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Abstract

Linear Autoencoders (LAEs) have shown strong performance in state-of-the-art
recommender systems. However, this success remains largely empirical, with
limited theoretical understanding. In this paper, we investigate the generalizability –
a theoretical measure of model performance in statistical learning – of multivariate
linear regression and LAEs. We first propose a PAC-Bayes bound for multivariate
linear regression, extending the earlier bound for single-output linear regression
by Shalaeva et al. [45], and establish sufficient conditions for its convergence. We
then show that LAEs, when evaluated under a relaxed mean squared error, can
be interpreted as constrained multivariate linear regression models on bounded
data, to which our bound adapts. Furthermore, we develop theoretical methods to
improve the computational efficiency of optimizing the LAE bound, enabling its
practical evaluation on large models and real-world datasets. Experimental results
demonstrate that our bound is tight and correlates well with practical ranking
metrics such as Recall@K and NDCG@K.

1 Introduction

In recent years, simple linear recommendation models have consistently demonstrated impressive
performance, often rivaling deep learning models [12, 24, 35]. In particular, linear autoencoders
(LAEs) such as EASE [48] and EDLAE [49] have shown a surprising edge over classical linear
methods like ALS [23]. Despite their empirical success and widespread adoption, the theoretical
understanding of why LAEs perform so well remains limited. Moreover, much of recommender
system research has focused heavily on empirical comparisons, where weak baselines and unreliable
sampled metrics often render evaluations biased and difficult to reproduce [12, 11]. A solid theoretical
foundation is therefore urgently needed to explain and justify the true performance of recommendation
models beyond purely empirical assessments.

Statistical learning theory [51] provides such a foundation by estimating a model’s theoretical perfor-
mance over the underlying data distribution. A classic result in this area is the uniform convergence
PAC bound established by Vapnik and Chervonenkis [52]. Although this bound guarantees conver-
gence, it characterizes the worst-case generalization gap and is typically vacuous for large models
such as neural networks, thus failing to reflect true model performance in practice [39, 13]. To
address this limitation, a variant PAC framework incorporates information-theoretic techniques to
bound the expected generalization gap, which often yields tighter results [20]. One notable example
is the PAC-Bayes bound, first introduced by McAllester [37]. Recently, Dziugaite and Roy [13]
empirically demonstrated that PAC-Bayes bounds can remain non-vacuous even for large neural
networks, suggesting that PAC-Bayes theory provides a more accurate and practically meaningful
characterization of model performance.

While statistical learning has been extensively developed for a wide range of machine learning
and deep learning models [51, 6, 53], its application to recommendation systems remains largely
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underexplored, with only a few exceptions [47, 46, 16]. To the best of our knowledge, it has not yet
been directly applied to LAEs. In this work, we aim to advance the theoretical understanding of LAE
performance through PAC-Bayes theory.

When evaluated under mean squared error, LAEs are closely related to multivariate linear regression
models. Prior works have developed several PAC-Bayes bounds for linear regression. Notably,
Alquier et al. [5] proposed a PAC-Bayes bound for general machine learning models with unbounded
loss; Germain et al. [17] adapted this bound to linear regression models with mean squared loss, but
their result does not converge; and Shalaeva et al. [45] improved Germain’s bound deriving a strictly
tighter and convergent version. We aim to extend existing PAC-Bayes bounds for linear regression to
the setting of LAEs. Several challenges arise in doing so:

Multivariate Data: Existing PAC-Bayes bounds for linear regression primarily focus on the single-
output setting. Extending them to the multivariate (multi-output) case is nontrivial, as the outputs can
exhibit statistical dependencies. To derive a valid bound in this setting, more general assumptions on
the data distribution must first be established to capture potential output dependence.

LAE-specific Characteristics: LAEs differ from multivariate linear regression in several important
aspects. They typically operate on bounded data, so the standard Gaussian data assumption used
in linear regression does not apply. Moreover, LAEs impose unique structural constraints, such
as the zero-diagonal constraint on the weight matrix and the hold-out constraint on data. These
characteristics must be rigorously defined and integrated into the theoretical framework.

Computational Inefficiency: Optimizing PAC-Bayes bounds is typically computationally expensive,
as estimating the distance between prior and posterior in high-dimensional spaces is complex [41].
Since LAE models often contain hundreds of millions of parameters and are computed on large
real-world datasets (Table 2), developing computationally efficient methods is crucial for practical
bound evaluation.

This paper addresses the aforementioned challenges and makes the following key contributions:

• (Section 3) We generalize Shalaeva’s Gaussian data assumption [45] to the multivariate setting
(Assumption 3.1) and propose a corresponding PAC-Bayes bound for multivariate linear regression
(Theorem 3.2), extending Shalaeva’s single-output bound [45]. We further establish sufficient
conditions (Theorem 3.3) that guarantee convergence for both bounds.

• (Section 4) We propose a relaxed mean squared error for evaluating LAE models and show that,
under this loss, LAEs can be viewed as constrained multivariate linear regression models on
bounded data. Building on this, we adapt our PAC-Bayes bound to LAEs by replacing the Gaussian
data assumption with a bounded one (Assumption 4.1) and incorporating LAE-specific constraints:
the zero-diagonal constraint on weights and the hold-out constraint on data (Section 4.2).

• (Section 5) We develop theoretical methods to improve the computational efficiency of optimizing
the bound. Following Dziugaite and Roy [13], we restrict the prior and posterior distributions
to be Gaussian (Assumption 5.1), leading to a closed-form expression for the tightest bound
(Theorem 5.2). We further establish a practical upper bound with reduced complexity to mitigate
the computational cost introduced by the zero-diagonal constraint (Theorem 5.4).

• (Section 6) We evaluate the bound for LAEs on real-world datasets. Experimental results demon-
strate that our bound is tight and correlates well with practical evaluation metrics such as Recall@K
and NDCG@K, suggesting that it effectively reflects the actual model performance of LAEs.

All proofs of the theorems, lemmas and propositions in the main paper are provided in Appendix A.
Related Works are in Appendix D. Conclusions and Discussions are in Appendix E.

2 Preliminaries
Notation: We denote S = {(xi, yi)}mi=1 as the dataset, where xi ∈ Rn and yi ∈ Rp for all i, and
m is the number of samples. For each sample (xi, yi), xi is the input and yi is the target. Let
fW : Rn → Rp be the linear regression model parameterized by W ∈ Rp×n. The model prediction
is fW (xi) = Wxi, and the mismatch between target and prediction is measured by the squared
Frobenius norm loss ∥yi −Wxi∥2F .

Denote X = [x1, x2, ..., xm] ∈ Rn×m as the input matrix and Y = [y1, y2, ..., ym] ∈ Rp×m as the
target matrix. The empirical risk, representing the average loss on the observed dataset S, is then
defined as Remp(W ) = 1

m

∑m
i=1 ∥yi − Wxi∥2F = 1

m∥Y − WX∥2F . To evaluate performance on
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unseen data, we assume that each (xi, yi) is i.i.d. sampled from an unknown distribution D, and
define the true risk as Rtrue(W ) = E(x,y)∼D

[
∥y −Wx∥2F

]
.

To construct a PAC-Bayes bound, we treat fW as a stochastic model by considering W a random
variable. Denote π as the prior distribution over W and ρ as the posterior distribution. π represents
our initial belief about W before observing any data, whereas ρ represents our updated belief after
incorporating information from the dataset S [28].

Multivariate Linear Regression [25]: From the definition above, the linear regression equation can
be written as Y = WX + E, where E = [e1, e2, ..., em] ∈ Rp×m is the error matrix.

Usually the first dimension of every xi is set 1 (i.e., X1∗ is a vector of all 1s) to represent the bias
term. We say the linear regression is multivariate (or multi-output) if p > 1.

Multivariate linear regression typically assumes that the error vectors ei and ej are independent for
i ̸= j, but allows dependencies among the elements within each ei. This leads to our statistical
assumption stated in Assumption 3.1.

Alquier’s Bound [5] adapted to Linear Regression: Alquier’s bound is a general bound that can
be applied to any model with unbounded loss. When adapted to the linear regression model using our
notation, Alquier’s bound can be stated as follows: Given π, for any λ > 0 and δ > 0,

P

(
∀ρ, EW∼ρ[R

true(W )] < EW∼ρ[R
emp(W )] +

1

λ

[
D( ρ ||π ) + ln

1

δ
+Ψπ,D(λ,m)

])
≥ 1− δ (1)

where Ψπ,D(λ,m) = lnEW∼πES∼Dm [eλ(R
true(W )−Remp(W ))], and D( ρ ||π ) = EW∼ρ

[
ln ρ(dW )

π(dW )

]
denotes the Kullback-Leibler (KL) Divergence where the measure ρ is absolutely continuous with
respect to π. The loss is typically assumed following a light-tailed distribution, such as sub-Gaussian
or sub-exponential, to ensure that Ψπ,D(λ,m) is bounded [17, 18, 19].

Note that Alquier’s bound holds simultaneously for all posteriors ρ. If replacing ∀ρ with any single ρ
such as a Gaussian posterior or a Gibbs posterior, the bound still holds.

Shalaeva’s Bound [45]: Shalaeva’s bound is an application of Alquier’s bound to the single-output
linear regression model, i.e., the case p = 1. It further assumes D is Gaussian: Given constants
σx and σe, for any draw (x, y) ∼ D, 1. x ∼ N (0, σ2

xI), and 2. there exists W ∗ ∈ R1×n such
that y = W ∗x + e, where e ∼ N (0, σ2

e) is Gaussian noise. Under this assumption, D is fixed
in Ψπ,D(λ,m), while π remains unspecified. Germain et al. [17] showed that, if π is Gaussian,
Ψπ,D(λ,m) is bounded, since the true risk Rtrue(W ) with W ∼ π is sub-gamma; however, their
bound is independent of m and does not guarantee convergence. Shalaeva et al. [45] improve this by
showing that Ψπ,D(λ,m) in fact has a strictly tighter upper bound: For any π,

Ψπ,D(λ,m) = lnEW∼π
exp(λv

W
)

(1 +
λv

W

m/2 )
m/2

≤ lnEW∼π exp

(
2λ2v2

W

m

)
(2)

where v
W

= σ2
x∥W−W ∗∥22+σ2

e . This bound depends on m and can be used to establish convergence.

Convergence of Shalaeva’s Bound: The convergence analysis in Shalaeva et al.’s paper [45] is
presented informally. Here we formally state their results as follows: Since limm→∞(1+

λv
W

m/2 )
m/2 =

exp (λv
W
), for any λ > 0, the convergence of Ψπ,D(λ,m) follows from

lim
m→∞

Ψπ,D(λ,m) = lim
m→∞

lnEW∼π
exp(λv

W
)

(1 +
λv

W

m/2 )
m/2

= lnEW∼π lim
m→∞

exp(λv
W
)

(1 +
λv

W

m/2 )
m/2

= 0 (3)

Upon careful examination of their analysis, we found that additional conditions are required to
guarantee (3), which were not discussed in their original paper. Specifically, swapping lim and E is
valid only under certain conditions. For example, by the dominated convergence theorem [44, 15],
the condition can be EW∼π[exp(λvW

)] < ∞. If the choice of (λ, π) does not satisfy this condition,
convergence is not guaranteed. These issues are discussed in Section 3.2 and Appendix B.

Collaborative Filtering Recommenders for Implicit Feedback: In collaborative filtering, an
implicit feedback dataset is typically represented as a binary user-item interaction matrix H ∈
{0, 1}n×m, with n items and m users (Section 1.3.1.1, [1]). Each Hij denotes an interaction:
Hij = 1 means that user j has interacted with item i, while Hij = 0 means no observed interaction.
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Suppose H is a test set. To evaluate a model, we typically hold out a fraction 1− p (p ∈ (0, 1)) of 1s
in H (Section 7.4.2, [1]; also [32, 48, 38]). Formally, we use a binary mask matrix ∆ ∈ {0, 1}n×m

to perform the hold-out operation. ∆ denotes a random matrix, where each ∆ij is independently
drawn from a Bernoulli distribution conditioned on Hij : P (∆ij = 1|Hij = 1) = p, P (∆ij =
0|Hij = 1) = 1− p and P (∆ij = 0|Hij = 0) = 1.

Let ∆ be a realization of ∆. Define the input matrix as H input = ∆ ⊙H and the target matrix as
H target = (1 −∆)⊙H , where ⊙ denotes the Hadamard (element-wise) product and 1 ∈ {1}n×m

1. For any i, j such that Hij = 1, we say Hij is held out if ∆ij = 0, which yields H input
ij = 0 and

H target
ij = 1. Consequently, H input retains a p fraction of the 1s in H , while the remaining 1 − p

fraction are held-out and moved to H target.

A collaborative filtering model takes H input as input and generates a prediction matrix Hpred ∈ Rn×m.
Model performance is typically evaluated by how well (1 −∆)⊙Hpred approximates H target. The
masked prediction (1 −∆) ⊙Hpred indicates that only the entries in Hpred that coincide with the
held-out interactions contribute to the evaluation. This approximation quality is typically measured
using ranking-based metrics such as Recall@K or NDCG@K (Section 7.5.3, 7.5.4, [1]).

LAE Models and EASE [48]: LAE models are a class of collaborative filtering models. They are
typically represented by a square matrix W ∈ Rn×n and trained by solving argminW ∥H −WH∥,
where H denotes the training set. The model takes H as input and generates a prediction WH , which
aims to reconstruct H itself. W is commonly constrained by a zero diagonal (i.e., diag(W ) = 0 2) to
prevent overfitting towards the identity matrix I [48, 49, 50]. Some studies relax this constraint by
allowing a diagonal with bounded norm instead [38].

EASE is one of the most popular LAE models, obtained by solving

argmin
W

∥H −WH∥2F + γ∥W∥2F s.t. diag(W ) = 0 (4)

where γ is the regularization parameter. Let W0 be the solution of (4), then W0 has a closed from:
Let P =

(
HHT + γI

)−1
, then (W0)ij = 0 if i = j and (W0)ji = −Pij/Pjj if i ̸= j.

3 PAC-Bayes Bound for Multivariate Linear Regression

3.1 The Statistical Assumption and the Bound

We first generalize Shalaeva et al.’s Gaussian data assumption [45] to the multivariate data with
dependent outputs and potentially degenerate covariance. Based on this assumption, we derive our
bound and show that Shalaeva’s bound is a special case of ours.

Assumption 3.1. Let µx ∈ Rn, Σx ∈ Rn×n be positive semi-definite, and Σe ∈ Rp×p be positive-
definite. Suppose (x, y) ∼ D satisfies: 1. x ∼ N (µx,Σx); 2. there exists W ∗ ∈ Rp×n such that
y = W ∗x+ e, where e ∼ N (0,Σe); in other words, y|x ∼ N (W ∗x,Σe).

The positive semi-definite assumption of Σx allows it to be singular, implying a degenerate Gaussian
distribution whose support lies on a lower-dimensional manifold embedded in Rn. This includes the
standard multivariate linear regression setting in which the first element of x is 1 and the remaining
n− 1 elements are Gaussian. In this case, the first row and first column of Σx are 0.

Under Assumption 3.1, for any model W ∈ Rp×n, the prediction error y −Wx = (W ∗ −W )x+ e
follows the Gaussian distribution N (µ

W
,Σ

W
), where

µ
W

= E[(W ∗ −W )x+ e] = (W ∗ −W )E[x] + E[e] = (W ∗ −W )µx

Σ
W

= E[(W ∗ −W )(x− µx) + e)][(W ∗ −W )(x− µx) + e]T = (W ∗ −W )Σx(W
∗ −W )T +Σe

Note that Σ
W

is positive definite due to the positive definiteness of Σe. Let Σ
W

= STΛS be its
eigenvalue decomposition where S is orthogonal and Λ = diag(η1, η2, ..., ηp) with ηi > 0 for all i.
Both S and Λ depend on W . The PAC-Bayes bound for multivariate linear regression is then
stated as follows:

1The same symbol 1 will be used elsewhere in this paper to represent all-ones matrices of different sizes.
2The notation diag is defined as follows: If W ∈ Rn×n, then diag(W ) ∈ Rn denotes the vector consisting

of the diagonal elements of W . If w ∈ Rn, then diag(w) ∈ Rn×n denotes the diagonal matrix whose diagonal
entries are the elements of w.
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Theorem 3.2. Denote b = SΣ−1/2
W

µ
W

. Given π, for any λ > 0 and δ > 0,

P

(
∀ρ, EW∼ρ[R

true(W )] < EW∼ρ[R
emp(W )] +

1

λ

[
D( ρ ||π ) + ln

1

δ
+Ψπ,D(λ,m)

])
≥ 1− δ (5)

where

Ψπ,D(λ,m) = lnEW∼π

exp(λ(tr(ΣW ) + µT
W
µW

)) exp
(∑p

i=1

−λmb2i ηi
m+2ληi

)
∏p

i=1 (1 + 2ληi/m)m/2

 ≤ lnEW∼π exp

(
2λ2∥ΣW ∥2F

m

)

The bound of Theorem 3.2 is a general case of Shalaeva’s bound. It can be reduced to Shalaeva’s
bound by taking p = 1, µx = 0, Σx = σ2

xI and Σe = σ2
e for some constants σx, σe.

3.2 Convergence Analysis

This section presents the convergence analysis of Theorem 3.2. We provide a sufficient condition
based on the dominated convergence theorem that guarantees convergence, thereby completing and
rigorously formalizing the convergence analysis of Shalaeva’s bound [45]. This condition is stated as
follows:

Theorem 3.3. If λ and π satisfies EW∼π

[
exp

(
λ∥(Σx + µxµ

T
x )

1/2(W ∗ −W )∥2F
)]

< ∞, then
limm→∞ Ψπ,D(λ,m) = 0.

Here are some examples of the combinations (λ, π) that satisfy the condition of Theorem 3.3:

Example 3.4. Let π be a distribution with bounded support, then for any λ > 0, the condition holds,
because there exists a constant G > 0 with ∥W∥F < G such that

EW∼π

[
exp

(
λ∥(Σx + µxµ

T
x )

1/2(W ∗ −W )∥2F
)]

≤ EW∼π

[
exp

(
λ∥(Σx + µxµ

T
x )

1/2∥2F ∥W ∗ −W∥2F
)]

≤ EW∼π

[
exp

(
λ∥(Σx + µxµ

T
x )

1/2∥2F (∥W ∗∥F + ∥W∥F )2
)]

< exp
(
λ∥(Σx + µxµ

T
x )

1/2∥2F (∥W ∗∥F +G)
2
)
< ∞

Example 3.5. Let π be a Gaussian distribution parameterized by U0 ∈ Rn×n and σ > 0, such that
each Wij is independently drawn from N ((U0)ij , σ

2). Let Σx + µxµ
T
x = QTΛQ be its eigenvalue

decomposition, where Λ = diag(ν1, ν2, ..., νn) and ν1 is the largest eigenvalue, then

EW∼π

[
exp

(
λ∥(Σx + µxµ

T
x )

1/2(W ∗ −W )∥2F
)]

=

p∏
i=1

p∏
j=1

exp

(
λνj(Qj∗(W

∗−U0)∗i)
2

1−2λσ2νj

)
(1− 2λσ2νj)

1/2

In this case, the sufficient condition holds for any λ ∈ (0, 1
2ν1σ2 ).

Applying Theorem 3.3 to Shalaeva’s bound, then (3) is guaranteed if λ and π satisfies
EW∼π

[
exp

(
λσ2

x∥W ∗ −W∥22
)]

< ∞. Moreover, since

EW∼π

[
exp

(
λσ2

x∥W ∗ −W∥22
)]

< EW∼π

[
exp

(
λσ2

x∥W ∗ −W∥22 + λσ2
e

)]
= EW∼π[exp(λvW

)]

a sufficient condition is therefore EW∼π[exp(λvW
)] < ∞.

4 PAC-Bayes Bound for LAEs

This section presents a PAC-Bayes bound for LAEs. The model W can be obtained using any training
method, such as EASE, EDLAE or ELSA; our bound only focuses on analyzing its test performance
and is independent of the training procedure.

4.1 Adapting to Bounded Data Assumption

Most real-world recommendation datasets are bounded rather than Gaussian. For example, the
user-item interaction matrix H introduced in Section 2 is binary. If we assume that each user vector
H∗i is i.i.d. sampled from an underlying distribution, this distribution must have bounded support.
Therefore, to adapt the PAC-Bayes bound for multivariate linear regression to recommendation
datasets, we replace the Gaussian assumption on D (Assumption 3.1) with the following bounded-
support assumption:
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Assumption 4.1. Suppose D is characterized by three finite cross-correlation matrices Σxx =
E(x,y)∼D[xx

T ],Σxy = E(x,y)∼D[xy
T ] and Σyy = E(x,y)∼D[yy

T ], where Σxx is positive definite.

This assumption is indeed general. It holds for all D with bounded support, and also holds for
certain D with unbounded support such as Gaussian, since Assumption 3.1 implies Assumption 4.1.
Consequently, it enables the derivation of a more general bound, although in this work we focus on
its application to bounded-data settings.

We first note that the true risk under Assumption 4.1 can be expressed in an explicit form:

Lemma 4.2. Given any W , the true risk can be expressed as

Rtrue(W ) = ||WΣ1/2
xx − ΣT

xyΣ
−1/2
xx ||2F − ||ΣT

xyΣ
−1/2
xx ||2F + tr(Σyy) (6)

Then, in (1), we have the upper bound Ψπ,D(λ,m) ≤ lnEπ

[
eλR

true(W )
]
, which is obtained by

removing −Remp(W ) due to its non-positivity. This upper bound, originally used by Germain et al.
(Appendix A.4, [17]), does not ensure convergence since it is independent of m, but it simplifies
computation. By plugging in (6), we get

Proposition 4.3. Denote B = −ΣT
xyΣ

−1/2
xx and C = eλ(tr(Σyy)−∥ΣT

xyΣ
−1/2
xx ∥2

F ). Then (1) holds, with
Ψπ,D(λ,m) upper-bounded by

Ψπ,D(λ,m) ≤ lnEπ

[
eλR

true(W )
]
= lnC Eπ

[
eλ∥WΣ

1/2
xx +B∥2F

]
(7)

4.2 Applying the PAC-Bayes Bound to LAEs

Recall from Section 2 that the LAE model is defined by a squared matrix W ∈ Rn×n, and evaluated
by comparing the closeness between the masked prediction (1 −∆)⊙ (W (∆⊙H)) and the target
(1 −∆)⊙H . This closeness is typically measured by ranking-based metrics such as Recall@K and
NDCG@K, which are discrete and difficult to analyze statistically. To simplify the analysis, we use
mean squared error (MSE; see Section 7.5.1, [1]) instead. The classic MSE is defined as the mean
squared Frobenius norm of all held-out interactions:

1

m
∥(1 −∆)⊙H − (1 −∆)⊙ (W (∆⊙H))∥2F

where the mask 1−∆ on prediction distinguishes it from a multivariate linear regression. We relax
the MSE by removing this mask, allowing all predicted interactions to participate in the evaluation
rather than only the held-out ones:

1

m
∥(1 −∆)⊙H −W (∆⊙H)∥2F (8)

Let X = ∆⊙H be the input and Y = (1 −∆)⊙H be the target. The 1s in X∗j represent items
observed by user j, while the 1s in Y∗j represent items that are hidden but potentially of interest
to the user. The classic MSE only evaluates on held-out items, i.e., those with (Xij = 0, Yij = 1).
In contrast, our relaxed MSE (8) also accounts for items with with (Xij = 0, Yij = 0), indicating
that items unobserved and unlikely to interest the user should not be recommended; and those with
(Xij = 1, Yij = 0), indicating that the model should avoid recommending items already observed by
the user (see Section 7.3.4, [1]). Consequently, (8) can be viewed as a special case of the empirical
risk of linear regression Remp(W ) = 1

m∥Y −WX∥2F , with output dimension p = n, and under the
following LAE-specific constraints:

1. Hold-out constraint on X and Y : For any i, j, Xij and Yij are either 0 or 1, but cannot both be 1.

2. Zero-diagonal constraint on W : diag(W ) = 0 (Optional).

Since both X and Y are derived from H and ∆, the true risk can be defined by introducing statistical
assumptions on H and ∆ respectively. For H , we assume that each user vector H∗j is i.i.d. sampled
from a multivariate Bernoulli distribution M, and denote Σhh = Eh∼M[hhT ] as the cross-correlation
matrix of M. For ∆, denote B as the distribution from which each column ∆∗j is independently
drawn. Note that B depends on M, and this dependence encodes the hold-out mechanism: for δ ∼ B
and h ∼ M, P (δi = 1|hi = 1) = p, P (δi = 0|hi = 1) = 1− p and P (δi = 0|hi = 0) = 1. In the
true risk Rtrue(W ) = E(x,y)∼D

[
∥y −Wx∥2F

]
, by plugging in x = δ ⊙ h, y = (1 − δ)⊙ h, we get

6



Rtrue(W ) = Eδ∼B,h∼M
[
||(1 − δ)⊙ h−W (δ ⊙ h)||2F

]
(9)

By Lemma 4.2, we further obtain the following result:

Lemma 4.4. (9) can be written in the same form as (6) by plugging in

Σxx = p2Σhh + p(1− p)(I ⊙ Σhh), Σyy = (1− p)2Σhh + p(1− p)(I ⊙ Σhh), Σxy = p(1− p)(Σhh − I ⊙ Σhh)

Furthermore, Σxx is positive definite if Σhh is positive definite.

If W is subject to a zero-diagonal constraint, such as models trained from EASE, EDLAE or ELSA,
then an additional condition diag(W ) = 0 is applied to both the empirical risk (8) and the true risk
(9). The PAC-Bayes bound for LAEs is formed by plugging (8) and (9) into (1). Since Assumption
4.1 holds for this bound, it directly leads to (7).

5 Practical Methods for Computing the PAC-Bayes Bound for LAEs

In the PAC-Bayes bound for LAEs proposed in Section 4, the choice of π and ρ is so far unspecified,
and the computation of the bound has not yet been addressed. This section develops theoretical
methods to improve the computational efficiency, enabling the bound to be evaluated on large models
and datasets.
Our goal is to optimize the right hand side of (1): Given δ, find π, ρ, λ that minimize

EW∼ρ[R
emp(W )] +

1

λ
D( ρ ||π ) +

1

λ
ln

1

δ
+

1

λ
Ψπ,D(λ,m) (10)︸ ︷︷ ︸

part 1
︸ ︷︷ ︸

part 2

with Remp(W ) given by (8) and Rtrue(W ) given by (9). However, solving for λ, π, ρ simultaneously
is generally intractable [4]. We therefore consider a weaker problem: Given λ and π, we optimize
(10) with respect to ρ. We compute the optimal ρ for different choices of λ and π, and select the
combination yielding the tightest bound.

We discuss the computation of part 1 of (10) in Section 5.1 and part 2 in Section 5.2.

5.1 Closed-form Solution for the Optimal ρ under Gaussian Constraint

Given π and λ, we search for the optimal ρ by

argmin
ρ

EW∼ρ[R
emp(W )] +

1

λ
D( ρ ||π ) (11)

Not all choices of π and ρ make (11) easy to solve. For example, given any π, the optimal ρ is

the Gibbs posterior, defined as ρ(dW ) = e−λRemp(W )π(dW )

Eπ [e−λRemp(W )]
[4]. However, the Gibbs posterior is

generally a complex distribution without a closed-form density function or parameterization, making
it analytically intractable in practice.

To obtain a tractable and efficient solution, we instead optimize (11) under the constraint that π, ρ
are restricted to specific distribution families. Notably, Dziugaite and Roy [13] proposed a practical
way to compute PAC-Bayes bounds for deep neural networks by assuming π and ρ to be entry-wise
Gaussian distributions, which allows the KL-Divergence D( ρ ||π ) to be computed analytically. We
follow Dziugaite and Roy’s assumption [13] and formally state it as follows:

Assumption 5.1. Let A,B ∈ Rn×n with B ≥ 0 (entry-wise non-negative), and denote N̄ (A,B)
as the entry-wise Gaussian distribution such that W ∼ N̄ (A,B) means each Wij is independently
drawn from N (Aij ,Bij). Assume ρ = N̄ (U ,S) and π = N̄ (U0, σ

2J), where U ,U0,S ∈ Rn×n

with S > 0 (entry-wise positive), J ∈ {1}n×n is the all-ones matrix, and σ > 0.

Applying the constraint diag(W ) = 0 to ρ and π implies setting diag(U) = 0,diag(S) = 0,
diag(U0) = 0 and diag(σ2J) = 0, since a deterministically zero random variable has zero mean and
zero variance.

Since neural network models are typically non-linear and do not admit closed-form solutions for
the optimal ρ, Dziugaite and Roy [13] solved for the optimal ρ using stochastic gradient descent
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with gradients estimated via Monte Carlo sampling, which requires a trade-off between sample
size and computational cost. Surprisingly, due to the linearity of to LAE models, we find that their
assumption adapted to LAEs admits a closed-form solution for the optimal ρ, as shown in Theorem
5.2. This closed-form solution enables efficient, direct computation of ρ, avoiding sampling, iteration
or trade-off procedures.

Theorem 5.2. (a) Under Assumption 5.1, the closed-form solution of the optimal ρ of (11) is given by

U =

(
1

m
YXT +

1

2λσ2
U0

)(
1

m
XXT +

1

2λσ2
I

)−1

, Sij =
1

2λ
m
Xj∗XT

j∗ + 1
σ2

for i, j ∈ {1, 2, ..., n}

(b) If we add the constraint diag(W ) = 0 to both ρ and π, then the optimal ρ becomes

Sij =
1

2λ
m
Xj∗XT

j∗ + 1
σ2

, Sii = 0 for i, j ∈ {1, 2, ..., n} and i ̸= j

U =

(
1

m
YXT +

1

2λσ2
U0 −

1

2
diag(x)

)(
1

m
XXT +

1

2λσ2
I

)−1

where

x = 2 · diag

[(
1

m
YXT +

1

2λσ2
U0

)(
1

m
XXT +

1

2λσ2
I

)−1
]
⊘ diag

[(
1

m
XXT +

1

2λσ2
I

)−1
]

and ⊘ denotes element-wise division.

5.2 Reducing the Complexity of Ψπ,D(λ,m) under the Zero-Diagonal Constraint

Under Assumptions 4.1 and 5.1, the closed-form expression of Ψπ,D(λ,m) is too complex to derive
explicitly, making direct computation infeasible. We therefore compute the upper bound given in
(7) instead. This section shows that, under the zero-diagonal constraint, this computation has a high
complexity of O(n4), which we reduce to O(n3) by establishing a simpler upper bound.

We first consider the case without the constraint diag(W ) = 0. Since we assume π = N̄ (U0, σ
2J)

in Assumption 5.1, WT
i∗ ∼ N ((U0)

T
i∗, σ

2I), thus (Wi∗Σ
1/2
xx + Bi∗)

T = Σ
1/2
xx WT

i∗ + BT
i∗ ∼

N (Σ
1/2
xx (U0)

T
i∗ +BT

i∗, σ
2Σxx). In this case, the Eπ

[
eλR

true(W )
]

term in (7) can be further expressed
as follows:

Proposition 5.3. Let A = σ2Σxx, and A = STΛS be the eigenvalue decomposition where S is
orthogonal and Λ = diag(η1, η2, ..., ηn) with η1 ≥ ... ≥ ηn ≥ 0 3. Denote µi = Σ

1/2
xx (U0)

T
i∗ +BT

i∗.

Eπ

[
eλR

true(W )
]
= C

n∏
i=1

n∏
j=1

exp
(

λ(b̄ij)
2ηj

1−2ληj

)
(1− 2ληj)

1/2
, where b̄i = SA−1/2µi (12)

The computational complexity of (12) is O(n3), mainly due to the eigenvalue decomposition of A.

Now we discuss the case that diag(W ) = 0 is applied. Denote π′ as the distribution π with the
constraint diag(W ) = 0, that is, for W ∼ π′, Wii = 0 for all i. Then π′ = N̄ (U0, σ

2(J − I)) where
diag(U0) = 0, and WT

i∗ ∼ N
(
(U0)

T
i∗, σ

2(I − Ii)
)

where Ii is a matrix with Iiii = 1 and other entries

being 0. Therefore, (Wi∗Σ
1/2
xx +Bi∗)

T ∼ N
(
Σ

1/2
xx (U0)

T
i∗ +BT

i∗, σ
2(Σxx − (Σ

1/2
xx )∗i(Σ

1/2
xx )T∗i)

)
.

Denote A(i) = σ2(Σxx − (Σ
1/2
xx )∗i(Σ

1/2
xx )T∗i), then A(i) is singular and positive semi-definite.

Let A(i) = S(i)TΛ(i)S(i) be the eigenvalue decomposition where S(i) is orthogonal and Λ(i) =

diag(η
(i)
1 , η

(i)
2 , ..., η

(i)
n ) with η

(i)
1 ≥ ... ≥ η

(i)
n ≥ 0. Then

Eπ′

[
eλR

true(W )
]
= C

n∏
i=1

n∏
j=1

exp

(
λ(b

(i)
j )2η

(i)
j

1−2λη
(i)
j

)
(
1− 2λη

(i)
j

)1/2 , where b(i) = S(i)(A(i))−1/2µi (13)

3We slightly abuse the notation of S and Λ. In Theorem 3.2, they denote the decomposition of ΣW , whereas
here they denote the decomposition of A.
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The issue with (13) is its high computational complexity: We need to compute the eigenvalue
decomposition for each A(i) in order to obtain S(i) and Λ(i). Since each eigenvalue decomposition
costs O(n3), the computation of (13) costs O(n4), which is impractical for large n.

Since the direct computation of Eπ′

[
eλR

true(W )
]

is difficult, we instead compute an upper bound, as
established by the following theorem:

Theorem 5.4. Given (12) and (13), for any λ ∈
(
0, 1

2η1

)
where η1 is the largest eigenvalue of A,

Eπ′

[
eλR

true(W )
]
≤ Eπ

[
eλR

true(W )
]

Theorem 5.4 holds for any U0, including the special case where diag(U0) = 0 for both π′ and π.
This theorem allows us to compute Eπ

[
eλR

true(W )
]

instead of Eπ′

[
eλR

true(W )
]
, thereby reducing the

complexity from O(n4) to O(n3).

5.3 The Final Bound and the Algorithm for its Computation

The final step in computing the bound is to select λ that yields the tightest bound. Following [4], we
search over a finite grid Λ = {λ1, λ2, ..., λL} where L is the number of elements in Λ and λi > 0 for
i ∈ {1, 2, ..., L}; details are provided in Appendix C. Applying this grid search to (1), we obtain the
final bound: Given π, for any λ ∈ Λ and δ > 0, with probability at least 1− δ, the following bound
holds for any ρ:

EW∼ρ[R
true(W )] ≤ EW∼ρ[R

emp(W )] +
1

λ

[
D( ρ ||π ) + ln

L

δ
+ lnEπ

[
eλR

true(W )
]]

(14)

We now summarize computation of (14) under the LAE setting in Algorithm 1. By default, the
algorithm assumes that the zero-diagonal constraint on W is applied. For unconstrained W , the
algorithm can be adapted by switching the solution for ρ from Theorem 5.2 (b) to Theorem 5.2 (a),
and by computing D( ρ ||π ) using the unconstrained case (25) instead of (42).

Note that this algorithm requires Σhh = Eh∼M[hhT ] as input, which depends on M. In practice, M
may be an oracle distribution, making Σhh unknown and inaccessible. However, there are practical
scenarios where a non-oracle M is available. For example, if there exists a larger and fixed dataset
Hwhole ∈ {0, 1}n×m′

(m′ > m) such that the columns of H are sampled without replacement from
the columns of Hwhole, we can take M as the population distribution over the columns of Hwhole.
This is similar to the matrix completion setting of Srebro et al. [47], where all entries of a fixed matrix
are treated as underground truth and observed entries are sampled from them. Under this assumption,
Σhh = 1

m′H
whole(Hwhole)T is known and accessible. We provide further discussion in Appendix E.1.

Algorithm 1 Computing the PAC-Bayes bound for LAEs
Input: Σhh, p, δ, σ, Λ = {λ1, λ2, ..., λL}, X , Y , and an LAE model W (with diag(W ) = 0).
Compute Σxx,Σxy,Σyy with Σhh, p by Lemma 4.4.
Set π = N̄ (W,σ2I) (i.e., let U0 = W such that W is the mean prior of π).
Let G = {} be a set to store the results.
for each λi in Λ:

Compute ρ = N̄ (U ,S) with π, λi by Theorem 5.2 (b).
Compute D( ρ ||π ) with ρ, π by (42) in Appendix F.
Compute EW∼ρ[R

emp(W )] with ρ,X, Y by (40) in Appendix F.
Compute EW∼ρ[R

true(W )] with ρ,Σxx,Σxy,Σyy by (41) in Appendix F, and let it be the left
hand side of (14), denoted as LHi.

Compute Eπ

[
eλR

true(W )
]

with π,Σxx,Σxy,Σyy, λi by (12).

Compute the right hand side of (14), denoted as RHi, with EW∼ρ[R
emp(W )], D( ρ ||π ),Eπ

[
eλR

true(W )
]
.

Append (LHi,RHi) to G.
Output: the pair (LH∗,RH∗) in G, where RH∗ = min1≤i≤L{RHi}.
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6 Experiments

In this section, we conduct experiments to compute the PAC-Bayes bound for LAEs using Algorithm
1 on real-world datasets, evaluate the tightness of the bound, and empirically assess its correlation
with practical ranking metrics such as Recall@K and NDCG@K.
We adopt the strong generalization evaluation setting, which divides the entire dataset into a training
set and a test set with disjoint users [48, 38]. Let the entire dataset be Hwhole ∈ {0, 1}n×m′

. We split
it into a training set H train ∈ {0, 1}n×(m′−m) and a test set H test ∈ {0, 1}n×m by setting m = 0.3m′.
The test set H test is further split into an input matrix X and a target matrix Y , with a hold-out fraction
1 − p = 1

2 . The LAE model W is obtained by solving the EASE objective (4) on the training set
H train (The EASE model can also be replaced by other LAE models such as EDLAE or ELSA.
Our bound only focuses on evaluation and is independent of the training method.). We set γ in
(4) to values of 50, 100, 200, 500, 1000, 2000 and 5000 to generate seven different LAE models and
evaluate them accordingly. Other inputs of the algorithm are set as follows: δ = 0.01, σ = 0.001,
Λ = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}.

Our experiments run on a machine with 500 GB RAM and an Nvidia A100 GPU. The GPU has 80
GB RAM. We use three datasets: MovieLens 20M (ML 20M), Netflix and MSD, with their details
shown in Table 2 in Appendix F.

The results are presented in Table 1. On the left side, each pair (LH,RH) is the output of Algorithm
1, where LH and RH represent the left-hand side and right-hand side of (14), respectively. Detailed
values of the components of RH are provided in Table 3 in Appendix F. The results demonstrate
that our bound is tight: in all cases, RH is within 3 times LH, in contrast to Dziugaite and Roy’s
non-vacuous bound for deep neural networks [13], where RH can reach up to 10 times LH in their
experiments.

The right side of Table 1 reports Recall@50 and NDCG@100 for each model on test sets, with both
metrics referenced from the EASE paper [48]. Across all datasets, models with smaller LH and RH
generally achieve higher Recall@50 and NDCG@100. This negative correlation reflects the expected
relationship: LH and RH are loss-based, where lower values are better; Recall@50 and NDCG@100
are ranking metrics, where higher values are better. Although minor deviations exist – for example, on
MSD, the best LH/RH occur at γ = 1000, while the best Recall@50/NDCG@100 occur at γ = 500
– the overall trend demonstrates a strong alignment between LH/RH and Recall@50/NDCG@100,
suggesting that our bound effectively reflects the practical performance of LAE models. Further
discussion on this alignment is provided in Appendix E.4.

Table 1: Experiment results

Models PAC-Bayes Bound for LAEs Ranking Performance
ML 20M Netflix MSD ML 20M Netflix MSD

γ = 50
LH 61.66 87.22 15.96 Recall@50 0.3434 0.2567 0.3454
RH 128.66 178.11 32.60 NDCG@100 0.4342 0.3766 0.3187

γ = 100
LH 60.75 86.54 15.85 Recall@50 0.3453 0.2580 0.3472
RH 125.90 176.25 32.26 NDCG@100 0.4373 0.3785 0.3205

γ = 200
LH 60.06 85.96 15.76 Recall@50 0.3471 0.2592 0.3486
RH 123.67 174.55 31.94 NDCG@100 0.4402 0.3804 0.3220

γ = 500
LH 59.46 85.35 15.66 Recall@50 0.3489 0.2605 0.3490
RH 121.41 172.64 31.62 NDCG@100 0.4439 0.3826 0.3225

γ = 1000
LH 59.19 85.00 15.64 Recall@50 0.3502 0.2612 0.3475
RH 120.17 171.44 31.50 NDCG@100 0.4464 0.3840 0.3210

γ = 2000
LH 59.09 84.72 15.68 Recall@50 0.3510 0.2619 0.3434
RH 119.34 170.45 31.52 NDCG@100 0.4487 0.3854 0.3171

γ = 5000
LH 59.19 84.48 15.83 Recall@50 0.3506 0.2625 0.3340
RH 118.91 169.47 31.77 NDCG@100 0.4509 0.3871 0.3079
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A Proofs of Theorems, Lemmas, and Propositions

Proof of Theorem 3.2:

Given W and (x, y) ∼ D, denote v = y −Wx, then v ∼ N (µ
W
,Σ

W
). Let Q ∈ Rp×p such that

Σ
W

= QQT . Such Q exists since we can take Q = Σ1/2
W

= STΛ1/2S, but we do not assume it to be
unique. Let ϵ ∼ N (0, I), then we can write v = Qϵ+ µ

W
. Thus,

Rtrue(W ) = E(x,y)∼D
[
∥y −Wx∥2F

]
= Eϵ

[
∥Qϵ+ µ

W
∥2F
]
= Eϵ

[
(Qϵ+ µ

W
)T (Qϵ+ µ

W
)
]

= Eϵ[ϵ
TQTQϵ+ µT

W
Qϵ+ ϵTQTµ

W
+ µT

W
µ

W
] = tr(QTQ) + µT

W
µ

W

= tr(QQT ) + µT
W
µ

W
= tr(Σ

W
) + µT

W
µ

W
(15)

Also, we can express the random variable ∥v∥2F in quadratic form (Representation 3.1a.1, [36]):

∥v∥2F = vT v = (Qϵ+ µ
W
)T (Qϵ+ µ

W
)

= (Qϵ+ µ
W
)TΣ−1/2

W
Σ

W
Σ−1/2

W
(Qϵ+ µ

W
)

= (Σ−1/2
W

Qϵ+Σ−1/2
W

µ
W
)TΣ

W
(Σ−1/2

W
Qϵ+Σ−1/2

W
µ

W
)

= (Σ−1/2
W

Qϵ+Σ−1/2
W

µ
W
)TSTΛS(Σ−1/2

W
Qϵ+Σ−1/2

W
µ

W
)

= (SΣ−1/2
W

Qϵ+ SΣ−1/2
W

µ
W
)TΛ(SΣ−1/2

W
Qϵ+ SΣ−1/2

W
µ

W
) (16)

Denote ϵ′ = SΣ−1/2
W

Qϵ, then ϵ′ ∼ N (0, I), because E[ϵ′] = SΣ−1/2
W

QE[ϵ] = 0 and

Cov[ϵ′] = E[ϵ′ϵ′T ] = SΣ−1/2
W

QE[ϵϵT ]QTΣ−1/2
W

ST = I

As b = SΣ−1/2
W

µ
W

, we can write

∥v∥2F = (ϵ′ + b)TΛ(ϵ′ + b) =

p∑
i=1

ηi(ϵ
′
i + bi)

2

Hence, each ϵ′i + bi is independently from N (bi, 1), and each (ϵ′i + bi)
2 is independently from the

non-central chi-squared distribution of noncentrality parameter b2i and with degree 1 of freedom.
Thus the MGF of (ϵ′i + bi)

2 is

M(ϵ′i+bi)2(t) = E(ϵ′i+bi)2 [e
t(ϵ′i+bi)

2

] =
exp

(
b2i t
1−2t

)
(1− 2t)1/2

(17)

Given i.i.d. samples {(xj , yj)}mj=1 from D, let vj = yj −Wxj . Then v1, v2, ..., vm are i.i.d. from
N (µ

W
,Σ

W
), and

Remp(W ) =
1

m

m∑
j=1

∥yj −Wxj∥2F =
1

m

m∑
j=1

∥vj∥2F

Hence the MGF of Remp(W ) is

MRemp(W )(t) = ES∼Dm

[
etR

emp(W )
]
= ES∼Dm

exp
 t

m

m∑
j=1

∥vj∥2F


=

(
ES∼Dm

[
exp

(
t

m
∥v∥2F

)])m

=

(
ES∼Dm

[
exp

(
t

m

p∑
i=1

ηi(ϵ
′
i + bi)

2

)])m

=

(
p∏

i=1

E(ϵ′i+bi)2

[
exp

(
tηi
m

(ϵ′i + bi)
2

)])m

=

 p∏
i=1

exp
(

tb2iηi

m−2tηi

)
(1− 2tηi/m)

1/2

m

=
exp

(∑p
i=1

tmb2iηi

m−2tηi

)
∏p

i=1 (1− 2tηi/m)
m/2

(18)

14



By (15) and (18), we can expand Ψπ,D(λ,m) as

Ψπ,D(λ,m) = lnEW∼πES∼Dm [eλ(R
true(W )−Remp(W )]

= lnEW∼π

[
eλR

true(W )ES∼Dm [e−λRemp(W )]
]

= lnEW∼π

exp (λ (tr(Σ
W
) + µT

W
µ

W

)) exp
(∑p

i=1
−λmb2iηi

m+2ληi

)
∏p

i=1 (1 + 2ληi/m)
m/2

 (19)

Use the inequality that for any x > 0 and k > 0, e
xk

x+k < (xk +1)k 4, and the fact tr(Σ
W
) =

∑p
i=1 ηi,

we have

lnEW∼π

exp (λ (tr(Σ
W
) + µT

W
µ

W

)) exp
(∑p

i=1
−λmb2iηi

m+2ληi

)
∏p

i=1 (1 + 2ληi/m)
m/2


≤ lnEW∼π

exp (λ (tr(Σ
W
) + µT

W
µ

W

)) exp(∑p
i=1

−λmb2iηi

m+2ληi

)
∏p

i=1 exp
(

mληi

m+2ληi

)


= lnEW∼π exp

(
λµT

W
µ

W
+

p∑
i=1

λ(ηi −
mb2i ηi

m+ 2ληi
)−

p∑
i=1

mληi
m+ 2ληi

)

= lnEW∼π exp

(
λµT

W
µ

W
+

p∑
i=1

2λ2η2i − λmb2i ηi
m+ 2ληi

)

≤ lnEW∼π exp

(
λ(µT

W
µ

W
−

p∑
i=1

b2i ηi) +
2λ2(

∑p
i=1 η

2
i )

m

)
= lnEW∼π exp

(
2λ2(

∑p
i=1 η

2
i )

m

)
The last equality above is because

p∑
i=1

b2i ηi = bTΛb = µT
W
Σ−1/2

W
STΛSΣ−1/2

W
µ

W
= µT

W
µ

W

Since
p∑

i=1

η2i = tr(STΛ2S) = tr(Σ2
W
) = tr(Σ

W
ΣT

W
) = ∥Σ

W
∥2F

we have

lnEW∼π exp

(
2λ2(

∑p
i=1 η

2
i )

m

)
= lnEW∼π exp

(
2λ2∥Σ

W
∥2F

m

)

Proof of Theorem 3.3:

By (19), given any λ > 0, we let {fm}m∈N be a sequence of functions where

fm(W ) = exp
(
λ
(
tr(Σ

W
) + µT

W
µ

W

)) exp
(∑p

i=1
−λmb2iηi

m+2ληi

)
∏p

i=1 (1 + 2ληi/m)
m/2

for m > 0, and
f0(W ) = exp

(
λ
(
tr(Σ

W
) + µT

W
µ

W

))
Note that each fi is a non-negative function.

4Since x
x+1

< ln(x+ 1) for any x > −1, replacing x with x
k

, and taking exponential on both sides, we get

e
xk

x+k < (x
k
+ 1)k.

15



Since W ∼ π and W ∈ Rp×p, let E = Rp×p, then fm is a measurable function on E, π is a Borel
probability measure on E, and we can express Eπ [fm] as a Lebesgue integral (Section 10.1, [15]):

Eπ [fm] =

∫
E

fm dπ

Now we prove the following three conditions:

(a) fm(W ) ≤ f0(W ) for any m ≥ 0 and W ∈ E.

For any given W , ηi and bi are fixed for all i, where ηi > 0 and b2i ≥ 0. Thus for any m ≥ 0,

the numerator of fm satisfies exp
(∑p

i=1
−λmb2iηi

m+2ληi

)
≤ 1, and the denominator of fm satisfies∏p

i=1 (1 + 2ληi/m)
m/2 ≥ 1. Note that the numerator is monotonically decreasing with m and the

denominator is monotonically increasing with m.

(b) fm → 1 pointwisely as m → ∞.

For any W ,

lim
m→∞

fm(W ) = exp
(
λ
(
tr(Σ

W
) + µT

W
µ

W

))
lim

m→∞

exp
(∑p

i=1
−λmb2iηi

m+2ληi

)
∏p

i=1 (1 + 2ληi/m)
m/2

= exp
(
λ
(
tr(Σ

W
) + µT

W
µ

W

)) exp
(∑p

i=1 lim
m→∞

−λmb2iηi

m+2ληi

)
∏p

i=1 lim
m→∞

(1 + 2ληi/m)
m/2

= exp
(
λ
(
tr(Σ

W
) + µT

W
µ

W

)) exp (−λ
∑p

i=1 b
2
i ηi
)∏p

i=1 exp (ληi)
= 1

The last inequality uses the facts that
∑p

i=1 b
2
i ηi = µT

W
µ

W
and

∑p
i=1 ηi = tr(Σ

W
).

(c)
∫
E
f0 dπ = Eπ[f0] < ∞.

Eπ[f0] = Eπ exp
(
λ
(
tr(Σ

W
) + µT

W
µ

W

))
= Eπ exp

(
λ
[
tr((W ∗ −W )Σx(W

∗ −W )T +Σe) + ∥(W ∗ −W )µx∥2F
])

= Eπ exp

(
λ

[
p∑

i=1

(W ∗ −W )i∗Σx(W
∗ −W )Ti∗ + tr(Σe) +

p∑
i=1

(W ∗ −W )i∗µxµ
T
x (W

∗ −W )Ti∗

])

= Eπ exp

(
λ

[
p∑

i=1

(W ∗ −W )i∗
[
Σx + µxµ

T
x

]
(W ∗ −W )Ti∗ + tr(Σe)

])

= Eπ exp

(
λ

[∥∥∥(Σx + µxµ
T
x

)1/2
(W ∗ −W )

∥∥∥2
F
+ tr(Σe)

])
= exp (λtr(Σe))Eπ exp

(
λ

[∥∥∥(Σx + µxµ
T
x

)1/2
(W ∗ −W )

∥∥∥2
F

])
< ∞

The last inequality holds because Eπ exp

(
λ

[∥∥∥(Σx + µxµ
T
x

)1/2
(W ∗ −W )

∥∥∥2
F

])
< ∞ is our

assumption and exp (λtr(Σe)) is a constant.

Since the conditions (a), (b) and (c) hold, by the dominated convergence theorem (Theorem 11.32,
[44]), we have

lim
m→∞

Eπ [fm] = lim
m→∞

∫
E

fm dπ =

∫
E

lim
m→∞

fm dπ =

∫
E

1 dπ = Eπ[1] = 1

Since ln is continuous on (0,∞), we can interchange lim and ln. Therefore,

lim
m→∞

Ψπ,D(λ,m) = lim
m→∞

lnEπ[fm] = ln lim
m→∞

Eπ[fm] = ln 1 = 0
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Proof of Lemma 4.2:

Rtrue(W ) = E
[
||y −Wx||2F

]
=

n∑
i=1

E[||yi −Wi∗x||2F ] =
n∑

i=1

Wi∗E[xxT ]WT
i∗ − 2Wi∗E[yix] + E[y2i ]

=

n∑
i=1

Wi∗ΣxxW
T
i∗ − 2Wi∗(Σxy)∗i + (Σyy)ii

=

n∑
i=1

(Wi∗Σ
1/2
xx )(Wi∗Σ

1/2
xx )T − 2(Wi∗Σ

1/2
xx )Σ−1/2

xx (Σxy)∗i + (Σyy)ii

=

n∑
i=1

(Wi∗Σ
1/2
xx − (Σxy)

T
∗iΣ

−1/2
xx )(Wi∗Σ

1/2
xx − (Σxy)

T
∗iΣ

−1/2
xx )T − (Σxy)

T
∗iΣ

−1
xx (Σxy)∗i + (Σyy)ii

=

n∑
i=1

||Wi∗Σ
1/2
xx − (Σxy)

T
∗iΣ

−1/2
xx ||2F − ||Σ−1/2

xx (Σxy)∗i||2F + (Σyy)ii

= ||WΣ1/2
xx − ΣT

xyΣ
−1/2
xx ||2F − ||ΣT

xyΣ
−1/2
xx ||2F + tr(Σyy)

Since we assume Σxx is positive definite, Σ−1/2
xx exists.

Proof of Proposition 4.3:

By Lemma 4.2,

Eπ

[
eλR

true(W )
]
= Eπ

[
eλ(∥WΣ1/2

xx −ΣT
xyΣ

−1/2
xx ∥2

F−∥ΣT
xyΣ

−1/2
xx ∥2

F+tr(Σyy))
]

= Eπ

[
eλ∥WΣ1/2

xx −ΣT
xyΣ

−1/2
xx ∥2

F

]
eλ(tr(Σyy)−∥ΣT

xyΣ
−1/2
xx ∥2

F ) = C Eπ

[
eλ∥WΣ1/2

xx +B∥2
F

]
(20)

Proof of Lemma 4.4:

Since x = δ ⊙ h and y = (1 − δ)⊙ h, we have

Σxx = E
[
xxT

]
= E

[
(δ ⊙ h)(δ ⊙ h)T

]
Σxy = E

[
xyT

]
= E

[
(δ ⊙ h)((1 − δ)⊙ h)T

]
Σyy = E

[
yyT

]
= E

[
((1 − δ)⊙ h)((1 − δ)⊙ h)T

]
We first prove Σxx. For i, j ∈ {1, 2, ..., n} with i ̸= j, (Σxx)ij = E[δiδjhihj ]. Note that δiδjhihj

is a Bernoulli random variable (as its value can either be 0 or 1), δi depends on hi, and δj depends
on hj . We have

E[δiδjhihj ] = P (δiδjhihj = 1) = P (δi = 1, δj = 1, hi = 1, hj = 1)

= P (δi = 1|δj = 1, hi = 1, hj = 1)P (δj = 1|hi = 1, hj = 1)P (hi = 1, hj = 1)

= P (δi = 1|hi = 1)P (δj = 1|hj = 1)P (hi = 1, hj = 1)

= p2E [hihj ] = p2(Σhh)ij (21)

For any i, (Σxx)ii = E[(δihi)
2]. Using the property that a Bernoulli random variable X has

E[X2] = E[X],

E[(δihi)
2] = P (δihi = 1) = P (δi = 1, hi = 1) = P (δi = 1|hi = 1)P (hi = 1) = pE[hi]

= pE[h2
i ] = p(Σhh)ii (22)

Combining (21) and (22), we get

Σxx = p2Σhh + p(1− p)(I ⊙ Σhh) (23)

17



Since (Σyy)ij = E[(1− δi)(1− δj)hihj ] and (Σyy)ii = E[((1− δi)hi)
2], replacing p with 1− p

in (23), we get Σyy = (1− p)2Σhh + p(1− p)(I ⊙ Σhh).

Since (Σxy)ij = E[δi(1− δj)hihj ] = p(1− p)Σhh and (Σxy)ii = E[δi(1− δi)h
2
i ] = 0 (Note that

δi(1− δi)h
2
i = 0 regardless of whether δi is 0 or 1.), we have Σxy = p(1− p)(Σhh − I ⊙ Σhh).

Note that in (23), if Σhh is positive definite, then I ⊙Σhh is also positive definite (Theorem 7.5.3 (b),
[22]), which implies that Σxx is positive definite.

Proof of Theorem 5.2:

(a) Since Eρ[W ] = U and Eρ[W
TW ] = UTU + diag (

∑n
k=1 Sk1,

∑n
k=1 Sk2, ...,

∑n
k=1 Skn),

Eρ[R
emp(W )] =

1

m
Eρ[∥Y −WX∥2F ] =

1

m

m∑
l=1

Eρ[∥Y∗l −WX∗l∥2F ]

=
1

m

m∑
l=1

Eρ[(Y∗l −WX∗l)
T (Y∗l −WX∗l)] =

1

m

m∑
l=1

Y T
∗l Y∗l − 2Y T

∗l Eρ[W ]X∗l +XT
∗l Eρ[W

TW ]X∗l

=
1

m

m∑
l=1

Y T
∗l Y∗l − 2Y T

∗l U X∗l +XT
∗l UTU X∗l +XT

∗l diag

(
n∑

k=1

Sk1,

n∑
k=1

Sk2, ...,

n∑
k=1

Skn

)
X∗l

(24)

And D( ρ ||π ) can be expressed as

D( ρ ||π ) =
1

2

[
n2(2 lnσ − 1)−

n∑
k=1

n∑
l=1

(lnSkl −
Skl

σ2
) +

∥U − U0∥2F
σ2

]
(25)

Denote f(U ,S|U0, σ, λ) = Eρ[R
emp(W )] + 1

λD( ρ ||π ), our optimization problem becomes

min
U,S

f(U ,S|U0, σ, λ) (26)

The optimal U and S are obtained by solving ∂
∂U f(U ,S|U0, σ, λ) = 0 and ∂

∂S f(U ,S|U0, σ, λ) = 0.

First we show the partial derivatives of the 1
λD( ρ ||π ) term:

∂

∂Uij

1

λ
D( ρ ||π ) =

(Uij − (U0)ij)

λσ2
,

∂

∂Sij

1

λ
D( ρ ||π ) = − 1

2λ
(
1

Sij
− 1

σ2
)

Then we show the partial derivatives of the Eρ[R
emp(W )] term. By (24), for any i, j,

∂

∂Sij
Eρ[R

emp(W )] =
∂

∂Sij

1

m

m∑
l=1

XT
∗l diag

(
n∑

k=1

Sk1,

n∑
k=1

Sk2, ...,

n∑
k=1

Skn

)
X∗l

=
∂

∂Sij

1

m

m∑
l=1

XjlSijXjl =
1

m

m∑
l=1

X2
jl =

1

m
Xj∗X

T
j∗

∂

∂Uij
Eρ[R

emp(W )] =
∂

∂Uij

1

m

m∑
l=1

−2Y T
∗l U X∗l +XT

∗l UTU X∗l =
1

m

m∑
l=1

(
−2YilXjl +

∂

∂Uij

n∑
k=1

(Uk∗X∗l)
2

)

=
1

m

m∑
l=1

(
−2YilXjl +

∂

∂Uij
(Ui∗X∗l)

2

)
=

1

m

m∑
l=1

(−2YilXjl + 2(Ui∗X∗l)Xjl)

=
2

m

(
−Yi∗X

T
j∗ + Ui∗XXT

j∗
)

Wrap up the above results, we get

∂

∂Sij
f(U ,S|U0, σ, λ) =

1

m
Xj∗X

T
j∗ −

1

2λ
(
1

Sij
− 1

σ2
) (27)

18



∂

∂Uij
f(U ,S|U0, σ, λ) =

2

m

(
−Yi∗X

T
j∗ + Ui∗XXT

j∗
)
+

(Uij − (U0)ij)

λσ2
(28)

Therefore, by (27), the solution of ∂
∂S f(U ,S|U0, σ, λ) = 0 is that

Sij =
1

2λ
mXj∗XT

j∗ +
1
σ2

for any i, j ∈ {1, 2, ..., n} (29)

By (28) we have

∂

∂U
f(U ,S|U0, σ, λ) =

[
2

m
(−Y XT + UXXT ) +

1

λσ2
(U − U0)

]T
(30)

Thus the solution of ∂
∂U f(U ,S|U0, σ, λ) = 0 is

U =

(
1

m
YXT +

1

2λσ2
U0

)(
1

m
XXT +

1

2λσ2
I

)−1

(31)

Now we show that f(U ,S|U0, σ, λ) is a convex function, such that the solutions of S in (29) and U
in (31) are the global minimizer of (26). By (27) and (28) we have

∂2f

∂Sij∂Skl
=

{
1

2λ(Sij)2
if i = k, j = l

0 otherwise
,

∂2f

∂Uij∂Ukl
=


2
mXj∗X

T
l∗ +

1
λσ2 if i = k, j = l

2
mXj∗X

T
l∗ if i = k, j ̸= l

0 otherwise

Denote ν ∈ R2n2

where for i = 1, 2, ..., n and j = 1, 2, ..., n, ν(i−1)n+j = Uij and νn2+(i−1)n+j =

Sij . Let Hf ∈ R2n2×2n2

be the Hessian matrix where (Hf )ij = ∂2f
∂νi∂νj

. Then we can write

Hf =

[
A 0
0 B

]
where A = 2

m (XXT ) ⊗ In + 1
λσ2 In2 and B is a n2 × n2 diagonal matrix with

B(i−1)n+j,(i−1)n+j =
1

2λ(Sij)2
. Here ⊗ means Kronecker product.

The Kronecker product has a property that, let {λi|i = 1, ...,m} be the eigenvalues of P ∈ Rm×m

and {µj |j = 1, ..., n} be the eigenvalues of Q ∈ Rn×n, then {λiµj |i = 1, ...,m, j = 1, ..., n } are
the eigenvalues of P ⊗ Q (Theorem 4.2.12, [21]). Since XXT is positive semi-definite and In is
positive definite, (XXT )⊗In is positive semi-definite. Thus A is positive definite. Since all elements
of S are positive, B is positive definite. Therefore, Hf is a positive definite matrix for any U and S,
which means f(U ,S|U0, σ, λ) is a convex function. Thus, the solutions of S in (29) and U in (31)
give the global minimum.

(b) Applying the constraint diag(W ) = 0 to ρ and π implies taking diag(U) = 0, diag(S) = 0,
diag(U0) = 0, and diag(σ2J) = 0. In this case, (26) becomes a constrained optimization problem.

min
U,S

f(U ,S|U0, σ, λ) s.t. diag(U) = 0, diag(S) = 0 (32)

Then we remove the constraint diag(S) = 0 by defining f as a function of only the off-diagonal
elements of S. Let S− = {Sij : i, j ∈ {1, ..., n}, i ̸= j}, then (32) is equivalent to

min
U,S−

f(U ,S−|U0, σ, λ) s.t. diag(U) = 0 (33)

To solve (33), we construct the Lagrangian function

L(U ,S−, x|U0, σ, λ) = f(U ,S−|U0, σ, λ) + xT diag(U)
where x ∈ Rn, and solve

∂L

∂x
= [diag(U)]T = 0 (34)

∂L

∂U
=

∂

∂U
f(U ,S−|U0, σ, λ) + diag(x) = 0 (35)

∂L

∂Sij
=

∂

∂Sij
f(U ,S−|U0, σ, λ) = 0 for i, j ∈ {1, 2, ..., n}, i ̸= j (36)
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Since (36) is the i ̸= j case of (27), the optimal S− is obtained by (29) with i ̸= j.

The optimal U is obtained by solving (35) and (34). By (35),
2

m
(−Y XT + UXXT ) +

1

λσ2
(U − U0) + diag(x) = 0

⇐⇒U =

(
1

m
YXT +

1

2λσ2
U0 −

1

2
diag(x)

)(
1

m
XXT +

1

2λσ2
I

)−1

(37)

Then we solve x to satisfy (34),

diag(U) = diag

[(
1

m
YXT +

1

2λσ2
U0

)(
1

m
XXT +

1

2λσ2
I

)−1
]
− diag

[
1

2
diag(x)

(
1

m
XXT +

1

2λσ2
I

)−1
]

= diag

[(
1

m
YXT +

1

2λσ2
U0

)(
1

m
XXT +

1

2λσ2
I

)−1
]
− 1

2
x⊙ diag

[(
1

m
XXT +

1

2λσ2
I

)−1
]
= 0

we get

x = 2·diag

[(
1

m
YXT +

1

2λσ2
U0

)(
1

m
XXT +

1

2λσ2
I

)−1
]
⊘diag

[(
1

m
XXT +

1

2λσ2
I

)−1
]

Now we show that the solution of (34), (35) and (36) gives the global minimum of the problem (33).
Let HL be the Hessian matrix of the Lagrangian L. It is easy to verify that, by removing the rows
and columns of Hf corresponding to S11,S22, ...Snn to obtain H ′

f ∈ R(2n2−n)×(2n2−n), we have
HL = H ′

f . This shows that HL is positive definite for any U and S−. Hence, by the second-order
sufficiency conditions (Section 11.5, [33]), any solution (U ,S−, x) satisfying (34), (35) and (36) is a
strict local minimum. Since the solution is unique, it is also a strict global minimum.

Proof of Proposition 5.3:

Denote vi = (Wi∗Σ
1/2
xx +Bi∗)

T , and write vi = A1/2ϵ+ µi where ϵ ∼ N (0, I). Since A = STΛS,
using the quadratic form shown in (16), we have

∥vi∥2F = (A1/2ϵ+ µi)T (A1/2ϵ+ µi) = (A1/2ϵ+ µi)TA−1/2STΛSA−1/2(A1/2ϵ+ µi)

= (Sϵ+ SA−1/2µi)TΛ(Sϵ+ SA−1/2µi) = (Sϵ+ b̄i)TΛ(Sϵ+ b̄i) =

n∑
j=1

ηj(Sj∗ϵ+ b̄ij)
2

It is easy to show that each Sj∗ϵ are i.i.d. from N (0, 1) for all j, thus each Sj∗ϵ+ b̄ij is independently
from N (b̄ij , 1). Since each vi is independent, by (20) we have

Eπ

[
eλR

true(W )
]
= C Eπ

[
eλ

∑n
i=1 ∥Wi∗Σ

1/2
xx +Bi∗∥2

F

]
= C

n∏
i=1

Eπ

[
eλ∥vi∥

2
F

]
= C

n∏
i=1

n∏
j=1

Eπ

[
eληj(Sj∗ϵ+b̄ij)

2
]

= C

n∏
i=1

n∏
j=1

exp
(

λ(b̄ij)
2ηj

1−2ληj

)
(1− 2ληj)

1/2

The last equality above follows from (17).

Proof of Theorem 5.4:

Let P,Q ∈ Rn×n be two symmetric matrices, we write P ⪰ Q if P −Q is positive semi-definite,
and write P ≻ Q if P −Q is positive definite.

By Corollary 7.7.4 (c) of [22], if P ⪰ Q, then ηj(P ) ≥ ηj(Q) for any j, where ηj(P ) and ηj(Q)

denote the jth largest eigenvalues of P and Q, respectively. Since A−A(i) = σ2(Σ
1/2
xx )∗i(Σ

1/2
xx )T∗i ⪰

0 for any i, we have ηj ≥ η
(i)
j for any i, j.
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Since b(i) = S(i)(A(i))−1/2µi, we have

(b
(i)
j )2η

(i)
j = η

(i)
j (µi)T (A(i))−1/2(S

(i)
j∗ )

TS
(i)
j∗ (A

(i))−1/2µi

= η
(i)
j (µi)T (S(i))T (Λ(i))−1/2[S(i)(S

(i)
j∗ )

T ][S
(i)
j∗ (S

(i))T ](Λ(i))−1/2(S(i))µi

= (µi)T (S
(i)
j∗ )

T (S
(i)
j∗ )µ

i

Therefore, (13) can be expressed as

1

C
Eπ′

[
eλR

true(W )
]
=

n∏
i=1

n∏
j=1

exp

(
λ(b

(i)
j )2η

(i)
j

1−2λη
(i)
j

)
(
1− 2λη

(i)
j

)1/2 =

n∏
i=1

n∏
j=1

exp

(
λ(µi)T (S

(i)
j∗ )T (S

(i)
j∗ )µi

1−2λη
(i)
j

)
(
1− 2λη

(i)
j

)1/2

=

n∏
i=1

exp

(
λ(µi)T

(∑n
j=1

(S
(i)
j∗ )T (S

(i)
j∗ )

1−2λη
(i)
j

)
µi

)
∏n

j=1

(
1− 2λη

(i)
j

)1/2 =

n∏
i=1

exp
(
λ(µi)T (S(i))T Λ̄(i)S(i)µi

)
∏n

j=1

(
1− 2λη

(i)
j

)1/2
where Λ̄(i) = diag

(
1

1−2λη
(i)
1

, 1

1−2λη
(i)
2

, ..., 1

1−2λη
(i)
n

)
.

Similarly, (12) can be expressed as

1

C
Eπ

[
eλR

true(W )
]
=

n∏
i=1

exp
(
λ(µi)TST Λ̄Sµi

)∏n
j=1 (1− 2ληj)

1/2

where Λ̄ = diag
(

1
1−2λη1

, 1
1−2λη2

, ..., 1
1−2ληn

)
.

Now we show that ST Λ̄S ⪰ (S(i))T Λ̄(i)S(i) for any i. By Corollary 7.7.4 (a) of [22], if P ≻ 0 and
Q ≻ 0, then P ⪰ Q if and only if Q−1 ⪰ P−1. Since we assume 0 < λ < 1

2η1
, it follows that

1− 2λη
(i)
j > 0 and 1− 2ληj > 0 for any i, j. Thus, all diagonal elements of Λ̄(i) and Λ̄ are positive,

implying that (S(i))T Λ̄(i)S(i) ≻ 0 and ST Λ̄S ≻ 0.

Since
(
(S(i))T Λ̄(i)S(i)

)−1
= (S(i))T

(
I − 2λΛ(i)

)
S(i) = I − 2λA(i) and

(
ST Λ̄S

)−1
= I − 2λA,

we have(
(S(i))T Λ̄(i)S(i)

)−1

⪰
(
ST Λ̄S

)−1 ⇐⇒ I − 2λA(i) ⪰ I − 2λA ⇐⇒ A ⪰ A(i)

Thus, ST Λ̄S ⪰ (S(i))T Λ̄(i)S(i) holds, implying that (µi)TST Λ̄Sµi ≥ (µi)T (S(i))T Λ̄(i)S(i)µi for
any µi. Therefore,

1

C
Eπ′

[
eλR

true(W )
]
=

n∏
i=1

exp
(
λ(µi)T (S(i))T Λ̄(i)S(i)µi

)
∏n

j=1

(
1− 2λη

(i)
j

)1/2 ≤
n∏

i=1

exp
(
λ(µi)TST Λ̄Sµi

)∏n
j=1 (1− 2ληj)

1/2
=

1

C
Eπ

[
eλR

true(W )
]

B Further Discussion on the Convergence of Shalaeva’s Bound

Another convergence result by Shalaeva el al [45] is that: For any fixed π, ρ, δ such that D( ρ ||π ) <
∞, take λ = m1/d for some constant d > 2, then the right hand side of Shalaeva’s bound (See
Section 2) converges to the left hand side as m → ∞.

This result is based on the convergence of the upper bound EW∼π exp

(
2λ2v2

W

m

)
: By taking λ =

m1/d, we have EW∼π exp

(
2λ2v2

W

m

)
= EW∼π exp

(
2m2/d−1v2

W

)
. In this case, the following

convergence statement
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lim
m→∞

1

λ

[
D( ρ ||π ) + ln

1

δ
+Ψπ,D(λ,m)

]
≤ lim

m→∞
m−1/d

[
D( ρ ||π ) + ln

1

δ

]
+ lim

m→∞
m−1/d lnEW∼π exp

(
2m2/d−1v2

W

)
= 0

holds if
lim

m→∞
m−1/d lnEW∼π exp

(
2m2/d−1v2

W

)
= 0 (38)

Shalaeva et al. [45] provided only one condition d > 2 to ensure (38), and they did not discuss the
choice of π. However, we find that d > 2 alone is not sufficient to guarantee convergence, since (38)
does not hold for all π. A few examples are given below:

Example B.1. If π is a distribution with bounded support, then (38) holds. This is because there exists
a constant G > 0 such that ∥W∥2 < G. We can show that for any λ > 0, EW∼π exp

(
λv2

W

)
< ∞:

EW∼π exp
(
λv2

W

)
= EW∼π

[
exp

(
λ(σ2

x∥W ∗ −W∥22 + σ2
e)

2
)]

≤ EW∼π

[
exp

(
λ(σ2

x(∥W ∗∥2 + ∥W∥2)2 + σ2
e)

2
)]

< EW∼π

[
exp

(
λ(σ2

x(∥W ∗∥2 +G)2 + σ2
e)

2
)]

= exp
(
λ(σ2

x(∥W ∗∥2 +G)2 + σ2
e)

2
)
< ∞

Thus, when d > 2,

lim
m→∞

m−1/d lnEW∼π exp
(
2m2/d−1v2

W

)
≤ lim

m→∞
m−1/d lnEW∼π exp

(
2v2

W

)
= 0

Example B.2. Let π be a Gaussian distribution. We show that (38) does not hold.

We first show that EW∼π exp
(
λv2

W

)
= ∞ for any λ > 0. Denote w = W ∗ −W ∈ R1×n where

W ∼ π, then w is a Gaussian random vector. Thus

EW∼π exp
(
λv2

W

)
= EW∼π

[
exp

(
λ(σ2

x∥W ∗ −W∥22 + σ2
e)

2
)]

≥ EW∼π

[
exp

(
λ(σ2

x∥W ∗ −W∥22)2
)]

= Ew

[
exp

(
λσ4

x∥w∥42
)]

= Ew

[
exp

(
λσ4

x(

n∑
i=1

w2
i )

2

)]
≥ Ew

[
exp

(
λσ4

xw
4
1

)]
Here w1 ∈ R is the first element of w, which is a Gaussian random variable. Suppose w1 ∼ N (µ, σ2),
then

Ew

[
exp

(
λσ4

xw
4
1

)]
=

∫
exp

(
λσ4

xw
4
1

)
· 1√

2πσ
exp

(
− (w1 − µ)2

2σ2

)
dw1

=

∫
1√
2πσ

exp

(
λσ4

xw
4
1 −

(w1 − µ)2

2σ2

)
dw1 = ∞

because λσ4
xw

4
1 −

(w1−µ)2

2σ2 → ∞ as w1 → ∞. Hence, EW∼π exp
(
λv2

W

)
= ∞ for any λ > 0.

If (38) holds, then by the definition of limit, for any ϵ > 0, there exists a finite integer M such
that for any m > M , m−1/d lnEW∼π exp

(
2m2/d−1v2

W

)
< ϵ. The negation of this statement

is that, there exists ϵ > 0 such that for any finite integer M , there exists m > M satisfying
m−1/d lnEW∼π exp

(
2m2/d−1v2

W

)
≥ ϵ. Let ϵ = 1, M be any finite integer, and m = M + 1. Then

EW∼π exp
(
2m2/d−1v2

W

)
= ∞ and 1 = ϵ ≤ m−1/d lnEW∼π exp

(
2m2/d−1v2

W

)
= ∞. So the

negation is true, and (38) does not hold.

In summary, the validity of (38) depends on π, and a sufficient condition for convergence requires
that π be appropriately specified.

C Allowing Multiple Trails on λ

Finding the optimal λ that yields the tightest bound is nontrivial. As suggested in Section 2.1.4 of
[4], we approximate the optimal λ by searching over a finite grid Λ = {λ1, λ2, ..., λL}, where each
λi > 0 and L denotes the cardinality of Λ.

P

(
∀λ ∈ Λ, ∀ρ, EW∼ρ[R

true(W )] < EW∼ρ[R
emp(W )] +

1

λ

[
D( ρ ||π ) + ln

L

δ
+Ψπ,D(λ,m)

])
≥ 1− δ
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This is because

P

(
∀λ ∈ Λ,∀ρ, EW∼ρ[R

true(W )] < EW∼ρ[R
emp(W )] +

1

λ

[
D( ρ ||π ) + ln

L

δ
+Ψπ,D(λ,m)

])
= 1− P

(
∃λ ∈ Λ,∃ρ, EW∼ρ[R

true(W )] ≥ EW∼ρ[R
emp(W )] +

1

λ

[
D( ρ ||π ) + ln

L

δ
+Ψπ,D(λ,m)

])
= 1− P

(
L⋃

i=1

{
∃ρ, EW∼ρ[R

true(W )] ≥ EW∼ρ[R
emp(W )] +

1

λi

[
D( ρ ||π ) + ln

L

δ
+Ψπ,D(λi,m)

]})

≥ 1−
L∑

i=1

P

(
∃ρ, EW∼ρ[R

true(W )] ≥ EW∼ρ[R
emp(W )] +

1

λi

[
D( ρ ||π ) + ln

L

δ
+Ψπ,D(λi,m)

])

≥ 1−
L∑

i=1

δ

L
= 1− δ

The grid search is a standard method for optimizing λ and is also used by Dziugaite and Roy [13].
Note that λ cannot be directly optimized via gradient descent while keeping ρ and π, as this would
make the optimal λ depend on the dataset S, which is a random variable [4, 43]. Consequently, the
optimal λ would itself become a random variable, contradicting the assumption that it is fixed.

D Related Works

In statistical learning, generalization bounds commonly provide an upper bound on the generalization
gap, Rtrue(W )−Remp(W ) (or, in the two-sided case, |Rtrue(W )−Remp(W )|), thereby estimating the
true risk Rtrue(W ) for any given model W . A generalization bound is called a Probably Approximately
Correct (PAC) bound if it guarantees, with probability at least 1− δ, that the gap does not exceed
a small ϵ. It is PAC-Bayesian if, in addition, the model W is treated as a random variable and
a KL-divergence term, D( ρ ||π ), is introduced to allow Bayesian inference between the prior π
and posterior ρ of W . Classic PAC bounds typically estimate the worst-case generalization gap,
supW {Rtrue(W ) − Remp(W )} [51], which often becomes loose as the number of parameters in
W increases [39, 41]. In contrast, PAC-Bayes bounds estimate the expected generalization gap,
EW [Rtrue(W )−Remp(W )], which is typically much tighter than the worst-case bound [13].

Early PAC-Bayes bounds, including those by McAllester [37], Catoni [9], Langford and Seeger [29],
primarily focus on binary or bounded losses. In recent years, PAC-Bayes bounds have been extended
to unbounded losses, as in Alquier et al. [5], Haddouche et al. [19], Haddouche and Guedj [18],
Rodríguez-Gálvez et al. [43], Casado et al. [8]. These works typically assume that the loss follows a
light-tailed or heavy-tailed distribution. However, such assumptions usually rely on oracle knowledge
of the underlying data distribution; consequently, these bounds are often oracle bounds and can only
be computed when the true data distribution is known.

Linear regression typically employs the squared loss, which is unbounded. Several PAC-Bayes
bounds targeting the generalization gap have been proposed for linear regression. One major line of
work adapts the unbounded squared loss to the framework of Alquier et al. [5], such as Germain et al.
[17] and Shalaeva et al. [45], which we follow here. Other studies, such as Haddouche et al. [19],
consider the ℓ1 loss for linear regression instead of the standard ℓ2 (squared) loss. To the best of our
knowledge, all these bounds focus on the single-output setting and have not yet been extended to the
multivariate case.

Another class of generalization bounds for linear regression targets the excess risk Rtrue(W ) −
Rtrue(W ∗), where W ∗ denotes the minimizer of the true risk. The advantage of this formulation is
that, when the tail distribution of the loss satisfies the Bernstein assumption (Definition 4.1, [4]), such
bounds (including both PAC and PAC-Bayes types) typically achieve a 1/m convergence rate, which
is faster than the 1/

√
m rate commonly observed for PAC-Bayes bounds targeting the generalization

gap (Section 4.2, [4]). Several bounds for single-output and multivariate linear regression follow this
setting, including those by Alquier and Bieu [3], Alquier [2], and Mai [34]. However, these bounds
do not depend on the empirical risk, making them less practical for real-world applications.

Collaborative filtering can be viewed as a special case of matrix completion problem, i.e., predicting
missing values in a matrix (Section 1.3.1.2, [1]). In recent years, LAEs have become a popular

23



model for collaborative filtering due to their simplicity and effectiveness. Unlike other models, LAEs
have the distinctive property that their training objective, such as in (4), resembles a constrained
linear regression problem where the input and target matrices are the same, highlighting their close
relationship with linear regression. The earliest LAE model can be traced back to SLIM [40],
followed by models such as EASE [48], EDLAE [49] and ELSA [50]. All of these models introduce
a zero-diagonal constraint on the weight matrix W , preventing items from learning themselves and
thereby avoiding overfitting toward the identity. A recent study by Moon et al. [38] shows that this
zero-diagonal constraint can be slightly relaxed to a diagonal with small bounded norm, potentially
improving performance.

While the generalizability of LAE models remains unexplored, related work has investigated general-
izability in matrix completion for collaborative filtering, including Srebro et al. [47], Shamir et al.
[46], and Foygel et al. [16]. Other studies focus on the generalizability of general matrix completion,
such as Candès and Tao [7], Recht [42], Ledent et al. [31], and Ledent and Alves [30]. Our work
differs from these studies in that we analyze LAEs mainly from the perspective of linear regression
rather than matrix completion. In addition, Variational Autoencoders (VAEs) are another type of
collaborative filtering model [32], and PAC-Bayes bounds have been developed for VAEs [10]. It
should be noted that VAEs and LAEs are fundamentally different models, so the PAC-Bayes bounds
for VAEs are not directly comparable to our bounds, as discussed in Appendix E.3.

Therefore, to the best of our knowledge, we propose the first PAC-Bayes bound for multivariate linear
regression targeting the generalization gap, and the first PAC-Bayes bound for LAEs.

E Conclusions and Discussions

This paper studies the generalizability of multivariate linear regression and LAEs. We first propose a
PAC-Bayes bound for multivariate linear regression under a Gaussian data assumption, extending
Shalaeva’s bound for single-output linear regression, and establish a sufficient condition that guaran-
tees convergence. Next, we build the connection between multivariate linear regression and LAE
models by introducing a relaxed MSE as an evaluation metric, under which LAE models can be
interpreted as multivariate linear regression on bounded data, subject to a zero-diagonal constraint on
weights and a hold-out constraint on the input and target data. This connection allows us to adapt our
bound for multivariate linear regression to LAEs.

In practice, LAEs are typically large models evaluated on large datasets, which makes computing the
tightest bound inefficient. To address this, we develop theoretical methods to improve computational
efficiency. Specifically, by restricting both the prior and posterior to be Gaussian, we obtain an
efficient sub-optimal bound in closed-form. We then address the computational cost imposed by the
zero-diagonal constraint by establishing and computing an upper bound with reduced complexity.
Experimental results demonstrate that our bound is tight and correlates strongly with practical metrics
such as Recall@K and NDCG@K, suggesting that it effectively reflects the real-world performance
of LAE models.

Below are the discussions of our work.

E.1 Limitations

One limitation of our work lies in Algorithm 1, which takes Σhh = Eh∼M[hhT ] as input and requires
it to be known, which is only possible when M is non-oracle. Whether M is non-oracle depends on
how the dataset is modeled statistically. If the dataset H is drawn from a meta-dataset Hwhole that is
known and of fixed size, we may assume M to be the population distribution of this meta-dataset,
thereby making M non-oracle. However, this assumption is rather restrictive: In most real-world
scenarios, such a meta-dataset may not exist, as data are continuously collected or expand over time.
In this case, M is typically modeled as an unknown oracle distribution to account for unseen data.
Therefore, whether M is non-oracle ultimately depends on how the dataset is modeled, and our work
shows that the bound is at least computable in restricted scenarios where datasets can be represented
by a non-oracle M.

To avoid introducing an oracle M, one may also consider reconstructing the bound by applying
linear regression to empirical PAC-Bayes bounds such as those of McAllester [37], and Langford
and Seeger [29], rather than to the Alquier’s oracle bound [5]. However, this approach is not feasible
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because empirical PAC-Bayes bounds are typically derived under the assumption of bounded loss,
whereas the loss in linear regression is unbounded since W itself is unbounded in ∥yi −Wxi∥2F .

Moreover, PAC-Bayes bounds for unbounded losses are inherently oracle, as they are derived from
tail-distribution assumptions that are themselves oracle in nature. These distributions are usually
characterized by a bounded exponential moment EX∼M

[
eλ(EX∼M[X]−X)

]
for some λ ∈ R, as in

the Hoeffding assumption [5] and the bounded Cumulant Generating Function (CGF) assumption
[43, 19]. Assuming these quantities are bounded implicitly presumes access to oracle information
about M, which is rarely realistic in practice.

Another limitation is that the computational methods introduced in Section 5 are primarily designed
for full rank or nearly full-rank LAEs. By ‘nearly-full rank’, we refer to matrices of rank n−1 formed
by applying the zero-diagonal constraint to a full-rank n× n matrix. Some LAE models, however,
impose low-rank constraints [49] on W , where a Wn×n of rank k (k < n) can be decomposed as
W = UV with Un×k and V k×n. Assumption 5.1 does not hold in this case, since it requires W
to be a random Gaussian matrix, implying full rank [14]. Consequently, results that rely on this
assumption, including Theorems 5.2 and 5.4, are not applicable to low-rank LAEs. One possible
approach to adapting our bound for low-rank W is to impose distributional assumptions on U and V
so that any realization of W = UV is always low-rank; however, this contradicts Assumption 5.1.

E.2 Comparison with Mai’s Excess Risk Bounds [34]

Mai proposed generalization bounds for bilinear regression (Theorem 2, [34]) and matrix completion
(Theorem 3, [34]) based on excess risk. Their bilinear regression setting is defined as follows: Given
two input matrices Z ∈ Rp×r and X ∈ Rn×m, let Y ∈ Rp×m be the target matrix following a
distribution conditioned on Z and X , then there exists W ∗ ∈ Rr×n such that Y = ZW ∗X + E,
where E ∈ Rp×m is a random noise matrix whose entries Eij has zero mean and finite variance. If
taking r = p and Z = I , it reduces to the multivariate linear regression presented in Section 2.

Given a model W ∈ Rp×m, let the true risk be defined as Rtrue(W ) = 1
pmEY |Z,X [∥Y − ZWX∥2F ],

then the excess risk can be expressed as

Rtrue(W )−Rtrue(W ∗) =
1

pm
∥ZWX − ZW ∗X∥2F

If we further suppose that W is a random variable following a distribution ρ̂, and define the expected
excess risk as EW∼ρ̂[R

true(W )]−Rtrue(W ∗), then by Jensen’s inequality we have

EW∼ρ̂[R
true(W )]−Rtrue(W ∗) ≥ 1

pm
∥EW∼ρ̂[ZWX]− ZW ∗X∥2F (39)

Mai first derived a generalization bound for bilinear regression by establishing an upper bound on
∥EW∼ρ̂[ZWX]− ZW ∗X∥2F . They then adapted this bound to the matrix completion setting, which
assumes that k(k < pm) pairs in {((ZW ∗X)ij , Yij)} are observed, where the trained model W is
used to recover the remaining pairs. Further, their bound converges linearly with respect to k.

It is well known that if the loss satisfies Bernstein assumption (Definition 4.1, [4]), one can construct
an upper bound on the excess risk (or the expected excess risk) that converges at a linear rate of 1/m.
By (39), Mai’s bound is indeed an upper bound on a lower bound of the excess risk, which makes its
linear convergence rate reasonable.

In contrast, our bounds are based on the generalization gap Rtrue(W ) − Remp(W ), rather than the
excess risk. PAC-Bayes bounds on the generalization gap typically converge at a slower rate of
1/

√
m (Section 4.2, [4]). The Bernstein assumption, which enables linear convergence for excess

risk bounds, is not applicable in the setting of the generalization gap.

E.3 Comparison with PAC-Bayes Bounds for Variational Autoencoders [10]

Like LAEs, Variational Autoencoders (VAEs) are another class of autoencoders that have been
applied to collaborative filtering [32]. Recently, PAC-Bayes bounds for VAEs were proposed by
Chérief-Abdellatif et al. [10].

Although LAEs and VAEs are both autoencoders, they differ fundamentally in model architecture,
learning objectives, and loss formulations, making our bound for LAEs not directly comparable to
the PAC-Bayes bound for VAEs.
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In detail, the architecture of VAEs [10] is:

input x
encoder qϕ(z|x)−−−−−−−−−→ latent code z

decoder pθ(x|z)−−−−−−−−−→ prediction ≈ target x

with the loss defined as −Eqϕ(z|x)[log pθ(x|z)].
And the architecture of LAEs is

input x encoder and decoder W−−−−−−−−−−−−→ prediction Wx ≈ target y

with the loss defined as the relaxed MSE ∥y −Wx∥2F in our framework, see Section 4.2.

The differences between VAEs and LAEs are summarized as follows:

Difference in Architecture: A VAE consists of an encoder and a decoder and explicitly involves
the latent code z. In an LAE, the model W serves as both the encoder and the decoder, with the
latent code being implicit. While one could decompose W = AB and treat B as the encoder
and A as the decoder, such a decomposition is uncommon in recommender systems. Most LAE
recommender models do not decompose W [40, 48, 49, 50]; instead, they focus on studying W
directly by introducing constraints such as a zero diagonal. As a result, LAEs and VAEs are generally
regarded as two distinct model classes.

Difference in Input and Target: VAEs require the input and target to be identical. In contrast,
for LAEs, the input x and target y are the same during training but differ during evaluation due to
the hold-out constraint. Our bound is defined for evaluation, where x and y are indeed different.
This fundamental difference in input–target configuration makes LAEs incompatible with the VAE
framework.

Difference in Loss: The VAE loss −Eqϕ(z|x)[log pθ(x|z)] aims to minimize the mismatch between
the encoder qϕ(z|x) and the decoder pθ(x|z), while the LAE loss ∥y−Wx∥2F aims to minimize the
mismatch between the target y and the prediction Wx. These losses reflect fundamentally different
learning objectives, so the two models cannot share the same loss function. Moreover, the LAE loss
aligns more closely with a multivariate linear regression loss than with the VAE loss, which is why
our bound for multivariate linear regression can be naturally extended to LAE models.

Therefore, due to the fundamental differences between VAEs and LAEs, our bound for LAEs is not
directly comparable to the PAC-Bayes bound for VAEs proposed by Chérief-Abdellatif et al. [10].

E.4 Relationship between MSE and Ranking Metrics

While minimizing MSE is not theoretically consistent with achieving optimal ranking, empirical
studies have observed a strong correlation between reductions in MSE and improvements in ranking
metrics [26]. Moreover, ranking metrics are typically set-based, discrete, and non-differentiable,
making them difficult to optimize directly using gradient-based methods. Consequently, it has
become standard practice in collaborative filtering to employ regression-style or reconstruction-based
surrogate losses – most commonly the squared error – as training objectives (Section 2.6, [1]), which
resemble the MSE used during evaluation. This approach underlies many successful algorithms,
including SLIM [40], EASE [48], EDLAE [49], ELSA [50], and matrix factorization models [23, 27],
which consistently demonstrate strong empirical performance on ranking tasks despite optimizing a
non-ranking loss.

Since LAEs typically use a linear regression loss for training and ranking metrics for evaluation –
and model performance is ultimately measured by the latter – we derive our generalization bound
solely with respect to the evaluation metric. As discussed in Section 4.2, because ranking metrics are
difficult to analyze statistically, we instead adopt MSE as the evaluation metric, which follows the
form of a linear regression loss but differs from the training loss in both definition and purpose.

E.5 Broader Impacts

This work advances the theoretical foundations of machine learning by introducing the first PAC-
Bayes bound for multivariate linear regression targeting generalization gap, extending beyond
single-output regression to handle multiple dependent variables simultaneously. This establishes new
generalization guarantees for structured prediction, multi-task learning, and recommendation systems.
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Additionally, we identify and correct a limitation in an existing PAC-Bayes proof for single-output
linear regression, further strengthening the theoretical foundation of regression analysis.

Building on this, we apply our bound to LAEs in recommendation systems, delivering their first
rigorous generalization analysis. Our approach accounts for key structural constraints, such as the
zero-diagonal weight requirement, ensuring applicability to models like EASE and EDLAE.

Beyond theory, our work has direct practical implications for model evaluation and selection. Our
bound provides a post-training diagnostic tool for assessing the generalization of any LAE model,
regardless of its training process. While not directly guiding training or hyperparameter tuning, a
smaller PAC-Bayes bound suggests better generalization on unseen data. Empirical results confirm
that our bound remains within a reasonable multiple of the test error, offering reliable probabilistic
estimates of true risk independent of training error.

Our work focuses on theoretical generalization analysis and poses no immediate ethical risks. How-
ever, recommendation systems shape content exposure and user behavior in domains like e-commerce
and social media. Strengthening generalization theory alongside other recommendation criteria may
help mitigate bias, enhance fairness, and improve trust in AI-driven systems.

F Other Supplemental Materials

F.1 Details of Algorithm 1

Here we provide details on the computation of EW∼ρ[R
emp(W )], EW∼ρ[R

true(W )] and D( ρ ||π )
in Algorithm 1, which are not fully described in the main paper.

Given λ and π = N̄ (U0, σ
2I), the optimal ρ = N̄ (U ,S) that minimizes the right hand side of (14)

is obtained by Theorem 5.2. Once ρ is obtained, we can compute EW∼ρ[R
emp(W )] by (24), which

can be simplified as

EW∼ρ[R
emp(W )] =

1

m
∥Y − UX∥2F +

n− 1

m
∥ diag(S1∗)

1/2X∥2F (40)

The n− 1 term in (40) is due to the zero-diagonal constraint, which enforces diag(S) = 0. Without
this constraint, the term becomes n instead of n− 1.

Similarly, by (6), EW∼ρ[R
true(W )] can be expressed as

EW∼ρ[R
true(W )] = ∥ΣT

xyΣ
−1/2
xx − UΣ1/2

xx ∥2F + (n− 1)∥ diag(S1∗)
1/2Σ1/2

xx ∥2F
+ tr(Σyy)− ||ΣT

xyΣ
−1/2
xx ||2F (41)

The derivation of (41) is analogous to (24) by substituting Y with ΣT
xyΣ

−1/2
xx and X with Σ

−1/2
xx .

The D( ρ ||π ) term under zero-diagonal constraint is obtained from (25) by removing the diagonal
elements of S:

D( ρ ||π ) =
1

2

(n2 − n)(2 lnσ − 1)−
n∑

k=1

n∑
l=1,l ̸=k

(lnSkl −
Skl

σ2
) +

∥U − U0∥2F
σ2

 (42)

F.2 Dataset Description

The following table shows the details of the datasets used in the experiments.

Table 2: Dataset description

Dataset ML 20M Netflix MSD
#users (m) 138493 480189 1017982
#items (n) 26744 17770 40000

#interactions 2000263 100480507 33687193
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F.3 Details of the Results in Table 1

The following table presents the detailed values of the components of the RH terms in Table 1,
illustrating how the results were obtained. This information may be helpful for reproducing the
experiments.

Table 3: Details of the terms of each RH in Table 1

Models PAC-Bayes Bound for LAEs
ML 20M Netflix MSD

γ = 50

λ 512 512 512
EW∼ρ[R

emp(W )] 66.99 90.87 16.58
D( ρ ||π ) 0.28 0.18 0.0019

lnEπ

[
eλR

true(W )
]

31571.14 44659.37 8196.30

γ = 100

λ 512 512 512
EW∼ρ[R

emp(W )] 65.14 89.68 16.34
D( ρ ||π ) 0.27 0.17 0.0018

lnEπ

[
eλR

true(W )
]

31102.53 44313.39 8141.72

γ = 200

λ 512 512 512
EW∼ρ[R

emp(W )] 63.59 88.57 16.12
D( ρ ||π ) 0.26 0.17 0.0018

lnEπ

[
eλR

true(W )
]

30753.19 44014.86 8092.62

γ = 500

λ 512 512 512
EW∼ρ[R

emp(W )] 61.93 87.26 15.89
D( ρ ||π ) 0.23 0.17 0.0016

lnEπ

[
eλR

true(W )
]

30444.39 43703.53 8044.64

γ = 1000

λ 512 512 512
EW∼ρ[R

emp(W )] 60.96 86.42 15.79
D( ρ ||π ) 0.23 0.16 0.0016

lnEπ

[
eλR

true(W )
]

30310.47 43522.96 8033.10

γ = 2000

λ 512 512 512
EW∼ρ[R

emp(W )] 60.23 85.71 15.78
D( ρ ||π ) 0.22 0.15 0.0015

lnEπ

[
eλR

true(W )
]

30255.43 43382.46 8052.90

γ = 5000

λ 512 512 512
EW∼ρ[R

emp(W )] 59.70 84.97 15.88
D( ρ ||π ) 0.20 0.14 0.0014

lnEπ

[
eλR

true(W )
]

30308.30 43255.35 8128.97
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have accurately stated our contributions in Abstract and Introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitations of our work in Appendix E.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide full set of assumptions (Assumption 3.1, 4.1 and 5.1), and all
proofs are presented in Appendix A. We have aimed to make the proofs both complete and
easy to follow.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have disclosed all the information needed to reproduce the main experi-
mental results in Section 5.3 and Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

30



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided the code and the links to the open datasets (MovieLens 20M,
Netflix, MSD) in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have specified all experimental settings and details in Section 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our models are obtained from closed-form solution, which is deterministic
and does not involve random errors.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided information on the computer resources in Section 6 and
supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed NeurIPS Code of Ethics and ensured that our research
conforms to it in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the broader impacts in Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let al.one deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work is mainly theoretical and is unlikely to involve risks or potential
misuse in application.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use open datasets (MovieLens 20M, Netflix, MSD) in accordance with
their licenses, and we do not use existing code or models.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have included a README file as documentation along with the code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We use LLMs for writing purposes and for generating code unrelated to the
core methodology. All code related to the core methodology is written by the authors.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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