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Abstract

We address two fundamental questions that arise in learning over dynamic graphs:
(i) How to elegantly model dynamical processes over graphs? (ii) How to lever-
age such a model to effectively encode evolving graph information into low-
dimensional representations? We present DyRep - a novel modeling framework for
dynamic graphs that posits representation learning as a latent mediation process
bridging two observed processes – dynamic of the network (topological evolution)
and dynamic on the network (activities of the nodes). To this end, we propose an
inductive framework comprising of two-time scale deep temporal point process
model parameterized by a temporal-attentive representation network and trained
end-to-end using an efficient unsupervised procedure. We demonstrate that DyRep
significantly outperforms state-of-art baselines for dynamic link prediction and
event time prediction and provide qualitative analysis of our framework.

1 Introduction
Representation learning over graph structured data has ubiquitous applicability in variety of domains
such as social networks, bioinformatics, natural language processing, and relational knowledge bases.
Learning node representations to effectively encode high-dimensional and non-Euclidean graph
information is a challenging problem but recent advances in deep learning has helped important
progress towards addressing it [1, 2, 3, 4, 5, 6, 7], with majority of the approaches focusing on
advancing the state-of-art in static graph setting. However, several domains (e.g. social network
communications, financial transaction graphs or longitudinal citation data) now present highly
dynamic data that exhibit complex temporal properties in addition to earlier cited challenges. These
recent developments have created a conspicuous need for principled approaches to advance graph
embedding techniques for dynamic graphs [8]. We focus on two pertinent questions fundamental to
representation learning over dynamic graphs: (i) What can serve as an elegant model for dynamic
processes over graphs? (ii) How can one leverage such a model to learn dynamic node representations
that are effectively able to capture evolving graph information over time?

As noted in [9], an important requirement to effectively learn over such dynamical systems is the
ability to express the dynamical processes at different scales. We propose that any dynamic graph
must be minimally expressed as a result of two fundamental processes evolving at different time
scales: Association Process (dynamics of the network), that brings change in the graph structure and
leads to long lasting information exchange between nodes; and Communication Process (dynamics
on the network), that relates to node’s self evolution and activities between (not necessarily connected)
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nodes which leads to temporary information flow between them [10, 11]. We, then, posit our goal
of learning node representations as modeling a latent mediation process that bridges the above two
observed processes such that learned embeddings drive the complex temporal dynamics of both
processes and these processes subsequently lead to the nonlinear evolution of node representations.
Further, the information propagated across the graph is governed by the temporal dynamics of
communication and association histories of nodes with its neighborhood (Figure 3 Appendix A).

2 Preliminaries
Dynamic Graph Setting — Let Gt = (Vt, Et) denote graph G at time t, where Vt is the set of
nodes and Et is the set of edges in Gt. An event at time t is represented as e = (u, v, t, k), where
u, v are the two nodes involved in an event. k ∈ {0, 1} and we use k = 0 to signify events from
the topological evolution process (association) and k = 1 to signify events from node interaction
process (communication). We then represent complete set of P observed events ordered by time in
window [0, T ] as O = {(u, v, t, k)p}Pp=1. Here, tp ∈ R+, 0 ≤ tp ≤ T . Let zv(t) ∈ Rd represent
d-dimensional representation of node v at time t. We use zv(t̄) for most recently updated embedding
of node v just before t.

3 Proposed Method
The rationale behind our framework is that the observed set of events are the realizations of the
nonlinear dynamic processes governing the changes in topological structure of graph and interactions
between the nodes in the graph. Now, when an event is observed between two nodes, information
flows from the neighborhood of one node to the other and affects the representations of the nodes
accordingly. While a communication event (interaction) only propagates local information across
two nodes, an association event changes the topology and thereby has more global effect. The goal is
to learn node representations that encode information evolving due to such local and global effects.

Modeling Two-Time Scale Observed Graph Dynamics. Given an observed event p = (u, v, t, k),
we define a continuous-time deep model of temporal point process using the intensity function λu,vk (t)
that models the occurrence of event p between nodes u and v at time t: λu,vk (t) = fk(gk(t̄)). The
inner function gk(t̄) computes the compatibility of the most recently updated representations of two
nodes, zu(t̄) and zv(t̄) as follows: gk(t̄) = ωT

k · [zu(t̄); zv(t̄)]. Here, [;] signifies concatenation and
ωk ∈ R2d serves as the model parameter that learns time-scale specific compatibility. The choice
of outer function fk needs to: 1.) keep intensity positive. 2.) account for difference in time-scale
of dynamics corresponding to communication and association processes. To this end, we use a
modified version of softplus function parameterized by a dynamics parameter ψk to capture timescale
dependence: fk(x) = ψk log(1 + exp(x/ψk)) where, ψk is scalar time-scale parameter learned as
part of training. ψk corresponds to the rate of events arising from a corresponding process.

Learning latent Mediation Process via Temporally Attentive Representation Network. After
an event has occurred, the representation of both the participating nodes need to be updated to
capture the effect of the observed event based on the principles of: Self-Propagation., Exogenous
Drive. and Localized Embedding Propagation. Two nodes involved in an event form a temporary
(communication) or a permanent (association) pathway for the information to propagate from the
neighborhood of one node to the other node. For any event at time t, we update the embeddings for
both nodes involved in the event using a recurrent architecture. Specifically, for p-th event of node v,
we evolve zv as:

zv(tp) = σ( Wstructhu
struct(t̄p)︸ ︷︷ ︸

Localized Embedding Propagation

+ Wreczv(t̄vp)︸ ︷︷ ︸
Self-Propagation

+ Wt(tp − t̄vp)︸ ︷︷ ︸
Exogenous Drive

), (1)

where, hu
struct ∈ Rd is the output representation vectors obtained from aggregator function on node

u’s neighborhood and zv(t̄vp) is the recurrent state. tp is time point of current event, t̄p signifies
the timepoint just before current event and t̄vp represent time point of previous event for node v.
Wstruct,Wrec ∈ Rd×d and Wt ∈ Rd are model parameters that govern the aggregate effect of all
the three processes respectively. The above formulation is flexible in supporting various features. For
example, in case of dynamic heterogenous graphs, Eq. 1 can be extended to include edge type with
corresponding parameters. Similarly, one can support high-dimensional attributes (including spatial)
by adding them to Eq. 1 as feature inputs to the model.

2



Temporally Attentive Aggregation. We propose a novel Temporal Attention Mechanism to compute
hstruct by attending to the neighbors based on node’s communication and association history.

Let A(t) ∈ Rn×n be the adjacency matrix for graph Gt at time t. Let S(t) ∈ Rn×n be a stochastic
matrix capturing the strength between pair of vertices at time t. One can consider S as a selection
matrix that induces a natural selection process for a node – it would tend to communicate more
with other nodes that it wants to associate with or has recently associated with. And it would
want to attend less to non-interesting nodes. Formally, we perform localized attention for a given
node u and compute the coefficients pertaining to the 1-hop neighbors i of node u as: qui(t) =

exp(Sui(t̄))∑
i′∈Nu(t) exp(Sui′ (t̄))

, where qui signifies the attention weight for the neighbor i at time t and
hence it is a temporally evolving quantity. These attention coefficients are used to compute the
aggregate information hu

struct(t̄) by employing an attended aggregation mechanism across neighbors
as follows: hu

struct(t̄) = max
({
σ
(
qui(t) · hi(t̄)

)
,∀i ∈ Nu(t̄)

})
, where, hi(t̄) = Whzi(t̄) + bh

and Wh ∈ Rd×d and bh ∈ Rd are parameters governing the information propagated by each
neighbor of u. zi(t̄) ∈ Rd is the most recent embedding for node i.

Spatial Properties. Our work considers spatial properties implicitly. Concretely, the distance
between the nodes of graph in embedded space effects the pattern of connections and communications
between the nodes. Simultaneously, the dynamics "of" and "on" the network affect the node distances
in embedded space. If one wants to introduce explicit spatial features (e.g. location in transportation
or mobile communication network), our model will support it by adding such features as part of Eq.
1. Another approach could be to combine the temporal attentive operator with a local spatial operator
(e.g. geometric deep learning) to build a sophisticated spatiotemporal operator.

Efficient Learning Procedure. The complete parameter space for the current model is Ω =
{Wstruct,Wrec,Wt,Wh,bh, {ωk}k=0,1, {ψk}k=0,1}. For a set O of P observed events, we
learn these parameters by minimizing the negative log likelihood: L = −

∑P
p=1 log (λp(t)) +∫ T

0
Λ(τ)dτ , where λp(t) = λ

up,vp
kp

(t) represent the intensity of event at time t and Λ(τ) =∑n
u=1

∑n
v=1

∑
k∈{0,1} λ

u,v
k (τ) represent total survival probability for events that do not happen.

While it is intractable (will require O(n2k) time) to compute the integral in log-likelihood equation
for all possible non-events in a stochastic setting, we locally optimize L using mini-batch stochastic
gradient descent where we estimate the integral using novel sampling technique.

4 Experiments
We evaluate DyRep and baselines on two real world datasets: Social Evolution Dataset released
by MIT Human Dynamics Lab — #nodes: 100, #Initial Associations: 407, #Final Associations:
809, #Communications: 2020554 and Clustering Coefficient: 0.548. Github Dataset available
at Github Archive — #nodes: 12328, #Initial Associations: 70640, #Final Associations: 166565,
#Communications: 604954 and Clustering Coefficient: 0.087. We study the effectiveness of DyRep
by evaluating our model on tasks of: (i) Dynamic link prediction – for a given test record (u, v, t, k),
replace v with other entities in the graph and compute the conditional density fu,vk (t) = λu,vk (t) ·
exp

(∫ t

t̄
λ(s)ds

)
, where t̄ is the time of the most recent event on either dimension u or v. We then

rank all the entities in descending order of the density and report Mean Average Rank and HITS(@10)
metric for dynamic link prediction. (ii) Event Time Prediction – Given a pair of nodes (u, v) and
event type k at time t, we use the above density formulation to compute conditional density at time
t. The next time point t̂ for the event can then be computed as: t̂ =

∫∞
t
tfu,vk (t)dt. For a given test

record, we predict the next time an event may occur and report MAE against the ground truth. For
Dynamic Link Prediction task, we compare the performance of our model against Know-Evolve [12],
DynGem [13], DynTrd [14], GraphSage [15] and Node2Vec [2]. For Event Time Prediction, we
compare our model against Know-Evolve which has the ability to predict time and Multi-dimensional
Hawkes Process (MHP) [16] model where all events in graph are considered as dyadic. During
evaluation, we divide our test sets into n(= 6) slots based on time and report the performance for
each time slot, thus providing comprehensive temporal evaluation of different methods.

4.1 Experimental Results
Communication Event Prediction Performance (Figure 1 (a-b)). For Social Evolution dataset,
our method significantly and consistently outperforms all the baselines on both metrics. While the
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Figure 1: Dynamic Link Prediction Performance for (a-b) Social Evolution Dataset (c-d) Github
Dataset. We report HITS@10 results and zoomed versions in Appendix D. Best viewed in pdf.
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Figure 2: Time Prediction Performance (unit is hrs). Figure best viewed in pdf or colored print.

performance of our method drops a little over time, it is expected due to the temporal recency affect
on node’s evolution. For Github dataset, we demonstrate comparable performance with both Know-
Evolve and GraphSage on Rank metric. It is notable that that overall performance for all methods on
rank metric is low. Github dataset is very sparse with very low clustering coefficient and challenging
dataset to learn. It is expected that for a large number of nodes with no communication history, most
of the methods will show comparable performance but our method outperforms all others when there
is some history available. This is demonstrated by our significantly better performance for HITS@10
metric where we are able to do highly accurate prediction for nodes where we learn better history.

Association Event Prediction Performance. Association events are not available for all time slots so
Figure 1 (c-d) report the aggregate number for this task. For both the datasets, our model significantly
outperforms the baselines for this task. Specifically, our model’s strong performance on HITS@10
metric across both datasets demonstrates its robustness in accurate learning from various properties
of data. On Social evolution dataset, the number of association events are very small (only 485) and
hence our strong performance shows that the model is able to capture the influence of communication
events on the association events through the learned representations (mediation). On the Github
dataset, the network grows through new nodes and our model’s strong performance across both metric
demonstrates its inductive ability to generalize across new nodes across time.

Time Prediction Performance. Figure 2 demonstrates consistently better performance than state-of-
art baseline for event time prediction on both datasets. While Know-Evolve models both processes as
two different relations between entities, it does not explicitly capture the variance in the time scales of
two processes. Further, Know-Evolve does not consider influence of neighborhood which may lead
to capturing weaker temporal-structural dynamics across the graph. MHP uses specific parametric
intensity function which fails to account for intricate dependencies across graph. We refer the readers
to Appendix B for sample qualitative analysis of our framework.

5 Conclusion
We introduced a novel modeling framework for dynamic graphs that effectively and efficiently learns
node representations by posing representation learning as latent mediation process bridging dynamic
processes of topological evolution and node interactions. We proposed a deep temporal point process
model parameterized by temporally attentive representation network that models these complex and
nonlinearly evolving dynamic processes and learns to encode structural-temporal information over
graph into low dimensional representations. Our superior evaluation performance demonstrates the
effectiveness of our approach compared to state-of-arts. Our framework can support wide range of
dynamic graph characteristics which can potentially have many exciting adaptations. As a part of
our framework, we also propose a novel temporal point process based attention mechanism that can
attend over neighborhood based on the history of communications and associations in the graph.
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Appendix

A Overview of DyRep Framework

Figure 3: Evolution Through Mediation. (a) Association events (k=0) where the node or edge grows.
(c) Communication Events (k=1) where nodes interact with each other. For both these processes,
tp,k=0 < (t1, t2, t3, t4, t5)k=1 < tq,k=0 < (t6, t7)k=1 < tr,k=0. (b) Evolving Representations.

B Sample Qualitative Performance
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Figure 4: tSNE for learned embeddings after training. Figure best viewed in color.

Qualitative Performance. Figure 4 (a-b) shows the tSNE embeddings learned by Dyrep (left) and
GraphSage (right) respectively. The visualization demonstrates that DyRep embeddings have more
discriminative power as it can effectively capture the distinctive and evolving structural features over
time as aligned with empirical evidence. Figure 4 (c-d) shows use case of two associated nodes (19
and 26) that has less communication at the two time points for above two methods. DyRep keeps the
embeddings nearby although not in same cluster (cos. dist. - 0.649) which demonstrates its ability
to learn the association and less communication dynamics between two nodes. For GraphSage the
embeddings are on opposite ends of cluster with (cos. dist. - 1.964).

C Contributions and Related Work

Recent availability of dynamic graphs have created a conspicuous need for principled approaches to
advance graph embedding techniques for dynamic graphs [8]. We focus on two pertinent questions
fundamental to representation learning over dynamic graphs:

(i) What can serve as an elegant model for dynamic processes over graphs? — A key modeling
choice in existing representation learning techniques for dynamic graphs [13, 14, 12, 17, 18] assume
that graph dynamics evolve as a single time scale process. In contrast to these approaches, we
observe that most real-world graphs exhibit at least two distinct dynamic processes that evolve at
different time scales — Topological Evolution: where the number of nodes and edges are expected
to grow (or shrink) over time leading to structural changes in the graph; and Node Interactions:
which relates to activities between nodes that may or may not be structurally connected. Modeling
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interleaved dependencies between these non-linearly evolving dynamic processes is a crucial next
step for advancing the formal models of dynamic graphs.

(ii) How can one leverage such a model to learn dynamic node representations that are effectively
able to capture evolving graph information over time? — Existing techniques in this direction can
be divided into two approaches: a.) Discrete-Time Approach, where the evolution of a dynamic
graph is observed as collection of static graph snapshots over time [19, 13, 14]. These approaches
tend to preserve (encode) very limited structural information and capture temporal information at
a very coarse level which leads to loss of information between snapshots and lack of ability to
capture fine-grained temporal dynamics. Another challenge in such approaches is the selection of
appropriate aggregation granularity which is often misspecified. b.) Continuous-Time Approach,
where evolution is modeled at finer time granularity in order to address the above challenges. While
existing approaches have demonstrated to be very effective in specific settings, they either model
simple structural and complex temporal properties in a decoupled fashion [12] or use simple temporal
models (exponential family in [17]). But several domains exhibit highly nonlinear evolution of
structural properties coupled with complex temporal dynamics and it remains an open problem to
effectively model and learn informative representations capturing various dynamical properties of
such complex systems.

Contributions — First, our work expresses dynamic graphs at multiple scales as follows: a.)
Dynamic ”of” the Network: This corresponds to the topological changes in network – insertion or
deletion of nodes and edges b.) Dynamic ”on” the Network: This corresponds to various activities in
the network – self evolution of node’s interests/features, change in node’s features due to exogenous
drive (activities external to net-work), information propagation within network and within-network
interactions between nodes which may or may not have direct edge between them. This dichotomy of
dynamic network processes is well-known and has been subject of several studies [9, 10, 11, 20]
in segregated manner. But none of the existing machine learning approaches has jointly modeled
them for representation learning over dynamic graphs (our key objective) to the best of our knowledge.

Next, we propose a novel representation learning framework for dynamic graphs, to model
interleaved evolution of two observed processes through latent mediation process expressed above
and effectively learn richer node representations over time. Our framework ingests dynamic graph
information in the form of association and communication events over time and updates the node
representations as they appear in these events. We build a two-time scale deep temporal point
process approach to capture the continuous-time fine-grained temporal dynamics of the two observed
processes. We further parameterize the conditional intensity function of the temporal point process
with a deep inductive representation network that learns functions to compute node representations.
Finally, we couple the structural and temporal components of our framework by designing a novel
Temporal Attention Mechanism, which induces temporal attentiveness over neighborhood nodes
using the learned conditional intensity function. This allows to capture highly interleaved and
nonlinear dynamics governing node representations over time. We design an efficient unsupervised
training procedure for end-to-end training of our framework.

Related Work — Representation Learning approaches for static graphs either perform node embed-
ding [1, 2, 3, 4, 5, 6, 7] or sub-graph embedding [21, 22, 23] which can also utilize convolutional
neural networks [24, 25, 26, 15]. Dynamic network embedding is pursued through various tech-
niques such as matrix factorization [19], structural properties [14], CNN-based approaches [27],
deep recurrent models [12], and random walks [17]. Literature on temporal modeling of dynamic
networks [28], that focus on link prediction tasks is orthogonal to our work as they do not focus
on representation learning. Authors in [29, 30] proposed models of learning dynamic embeddings
but none of them consider time at finer level and do not capture both topological evolution and
interactions simultaneously. Temporal Point Processes [31] have gained lot of attention recently for
modeling dynamic systems [32, 33, 34, 35, 36]. In parallel, research on deep point process models
include parametric approaches to learn intensity [37, 38] using RNN and GAN based approaches to
learn intensity functions [39].

D More Experimental Results

Figure 5 provides HITS@10 results in addition to the MAR results reported for Link Prediction in
Section 5 (Experiments) of the main paper.
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Figure 5: Dynamic Link Prediction Performance: Top 2 rows show performance for Social Evolution
Dataset. Bottom 2 rows show performance for Github Dataset. 1st and 3rd row show performance
for Communication Events while 2nd and 4th row show performance for Association Events.
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