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ABSTRACT

Deep reinforcement learning has achieved remarkable successes in solving various
challenging artificial intelligence tasks. A variety of different algorithms have been
introduced and improved towards human-level performance. Although technical
advances have been developed for each individual algorithms, there has been
strong evidence showing that further substantial improvements can be achieved by
properly combining multiple approaches with difference biases and variances. In
this work, we propose to use the James-Stein (JS) shrinkage estimator to combine
on-policy policy gradient estimators which have low bias but high variance, with
low-variance high-bias gradient estimates such as those constructed based on
model-based methods or temporally smoothed averaging of historical gradients.
Empirical results show that our simple shrinkage approach is very effective in
practice and substantially improve the sample efficiency of the state-of-the-art
on-policy methods on various continuous control tasks.

1 INTRODUCTION

Deep reinforcement learning (RL) has achieved remarkable successes recently, as witnessed by
the human/super-human level performance achieved in various challenging artificial intelligence
tasks; notable examples include AlphaGo (Silver et al., 2017; 2016), Atari games (Mnih et al.,
2013), robotic learning (Levine et al., 2016; Andrychowicz et al., 2017), among many others. A
remarkable nature of RL is that multiple types of algorithms have been developed, based on different
principles, highlighting different features and trade-offs. This includes model-based approaches which
derive optimal policies from estimated dynamic models of the unknown environment (Deisenroth &
Rasmussen, 2011; Nagabandi et al., 2017), model-free off-policy methods such as Q-learning (Mnih
et al., 2013), as well as model-free on policy methods such as Proximal Policy Optimization (PPO)
(Schulman et al., 2017) and Trust Region Policy Optimization (TRPO) (Schulman et al., 2015). These
methods exploit different properties of the Markov decision process, and have different pros and
cons. Model-based and off-policy methods are known to be more sample efficient when implemented
successfully, while on-policy methods are less sample efficient, but are simpler and easier to train,
especially for problems with continuous or high dimensional action spaces. Although there have
been emerging advances in improving each individual algorithms, more substantial improvements
are likely achieved by adaptively integrating multiple strategies into an overall intelligence system.
This is evident from human brain, which has been discovered to contain multiple distinct or even
competing pathways for learning from reward (Daw et al., 2005; Rangel et al., 2008), including
both model-free strategies consisting of error-and-trial learning to repeat rewarded actions, and
model-based learning that learns models of the environment, and use it to evaluate candidate actions
by mental simulations of their consequences. We would expect integrating different methods in RL
will improve the performance, especially when integrated into an adaptive fashion. Algorithmically, a
key challenge for an adaptive combination is to evaluate the reliability of each individual strategy,
without knowing the ground truth answer while performing the task.

In this work, we focus on the problem of adaptively combining policy gradient estimators from
various sources. We leverage the fact that different strategies yield different gradient estimators with
different bias-variance trade-off, which can be exploited by statistical shrinkage estimators to obtain
optimal combinations that have better mean square error than any individual estimators. In particular,
policy gradient estimators provide (nearly) unbiased estimators of the true gradient of the expected
reward, but often suffers from high variance and is sample inefficient. Model-based and on-policy
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methods, on the other hand, provide more biased estimates but can have much smaller variance by
taking the advantage of the large amount of imaginary data efficiently simulated from the model, or
off-policy data stored in the replay buffer.

In particular, we propose to use James-Stein (JS) shrinkage estimator (Stein, 1956; James & Stein,
1961; Efron & Morris, 1975) to combine the unbiased on-policy gradient estimator with biased
but low variance estimators constructed based on models or off-policy data. The basic idea of JS
estimator is to access the quality of the biased estimator by inspecting its consistency with unbiased
estimators, and use it as a clue for constructing an optimally weighted combination to trade-off bias
and variance. JS estimator admits strong theoretical guarantees for standard Gaussian cases, and more
importantly, also provides a simple practical heuristic for more complex practical non-Gaussian cases.
It can potentially provide an ideal tool for solving the very challenge of bias-variance trade-off in
various components of deep reinforcement learning, but seems to be still largely under-explored in the
literature. In this work, we explore the practical application of JS estimators in deep RL, illustrated
by two examples:

Shrinking Towards Model-based Gradient We develop a hybrid algorithm which adaptively
integrates on-policy policy gradient with Dyna-style model-based learning agent (Sutton, 1991). We
train a transition model using the existing rollout data in parallel to the on-policy gradient descent;
imaginary rollouts are simulated from the model, providing a biased, lower variance gradient estimator.
This model-based gradient estimator compared against the unbiased, high variance on-policy gradient,
and a weighted combination is constructed using JS estimator based on the consistency of the two
estimators. Our method improves the sample efficiency by exploiting the data more efficiently using
model learning while avoiding significant bias introduced by the model using adaptive JS estimator.

Shrinking Towards Temporally Smoothed Gradient It has been observed heuristically that proper
bias is helpful for training (Sutskever et al., 2013; Nesterov, 2013). We present a simple method that
explicitly constructs an optimal bias-variance trade-off by shrinking the on-policy gradient estimator
towards a smoothed gradient estimator obtained by a weighted sum over previous iterations. The
smoothed gradient provides a reasonable guess of the true gradient of the current estimation and
forms a biased, low variance estimator. By shrinking towards the smoothed gradient, we significantly
decrease the variance of the on-policy gradient, at the cost of introducing a small bias. This effectively
creates a statistical momentum, which shares similarity with the traditional momentum methods
derived from optimization perspectives, but with an adaptive coefficient determined by the JS
estimator. It can also be combined with traditional momentum to yield gains on both statistical and
optimization sides. This simple algorithm effectively leverages the historic (off-policy) data via the
temporally smoothed gradient, yielding higher sample efficiency than standard policy gradient.

We perform empirical studies to test the performance of both above examples, showing our adaptive
combination strategies can yield better results than any fixed-weight combination, significantly
improving the sample efficiency on standard on-policy methods. This illustrates the practical power
of JS estimators, which we expect to be broadly applicable to more settings in deep RL in future
works.

2 BACKGROUND

We first introduce the basics of reinforcement learning and model-free policy gradient, and set up the
notation that we will use in the paper. We then introduce a model-based policy gradient method.

2.1 REINFORCEMENT LEARNING

Reinforcement learning considers the problem of finding an optimal policy for an agent which
interacts with an uncertain environment and collects reward per action. The goal of the agent is to
maximize the long-term cumulative reward. Formally, this problem can be formulated as a Markov
decision process over the environment states s ∈ S and agent actions a ∈ A, under an unknown
environmental dynamic defined by a transition probability T (s′|s, a) and a reward signal r(s, a)
immediately following the action a performed at state s. The agent’s action a is selected by a
conditional probability distribution π(a|s) called policy. In policy optimization, we consider a set
of candidate policies πθ(a|s) parameterized by θ and obtain the optimal policy by maximizing the

2



Under review as a conference paper at ICLR 2019

expected cumulative reward or return

J(θ) = Es∼ρπ,a∼π(a|s) [r(s, a)] ,

where ρπ(s) =
∑∞
t=1 γ

t−1Pr(st = s) is the normalized discounted state visitation distribution with
discount factor γ ∈ [0, 1). To simplify the notation, we denote Es∼ρπ,a∼π(a|s)[·] by simply Eπ[·] in
the rest of paper.

2.2 ON-POLICY POLICY GRADIENT

According to the policy gradient theorem (Sutton & Barto, 1998), the gradient of J(θ) equals

∇θJ(θ) = Eπ [∇θ log π(a|s)Qπ(s, a)] , (1)

whereQπ(s, a) = Eπ
[∑∞

t=1 γ
t−1r(st, at)|s1 = s, a1 = a

]
denotes the expected return under policy

π starting from state s and action a.

Different policy gradient methods are based on different stochastic estimations of the expected
gradient in Eq (1). Perhaps the most straightforward way is to simulate the environment with the
current policy π to obtain a trajectory {(st, at, rt)}nt=1 and estimate∇θJ(θ) using the Monte Carlo
estimation:

∇̂θJ(θ) =
1

n

n∑
t=1

γt−1∇θ log π(at|st)Q̂π(st, at), (2)

where Q̂π(st, at) is an empirical estimate of Qπ(st, at), e.g., Q̂π(st, at) =
∑
j≥t γ

j−trj . This is
known as an on-policy gradient estimator because it only uses the data from the current policy.

Proximal Policy Optimization (PPO) (Schulman et al., 2017; Heess et al., 2017) is one of the state-the-
art model-free policy gradient methods for policy optimization. It uses a proximal Kullback-Leibler
(KL) divergence penalty to regularize and stabilize the policy gradient update. Given an existing
policy πold, PPO obtains a new policy by maximizing the following surrogate loss function

Jppo(θ) = Eπold

[
πθ(a|s)
πold(a|s)

Qπ(s, a)− λKL [πold(·|s) || πθ(·|s)]
]
,

where the first term is an approximation of the expected reward, and the second term enforces the the
updated policy to be close to the previous policy under KL divergence. The gradient of Jppo(θ) can
be rewritten as

∇θJppo(θ) = Eπold

[
wπ(s, a)∇θ log π(a|s)Qπλ(s, a)

]
where wπ(s, a) := πθ(a|s)/πold(a|s) is the density ratio of the two polices, and Qπλ(s, a) :=
Qπ(s, a) + λwπ(s, a)−1 where the second term comes from the KL penalty.

The advantage of using on-policy estimation is that it provides (nearly) unbiased estimation of the
gradient of expected reward. A well-known challenge, however, is that it has large variance, given
that it is only possible to use a small number of data from the current policy at each iteration because
the cost of simulation from the real environment is high. In addition, it does not take advantage of
the off-policy data collected previously. Using off-policy data allows us to obtain low variance but
potentially highly biased estimates, which can be combined with on-policy gradient with James-Stein
estimator as we propose in this work. In the sequel, we introduce model-based policy gradient as an
important way for leveraging off-policy data.

2.3 MODEL-BASED POLICY GRADIENT

The model-based methods derive optimal polices by learning a transition model of the underlying
dynamic T (s′|s, a) of the Markov Decision Process. Assume the states s is continuous, it is common
to assume s′ = s+fφ(s, a)+ξ where fφ is a parametric function (e.g., neural network) with learnable
parameter φ, and ξ is a zero-mean noise. The model parameter φ is often trained by minimizing the
L2 one-step prediction loss,

min
φ

n∑
t=1

‖st+1 − st − fφ(st, at)‖22, (3)
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where D := (st, at, st+1)nt=1 is a set of transition pairs collected from previous rollouts. See
Deisenroth & Rasmussen (2011); Fu et al. (2016); Nagabandi et al. (2017); Thanard Kurutach (2018);
Depeweg et al. (2017) for variety of the recent variants of model-based learning methods.

With a learned model, the problem of estimating the optimal policy becomes a planning problem,
which can be solved either using various classical planning and control methods, typically based on
variants of dynamic programming (see e.g., Sutton & Barto, 1998), or sample-based methods that
generate fictitious data by simulating the model forward and obtain optimal policies by applying
standard RL algorithm on the fictitious data.

In this work, we will mainly consider a simple sample-based policy gradient method whose main idea
is rooted from Dyna (Sutton, 1991). The idea is simply generating a fictitious data (s̃t, ãt, r̃t, s̃t+1)
by simulating the model, and plug it into the policy gradient formula (2),

∇̂model
θ J(θ) =

n∑
t=1

γt−1∇θ log π(ãt|s̃t)Q̂π(s̃t, ãt). (4)

By simulating a large number of fictitious data from the model, which is much less expensive than
simulating from the real environment, we can make the variance of ∇̂model

θ J(θ) significantly smaller
than the variance of the on-policy gradient in (2).

The idea of using ∇̂model
θ J(θ) can be found in (Gu et al., 2016; Thanard Kurutach, 2018). The prob-

lem, however, is that the transition model can deviate significantly from the true model, introducing a
potentially large bias that makes the training problem unstable. Thanard Kurutach (2018) found that
by training an ensemble of models can help stabilize the training. As we discuss in the sequel, one of
our key idea is to calculate on-policy and model-based gradient simultaneously, and use the unbiased
information of the on-policy gradient to evaluate the biasness of model-based gradient, and weigh its
importance accordingly to ensure the stability while exploiting the model-based information.

3 GRADIENT ESTIMATION WITH SHRINKAGE

We introduce our main method which uses shrinkage estimator to trade-off the bias and variance to
adaptively combine multiple gradient estimators. We start with reviewing James-Stein Shrinkage
estimator in Section 3.1, and then discuss its two applications in reinforcement learning, including
shrinkage estimator towards model-based policy gradient in Section 3.2, and temporally smoothed
gradients in Section 3.3.

3.1 JAMES-STEIN SHRINKAGE ESTIMATOR

James-Stein estimator (Stein, 1956; James & Stein, 1961) is an estimator of the mean of a multivariate
normal distribution that achieves a smaller mean square error (MSE) than the maximum likelihood
estimator (MLE) in dimensions more than three. This estimator shrinks the standard maximum
likelihood estimator towards a specified target by an adaptive shrinkage factor, which introduces bias
whilst obtains lower variance and MSE.

Consider the problem of estimating the mean of a p-dimensional multivariate normal distribution
N (θ,Q), where θ ∈ Rd is the mean andQ ∈ Rp×p is the covariance matrix. Given a sample x drawn
from N (θ,Q), a natural estimator of the maximum likelihood estimation (MLE) which predicts θ
using θ ≈ x. This estimator is unbiased, and gives the minimum variance among all the possible
unbiased estimators.

MLE was used to be believed to be admissible, that is, no other estimators can always achieve lower
MSE than MLE. However, this was proved to be false by James and Stein, who constructed an
estimator, now known as James-Stein estimator, that always dominants MLE when p > 2:

θ̂JS = θ̄ + α(xxx− θ̄), (5)

where θ̄ ∈ Rp is any fixed constant relative to x, and α is a combination coefficient defined as

α = 1− (p̃− 2)/(xxx− θ̄)>Q−1(xxx− θ̄), (6)
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Algorithm 1 PPO-MBS: PPO with model-based gradient shrinkage
Initialize policy πθ(a|s), model-based dynamic fφ(s, a), and replay buffer D ← ∅.
repeat

Collect real trajectories using πθ and add them to replay buffer D.
for K iterations do

Update φ with data from replay buffer D using (3).
end for
Sample imaginary trajectories {τi}ni=1 with max time-step Tp using πθ and fφ.
for M iterations do

Calculate model free PPO gradient gc w.r.t θ with real samples.
Calculate model-based PPO gradient gmb w.r.t θ with imaginary trajectories {τi}ni=1.
Get JSE ĝJS

+

using (8) and update θ with ĝJS
+

.
end for

until Convergence

where p̃ = trace(Q)/λmax(Q) is considered as an effective dimension of covariance matrix Q,
which equals p if Q is an identity matrix. The intuition is that ` := (xxx− θ̄)>Q−1(xxx− θ̄) the bias of θ̄
in respect to the variation of x. If θ̄ is close to the true mean θ, α is small and θ̄ is highly weighted; if
θ̄ is far away from the true mean, α is large and the unbiased estimator x is highly weighted. Overall,
the adaptive strategy ensures the bias and variance is always traded off optimally.

More generally, we can relax c = p̃− 2 in equation (5) to 0 < c < 2(p̃− 2), which still dominates
the MLE when p̃ > 2. Baranchik (1964) also suggests that JS estimator can be further improved
by limiting the combination coefficient to be positive. This gives a general positive James-Stein
estimator: (JSE+) as

θ̂JS+

= θ̄ + α+(xxx− θ̂), α+ = max
(
0, 1− c/(xxx− θ̄)>Q−1(xxx− θ̄)

)
. (7)

Although the standard theoretical results of JS estimators are established for normal distribution,
which may not hold for settings in deep RL, however, JS still provides a simple yet highly useful
practical strategy for adaptive combination. In practice, when the covariance matrix Q is not known,
it can be replaced by an empirical estimation Q̂, which is estimated over multiple trajectories. In
fact, in our subsequent experiments, we approximate Q̂ with its diagonal matrix to avoid matrix
inverse. This introduces error in estimating α+, but can be practically compensated choosing a proper
parameter c using trial tests. This work focuses on demonstrating a novel empirical application of JS
estimators for deep RL, and defers further theoretical work to future works.

3.2 SHRINKING TOWARDS MODEL-BASED GRADIENT ESTIMATOR

We describe our method that adaptively combines model-based and on-policy strategies using
shrinkage estimator. For notation, we denote by gc := ∇̂θJ(θ) the on-policy gradient in (2) obtained
from the “real” trajectories, and gmb := ∇̂model

θ J(θ) the model-based gradient obtained from
"imaginary" trajectories rolled out from learned dynamics. With these two gradient estimators, we
can obtain a new estimator as

ĝJS+

= gmb + α+(gc − gmb). (8)

The only difference between these two estimators gmb and gc is the data used for gradient calculation.
Here α+ serves as a measurement of the quality of dynamic model training. A good dynamic gives
imaginary trajectories that are similar to real trajectories, making gmb are close to gc and hence a
small α+ according to (6).

One subtle difficulty is that when simulating long horizon trajectories, the error in the model is
amplified, causing significantly bad model-based estimator (yielding α ≈ 1 in (8)). To address
this problem, we simulate only short horizon imaginary trajectories initialized with different states
randomly drawn from true samples. This trick allows us to obtain higher quality model-based
estimators. We integrate our method with Proximal Policy Optimization (PPO)(Schulman et al., 2017;
Heess et al., 2017), which we refer as PPO-MBS, and is summarized in algorithm 1.
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Algorithm 2 PPO-STS: PPO with temporally smoothed gradient shrinkage
Initialize policy πθ(a|s) and historic gradient set β ← ∅.
repeat

Collect real trajectories using πθ .
for M iterations do

Calculate model free PPO gradient gc w.r.t θ.
Calculate weighted average historic gradient gw.
Get JSE ĝJS

+

using (10) and update θ with ĝJS
+

.
Add gw to the gradient set β.

end for
until Convergence

3.3 SHRINKING TOWARDS TEMPORALLY SMOOTHED GRADIENT

In addition to the model-based method, we present another simpler method that constructs shrinkage
estimator based on a smoothed gradient obtained by averaging previously gradients. This simple
strategy is significantly simpler and computationally efficient since no additional model learning or
other expensive calculation is needed. It turns out this strategy works surprisingly well.

Denote by gt the on-policy gradient at iteration t, and gc := gT the gradient at the current iteration
(T ). We calculate a smoothed gradient from the previous iterations by a weighted average:

gw =

(∑
t<T

ρtgt

)/(∑
t<T

ρt

)
. (9)

Assume the parameters do not change much over the iterations, gw provides a reasonable guess of the
current gradient. Therefore, we can shrink the current noisy gradient towards the gw:

ĝJS+

= gw + α+(gc − gw). (10)

We refer our method as PPO-STS and summarize it in algorithm 2. Interestingly, one can view the
update in (10) as a type of momentum method, because it forces the parameters to update along
the previous gradient directions. Compared with the standard momentum methods developed from
the optimization perspective (referred as optimization momentum) (Sutskever et al., 2013; Nesterov,
2013; Kingma & Ba, 2014; Duchi et al., 2011) , our method is derived for the statistical purpose of
obtaining a better estimator of gradient (and hence forms statistical momentum). A unique feature
of the statistical momentum is that its magnitude changes adaptively with the consistency between
the momentum and the current gradient estimator, reducing to zero if the gradient estimator is
deterministic (zero variance). As we do in our experiments, our statistical momentum can be directly
applied on the top of classical optimization momentum to combine the benefits of both.

4 EXPERIMENTS

We evaluate PPO-MBS and PPO-STS on continuous control tasks (Brockman et al., 2016) using
the MuJoCo physics simulator (Todorov et al., 2012). We report the variance, bias, and MSE of
gradient estimation with and without PPO-STS, PPO-MBS in Section 4.1, and then we show the
results of extensive experiments in Section 4.2. We choose Proximal Policy Gradient (PPO) as the
baseline, which is one of the state-of-the-art policy gradient methods on various continuous control
tasks. Implementation details1and hyperparameters values are provided in Appendix A and Table 1.

Extensive experiments show that PPO-STS and PPO-MBS can reduce the MSE and the variance of
the gradient estimation while we can obtain significantly better performance comparing standard
on-policy methods.

4.1 EVALUATION OF PPO-STS AND PPO-MBS

We start with evaluating the effect of PPO-STS and PPO-MBS on gradient estimation, namely, we
demonstrate the bias variance decomposition of gradient estimations, and also compare the average
reward of adaptive combination with different fixed combinations.
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Figure 1: Comparison of MSE, Variance, and Bias of PPO and PPO-MBS gradient estimation on Walker2d.
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Figure 2: Comparison of MSE, Variance, and Bias of PPO and PPO-STS gradient estimation on Walker2d.

We choose the Walker2d as the evaluation environment, and calculate the MSE, variance, and bias of
gradient estimation in PPO-MBS (Algo 1), PPO-STS (Algo 2), and PPO during the training process.
Figure 1 shows the results on Walker2d. Similarly, Figure 2 shows the results of PPO-MBS on
Walker2d-v1. The empirical results show that our methods obtain significantly lower MSE, and
variance than the typical model-free policy gradient method. It also shows that adaptive combination
(adaptively to learn value of α) is essential to get a better estimation of gradient, and can lead to higher
reward in policy optimization. The value of James-Stein coefficient α can also indicate the difference
between temporal gradient and current gradient, or model-free policy gradient and model-based
policy gradient estimates.

4.2 COMPARISON PPO-STS, PPO-MBS WITH STATE-OF-THE-ART METHODS

Finally, we evaluate PPO-STS, PPO-MBS on a more extensive list of tasks shown in Figure 3. It shows
that PPO-STS and PPO-MBS have superior performance over baseline method PPO. Empirically,
we find that PPO-STS has better performance on high dimensional tasks, such as Walker2d while
PPO-MBS performs better on low dimensional environments such as Reacher, Swimmer or Hopper.
Ww further investigate PPO-STS on more higher dimensional tasks such as Humanoid and Ant, the
results of which are in Appendix B.

5 RELATED WORK

As a classical method, James-Stein (JS) estimator has been extensively studied and used in statistics
and machine learning. See e.g., Gruber (2017); Young & Smith (2005) for overviews. However, we
are not aware of previous works on applying JS estimators for gradient estimation in RL.

The idea of combining multiple algorithms to achieve better results have been widely considered in
reinforcement learning. For example, Wiering & Van Hasselt (2008) developed an ensemble method
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Figure 3: Comparison of PPO-STS, PPO-MBS, and PPO on various continuous control task.

by combining the policies derived from the value functions of the different RL algorithms. Hessel
et al. (2017) combines several extensions of DQN to improve Atari games. Closely related to our
work is Gu et al. (2017), which uses a linear combination of on-policy and off-policy gradients, but
with a fixed, user-specified combination coefficient. O’Donoghue et al. (2017) unifies policy gradient
and Q-Learning and empirically observes better data efficiency and stability.

Another large body of works have explored the model-based/ model-free integration. The classic
Dyna framework (Sutton, 1991) has primarily been used with small and discrete systems, although
its extensions for high dimensional continuous control tasks exist. (Gu et al., 2016; Feinberg et al.,
2018). There is also a line of research using imaginary trajectories for training policy (Kalweit &
Boedecker, 2017; Thanard Kurutach, 2018). Heess et al. (2015) uses models to improve the accuracy
of model-free value function backups. Model-based training has also been used to produce a good
initialization for the model-free training (Farshidian et al., 2014; Nagabandi et al., 2017), most
recently, Clavera et al. (2018) proposes to meta learn a policy to adapt to an ensemble of dynamic
models.

Our work provides a unified adaptive framework for various gradient estimators, with the purpose
of utilizing advantages of each component, which results in lower variance and MSE over on-
policy model free optimization. Two illustrated examples in our experiments show that our adaptive
combination strategy achieves better results than on-policy methods or fixed-weighted combinations.

6 CONCLUSION

We propose to use James-Stein shrinkage estimator to combine the unbiased on-policy gradient
estimator with biased but low variance estimators constructed based on models-based methods or
historic temporally smoothed gradients. Empirical experiments show that our adaptive combination
strategy can reduce variance and MSE, yielding significant improvement over standard on-policy
methods. Future work includes investigating more powerful shrinkage estimators and alternative
biased estimators for combination in policy optimization.
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A EXPERIMENT DETAILS

A.1 POLICY AND VALUE FUNCTION ARCHITECTURES

The network structure largely depends on the OpenAI baselines (Dhariwal et al., 2017). The
stochastic policy πθ(at|st) is parameterized with a diagonal Gaussian N (µθ(st),Σθ) with a local
state-dependent mean and a global diagonal variance matrix. µθ(st) is a two-layer MLP with hidden
sizes 64× 64. The value function v̂π(st) is parameterized with 64× 64 MLP separately and we use
GAE (Schulman et al., 2016) to estimate advantage function. We use tanh as the activation function
for both networks.

A.2 TRAINING DETAILS

For all training methods, we use Adam (Kingma & Ba, 2014) as the gradient descent optimizer.
For every 10 training iteration, we evaluate the policy πθ(a|s) with its mean µθ(s) using 25,000
rollout samples. The key parameters and hyperparameter search values of the training algorithms are
summarized in Table 1. The optimal performing hyperparameter results are reported over 5 different
seeds.

Parameter PPO PPO-MBS PPO-STS

batchsize 5,000 (500 for Reacher)

learning rate of v̂π(st) 0.001

GAE λ and γ λ = 0.95, γ = 0.99

learning rate of πθ(a|s) {1e-3, 3e-4, 1e-4} 0.0003

inner iteration M {20, 30 ,40} 30
weight ρ

in PPO-STS – {0.97, 0.98, 0.99}

Imaginary horizon Tp
in PPO-MBS – {30, 50 , 80} –

Table 1: Hyperparameters in the training process

A.3 DETAILS OF MODEL-BASED LEARNING IN PPO-MBS

A.3.1 DYNAMIC MODEL LEARNING

We represent the dynamic model fφ(a, s) with a 2-hidden-layer MLP with hidden sizes 512× 512
and ReLU as the activation function. We train the model with Adam (Kingma & Ba, 2014) optimizer
with learning rate 0.0003 using a batch size of 512 for every 5 policy optimizing iterations. The model
is trained over a subset randomly drawn from the training dataset with size 25,000 for 10 passes and
we use validation dataset for early stopping (We evaluate the validation loss for each model learning
pass). Empirically we find resetting the model parameter φ every 15 policy optimizing iterations
helps improve to the performance.

A.3.2 DATA PROCESSING

We obtain a replay buffer D which stores the input and the output pair {(sit, ait), skt+1− skt }Nk=1 of the
dynamic fφ(at, st) with most recent N = 50, 000 samples which has been used by policy learning.
Further, we subtract the mean of the data and divide by the standard deviation of the data to ensure
the loss function weights the different parts of the states. Finally, we split the collected data using a
3-to-1 ratio for training and validation datasets.
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A.3.3 IMAGINARY TRAJECTORY PLANNING

We use the dynamic model fφ(st, at) and the policy πθ(a|s) to collect the imaginary trajectories with
a max horizon Tp ∈ {30, 50, 80}. To estimate gmb, we sample a total batch size of 25,000 imaginary
trajectories. To make the imaginary trajectories diverse, we randomly use the first Tmax−Tp time step
of states in the real trajectory samples as initialization s0 for planning, where Tmax is the maximum
horizon of the environment. For Reacher, we only use the initial states from real trajectories s0 as the
initialization since its maximum horizon is Tmax = 50.

A.4 DETAILS OF ENVIRONMENTS

Here we list the reward function used in model-based dynamics learning. The environments we
use are based on the top of OpenAI Gym(Brockman et al., 2016). We modified the environment by
adding the observations of Mujoco(Todorov et al., 2012) environments which are expected by gym
but are requisite for reward calculation.

The reward functions r(st, at, st+1) and the optimization horizon Tmax are described below:

Environments r(st, at, st+1) Tmax

Swimmer sxvel
t − 0.0001||at||22 1000

Walker2d sxvel
t − 0.001||at||22 + 1 1000

Hopper sxvel
t − 0.001||at||22 + 1 1000

Pusher −0.5||xbody − xarm||22+
||xbody − xgoal||22 − 0.1||at||22

100

Reacher −||xfinger − xgoal||22 − ||at||22 50

Table 2: Detail of the environments used in our experiments

sxvel
t denotes the x-axis velocity at time t, which is calculated by sxvel

t =
sxpos
t+1 −s

xpos
t

dt , where
dt = 0.02 in the Mujoco (Todorov et al., 2012) simulator. xbody, xarm, xfinger denote the position of
the body, the arm and the fingertip of the object separately, and xgoal denotes the position of the goal.

B PPO-STS ON HUMANOID AND ANT ENVIRONMENTS

We compare PPO-STS with PPO on higher dimensional tasks like Humanoid and Ant, and show
the results in Figure 4. It shows that PPO-STS can be consistently better than PPO, which makes
PPO-STS more valuable since it does not introduce additional computational costs.
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Figure 4: Comparison of PPO-STS with PPO on Humanoid and Ant.
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