skpro: A domain-agnostic modelling framework for
probabilistic supervised learning

Frithjof Gressmann* Franz J. Kiraly
Department of Statistical Science Department of Statistical Science
University College London University College London
Gower Street, London WCIE 6BT, UK Gower Street, London WCI1E 6BT, UK
frithjof.gressmann.16Qucl.ac.uk f.kiralyQ@ucl.ac.uk

Abstract

We present skpro, a Python framework for domain-agnostic probabilistic su-
pervised learning. It features a scikit-learn-like general API that supports the
implementation and fair comparison of both Bayesian and frequentist prediction
strategies that produce conditional predictive distributions for each individual test
data point. The skpro interface also supports strategy optimization through hyper-
paramter tuning, model composition, ensemble methods like bagging, and workflow
automation. The package and documentation are released under the BSD-3 open
source license and available at/GitHub.com/alan-turing-institute/skpro.

1 Introduction

Probabilistic supervised learning endeavours to make predictions in settings where even perfect
prior knowledge does not allow for an exact label prediction. Probabilistic predictions model the
uncertainty inherent in the prediction by specifying a full predictive distribution. In a supervised
context, probabilistic prediction problems have been tackled through various strategies in both the
frequentist and the Bayesian domain. While a variety of learning algorithms are available that make
predictions in the form of probability distributions, they are difficult to instantiate together in a single
workflow, e.g., for fair comparison, or higher-order meta-modelling (tuning, ensembling).

The skpro package provides a unified, domain-agnostic interface for probabilistic supervised learning
with these use cases in mind. Its design is heavily based on the scikit-learn library [11]]. skpro also
provides experimental integration for supervised methods constructed in popular Bayesian toolboxes
such as PyMC3 [12] as it aspires to connect a variety of projects.

2 Data scientific use case: probabilistic supervised learning

The principal use cases that skpro tries to address are the probabilistic supervised learning task -
most prominently, probabilistic supervised regression - and the associated training, prediction, and
validation workflows.

Mathematically, we are in the supervised learning setting of ii.d. training data
(X1, Y1),..., (XN, YN) ~ (X,Y), taking values in X x Y. Univariate regression is the
case where ) = R. Probabilistic supervised learning is the endeavour to produce a “good”
probabilistic prediction functional f : X — P, where P is a family of distributons over ), e.g.,
absolutely continuous distributions. The functional f is considered “good” if f(z) is close to
the conditional law of Y|X = x, also known as the conditional distribution of ¥ given X = z.
Closeness is measured by certain probabilistic loss functions, also known as proper scoring rules.

*current affiliation: Graphcore Research

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.


https://github.com/alan-turing-institute/skpro

Note that f(z) is an explicit representation of the conditional predictive distribution, hence at the
same time a prediction, as well as an explicit representation of (estimated) knowledge about the
uncertainty in the prediction.

A full theoretical discussion of the probabilistic prediction setting which motivates the skpro package
is given in Gressmann et al. [5]]; this also includes an extensive discussion of the theoretical setting
in the context of prior literature (frequentist and Bayesian, statistical and machine learning). The
primary purpose of this manuscript, however, is introducing the skpro package.

3 Key features

Key features of skpro are:

Fit-predict interface for probabilistic prediction strategies: Following a common interface de-
sign in the supervised setting, skpro encapsulates probabilistic prediction strategies in a base ob-
ject ProbabilisticEstimator from which all models inherit. The base class implements the
Estimator API of the scikit-learn project [2] and stays close to its syntax and logic whenever
possible. In particular, it provides the training method fit(training features X, corresponding training
labels y) and the prediction interface predict(test features X) which returns a predicted distribution
for each test data point.

Explicit representation of distribution properties at distributional level: Notably, since the pre-
dicted distribution at a feature point is not a random variable but an explicit distribution, the object
that represents the distribution provides a direct and self-explanatory interface to its distributional
properties (e.g. the mean or the predicted density function etc.). This explicit representation of
distributional properties implies that predictions need to be readily represented on a distributional
level and not, say, as a sample from the associated random variable.

Vectorized implementation: As prediction is usually required for a number of points, learning
algorithms often allow for concurrent and efficient parallel processing, e.g. Gaussian process models.
Hence, the API allows for fast vectorized implementation at the discretion of the user. Furthermore,
for test feature points, the resulting vector of predicted distributions represented in a vector-like
interface allows both point-wise and vector-wise access to the predicted distribution and its accessible
properties.

Model selection and performance metrics: To evaluate the prediction accuracy, the package pro-
vides a number of probabilistic loss metrics such as the log-loss, integrated squared loss and the
continuous rank probability score (CRPS) for mixed predictions.

Meta-modelling and composition: Hyper-parameter tuning, pipelining and ensembling are standard
meta-motifs which are also supported in the form of meta-estimators that combine probabilistic
modelling strategies into a higher-level probabilistic modelling strategy (for example, hyper-parameter
optimization or model ensembling). Since skpro’s probablisitic estimator stays compatible with
the API of an sklearn estimator, it is possible to directly use sklearn’s meta-estimators for hyper-
parameter tuning and pipelining of the probabilistic prediction strategies. Furthermore, skpro comes
with experimental support for ensemble methods. Currently, this includes bagging in a regression
setting. The meta-estimator fits base regressors (i.e. probabilistic estimators) on random subsets of
the original dataset and then aggregates their individual predictions in a distribution interface to form
a final prediction.

Automated validation workflow: The framework aims to not only enable meaningful and domain-
agnostic model comparison, but also to standardize and simplify the workflow that leads to such
comparisons. The package therefore includes a workflow module that allows for a flexible implemen-
tation of prediction experiments and helps automating repetitive tasks as much as possible.

Simplified extension and model integration: Skpro treats third party models as first-class citizens.
The API should help the integration of existing prediction algorithms into the framework without
rewriting them to enable seamless interoperability between model of whatever toolbox.

Off-shelf probabilistic prediction strategies: The package comes with ready-to-use prediction
strategies that are built using the described API and documented on the projects website. Currently,
the implemented algorithms include a baseline that estimates a density from the training labels,
an estimator that simplifies the integration of PyMC3 models [|12]], as well as composite strategies



that leverage arbitrary scikit-learn models for probabilistic prediction by predicting parameters of
common parametric distributions.

Extensiblity and model integration To interface existing prediction strategies from the framework,
users can implement their own sub-classes of the probabilistic estimator base class. The API, however,
also offers default semi-automated strategy integration. Users can define on_fit and on_predict
events that are invoked automatically to construct the probabilistic estimator interface. If a learning
algorithm, such as Bayesian inference via Markov chain Monte Carlo (MCMC) sampling, does not
yield an explicit interface to a predictive density, an Adaptor can be used to automatically estimate
the missing distributional properties. The DensityAdapter, for example, transforms a given input
into an estimated density function, e.g. a posterior sample into kernel estimated density.

4 Relation to prior work

Major machine learning toolboxes for classical supervised learning such as Weka [6} |7]], scikit-
learn [2| [11]], caret [8] 9] and mlr [1]] share the idea of object-oriented encapsulation of models or
prediction strategies, and sometimes aspects of the validation process, with a consistent, unified and
modular interface. While they usually do not implement interfaces for probabilistic prediction (except
classification or variance predictions), they do provide the method encapsulation and workflow
modularization that is necessary for model-agnostic strategy development and comparison.

On the other hand, there are a number of abstract model-building environments for probabilistic
modelling such as WinBUGS [10], Stan [3]], Church [15]], Anglican [[16]], or Edward [[13}|14]], and more
generally a wealth of distinct approaches often subsumed more recently under the term probabilistic
programming |3, 4]. These have in common that they usually implement a generic interface for
Bayesian algorithms of a specific family (usually but not always: Markov Chain Monte Carlo type),
thus are neither model nor domain agnostic. Also, by algorithm and interface design, they are usually
not geared towards prediction, nor do they implement model validation and model comparison
functionality. Nonetheless, they usually include a high-level interface for fitting and sampling from
some structured and hierarchical probability distribution models, which contemporary supervised
learning toolboxes are lacking.

Thus, connecting these resources with a domain-overarching API bears the great portential to reach
a more complete supervised framework for probabilistic prediction making. Given its enormous
practical importance one also has to note that from a scientific perspective, a solid workflow and
modelling API is a necessary practical precondition for fair quantitative assessment and comparison,
be it frequentist, Bayesian or otherwise. We hope that skpro’s API can enable a more integrated
modelling experience that provides the foundation for the discovery of improved prediction strategies.

5 Full paper and repository

The package, including a full usage tutorial and a reference manual, is available at GitHub.com/alan+
turing-institute/skpro and ready for installation via the Python Package Index (PyPI).

A detailed discussion of the skpro API, as well as a benchmarking study using skpro may be found in
Section 8 and 9 of the paper [5]] which also provides a mathematical formalization of the probabilistic
supervised learning setting, algorithmic primitives and meta-learning building blocks, as well as
related model validation workflows. The exposition above is heavily based on (and in parts taken
verbatim from) the introductory section of the cited source [5].

References

[1] Bernd Bischl et al. “mlr: Machine Learning in R”. In: Journal of Machine Learning Research
17.170 (2016), pp. 1-5. URL: http://jmlr.org/papers/v17/15-066.html,

[2] Lars Buitinck et al. “API design for machine learning software: experiences from the scikit-
learn project”. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning.
2013, pp. 108-122.

[3] Bob Carpenter et al. “Stan: A probabilistic programming language”. In: Journal of Statistical
Software 20 (2016), pp. 1-37.


https://github.com/alan-turing-institute/skpro
https://github.com/alan-turing-institute/skpro
http://jmlr.org/papers/v17/15-066.html

(4]
(5]
(6]
(7]

(8]

(9]
[10]

[11]
[12]
[13]
[14]

[15]

[16]

Andrew D Gordon et al. “Probabilistic programming”. In: Proceedings of the on Future of
Software Engineering. ACM. 2014, pp. 167-181.

Frithjof Gressmann et al. “Probabilistic Supervised Learning”. In: (Jan. 2, 2018). arXiv:
1801.00753 [cs, math, stat]. URL:http://arxiv.org/abs/1801.00753,

Mark Hall et al. “The WEKA data mining software: an update”. In: ACM SIGKDD explorations
newsletter 11.1 (2009), pp. 10-18.

Geoffrey Holmes, Andrew Donkin, and Ian H Witten. “Weka: A machine learning workbench”.
In: Intelligent Information Systems, 1994. Proceedings of the 1994 Second Australian and New
Zealand Conference on. IEEE. 1994, pp. 357-361.

Max Kuhn. Contributions from Jed Wing et al. caret: Classification and Regression Training.
R package version 6.0-70. 2016. URL: https://CRAN.R-project.org/package=caret!.
Max Kuhn. “Caret package”. In: Journal of Statistical Software 28.5 (2008).

David J Lunn et al. “WinBUGS-a Bayesian modelling framework: concepts, structure, and
extensibility”. In: Statistics and computing 10.4 (2000), pp. 325-337.

Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: Journal of Machine
Learning Research 12.0ct (2011), pp. 2825-2830.

John Salvatier, Thomas V Wiecki, and Christopher Fonnesbeck. ‘“Probabilistic programming
in Python using PyMC3”. In: PeerJ Computer Science 2 (2016), €55.

Dustin Tran et al. “Deep probabilistic programming”. In: International Conference on Learning
Representations. 2017.

Dustin Tran et al. “Edward: A library for probabilistic modeling, inference, and criticism”. In:
arXiv preprint arXiv:1610.09787 (2016).

David Wingate, Andreas Stuhlmueller, and Noah Goodman. “Lightweight implementations
of probabilistic programming languages via transformational compilation”. In: Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics. 2011,
pp. 770-778.

Frank Wood, Jan Willem Meent, and Vikash Mansinghka. “A new approach to probabilistic
programming inference”. In: Artificial Intelligence and Statistics. 2014, pp. 1024-1032.


http://arxiv.org/abs/1801.00753
http://arxiv.org/abs/1801.00753
https://CRAN.R-project.org/package=caret

	Introduction
	Data scientific use case: probabilistic supervised learning
	Key features
	Relation to prior work
	Full paper and repository

