this paper, we present a new approach called Behavioral Repertoire Imitation
Learning (BRIL) that instead learns a repertoire of behaviors from a set of demon-
strations by augmenting the state-action pairs with behavioral descriptions. The
outcome of this approach is a single neural network policy conditioned on a be-
havior description that can be precisely modulated. We apply this approach to
train a policy on 7,777 human demonstrations for the build-order planning task in
StarCraft II. Dimensionality reduction techniques are applied to construct a low-
dimensional behavioral space from the high-dimensional army unit composition
of each demonstration. The results demonstrate that the learned policy can be ef-
fectively manipulated to express distinct behaviors. Additionally, by applying the
UCB1 algorithm, the policy can adapt its behavior – in-between games – to reach
a performance beyond that of the traditional IL baseline approach.

1 INTRODUCTION

Deep Reinforcement learning has shown impressive results, especially for board games (Silver et al.,
2017) and video games (Mnih et al., 2015). However, reinforcement learning (RL) has critical
shortcomings when reward signals are sparse or interactions with the environment are expensive.
There are several attempts to mitigate these shortcomings, including curriculum learning (Bengio
et al., 2009; Graves et al., 2016; Matiisen et al., 2017), reward shaping (Ng et al., 1999), curiosity-
driven exploration (Pathak et al., 2017), diversification (Conti et al., 2018; Eysenbach et al., 2018),
and Imitation Learning (Bakker & Kuniyoshi, 1996).

In this paper, we focus on Imitation Learning (IL), wherein the goal is to learn a policy from a
dataset of demonstrations, possibly coming from a human, another artificial system, or a collection
of different entities. IL can be combined with RL, either to kick-start the learning process with IL and
then improving the policy further with RL (Silver et al., 2016) or by running both methods in parallel
(Harmer et al., 2018). Traditional IL techniques result in a single policy, which usually expresses
an “averaged” behavior among all the behaviors present in the training data. We see this as a major
limitation of IL. It would be more desirable to instead learn a diverse set of policies, expressing all
the different types of behaviors present in the dataset. Additionally, having a repertoire of different
behaviors allows a system to adapt to changes when it is deployed.

Addressing the limitations of current IL methods, we present a new IL approach called Behav-
ioral Repertoire Imitation Learning (BRIL), which is inspired by Quality-Diversity (QD) algorithms
(Pugh et al., 2016; Mouret & Clune, 2015) and RL methods that learn multiple different behaviors.
In contrast to traditional optimization techniques, QD-algorithms attempt to find a diverse set of
high-quality solutions rather than a single optimal solution. When QD-algorithms search in policy
space, they typically discover hundreds or thousands of different policies controlled by different
neural networks. BRIL instead learns a behavioral repertoire using a single model that can be ma-
nipulated to express multiple behaviors, similarly to RL algorithms that learn a single policy for
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Figure 1: Behavioral Repertoire Imitation Learning (BRIL) trains a policy π(s, b) supervised on
a data set of state-action pairs augmented with behavioral descriptors in R2 for each demonstration.
When deployed, a system can adapt its behavior by modulating b. High-dimensional behavioral
spaces can be reduced using dimensionality reduction, as low-dimensional behavioral descriptions
allow for faster adaption.

multiple goals (Schaul et al., 2015; Andrychowicz et al., 2017). BRIL consists of a multi-step pro-
cess (see Figure 1) wherein the experimenter: (1) extracts state-action pairs (similarly to many IL
approaches), (2) designs a set of behavioral dimensions to form a behavioral space (similarly to
many QD algorithms) and determines the behavioral description (coordinates in the space) for each
demonstration, (3) merges the data to form a dataset of state-action-behavior triplets, and (4) trains
a model to predict actions from state-behavior pairs through supervised learning. When deployed,
the model can act as a policy and the behavior of the model can be manipulated by changing its
behavioral input features.

BRIL is tested on the build-order planning problem in StarCraft, in which a high-level policy con-
trols the build-order decisions for a bot that has otherwise scripted modules for low-level tasks,
similarly to Churchill & Buro (2011); Justesen & Risi (2017). We show that the learned policy
can be optimized online by modulating the behavioral features using the Upper Confidence Bounds
(UCB1) algorithm, such that it outperforms the traditional IL approach against a fixed opponent.
We believe this approach can be particularly useful when modeling human players in a game by
expressing the entire range of distinct behaviors instead of the average of all. We hypothesize that
this property can allow a system to be more robust to exploitation, which is a concern for AI systems
in many games. Furthermore, BRIL could be useful in applications beyond games, such as adaptive
and resilient robotics.

2 BACKGROUND

2.1 IMITATION LEARNING

While Reinforcement Learning (RL) deals with learning a mapping (a policy) between states and
actions by interacting with an environment, in Imitation Learning (IL) a policy is learned from
demonstrations. Methods based on IL, also known as Learning from Demonstration (LfD), have
shown promise in the field of robotics (Bakker & Kuniyoshi, 1996; Atkeson & Schaal, 1997; Schaal,
1999; Argall et al., 2009; Nair et al., 2018) and games (Silver et al., 2016; Justesen & Risi, 2017;
Gudmundsson et al., 2018; Thurau et al., 2004; Gorman & Humphrys, 2007; Vinyals et al., 2019;
Harmer et al., 2018).

IL is a form of supervised learning, in which the goal is to learn a policy π(s), mapping a state s ∈ S
to a probability distribution over possible actions. In contrast to an RL task, the agent cannot interact
with the environment during training but is instead presented with a dataset D of demonstrations. A
demonstration dj ∈ D consists of kj sequential state-action pairs, where the action was taken in the
state by some policy. While not a general requirement, in this paper a demonstration corresponds to
an episode, i.e. starting from an initial state and ending in a terminal state.

Generative Adversarial Imitation Learning (GAIL) uses a Generative Adversarial Network (GAN)
architecture wherein the generator is a policy that produces trajectories (without access to rewards)
and the discriminator has to distinguish between the generated trajectories and trajectories from a
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set of demonstrations (Ho & Ermon, 2016). Two extensions of GAIL learn a latent space of the
demonstrations (Wang et al., 2017; Li et al., 2017), which results in a conditioned policy similarly
to our approach. While our approach requires manually designed behavioral dimensions, this can
give the user more control over the learned policy; different behavioral spaces can be beneficial for
different purposes. A latent space also does not explicitly bare meaning, in contrast to a manually
defined behavioral space. Additionally, our approach learns a low-dimensional behavioral space that
is suitable for fast adaptation.

2.2 QUALITY DIVERSITY & BEHAVIORAL REPERTOIRES

Traditional optimization algorithms aim at finding the optimal solution to a problem. Quality Diver-
sity (QD) algorithms, on the other hand, attempt to find a set of high-performing solutions that each
behave as differently as possible (Pugh et al., 2016). QD-algorithms usually rely on evolutionary
algorithms, such as Novelty Search with Local Competition (NSLC) (Lehman & Stanley, 2011b)
or MAP-Elites (Mouret & Clune, 2015). NSLC is a population-based multi-objective evolutionary
algorithm with a novelty objective that encourages diversity and a local competition objective that
measures an individual’s ability to outperform similar individuals in the population. Individuals are
added to an archive throughout the optimization process if they are significantly more novel than pre-
viously explored behaviors. MAP-Elites does not maintain a population throughout the evolutionary
run, only an archive divided into cells that reflect the concept of behavioral niches in a pre-defined
behavioral space. For example, in Cully & Mouret (2016) different cells in the map correspond to
different walking gaits for a hexapod robot. Both NSLC and MAP-Elites results in an archive of
diverse and high-performing solutions. The pressure toward diversity in QD-algorithms can help the
optimization process escape local optima (Lehman & Stanley, 2011a), while the diverse set of so-
lutions also allows for online adaption by switching intelligently between these (Cully et al., 2015).
We will describe variations of such an adaption procedure in the next section.

QD is related to the general idea of learning behavioral repertoires. Where QD-algorithms optimize
towards a single quality objective by simultaneously searching for diversity, a behavioral repertoire
can consist of solutions optimized towards different objectives as in the Transferability-based Be-
havioral Repertoire Evolution algorithm (TBR-Evolution) by Cully & Mouret (2016).

2.3 BANDIT ALGORITHMS & BAYESIAN OPTIMIZATION

Given either a discrete set or a continuous distribution of options, we can intelligently decide which
options to select to maximize the expected total return over several trials. To do this, we consider
the discrete case as a k-armed bandit problem and the continuous case as a Bayesian optimization
problem. In the continuous case, the problem can also be simplified to a k-armed bandit problem,
simply by picking k options from the continuous space of options.

The goal of a k-armed bandit problem is to maximize the total expected return after some number of
trials by iteratively selecting one of k arms/options, each representing a fixed distribution of returns
(Sutton & Barto, 2018). To solve this problem, one must balance exploitation (leveraging an option
that has rendered high returns in the past) and exploration (trying options to gain a better estimation
of their expected value). A bandit algorithm is a general solution to k-armed bandit problems. One
of the most popular of these is the Upper Confidence Bound 1 (UCB1) algorithm (Auer et al., 2002)
that first tries each arm once and then always selects the option that at each step maximizes:

Xj + C

√
2 ln t

nj
, (1)

where Xj is the mean return when selecting option j after t steps, nj is the number of times option
j has been selected, and C is a constant that determines the level of exploration.

This k-armed bandit approach can be considered as the discrete case of the more general approach of
Bayesian optimization (BO), in which a continuous black-box objective function is optimized. BO
starts with a prior distribution over objective functions, which is then updated based on queries to
the black-box function using Bayes’ theorem. The Intelligent Trial and Error algorithm (IT&E) uses
BO for robot adaptation to deal with changes in the environment by intelligently searching in the
continuous behavioral space of policies found by MAP-Elites (Cully et al., 2015). In their approach,
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the fitness of all solutions in the behavioral space is used to construct a prior distribution of the
fitness, which is also called a behavior-performance map. A Bayesian optimizer is then used to
sample a point in the map, record the observed performance, and compute a posterior distribution of
the fitness. This process is continued until a satisfying solution is found. IT&E could also be applied
as an adaptation procedure to the policy found by BRIL, by creating a prior distribution based on
some quality information of the demonstrations, e.g. player rating or win-rate. A Bayesian optimizer
is then used to optimize the behavioral feature input. In this paper we will, however, simplify the
adaption process to a discrete k-armed bandit problem with k manually selected behavioral features
and leave the use of Bayesian optimization techniques for future work.

2.4 DIMENSIONALITY REDUCTION

In this paper, the dimensionality of the behavior space is reduced using the t-distributed Stochas-
tic Neighbor Embedding (t-SNE) by Maaten & Hinton (2008). In Stochastic Neighbor Embedding
(SNE, a precursor to t-SNE), a graph is embedded by minimizing the distance between two prob-
ability distributions measured with the Kullback-Leibler divergence. The first of these probability
distributions reflect the similarity between the high-dimensional points, and the second one measures
the similarity between the embedded, low dimensional points. The high-dimensional probability is
fixed, while the embedding is iteratively updated to minimize the distance between its probabil-
ity distribution and the fixed one. t-SNE uses a Student t-distribution kernel for the embedding’s
probability, solving previously known flukes of SNE such as the crowding problem.

Even though t-SNE is considered state-of-the-art in dimension reduction, several other techniques
could be explored. For instance, certain datasets’ structure can be recovered in low dimensional
space using simpler algorithms such as Principal Component Analysis (PCA). Otherwise, other
methods such as Isometric Feature Mapping (Isomap) by Tenenbaum et al. (2000), Locally Linear
Embedding (LLE) by Saul & Roweis (2001) and Uniform Manifold Approximation and Projection
(UMAP) by McInnes et al. (2018) could be used.

2.5 UNIVERSAL POLICIES

In value-based RL, one typically learns a state value function Vπ(s) or a state-action value function
Qπ(s, a) for a policy π. Universal Value Function Approximators (UVFA) instead learn a joint
distribution Vπ(s, g) or Qπ(s, a, g) over all goals G (Schaul et al., 2015). UVFA can be learned
using supervised learning from a training set of optimal values such as V ∗

g (s) or Q∗
g(s, a), or it

can be learned through RL by switching between goals both when generating trajectories and when
computing gradients. Hindsight Experience Replay is an extension to UVFAs, which performs an
additional gradient update with the goal being replaced by the terminal state; this modification can
give further improvements when it is infeasible to reach the goals (Andrychowicz et al., 2017). An
extension to Generative Adversarial Imitation Learning (GAIL) augments each trajectory with a
context (Merel et al., 2017), which specifies the agent’s sub-goals that can be modulated at test-time.

In our approach, we are not considering goals, but rather behaviors, intending to learn a universal
policy π(s, b) over states s ∈ S and behaviors b ∈ B in a particular behavioral space. We are thus
combining the QD approach of designing a behavioral space with the idea of learning a universal
policy to express behaviors in this space.

3 BEHAVIORAL REPERTOIRE IMITATION LEARNING (BRIL)

This section describes two approaches to learning behavioral repertoires using IL. We first describe
how a behavioral space can be formed from demonstrations. Then we introduce a naive IL approach
that first clusters demonstrations based on their coordinates in the behavioral space, and then applies
traditional IL on each cluster. Finally, BRIL is introduced, which learns a single policy augmented
with a behavioral feature input rather than learning multiple policies for each behavioral cluster.

3.1 BEHAVIORAL SPACES FROM DEMONSTRATIONS

A behavioral space consists of some behavioral dimensions that are typically determined by the ex-
perimenter. For example, in StarCraft, behavioral dimensions can correspond to the ratio of each
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army unit produced throughout the game to express the strategic characteristics of the player. A
behavioral space can require numerous dimensions to be able to express meaningful behavioral re-
lationships between interesting solutions for a problem. Intuitively, if the problem is complex, more
dimensions can give a finer granularity in the diversity of solutions. However, there is a trade-off
between granularity and adaptation, as low-dimensional spaces are easier to search in. We thus pro-
pose the idea of first designing a high-dimensional behavioral space and then reducing the number
of dimensions through dimensionality reduction techniques. In our preliminary experiments, it has
shown beneficial to reduce the space to two dimensions, as it allows for easy visualization of the data
distribution and it also seems to be a good trade-off between granularity and adaptation speed. In
preliminary experiments with one-dimensional behavioral spaces, we noticed that nearby solutions
could be wildly different.

3.2 IMITATION LEARNING ON BEHAVIORAL CLUSTERS

The naive IL approach for learning behavioral repertories trains n policies on n behaviorally diverse
subsets of the demonstrations. This idea is similar to the state-space clustering in Thurau et al.
(2004), but here we cluster data points in a behavioral space instead. When a behavioral space is
defined, each demonstration can be specified by a particular behavioral description (a coordinate in
the Rn dimensional space), where afterward a clustering algorithm can split the dataset into several
subsets. Hereafter, traditional IL can be applied to each subset to learn one policy for each behavioral
cluster. This approach creates a discrete set of policies similar to current QD algorithms. However, it
introduces a dilemma: if the clusters are small, there is a risk of overfitting to these reduced training
sets. On the other hand, if the clusters are large but few, the granularity of behaviors is lost.

3.3 LEARNING BEHAVIORAL REPERTOIRES

QD algorithms typically fill an archive with diverse and high-quality solutions, sometimes resulting
in thousands of policies stored in a single run, which increases the storage requirements in train-
ing as well as in deployment. To reduce the storage requirement, one can decrease the size of the
archive, with the trade-off of losing granularity in the behavioral space. The main approach intro-
duced in this paper, called Behavioral Repertoire Imitation Learning (BRIL), solves these issues and
reduces overfitting by employing a universal policy instead, in which a single policy is conditioned
on a behavioral description. In contrast to QD algorithms, the goal of BRIL is neither to optimize
quality nor diversity directly. Instead, BRIL attempts to imitate and express the diverse range of
behaviors and the quality that exists in a given set of demonstrations. Additionally, BRIL produces
a continuous space of policies which is potentially more expressive than a discrete set.

BRIL extends the traditional imitation learning setting through the following approach. First, the
behavioral characteristics of each demonstration are determined. If the dimensionality of these
descriptions is large, it can be useful to reduce the space as described in the earlier section. A
training set of state-action-behavior triplets is then constructed, such that the behavior is equal to
the behavioral description of the corresponding demonstration. Then, a policy π(s, b) is trained in a
supervised way on this dataset to map states and behaviors to actions. Following this approach, the
training set is not reduced to small behavioral clusters.

When the trained policy is deployed, the behavioral feature input can be modulated to manipulate
its behavior. The simplest approach is to fix the behavioral features throughout an episode, evaluate
the episodic return, and then consider new behavioral features for the next episode. This approach
should allow for episodic, or inter-game, adaptivity, which will be explored in our experiments. One
could also manipulate the behavioral features during an episode e.g. by learning a meta-policy.

4 EXPERIMENTS

This section presents the experimental results of applying BRIL to the game of StarCraft. Policies
are trained to control the build-order planning module of a relatively simple scripted StarCraft bot1
that plays the Terran race. While the policy is trained off-line, our experiments attempt to optimize
the playing strength of this bot online, in-between episodes/games, by manipulating its behavior.

1[REDACTED for anonymity]
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4.1 BEHAVIORAL FEATURE SPACE

The behavioral space for a StarCraft build-order policy can be designed in many ways. Inspired by
the AlphaStar League Strategy Map (Vinyals et al., 2019), the behavioral features are constructed
from the army composition, such that the dimensions represent the ratios of each unit type. We
achieve this by traversing all demonstrations in the data set, counting all the army unit creation
events, and computing the relative ratios. Each demonstration thus has an n-dimensional behavioral
feature description, where n = 15 is the number of army unit types for Terran.

To form a 2D behavioral space, which allows for easier online search and analysis, we apply t-
Distributed Stochastic Neighbor Embedding (t-SNE). Fig. 2 visualizes the points of all the demon-
strations in this 2D space and Fig. 2a shows four plots where the points are colored to show the
ratios of Marines, Marauders, Hellions, and Siege Tanks that were produced during these games.

4.2 CLUSTERING

For the baseline approach that applies IL to behavioral clusters, we use density-based spatial clus-
tering of applications with noise (DBSCAN) with ε = 0.02 and a minimum number of samples
per cluster of 30. We performed a grid-search on these two parameters to find the most meaningful
data separation; however, the clustering is not perfect due to the many outliers. The clusters are
visualized in Fig. 2b, with outliers shown in black.
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Figure 2: Visualizations of the 2D behavioral space of Terran army unit combinations in 7,777
Terran versus Zerg replays. Each point represents a replay from the Terran player’s perspective.
The space was reduced using t-SNE. (a) The data points are illuminated (black is low and yellow
is high) by the ratio of Marines, Marauders, Hellions, or Siege Tanks produced in each game. (b)
62 clusters found by DBSCAN. Cluster centroids are marked with a circle and the cluster number
and outliers are black. The noticeable cluster 2 has no army units. (c) The similarity between the
behaviors of the human players and our approach with four different feature inputs, corresponding to
the coordinates of centroids of cluster 10, 11, 30, and 32. The behavior of our approach is averaged
over 100 games against the easy Zerg bot and its nearest human behavior is marked with a star. The
behavior of the learned policy can be efficiently manipulated to change its behavior. Additionally,
we can control the behavior such that it resembles the behavior of a human demonstration.
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4.3 PERFORMANCE IN STARCRAFT

We trained three groups of neural networks, all with three hidden layers and 256 hidden nodes per
layer: (1) One baseline model trained on the whole dataset with no augmentation of behavioral
features, (2) a BRIL model on the whole dataset with two extra input nodes for the behavioral
features (i.e. the coordinates in Fig. 2b), and (3) several cluster baseline models trained only on
demonstrations from their respective clusters without the augmented behavioral features.

We applied these trained policy models as build-order modules in the scripted StarCraft II Terran
bot sc2bot. It is important to note that this is a very simplistic bot with several flaws and limitations.
Therefore the main goal in this paper is not to achieve human-level performance in StarCraft, but
rather to test if BRIL allows us to do manipulate its behavior and enables online adaptation. The
build-order module, here controlled by one of our policies, is queried with a state description and
returns a build-order action, i.e. which building, research, or unit to produce next. The worker
and building modules of the bot perform these actions accordingly, while assault, scout, and army
modules control the army units. Importantly, policies we test act in a system that consists of both
the bot, the opponent bot, and the game world. When we want to utilize our method for adaptation,
we are thus not only adapting to the opponent but also the peculiarities of the bot itself.

Distance to cluster centroid Combat units produced
Method Wins C10 C11 C30 C32 Marines Marauders Hellions S. Tanks Reapers
IL 41/100 0.58 0.22 0.39 0.75 44.1 ± 50.5 0.7 ± 3.2 2.6 ± 7.6 1.7 ± 6.5 0.3 ± 1.1
IL (C10) 3/100 0.05 0.76 0.81 0.71 1.1 ± 2.3 0.1 ± 0.3 3.11 ± 6.1 0.1 ± 0.4 0.1 ± 0.33
IL (C11) 7/100 0.74 0.00 0.52 0.96 18.8 ± 38.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
IL (C30) 18/100 0.76 0.21 0.31 0.79 43.5 ± 62.6 0.9 ± 5.4 0.2 ± 1.3 0.0 ± 0.2 0.2 ± 0.8
IL (C32) 0/100 0.71 0.94 0.57 0.04 0.1 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 9.9 ± 18.5
BRIL (C10) 27/100 0.21 0.85 0.81 0.60 2.4 ± 4.9 0.0 ± 0.0 14.6 ± 18.9 4.0 ± 5.2 0.2 ± 0.6
BRIL (C11) 76/100 0.70 0.05 0.53 0.95 81.4 ± 50.1 0.0 ± 0.1 0.2 ± 0.1 0.9 ± 2.4 0.3 ± 0.6
BRIL (C30) 47/100 0.60 0.31 0.29 0.65 41.6 ± 36.4 2.4 ± 6.7 0.7 ± 2.5 4.1 ± 7.8 0.5 ± 1.2
BRIL (C32) 16/100 0.42 0.72 0.53 0.36 7.1 ± 11.4 1.7 ± 6.5 3.2 ± 8.3 6.7 ± 9.7 0.8 ± 1.5

Wins for each option Combat units produced
Method Win C10 C11 C30 C32 Marines Marauders Hellions Siege Tanks Reapers
BRIL (UCB1) 61/100 5/14 47/59 8/18 1/9 52.1 ± 47.7 0.5 ± 3.2 4.3 ± 12.5 2.5 ± 6.2 0.3 ± 1.3

Table 1: Results in StarCraft using Imitation Learning (IL) on the whole training set, IL on individual
clusters (C10, C11, C30, and C32), Behavioral Repertoire Imitation Learning (BRIL) with fixed
behavioral features corresponding to centroids in C10, C11, C30, and C32. Additionally, results are
shown in which UCB1 selects between the four behavioral features in-between games. Each variant
played 100 games against the easy Zerg bot. The nearest demonstration in the entire dataset was
found based on the bot’s mean behavior (normalized army unit combination) and the distance to
each cluster centroid are shown. The results demonstrate that by using certain behavioral features,
the BRIL policy outperforms the traditional IL approach as well as IL on behavioral clusters.

We will first focus on the results of the traditional IL approach. Table 1 shows the number of wins in
100 games on the two-player map CatalystLE as well as the corresponding average behaviors (i.e.
the army unit ratios). Our bot played as Terran against the built-in Easy Zerg bot. The traditional
IL approach won 41/100 games. IL on behavioral clusters showed very poor performance with a
maximum of 18/100 wins by the model trained on C30. Besides the number of wins, we compute
the nearest demonstration in the entire data set from the average behavior and use it as an estimate of
the policy’s position in the 2D behavioral space. From the estimated point, we calculate the distance
to each of the four cluster centroids. This analysis revealed that the policies trained on behavioral
clusters express behaviors close to the clusters they were trained on (see the distances to the cluster
centroids in Table 1). We hypothesize that the poor win rates of this naive approach are due to their
training sets being too small such that the policies do not generalize to many of the states explored
in the test environment.

Table 1 also shows the results for BRIL with the coordinates of the four cluster centroids as behav-
ioral features. BRIL (C11) achieves a win rate of 76/100, thus outperforming traditional IL. These
results demonstrate that, for some particular environment, the model can be tuned to achieve a higher
performance than traditional IL. Analyzing the behavior of the bot with the behavioral features of
C11 reveals that it performs an all-in Marine push, similarly to the behavior of the demonstrations
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in C11 (notice the position of C11 on Fig. 2.b and the illumination of Marines on Fig. 2.a). With
the behavioral features of C30, the approach reached a higher win rate than traditional IL; however,
this difference was not significant. We also notice that for both BRIL and IL on behavioral clusters,
the average expressed behavior is closest to the cluster centroid that it was modulated to behave
as, among the four clusters we selected. The results show that the behavior of the learned BRIL
policy can be successfully controlled. However, the distances are on average larger than for IL on
behavioral clusters.

4.4 ONLINE ADAPTATION

The final test aims to verify that we can indeed use BRIL for online adaptation. We apply the UCB1
algorithm to select behavioral features from the discrete set of four options: {C10, C11, C30, C32}
(i.e. the two-dimensional feature descriptions of these cluster centroids). This approach enables
the algorithm to switch between behavioral features in-between games based on the return of the
previous one, which is 1 for a win and 0 otherwise. The adaptive approach achieves 61/100 wins by
identifying the behavior of C11 as the best option. Not surprisingly, the win rate is lower than when
having the behavioral features of C11 fixed, while it outperforms traditional IL.

5 DISCUSSION

We proposed two new IL methods in this paper, one which learns a policy that is trained on only
one behavioral cluster of data points and one which learns a single modifiable policy on the whole
dataset. Our results suggest that policies trained on small behavioral clusters overfit and are thus
unable to generalize beyond the states available in the cluster. This drawback might be solved
with fewer and larger clusters at the cost of losing granularity in the repertoire of policies. If data is
abundant, this approach may also work better while we still suspect the same overfitting would occur.
BRIL, on the other hand, is simple to implement and results in a continuous distribution of policies
by adjusting the behavioral features. Additionally, the results suggest that BRIL generalizes better,
most likely because it learns from the whole training set. However, that generality potentially comes
with the cost of higher divergence between the expected behavior (corresponding to the behavioral
input features) and the resulting behavior when tested. While an important concern, a divergence is
somewhat expected since the test environment is very different from that of the training set (different
maps and opponents).

Previous work showed how IL can kick-start learning before applying RL (Silver et al., 2016;
Vinyals et al., 2019). With BRIL, one can easily form a population of diverse solutions instead
of just one, which may be a promising approach for domains with a plethora of strategic choices like
StarCraft. Promising future work could thus combine BRIL with ideas from AlphaStar to automati-
cally form the initial population of policies used in the AlphaStar League.

6 CONCLUSIONS

We introduced a new method called Behavioral Repertoire Imitation Learning (BRIL). By label-
ing each demonstration d ∈ D with a behavior descriptor confined within a pre-defined behavioral
space, BRIL can learn a policy π(s, b) over states s ∈ S and behaviors b ∈ B. In our experiments, a
low-dimensional representation of the behavioral space was obtained through dimensionality reduc-
tion. The results in this paper demonstrate that BRIL can learn a policy that, when deployed, can
be manipulated by conditioning it with a behavioral feature input b, to express a wide variety of be-
haviors. Additionally, the observed behavior of the policy resembles the behavior characterized by
b. Furthermore, a BRIL trained policy can be optimized online by searching for optimal behavioral
features in a given setting. In our experiments, a policy trained with BRIL was optimized online
beyond the performance reached by traditional IL, using UCB1 to select among a set of discrete
behavioral features.
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Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al.
Starcraft II: A new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Woj-
ciech M. Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, Timo
Ewalds, Dan Horgan, Manuel Kroiss, Ivo Danihelka, John Agapiou, Junhyuk Oh, Valentin Dal-
ibard, David Choi, Laurent Sifre, Yury Sulsky, Sasha Vezhnevets, James Molloy, Trevor Cai,
David Budden, Tom Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Toby Pohlen, Yuhuai
Wu, Dani Yogatama, Julia Cohen, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy
Lillicrap, Chris Apps, Koray Kavukcuoglu, Demis Hassabis, and David Silver. AlphaStar:
Mastering the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/, 2019.

Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas, Gregory Wayne, and Nicolas Heess.
Robust imitation of diverse behaviors. In Advances in Neural Information Processing Systems,
pp. 5320–5329, 2017.

Huikai Wu, Junge Zhang, and Kaiqi Huang. Msc: A dataset for macro-management in StarCraft II.
arXiv preprint arXiv:1710.03131, 2017.

A APPENDIX

A.1 PREDICTION ACCURACY

Data from StarCraft 2 replays are extracted with sc2reaper2, a tool built using the StarCraft II Learn-
ing Environment inspired by the MSC Database (Wu et al., 2017). 7,777 replays of Terran vs. Zerg
were processed, extracting state-action pairs every half a second resulting in a dataset of 1,625,671
state-action pairs.

These states contain an abstraction of the game state similar to the one found in Justesen & Risi
(2017). This abstraction includes: (1) the agent’s resources, supply, units and technologies, (2) a
tally of the enemy’s units that have been observed, and (3) the agent’s units and technologies in
production, including how far they are from being completed.

2[REDACTED for anonymity]
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Method Mean test accuracy Mean test loss # of replays
IL 48.090± 0.080 1.775± 0.003 7777
BRIL 48.167 ± 0.083 1.768 ± 0.003 7777
IL (C10) 32.608± 0.417 2.096± 0.013 189
IL (C11) 71.326± 0.316 1.088± 0.008 74
IL (C30) 45.709± 0.499 1.976± 0.020 149
IL (C32) 45.855± 0.681 1.770± 0.006 97

Table 2: Test accuracy and loss for IL, BRIL, and IL trained on clusters 10, 11, 30 and 32. Results
show no significant difference between the IL and BRIL in terms of prediction accuracy. BRIL is,
however, able to express multiple behaviors based on the additional input (see Table 1).

Once the replays were post-processed for clustering, the dataset was split into training/test/validation
following a 60% / 30% / 10% split per cluster. With this splitting, the three groups of models that
were discussed in subsection 4.3 were trained.

These experiments were carried out ten times per model. Table 2 shows the mean test accuracy and
mean test loss over these ten models for the baseline (IL) approach, the novel BRIL approach, and
four different cluster baselines (Clusters 10, 11, 30 and 32), which were selected for their wildly
different behaviors. The results show that augmenting by behavioral features has no significant
effect on the test accuracy or loss. However, the next section shows how our new approach is able
to express different behaviors with a single neural network.

A.2 STARCRAFT

Video games are popular testbeds for the development and testing of AI algorithms (Justesen et al.,
2019). Real-Time Strategy (RTS) games, such as StarCraft, are among the hardest games for algo-
rithms to learn as they contain a myriad of problems, such as dealing with imperfect information,
adversarial real-time planning, sparse rewards, or huge state and action spaces (Buro, 2003). Sev-
eral algorithms and bots have been built by the AI community (Ontanón et al., 2013; Churchill et al.,
2016) to compete in tournaments such as the AIIDE StarCraft AI Competition3, the CIG StarCraft
RTS AI Competition4 and the Student StarCraft AI Competition5.

This paper deals with the problem of learning a policy for build-order planning in StarCraft. Simi-
larly to the work by Justesen & Risi (2017), a neural network-based policy is trained using IL from
state-action pairs, and the policy is then combined with a bot with scripted procedures for low-level
tasks. However, the network in the work by Justesen & Risi (2017) learns an “average” policy, while
the approach introduced in this paper is able to learn a behavioral repertoire from demonstrations.
The build-order planning problem has also been approached with RL, optimizing a build-order pol-
icy for a specific bot (Tang et al., 2018; Sun et al., 2018).

The StarCraft II Learning Environment (SC2LE) is an API that allows scripted bots and RL algo-
rithms to interact with the game (Vinyals et al., 2017). SC2LE also allows data extraction thereby
enabling IL from human demonstrations (Wu et al., 2017). AlphaStar is a recent approach that learns
a human-level AI policy for StarCraft II using a combination of IL and RL (Vinyals et al., 2019).
First, a neural network was trained from supervised demonstrations. The IL model was then used
to seed a tournament with several RL agents (called the AlphaStar League), in which the agents
competed. This approach resulted in a series of competitive and diverse behaviors. Despite the skill
level of AlphaStar, it does not offer a solution for inter-game adaptation and the diversity of the
AlphaStar League has to be managed carefully.

A.3 ARMY COMPOSITIONS IN-GAME

Replays in each of the clusters we examined in the bandit problem (that is, C10, C11, C30 and C32)
exhibit a particular army composition in the game. Cluster 11, for example, shows a strategy com-

3http://www.cs.mun.ca/˜dchurchill/starcraftaicomp/
4http://cilab.sejong.ac.kr/sc_competition/
5http://sscaitournament.com/
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Figure 3: Screenshots of typical army compositions produced by our trained BRIL policy with
behavioral features corresponding to the centroids of cluster 10, 11, 30 and 32. BRIL (C10) executes
early timing pushes with Hellions and Cyclones, BRIL (C11) is aggressive with Marines only, BRIL
(C30) creates mixed armies with many Marines and Siege Tanks, and BRIL (C32) also creates mixed
armies but with less Marines and more Widow Mines.

posed almost purely of Marines (see Fig. 2). Fig. 3 shows screenshots of typical army compositions
produced by the BRIL policy with the four different behavioral features.

13


	Introduction
	Background
	Imitation Learning
	Quality Diversity & Behavioral Repertoires
	Bandit Algorithms & Bayesian Optimization
	Dimensionality Reduction
	Universal Policies

	Behavioral Repertoire Imitation Learning (BRIL) 
	Behavioral Spaces from Demonstrations
	Imitation Learning on Behavioral Clusters
	Learning Behavioral Repertoires

	Experiments
	Behavioral Feature Space
	Clustering
	Performance in StarCraft
	Online Adaptation

	Discussion
	Conclusions
	Appendix
	Prediction Accuracy
	StarCraft
	Army Compositions in-game


