
Under review as a conference paper at ICLR 2020

FSNET: COMPRESSION OF DEEP CONVOLUTIONAL
NEURAL NETWORKS BY FILTER SUMMARY

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel method of compression of deep Convolutional Neural Networks
(CNNs) by weight sharing through a new representation of convolutional filters.
The proposed method reduces the number of parameters of each convolutional
layer by learning a 1D vector termed Filter Summary (FS). The convolutional
filters are located in FS as overlapping 1D segments, and nearby filters in FS share
weights in their overlapping regions in a natural way. The resultant neural network
based on such weight sharing scheme, termed Filter Summary CNNs or FSNet,
has a FS in each convolution layer instead of a set of independent filters in the
conventional convolution layer. FSNet has the same architecture as that of the
baseline CNN to be compressed, and each convolution layer of FSNet has the
same number of filters from FS as that of the basline CNN in the forward process.
With compelling computational acceleration ratio, the parameter space of FSNet
is much smaller than that of the baseline CNN. In addition, FSNet is quantization
friendly. FSNet with weight quantization leads to even higher compression ratio
without noticeable performance loss. We further propose Differentiable FSNet
where the way filters share weights is learned in a differentiable and end-to-end
manner. Experiments demonstrate the effectiveness of FSNet in compression of
CNNs for computer vision tasks including image classification and object detection,
and the effectiveness of DFSNet is evidenced by the task of Neural Architecture
Search.

1 INTRODUCTION

Deep Convolutional Neural Networks (CNNs) have achieved stunning success in various machine
learning and pattern recognition tasks by learning highly semantic and discriminative representation
of data (LeCun et al., 2015). Albeit the power of CNNs, they are usually over-parameterized and of
large parameter space, which makes it difficult for deployment of CNNs on mobile platforms or other
platforms with limited storage. Moreover, the large parameter space of CNNs encourages researchers
to study regularization methods that prevent overfitting (Srivastava et al., 2014).

In the recently emerging architecture such as Residual Network (He et al., 2016) and Densely
Connected Network (Huang et al., 2017), most parameters concentrate on convolution filters, which
are used to learn deformation invariant features in the input volume. The deep learning community
has developed several compression methods of reducing the parameter space of filters and the entire
neural network, such as pruning (Luo et al., 2017; Li et al., 2017; Anwar et al., 2017), weight sharing
and quantization (Han et al., 2016; Tung & Mori, 2018; Park et al., 2017) and low-rank and sparse
representation of the filters (Ioannou et al., 2016; Yu et al., 2017). Quantization based methods (Tung
& Mori, 2018; Park et al., 2017) may not substantially improve the execution time of CNNs, and
many methods (Lebedev & Lempitsky, 2016; Zhang et al., 2018) have also been proposed to improve
the inference speed of CNNs.

Weight sharing has been proved to be an effective way of reducing the parameter space of CNNs. The
success of deep compression (Han et al., 2016) and filter pruning (Luo et al., 2017) suggest that there
is considerable redundancy in the parameter space of filters of CNNs. Based on this observation, our
goal of compression can be achieved by encouraging filters to share weights.

In this paper, we propose a novel representation of filters, termed Filter Summary (FS), which enforces
weight sharing across filters so as to achieve model compression. FS is a 1D vector from which filters

1

Under review as a conference paper at ICLR 2020

are extracted as overlapping 1D segments. Each filter in the form of a 1D segment can be viewed
as an “unwrapped” version of the conventional 3D filter. Because of weight sharing across nearby
filters that overlap each other, the parameter space of convolution layer with FS is much smaller
than its counterpart in conventional CNNs. In contrast, the model compression literature broadly
adopts a two-step approach: learning a large CNN first, then compressing the model by various model
compression techniques such as pruning, quantization and coding (Han et al., 2016; Luo et al., 2017),
or low-rank and sparse representation of filters (Ioannou et al., 2016; Yu et al., 2017).

Our FSNet is novel with the following contributions:

• We propose Filter Summary (FS) as a compact 1D representation for convolution filters. Filters in
Filter Summary are 1D segments, as opposed to the conventional representation of filters as 3D arrays.
FS is quantization friendly so as to achieve significant compression ratio.

• We propose a fast convolution algorithm for convolution with FS, named Fast Convolution by
Filter Summary (FCFS), taking advantage of the 1D representation of filters in FS. Our FCFS is
significantly different from the integral image method for fast convolution in Weight Sampling
Network (WSNet) (Jin et al., 2018). The integral image method for WSNet is primarily designed
for 1D CNNs where filters are intrinsically 1-dimensional and 1D convolution is performed. Such
method cannot be directly extended to handling the convolution in regular 2D CNNs where filters are
3-dimensional in an efficient manner. Although one can approximate higher-dimensional convolution
by 1D convolution, the approximation error is inevitable. By representing filters as overlapping 1D
segments in 1D space, FCFS performs exact convolution with compelling computational acceleration
ratio, which is the product of the compression ratio for convolution and the fist spatial size of filter.

• In order to learn an optimal way filters share weights, we propose Differentiable Filter Summary
Network, DFSNet. DFSNet represents the location of filters in each FS as learnable and differentiable
parameters, so that the location of filters can be learned and adjusted accordingly. In this way,
potential better location of filters can be obtained by training DFSNet in an end-to-end manner so as
to guarantee the competitive accuracy of DFSNet.

1.1 RELATED WORKS

The idea of using overlapping patterns for compact representation of images or videos is presented
in Epitome (Jojic et al., 2003), which is developed for learning a condensed version of Gaussian
Mixture Models (GMMs). FSNet is inspired by Epitome and it uses overlapping structure to represent
filters. Weight Sampling Network (WSNet) (Jin et al., 2018) also studies overlapping filters for
compression of 1D CNNs. However, WSNet is not primarily designed for regular 2D CNNs, and its
fast convolution method cannot be straightforwardly extended to the case of convolution in regular
2D CNNs without approximation.

1.2 NOTATIONS

Throughout this paper, we use m : n to indicate integers between m and n inclusively, and [n] is
defined as 1 : n. We use subscripts to indicate the index of an element of a vector, and vm:n indicates
a vector consisting of elements of v with indices in m : n.

2 FORMULATION

We propose Filter Summary Convolutional Neural Networks (FSNet) in this section. The Filter
Summary (FS) is firstly introduced, and then the fast convolution algorithm named Fast Convolution
by Filter Summary (FCFS) is developed. We then introduce the training of FSNet, FSNet with Weight
Quantization (FSNet-WQ) and Differentiable FSNet (DFSNet).

2.1 FILTER SUMMARY (FS)

We aim to reduce the parameter space of convolution layers, or convolution filters. We propose Filter
Summary (FS) as a compact representation of the filters. The filters are overlapping 1D segments
residing in the Filter Summary. Each filer in a FS is a 1D segment comprised of consecutive elements
of the FS. It is widely understood that a regular convolution filter is a 3D array with two spatial

2

Under review as a conference paper at ICLR 2020

dimensions and one channel dimension. In FS, each segment representing a filter can be viewed as
the “unwrapped” version of the corresponding regular 3D filter by concatenating all the elements
of the 3D filter into a vector in channel-major order. In the sequel, filter has a 1D representation as
a segment in FS without confusion. Figure 1(a) shows an example of a FS. Figure 1(b) shows how
filters are located in the FS.

Filter Summary: Compact Representation of Filters

 ...

Filter

 ...

 ...

{ { ...

=
Filter

=

(a)
Location of Filters in Filter Summary

-th Filteri

1i + -th Filter

-th Filter2i +

 ..
.

1 (1)i s+ - ´ 1 i s+ ´ 1 (1)i s+ + ´

(b)

Figure 1: (a) Illustration of a Filter Summary (FS). The two filters marked in red and green are
two overlapping segments in the FS. The two filters share two weights, indicated as red and yellow
dots, in their overlapping region. In this example, the stride for extracting filters is s = K − 2 for
illustration purpose, since every two neighboring filters share two weights. (b) Illustration of location
of filters in the FS. The filter stride is s = bL−1Cout

c. The i-th segment or filter in the FS has K elements
with indices 1 + (i− 1)s : (i− 1)s+K − 1, for i ∈ [Cout]. In this way, the Cout filters reside in the
FS in a weight sharing manner. Padding is used so that the last filter has valid elements.

Formally, let a convolution layer have Cout filters of size Cin × S1 × S2 = K where (S1, S2) is
the spatial size and Cin is the channel size. So each filter has K elements, and the total number of
parameters of all the filters are KCout. We propose a compact representation of these parameters,
which is a 1D vector named Filter Summary (FS), denoted by F. Suppose the goal is to reduce the
number of parameters in the convolution layer, i.e. KCout, by r times, then the length of the FS is
L , bKCout

r c. In the following text, r is referred to as the compression ratio for convolution.

For the purpose of the fast convolution algorithm introduced in Section 2.2, each filter is rep-
resented as a 1D segment of length K in the FS. With a defined filter stride s = bL−1Cout

c 1, the i-th
filter can be represented as a segment of length K staring at location 1 + (i − 1)s in the FS, i.e.
F1+(i−1)s:1+(i−1)s+K−1. With i ranging over [1 . . . Cout], we have Cout filters residing in the FS in
a weight sharing manner. Note that padding is adopted so that the last filter, i.e. the Cout-th filter, has
valid elements. We ignore such padding for reduced amount of notations in the following text.

Due to weight sharing, the size of FS is much smaller than that of independent Cout filters. It can
be seen that FS can be used to compress all the variants of convolution layers in regular CNNs,
including convolution layers with filters of spatial size 1× 1. FSNet and its baseline CNN have the
same architecture except that each convolution layer of FSNet has a compact representation of filters,
namely a FS, rather than a set of independent filters in the baseline. FS is designed such that the
number of filters in it is the same as the number of filters in the corresponding convolution layer of
the baseline CNN. A more concrete example is given here to describe the compact convolution layer
of FSNet. Suppose that a convolution layer of the baseline CNN has 64 filters of channel size 64
and spatial size 3× 3, and the compression ratio for convolution is r = 4. Then the corresponding
convolution layer in the FSNet has a FS of length 64×64×3×3

4 = 9216 = L. The 64 filters of size
64× 3× 3 = 576 are segments located by striding along the FS by s = b 921564 c = 143 elements.

2.2 FAST CONVOLUTION BY FILTER SUMMARY (FCFS)

Representing filters as overlapping segments in FS leads to accelerated convolution, which is detailed
in this subsection. Convolution computes the inner product between patches of the input feature
map and all the filters of a convolution layer. Feature patches usually share weights due to small

1In order to keep notations simple, we let s = b L−1
Cout
c. Please refer to more details in the appendix.

3

Under review as a conference paper at ICLR 2020

Input feature map

A slice of feature patch

 ...
 ...

 ...
 ...

 ...

Unwrapped input feature map

A feature patch

Figure 2: Illustration of unwrapping of the input feature map.

 ...
 ...

 ...
 ...

 ...

Unwrapped input feature map

Filter Summary

A

A feature patch

} }
A slice of the equivalent 3D filter

The equivalent 3D filter

 ... ,

 ... 2 1IL IL= -
2IL

1IL

A slice of feature patch

Figure 3: Illustration of efficient convolution using the Filter Summary (FS).

convolution stride. Therefore, for the case of FS wherein filters also share weights, conventional
convolution unnecessarily computes the product between elements of feature patches and elements of
the filters many times when these elements of features patches or filters are shared weights.

To handle this problem, we propose Fast Convolution by Filter Summary (FCFS) which avoids
the unnecessary computation. The 1D representation of filters facilitates the design of FCFS. We
unwrap the input feature map of size Cin ×D1 ×D2 and reshape it as a 1D vector, denoted by M.
Here (D1, D2) is the spatial size of the input feature map. The unwrapping of the feature map is in
channel-major order, and element with indices (i, j, k) corresponds to Mk·CinD1+j·Cin+i. Therefore,
different slices of a feature patch of size Cin × S1 × S2 appear in different locations of M. For
example, in Figure 2, two slices, marked in green and blue, of a feature patch are two segments of M
where each segment is of size CinS1.

Let F denote the FS of length L in the convolution layer. Each filter in the FS can also be viewed as
an unwrapped version of an equivalent conventional 3D filter in channel-major order, so different
slices of the equivalent 3D filter are different segments of FS, as illustrated by the upper part of
Figure 3. To circumvent unnecessary multiple computation of product between weights shared in
feature patches and filters, we compute the product between all the elements of M and F, and store
the result as a matrix A with Aij = MiFj , i ∈ [CinD1D2], j ∈ [L]. Because each slice of a feature
patch or a filter is a segment of M or F, it can be verified that each line inside A which is either
the principal diagonal of A or parallel to the principal diagonal contributes to the inner product
between slices of feature patch and that of filter. Such lines are defined as the critical lines of A. Two

4

Under review as a conference paper at ICLR 2020

examples of the critical lines are illustrated in Figure 3 by dashed lines in green and blue that cross A,
where the dashed line in red is the principal diagonal of A and the dashed line in blue is parallel to
the principal diagonal. For each critical line of A denoted by a vector I of length T , we compute its

1D integral image or integral line denoted by IL, where ILi =
i∑

t=1
It, i ∈ [T]. The integral lines are

co-located with their corresponding critical lines. Figure 3 illustrates the integral line for the principal
diagonal of A. It can be seen that the inner product between a slice of feature patch and a slice of
filter in FS can be computed efficiently by a substraction along an integral line. For example, Figure 3
illustrates a case where the inner product of a filter in green and a slice of a filter can be computed as
IL2 − IL1, where IL in this example is the integral line for the principal diagonal of A.

Therefore, one can efficiently compute the inner product between a feature patch and a filter by
summing the inner products for their S2 pairs of slices, where one pair of slices has a slice of the
feature patch and one proper slice of the filter. By concatenating such results for all feature patches
and filters, one obtain the final result of the convolution between the input feature map and all the
filters in FS in an efficient manner. After the above full description of FCFS, it can be verified that
FCFS only needs to compute L

CinS1
= L′ elements for each row of A. This is due to the fact that

different slices of filters are separated by multiplies of CinS1 elements in F. It should be emphasized
that FCFS can accelerate convolution only for convolution layer with kernel size S2 > 1. The formal
formulation of FCFS is described by Algorithm 1 and Algorithm 2 in Section A.2.

2.3 COMPUTATIONAL ACCELERATION RATIO OF FCFS

The computational complexity of conventional convolution for an input feature map of size Cin ×
D1 × D2 and Cout filters, each of which has a size of Cin × S1 × S2 = K, is CoutD1D2K. It
can be verified that the FCFS algorithm in Section 2.2 requires 2CinD1D2L

′ + CoutD1D2S2 steps.
Such complexity result can be obtained by noticing that FCFS has three stages. The first stage is the
computation of A which takes CinD1D2L

′ steps since the size of the portion of A contributing to
convolution result is CinD1D2L

′. The second stage is the computation of integral lines for all the
critical lines of A which also takes CinD1D2L

′ steps. The third stage is to compute the inner product
between every feature patch and every filter by summing the inner products of their corresponding S2

pairs of slices, and it takes S2 steps for the inner product of a feature patch and a filter by virtue of the
integral lines. Concatenating such results form the final result of the convolution. The computational
complexity of the third stage is CoutD1D2S2. If we only consider the steps involving floating-point
multiplication, then the computational complexity of FCFS is CinD1D2L

′ +CoutD1D2S2 since the
second stage only has addition/subtraction operations. 2 Therefore, the computational acceleration
ratio of FCFS with respect to the conventional convolution is

CoutD1D2K

CinD1D2L′ + CoutD1D2S2
.

Because K � S2 in most cases, the above acceleration ratio is approximately CoutD1D2K
CinD1D2L′

≈ rS1,
which is the product of S1 and the compression ratio for the convolution layer. Note that the depthwise
separable convolution in MobileNets (Howard et al., 2017) has computational acceleration ratio of
around S1 × S2, and FCFS has even faster convolution when the compression ratio r > S2.

2.4 TRAINING FSNET

Given a baseline CNN, we design FSNet by replacing each the convolution layer of the baseline CNN
by a convolution layer with a FS. The weights of FSNet are trained using regular back-propagation.
The detailed training procedure is described in Section 3.

2.5 FSNET WITH WEIGHT QUANTIZATION (FSNET-WQ)

The model size of FSNet can be further compressed by weight quantization. FSNet with Weight
Quantization (FSNet-WQ) is proposed to further boost the compression ratio of FSNet, without

2This is reasonable since the CoutD1D2K steps for the conventional convolution also ignores addition
operations.

5

Under review as a conference paper at ICLR 2020

noticeable loss of prediction accuracy shown in our experiments. The quantization process for FSNet
is described as follows. After a FSNet is trained, a one-time linear weight quantization is applied to
the obtained FSNet. More concretely, 8-bit linear quantization is applied to the filter summary of
each convolution layer and the fully connected layer of the FSNet. 256 levels are evenly set between
the maximum and minimum values of the weights of a layer to be quantized, and then each weight
is set to its nearest level. In this way, a quantized weight is represented by a byte together with
the original maximum and minimum values stored in each quantized layer. The resultant model is
named FSNet-WQ. The number of effective parameters of FSNet-WQ is computed by considering a
quantized weight as 1/4 parameter since the storage required for a byte is 1/4 of that for a floating
number in our experiments.

2.6 EXTENSION TO DIFFERENTIABLE FSNET (DFSNET)

It can be observed that location of filters determines the way how filters share weights in FS. So far
the filters are evenly located in FS. It remains an interesting question whether the way filters share
weights can be learned, which potentially leads to a better way of weight sharing across the filters.
To this end, we propose Differentiable FSNet (DFSNet) in this subsection, where the location of
each filter is a learnable parameter and it can be a fraction number rather than the integer location
considered so far. Formally, the staring location of a filter g of length K in a FS F of length L
is parameterized by a parameter α through the sigmoid function as l = 1

1+e−α · L, and g can be
represented as g = (1 + blc − l)Fblc:blc+K−1 + (l − blc)Fblc+1:blc+K . All such α specifying the
location of filters in FS are learned during the training of DFSNet in an end-to-end manner. l is
almost impossible to be an integer, so the derivative with respect to α almost always exists. Note that
one may not use FCFS to accelerate convolution operation in DFSNet due to the fraction location of
the filters.

3 EXPERIMENTAL RESULTS

We conduct experiments with CNNs for image classification and object detection tasks in this section,
demonstrating the compression results of FSNet.

3.1 FSNET FOR CLASSIFICATION

We show the performance of FSNet in this subsection by comparative results between FSNet and its
baseline CNN for classification task on the CIFAR-10 dataset (Krizhevsky, 2009). Using ResNet (He
et al., 2016) or DenseNet (Huang et al., 2017) as baseline CNNs, we design FSNet by replacing all
the convolution layers of ResNet or DenseNet by convolution layers with FS. We train the baseline
CNNs using 300 training epoches. The initial learning rate is 0.1, and it is divided by 10 at 50% and
75% of the 300 epoches. The test accuracy and the parameter number of all the models are reported
in Table 1 with compression ratio for convolution r = 4. In the sequel, CR stands for compression
ratio computed by the ratio of the number of parameters of the baseline CNN over that of the obtained
FSNet. It can be observed in Table 1 that FSNet with a compact parameter space achieves accuracy

Table 1: Performance of FSNet on the CIFAR-10 datasetPPPPPModel
Before Compression FSNet CR FSNet-WQ CR# Param Accuracy # Param Accuracy # Param Accuracy

ResNet
ResNet-110 1.74M 93.91% 0.44M 93.81% 3.95 0.12M 93.81% 14.50
ResNet-164 1.73M 94.39% 0.47M 94.59% 3.68 0.16M 94.65% 10.81

DenseNet DenseNet-100 (k = 12) 1.25M 95.31% 0.37M 94.46% 3.38 0.15M 94.40% 8.33
DenseNet-100 (k = 24) 4.83M 95.71% 1.33M 95.40% 3.63 0.44M 95.43% 10.98

comparable with that of different baselines including ResNet-110 and ResNet-164, DenseNet-100
with growth rate k = 12 and k = 24. We use the idea of cyclical learning rates (Smith, 2015) for
training FSNet. 4 cycles are used for training FSNet, and each cycle uses the same schedule of
learning rate and same number of epoches as that of the baseline. A new cycle starts with the initial
learning rate of 0.1 after the previous cycle ends. The cyclical learning method is only used for
FSNet on the CIFAR-10 dataset, and the training procedure of FSNet is exactly the same as that of its
baseline throughout all the other experiments.

6

Under review as a conference paper at ICLR 2020

Table 1 also shows that FSNet with weight quantization, or FSNet-WQ, boosts the compression ratio
without sacrificing performance. The effective number of parameters defined in Section 2.5 is reported.
FSNet-WQ achieves more than 10× compression ratio for all the two types of ResNet and DenseNet-
100 with k = 24, and it has less than 0.4% accuracy drop for ResNet-110 and DenseNet-100 with
k = 24. It is interesting to observe that FSNet-WQ even enjoys slight better accuracy than FSNet
for ResNet-164 and DenseNet-100 with k = 24. In addition, FSNet-WQ does not hurt the accuracy
of FSNet for ResNet-110. We argue that weight quantization imposes regularization on the filter
summary which reduces the complexity of the filter summary thus improve its prediction performance.
We further demonstrate that FSNet and FSNet-WQ achieve better accuracy and compression ratio
with respect to the competing filter pruning method (Li et al., 2017) in Table 9. The model size of
FSNet-WQ is less than 1/10 of that of (Li et al., 2017) while the accuracy is better than that of the
latter by 0.5%.

Table 2: Comparison between FSNet and the filter pruning method in (Li et al., 2017) on the
CIFAR-10 dataset ````````Model

Performance # Params Accuracy

ResNet-110 1.74M 93.91%
Filter Pruning (Li et al., 2017) 1.16M 93.30%

FSNet 0.44M 93.81%
FSNet-WQ 0.12M 93.81%

Epoch
0 10 20 30 40 50 60 70 80 90 100

T
ra

in
in

g
 L

o
ss

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
Training Loss

FSNet
Baseline

Epoch
0 10 20 30 40 50 60 70 80 90 100

T
ra

in
in

g
 E

rr
o

r
(%

)

20

30

40

50

60

70

80

90

100
Training Error

FSNet
Baseline

Epoch
0 10 20 30 40 50 60 70 80 90 100

T
es

t
L

o
ss

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
Test Loss

FSNet
Baseline

Epoch
0 10 20 30 40 50 60 70 80 90 100

T
es

t
E

rr
o

r
(%

)

20

30

40

50

60

70

80

90

100
Test Error

FSNet
Baseline

Figure 4: From left to right: training loss, training error, test loss and test error of FSNet and the
baseline ResNet-50 on the ImageNet dataset. FSNet has a compression ratio for convolution r = 2.

In order to evaluate FSNet on large-scale dataset, Table 3 shows its performance on ILSVRC-12
dataset (Russakovsky et al., 2015) using ResNet-50 as baseline. The accuracy is reported on the
standard 50k validation set. We train ResNet-50 and the corresponding FSNet for 100 epoches. The
initial learning rate is 0.1, and it is divided by 10 at epoch 30, 60, 90 respectively. We tested two
settings with compression ratio for convolution being r = 2 and r = 3.7, and the corresponding two
models are denoted by FSNet-1 and FSNet-2 respectively. The training loss/error and test loss/error
of FSNet-1 are shown in Figure 4. We can see that the patterns of training and test of FSNet are
similar to that of its baseline, ResNet-50, on the ILSVRC-12 dataset. Table 4 shows the comparative
results between FSNet-1-WQ and ThiNet (Luo et al., 2017), a competing compression method by
filter pruning. We can observe that the quantized FSNet-1 render smaller model size and reduced
FLOPs. Here the number of GFLOPs (1 GFLPs = 109 FLOPs) for FSNet and FSNet-WQ are almost
the same, and the details are introduced in Section A.3.

3.2 FSNET FOR OBJECT DETECTION

We evaluate the performance of FSNet for object detection in this subsection. The baseline neural
network is the Single Shot MultiBox Detector (SSD300) (Liu et al., 2016). The baseline is adjusted
by adding batch normalization (Ioffe & Szegedy, 2015) layers so that it can be trained from scratch.
Both SSD300 and FSNet are trained on the VOC 2007/2012 training datasets, and the mean average
precision (mAP) is reported on the VOC 2007 test dataset shown in Table 5. We employ two versions
of FSNet with different compression ratios for convolution, denoted by FSNet-1 and FSNet-2
respectively. Again, weight quantization either slightly improves mAP (for FSNet-1), or only slightly
hurts it (for FSNet-2). Compared to Tiny SSD (Wong et al., 2018), FSNet-1-WQ enjoys smaller
parameter space while its mAP is much better. Note that while the reported number of parameters of
Tiny SSD is 1.13M, its number of effective parameters is only half of this number. i.e. 0.565M, as
the parameters are stored in half precision floating-point. In addition, the model size of FSNet-1-WQ

7

Under review as a conference paper at ICLR 2020

Table 3: Performance of FSNet on ImageNet
````````Model

Performance # Params Top-1 Top-5

ResNet-50 25.61M 75.11% 92.61%
FSNet-1 13.9M 73.11% 91.37%

FSNet-1-WQ 3.55M 72.59% 91.20%
FSNet-2 8.49M 70.36% 89.79%

FSNet-2-WQ 2.20M 69.87% 89.61%

Table 4: Comparative results of FSNet on ImageNet
````````Model

Performance # Params Top-1 GFLOPs

ThiNet (Luo et al., 2017) 12.38M 71.01% 3.41
FSNet-1-WQ 3.55M 72.59% 2.47

is 1.85MB, around 20% smaller than that of Tiny SSD, 2.3MB. It is also interesting to observe that
our FSNet-2 and FSNet-2-WQ are both smaller than MobileNetV2 SSD-Lite (Sandler et al., 2018)
with better MAP. Since MobileNetV2 SSD-Lite is believed to be newer than MobileNetV1 SSD, the
latter is not reported in this experiment.

Table 5: Performance of FSNet for object detection
PPPPPModel # Params mAP

SSD300 26.32M 77.31%
Tiny SSD (Wong et al., 2018) 0.56M 61.3%

MobileNetV2 SSD-Lite (Sandler et al., 2018) 3.46M 68.60%
FSNet-1 1.67M 67.60%

FSNet-1-WQ 0.45M 67.63%
FSNet-2 2.59M 70.14%

FSNet-2-WQ 0.68M 70.00%

3.3 USING DFSNET FOR NEURAL ARCHITECTURE SEARCH

We also study the performance of integrating FS into Neural Architecture Search (NAS). The goal of
NAS is to automatically search for relatively optimal network architecture for the sake of obtaining
better performance than that of manually designed neural architecture. We adopt Differentiable
Architecture Search (DARTS) (Liu et al., 2019) as our NAS method due to its effective and efficiency
searching scheme, where the choice for different architectures is encoded as learnable parameters
which can be trained in an end-to-end manner. Since DFSNet is also a differentiable framework
for model compression, we combine DFSNet and DARTS so as to search for a compact neural
architecture aiming at great performance. We design a DFSNet-DARTS model by replacing all the
1 × 1 convolution layers, including those for the depthwise separable convolution, in the DARTS
search space with FS convolution layers. We perform NAS on the CIFAR-10 dataset using the
DFSNet-DARTS model following the training procedure described in DARTS (Liu et al., 2019), and
report the test accuracy and model size of the obtained neural network after searching in Table 6.
It can be observed that the model found by DFSNet-DARTS has 40% less parameters than that by
DARTS while the accuracy loss is only 0.31%, clearly indicating the effectiveness of FS convolution
in the task of NAS. Please refer to Section A.4 for more details about DFSNet-DARTS.

Table 6: Performance of DFSNet-DARTS on the CIFAR-10 datasetPPPPPModel # Params Accuracy

DARTS 3.13M 97.50%
DFSNet-DARTS 1.88M 97.19%

4 CONCLUSION

We present a novel method for compression of CNNs through learning weight sharing by Filter Sum-
mary (FS). Each convolution layer of the proposed FSNet learns a FS wherein the convolution filters
are overlapping 1D segments, and nearby filters share weights naturally in their overlapping regions.
By virtue of the weight sharing scheme, FSNet enjoys fast convolution and much smaller parameter
space than its baseline while maintaining competitive predication performance. The compression
ratio is further improved by one-time weight quantization. Experimental results demonstrate the
effectiveness of FSNet in tasks of image classification and object detection. Differentiable FSNet
(DFSNet) is further proposed wherein the location of filters in FS are optimized in a differentiable
manner in the end-to-end training process, and the performance of DFSNet is shown by experiment
with Neural Architecture Search (NAS).

8

Under review as a conference paper at ICLR 2020

REFERENCES

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural networks.
J. Emerg. Technol. Comput. Syst., 13(3):32:1–32:18, February 2017.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network with pruning,
trained quantization and huffman coding. In Proceedings of the International Conference on Learning
Representations (ICLR), 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision
applications. CoRR, abs/1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected convolutional
networks. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu, HI, USA, pp.
2261–2269, 2017.

Yani Ioannou, Duncan P. Robertson, Jamie Shotton, Roberto Cipolla, and Antonio Criminisi. Training cnns with
low-rank filters for efficient image classification. In Proceedings of the International Conference on Learning
Representations (ICLR), 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, pp. 448–456, 2015.

Xiaojie Jin, Yingzhen Yang, Ning Xu, Jianchao Yang, Nebojsa Jojic, Jiashi Feng, and Shuicheng Yan. Wsnet:
Compact and efficient networks through weight sampling. In International Conference on Machine Learning,
ICML, Stockholmsmässan, Stockholm, Sweden, pp. 2357–2366, 2018.

Nebojsa Jojic, Brendan J. Frey, and Anitha Kannan. Epitomic analysis of appearance and shape. In 9th IEEE
International Conference on Computer Vision ICCV, Nice, France, pp. 34–43, 2003.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Vadim Lebedev and Victor S. Lempitsky. Fast convnets using group-wise brain damage. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pp. 2554–2564, 2016.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, 5 2015. doi:
10.1038/nature14539.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient convnets.
In Proceedings of the International Conference on Learning Representations (ICLR), 2017.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In International
Conference on Learning Representations (ICLR), 2019.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-Yang Fu, and Alexan-
der C. Berg. SSD: single shot multibox detector. In European Conference on Computer Vision, ECCV,
Amsterdam, The Netherlands, pp. 21–37, 2016.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural network
compression. In IEEE International Conference on Computer Vision, ICCV, Venice, Italy, 2017.

E. Park, J. Ahn, and S. Yoo. Weighted-entropy-based quantization for deep neural networks. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7197–7205, July 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Fei-Fei Li. Imagenet large scale
visual recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 4510–4520, 2018.

Leslie N. Smith. Cyclical Learning Rates for Training Neural Networks. arXiv e-prints, art. arXiv:1506.01186,
June 2015.

9

Under review as a conference paper at ICLR 2020

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):1929–1958, January
2014.

Frederick Tung and Greg Mori. Clip-q: Deep network compression learning by in-parallel pruning-quantization.
In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

Alexander Wong, Mohammad Javad Shafiee, Francis Li, and Brendan Chwyl. Tiny SSD: A Tiny Single-shot
Detection Deep Convolutional Neural Network for Real-time Embedded Object Detection. arXiv e-prints, art.
arXiv:1802.06488, February 2018.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low rank and
sparse decomposition. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu,
HI, USA, 2017.

X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely efficient convolutional neural network for
mobile devices. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6848–6856,
June 2018.

Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou Huang, and
Jin-Hui Zhu. Discrimination-aware channel pruning for deep neural networks. In Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, 3-8 December 2018, Montréal, Canada, pp. 883–894, 2018.

A APPENDIX

A.1 ADDITIONAL EXPERIMENTAL RESULT

We demonstrate the performance of FSNet in this subsection by more comparative results between FSNet and
its baseline CNN for classification task on the CIFAR-10 dataset. Using ResNet (He et al., 2016) or DenseNet
(Huang et al., 2017) as baselines originally designed for ImageNet data, we design FSNet by replacing all the
convolution layers of ResNet or DenseNet by convolution layers with FS. We train FSNet and its baseline CNN
following the same training procedure specified in the paper, and show the test accuracy and the parameter
number of all the models in Table 7.

Table 7: Performance of FSNet on the CIFAR-10 dataset, using larger ResNet and DenseNet as baselines
PPPPPModel

Before Compression FSNet CR FSNet-WQ CR# Param Accuracy # Param Accuracy # Param Accuracy

ResNet
ResNet-18 11.18M 94.18% 0.81M 93.93% 13.80 0.22M 93.91% 50.82
ResNet-34 21.30M 94.72% 1.68M 94.29% 12.68 0.45M 94.32% 47.33
ResNet-50 23.57M 95.16% 2.51M 94.91% 9.39 0.72M 94.92% 32.73

ResNet-101 42.61M 95.62% 4.84M 95.23% 8.80 1.38M 95.23% 30.88
DenseNet DenseNet-121 7.04M 95.13% 1.24M 95.11% 5.68 0.44M 95.13% 16

Because the results of FSNet in Table 1 are obtained by cyclic training with four cycles, we show the performance
of FSNet using the same training procedure (with only one training cycle) as its baseline in Table 8. We can see
that the accuracy loss of FSNet is still less than 1% compared to its baseline, and FSNet with one cycle even has
higher accuracy (95.46%) than that with four cycles 95.40% for DenseNet-100 with a growth rate of 24.

Table 8: Performance of FSNet with one-cycle (the same training procedure as the baseline) on the CIFAR-10
dataset PPPPPModel

Before Compression FSNet CR FSNet-WQ CR# Param Accuracy # Param Accuracy # Param Accuracy

ResNet
ResNet-110 1.74M 93.91% 0.44M 93.02% 3.95 0.12M 93.03% 14.50
ResNet-164 1.73M 94.39% 0.47M 93.75% 3.68 0.16M 93.84% 10.81

DenseNet DenseNet-100 (k = 12) 1.25M 95.31% 0.37M 94.36% 3.38 0.15M 94.31% 8.33
DenseNet-100 (k = 24) 4.83M 95.71% 1.33M 95.46% 3.63 0.44M 95.47% 10.98

Furthermore, we show the performance of FSNet with ResNet-56 on the CIFAR-10 dataset with different
compression ratios, and compare FSNet to the Discrimination-aware Channel Pruning (DCP) method (Zhuang
et al., 2018). It can be observed that when we increase the compression ratio from 4.4 to 4.8, FSNet-2 achieves
the highest accuracy of 94.22%, and FSNet-2 enjoys a smaller model with higher accuracy compared to DCP
(Zhuang et al., 2018). In addition, a very aggressive compression ratio of 15.8 pushes the accuracy down to
92.87%, still with an accuracy loss of less than 1%.

10

Under review as a conference paper at ICLR 2020

Table 9: Comparison between FSNet and the Discrimination-aware Channel Pruning (DCP) method
(Zhuang et al., 2018) on the CIFAR-10 dataset, where the × ↓ shows the compression ratio (the ratio
of the number of parameters of the original model to that of the compressed model).

````````Model
Performance # Params Accuracy

ResNet-56 0.82M 93.80%
DCP (Zhuang et al., 2018) 3.37× ↓ 93.81%

FSNet-1 4.4× ↓ 94.16%
FSNet-2 4.8× ↓ 94.22%
FSNet-3 5.1× ↓ 94.15%
FSNet-4 15.8× ↓ 92.87%

We are also very interested in the visualization of the learned Filter Summary. For the visualization purpose, we
change the representation of Filter Summary from a 1D vector to a 3D tensor. The illustration of the learned 3D
Filter Summary for the first convolution layer of ResNet-101 on the CIFAR-10 dataset with compression ratio of
3.95 in Table 1 is shown in Figure 5. Due to the filter sharing scheme of FSNet, we can observe that the learned
3D FS reveals similar patterns as those appear in the traditional convolution filters, but the filters in the FS are
“smoothed” by the weight sharing because patterns of one filter are shared by its neighboring filters in the FS.

Figure 5: Illustration of a learned Filter Summary (FS) in the first convolution layer of ResNet-101
with FSNet, which is scaled for illustration purpose.

A.2 MORE DETAIL ABOUT FILTER STRIDE s IN FAST CONVOLUTION BY FILTER SUMMARY
(FCFS)

In the paper, it is mentioned that the filter stride is set to s = b L−1
Cout
c. In order to accelerate the convolution

operation using FS for convolution layer with S2 > 1, we require that s be the largest multiple of CinS1 which
is no greater than b L−1

Cout
c. Namely, let s1 = b L−1

Cout
c, then s = b s1

CinS1
c · CinS1. The reason is that FS can be

viewed as the unwrapped version of a conventional 3D filter by shaping its elements into a vector in the order

11



Under review as a conference paper at ICLR 2020

Table 10: Performance of FSNet-WQ and Linear Quantization on CIFAR-10
PPPPPModel # Params Accuracy

ResNet-164 1.73M 94.39%
FSNet-WQ 0.16M 94.64%

Linear Quantization 0.50M 94.36%

of channel, the first spatial dimension (with size S1, the second spatial dimension (with size S2). Therefore,
different slices along the second spatial dimension are separated by CinS1 elements in the FS. By letting s be
the multiple of CinS1, we only need to compute L

CinS1
= L′ elements for each row of matrix A.

Algorithm 1 describes the algorithm which computes the matrix A for FCFS. Algorithm 2 describes the FCFS
algorithm which computes the convolution between the i-th filter in the FS of a convolution layer of FSNet
and the input feature map M of size CinD1D2 × 1 for that convolution layer. The output feature map for that
convolution layer of FSNet is obtained by running Algorithm 2 for all i ∈ [Cout]. Throughout this paper, we let
the convolution stride be 1. FCFS can be be used to accelerate convolution with different convolution strides.

Algorithm 1 Compute the matrix A for FCFS
Input:

The filter summary F of size L = CoutK in a convolution layer of FSNet, the input feature map M of size
CinD1D2 × 1.

1: for 1 ≤ t ≤ CinD1D2 do
2: j = t mod Cin

3: while j ≤ L do
4: Aij = MiFj

5: j = j + CinS1

6: end while
7: end for
8: for Each critical line I of A do

9: Compute the 1D integral image IL of I, where ILi =
i∑

t=1

It, i ∈ [T ] and T is the length of I

10: Assign ILi to the co-located element of A
11: end for
Output: The matrix A

Algorithm 2 Convolution between the i-th filter in the filter summary and the input feature map for a
convolution layer of FSNet
Input:

The filter summary F of size L = CoutK in a convolution layer of FSNet, the filter index i ∈ [Cout], the
input feature map M of size CinD1D2 × 1, the matrix A computed by Algorithm 1

1: Build a matrix O of size D1 ×D2 with zero initialization
2: Obtain the padded input feature map of size Cin(D1 + S1 − 1)(D2 + S2 − 1)× 1, which is still denote by

M
3: for 1 ≤ m ≤ D1 do
4: for 1 ≤ n ≤ D2 do
5: for 1 ≤ k ≤ S2 do
6: t = (n+ k − 2)CinD1 + (m− 1)Cin

7: Obtain the inner product pk between the slice of the input feature patch Mt:t+CinS1 and the corre-
sponding slice of the i-th filter, i.e. F1+(i−1)s+(k−1)CinS1:(i−1)s+kCinS1

using the corresponding
critical line of A

8: Omn = Omn + pk
9: end for

10: end for
11: end for
Output: Return O as the i-th channel of the output feature map of the convolution layer of FSNet

A.3 MORE DETAILS ABOUT FLOPS OF FSNET-WQ

It is mentioned that FSNet-WQ has almost the same number of FLOPs as that of FSNet. The underlying reason
is explained in detail in this section. Suppose a convolution layer or fully-connected layer of FSNet performs the

12



Under review as a conference paper at ICLR 2020

Table 11: Performance of FSNet-WQ and Linear Quantization on ImageNet
PPPPPModel # Params Top-1 Top-5

ResNet-50 25.61M 75.11% 92.61%
FSNet-WQ 3.55M 72.59% 91.20%

Linear Quantization (8-bit) 8.56M 74.88% 92.48%
Linear Quantization (4-bit) 5.71M 0.086% 0.578%

following operation:

y = Wx+ b, (1)

where x is a vector representing the input of this layer, y is the output, and the operation performed by this layer
is represented by a linear function parameterized by W and b. Let W0 and b0 denote the quantized W and
b after performing the 256-level linear quantization described in Section 2.5 of the paper. Then the recovered
weights from the quantized weights are

W̃ = S0 + τW0, b̃ = s0 + τb0, (2)

where S0 is a matrix of the same size as W with all elements being s0 which is the smallest element of W, s0
is a vector of the same size as b will all elements being s0. τ is the quantization step computed by τ = s1−s0

255
and s1 is the maximum element of W. It can be verified that FSNet-WQ performs the following operation in
this layer using the recovered weights W̃ and b̃:

ỹ = W̃x+ b̃ = S0x+ s0 + τ(W0x+ b0). (3)

We can perform the operation y0 = W0x+ b0 using the same number of FLOPs as that required for Wx+ b.
Then each element of the output of this layer can be computed by ỹi = (y0)i + s0(sx+1) where sx is the sum
of elements of the input x. Therefore, compared to FSNet, FSNet-WQ only needs additional FLOPs to compute
the sum of elements of the input (plus one more multiplication) for each convolution layer or fully-connected
layer. Our empirical study shows that the FLOPs of FSNet-WQ and FSNet are almost the same.

After a FSNet is trained, a one-time linear weight quantization is applied to the obtained FSNet. More concretely,
8-bit linear quantization is applied to the filter summary of each convolution layer and the fully connected layer
of the FSNet. More comparative results between FSNet-WQ and linear quantization on the CIFAR-10 data set
and the ILSVRC-12 dataset are shown in Table 10 and Table 11 respectively. Because linear quantization is used
in FSNet-WQ, the compression results of FSNet-WQ are compared to that of linear quantization.

A.4 MORE DETAILS ABOUT DFSNET-DARTS

We use SGD with momentum of 0.9 to optimize the weights of the DFSNet-DARTS model on the CIFAR-10
dataset. The initial learning rate is 0.01, and the learning rate is gradually reduced to zero following a cosine
schedule. The weight decay is set to 0.0002. The DFSNet-DARTS model is trained for 600 epochs with a
mini-batch size of 96. The neural architecture found by DFSNet-DARTS is illustrated by Figure 6.

Figure 6: The neural architecture found by DFSNet-DARTS

13


	Introduction
	Related Works
	Notations

	Formulation
	Filter Summary (FS)
	Fast Convolution by Filter Summary (FCFS)
	Computational Acceleration Ratio of FCFS
	Training FSNet
	FSNet with Weight Quantization (FSNet-WQ)
	Extension to Differentiable FSNet (DFSNet)

	Experimental Results
	FSNet for Classification
	FSNet for Object Detection
	Using DFSNet for Neural Architecture Search

	Conclusion
	Appendix
	Additional Experimental Result
	More Detail about Filter Stride s in Fast Convolution by Filter Summary (FCFS)
	More Details about FLOPs of FSNet-WQ
	More Details about DFSNet-DARTS


