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Abstract

Despite the non-convex nature of their loss functions, deep neural networks are
known to generalize well when optimized with stochastic gradient descent (SGD).
Recent work conjectures that SGD with proper configuration is able to find wide
and flat local minima, which are correlated with good generalization performance.
In this paper, we observe that local minima of modern deep networks are more
than being flat or sharp. Instead, at a local minimum there exist many asymmetric
directions such that the loss increases abruptly along one side, and slowly along
the opposite side – we formally define such minima as asymmetric valleys. Under
mild assumptions, we first prove that for asymmetric valleys, a solution biased
towards the flat side generalizes better than the exact empirical minimizer. Then,
we show that performing weight averaging along the SGD trajectory implicitly
induces such biased solutions. This provides theoretical explanations for a series
of intriguing phenomena observed in recent work [25, 5, 51]. Finally, extensive
empirical experiments on both modern deep networks and simple 2 layer networks
are conducted to validate our assumptions and analyze the intriguing properties of
asymmetric valleys.

1 Introduction

The loss landscape of neural networks has attracted great research interests in the deep learning
community [9, 10, 32, 12, 15, 43, 36]. A deeper understanding of the loss landscape is important for
designing better optimization algorithms, and helps to answer the question of when and how a deep
network can achieve good generalization performance. One hypothesis that draws attention recently
is that the local minima of neural networks can be characterized by their flatness, and it is conjectured
that sharp minima tend to generalize worse than the flat ones [32]. A plausible explanation is that
a flat minimizer of the training loss can achieve lower generalization error if the test loss is shifted
from the training loss due to random perturbations. Figure 1(a) gives an illustration for this argument.

Although being supported by plenty of empirical observations [32, 25, 34], the definition of flatness
was recently challenged in [11], which shows that one can construct arbitrarily sharp minima through
weight re-parameterization without affecting the generalization performance. Moreover, recent
evidences suggest that the minima of modern deep networks are connected with simple paths with
low generalization error [12, 13]. It is empirically found that the minima found by large batch training
and small batch training are shown to be connected by a path without any “bumps” [43]. In other
∗Code available at https://github.com/962086838/code-for-Asymmetric-Valley
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Figure 1: (a) An illustration of sharp, flat and asymmetric minima. If there exists a shift from empirical
loss to population loss, flat minimum is more robust than sharp minimum. (b) For asymmetric valleys,
if there exists a random shift, the solution w̃ biased towards the flat side is more robust than the
minimizer ŵ∗. (c) SGD tends to stay longer on the flat side of asymmetric valleys, therefore SGD
averaging automatically produces a bias towards the flat side.

words, a “sharp minimum” and a “flat minimum” may in fact belong to a same minimum in high
dimensional space. Therefore, the notion of flat and sharp minima seems to be an oversimplification
of the empirical loss surface.

In this paper, we expand the notion of flat and sharp minima by introducing the concept of asymmetric
valleys. We observe that the loss surfaces of many neural networks are locally asymmetric. In specific,
there exist many directions such that the loss increases abruptly along one side, and grows rather
slowly along the opposite side (see Figure 1(b) as an illustration). We formally define this kind of
local minima as asymmetric valleys. As we will show in Section 6, asymmetric valleys generate
interesting illusions in high dimensional space. For example, located in the same valley shown in
Figure 1(b), w̃ may appear to be a wider and flatter minimum than ŵ as the former is farther away
from the sharp side.

Asymmetric valleys also introduce novel insights to generalization. Folklore says when the exact
minimizer is flat, it tends to generalize better as it is more stable with respect to loss surface
perturbations [32]. Instead of following this argument, we show that in asymmetric valleys, the
solution biased towards the flat side of the valley generalizes better than the exact minimizer, under
mild assumptions. This result has at least two interesting implications: (1) converging to which local
minimum (if there are many) may not be critical for modern deep networks. However, it matters a
lot where the solution locates; and (2) the solution with lowest a priori generalization error is not
necessarily the minimizer of the training loss.

Given that a biased solution is preferred for asymmetric valleys, an immediate question is how we can
find such solutions in practice. It turns out that simply averaging the weights along the SGD trajectory,
naturally leads to the desired solutions. We give a theoretical analysis to support this argument, see
Figure 1(c) for an illustration. Our result nicely complements a series of recent empirical observations,
which demonstrated that averaged SGD has better performance over plain SGD, for various scenarios
including supervised/unsupervised/low-precision training [25, 5, 51].

In addition, we provide empirical analysis to verify our theoretical results and support our claims.
For example, we show that asymmetric valleys are indeed prevalent in modern deep networks, and
solutions with lower generalization error has bias towards the flat side of the valley.

2 Related Work

Neural network landscape. Neural network landscape analysis is an active and exciting area
[16, 34, 15, 40, 49, 10, 43]. For example, [12, 13] observed that essentially all local minima are
connected together with simple paths. In [22], cyclic learning rate was used to explore multiple local
optima along the training trajectory for model ensembling. There are also appealing visualizations
for the neural network landscape [34].

Sharp and flat minima. The discussion of sharp and flat local minima dates back to [20], and
recently regains its popularity. For example, Keskar et al. [32] proposed that large batch SGD finds
sharp minima, which leads to poor generalization. In [8], an entropy regularized SGD was introduced
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to explicitly searching for flat minima. It was later pointed out that large batch SGD can yield
comparable performance when the learning rate or the number of training iterations are properly set
[21, 17, 47, 35, 46, 26]. Moreover, [11] showed that from a given flat minimum, one could construct
another minimum with arbitrarily sharp directions but equally good performance. In this paper, we
argue that the description of sharp or flat minima is an oversimplification. There may simultaneously
exist steep directions, flat directions, and asymmetric directions for the same minimum.

SGD optimization and generalization. As the de facto optimization tool for deep networks, SGD
and its variants are extensively studied in the literature. For example, it is shown that they could
escape saddle points or sharp local minima under reasonable assumptions [14, 28–30, 50, 1–3, 33].
For convex functions [41] or strongly convex but non-smooth functions [42], SGD averaging is shown
to give better convergence rate. In addition, it can also achieve higher generalization performance for
Lipschitz functions in theory [44, 7], or for deep networks in practice [22, 25, 5, 51]. Discussions on
the generalization bound of neural networks can be found in [6, 39, 37, 31, 38, 4, 52]. We show that
SGD averaging has implicit bias on the flat sides of the minima. Previously, it was shown that SGD
has other kinds of implicit bias as well [48, 27, 18].

3 Asymmetric Valleys

In this section, we give a formal definition of asymmetric valley, and empirically show that it is
prevalent in the loss landscape of modern deep neural networks.

Preliminaries. In supervised learning, we seek to optimize w∗ , arg minw∈Rd L(w), where
L(w) , Ex∼D[f(x;w)] ∈ Rd → R is the population loss, x ∈ Rm is the input sampled from
distribution D, w ∈ Rd denotes the model parameter, and f ∈ Rm × Rd → R is the loss function.
Since the data distribution D is usually unknown, instead of optimizing L directly, we often use SGD
to find the empirical risk minimizer ŵ∗ for a set of random samples {xi}ni=1 from D (a.k.a. training
set): ŵ∗ , arg minw∈Rd L̂(w), where L̂(w) , 1

n

∑n
i=1 f(xi;w).

In practice, it is numerically infeasible to find or test the exact local minimizer ŵ∗. Fortunately, our
theoretical results only depend on a good enough solution rather than an exact local minimum, as we
will formally define in Section 4. For simplicity, we still refer to such solutions as “local minima”,
although our analysis generalizes to “solutions found by SGD”.

3.1 Definition of asymmetric valley

Before formally introducing asymmetric valleys, we first define asymmetric directions.

Definition 1 (Asymmetric direction). Given constants p > 0, r > r > 0, c > 1, a direction u is
(r, r, p, c)-asymmetric with respect to point w ∈ Rd and loss function L̂, if ∇lL̂(w + lu) < p, and
∇lL̂(w − lu) > cp for l ∈ (r, r).

Figure 2: An asymmetric direction of a solution
on the loss landscape of ResNet-110 trained on
CIFAR-10.

In the above definition, u ∈ Rd is a unit vector
representing a direction such that the points on
this direction passingw ∈ Rd can be written as
w + lu for l ∈ (−∞,∞). Intuitively, the loss
landscape in the interval (−r,−r) is “sharp”,
while it is "flat" in the region (r, r). Note that
we purposely leave out the region (−r, r) with-
out making further assumptions on it to comply
with the fact that the second order derivatives of
the loss function is usually continuous. It is im-
practical to assume the slope of the loss function
change abruptly at the point l = 0.

As a concrete example, Figure 2 shows an asym-
metric direction for a local minimum in ResNet-
110 trained on the CIFAR-10 dataset. We ver-
ified that it is a (2.0, 0.6, 0.03, 15)-asymmetric
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direction, which means in the region (−2.0,−0.6) ∪ (0.6, 2.0) the gradients are asymmetric with a
relative ratio of c = 15.

With this Definition 1, we now formally define the asymmetric valley2.

Definition 2 (Asymmetric valley). Given constants p, r > r > 0, c > 1, a solution ŵ∗ of L̂ ∈
Rd → R is a (r, r, p, c)-asymmetric valley, if there exists at least one direction u such that u is
(r, r, p, c)-asymmetric with respect to ŵ∗ and L̂.

3.2 Asymmetric valleys in neural networks

Empirically, by taking random directions with value (0, 1) in each dimension, we can find an
asymmetric direction for a given solution w∗ with decent probability. We perform experiments
with widely used deep networks, i.e.,ResNet-56, ResNet-110, ResNet-164 [19], VGG-16 [45] and
DenseNet-100 [23], on the CIFAR-10, CIFAR-100, SVHN and STL-10 image classification datasets.
For each model on each dataset, we conduct 5 independent runs. The results show that we can
always find asymmetric directions with certain specification (r, r, p, c) with c > 2, which means all
the solutions that SGD found are located in asymmetric valleys. Asymmetric valleys widely exist
in both simple and complex models, see Appendix A, Appendix E and Appendix F. For example,
in Appendix A we show that asymmetric valleys exist in a simple 2 layer network with only 2
parameters.

4 Bias and Generalization

As we show in the previous section, in the context of deep learning most local minima in practice are
asymmetric, i.e., they might be sharp on one direction, but flat on the opposite direction. Therefore, it
is interesting to investigate the generalization ability of a solution w in this scenario, which may lead
to different results as those obtained under the common symmetric assumption. In this section, we
prove that a biased solution on the flat side of an asymmetric valley yields lower generalization error
than the exact empirical minimizer ŵ∗ in that valley.

4.1 Theoretical analysis

Before presenting our theorem, we first introduce two mild assumptions. We will show that they
empirically hold on modern deep networks in Section 4.2.

The first assumption (Assumption 1) states that there exists a shift between the empirical loss and
true population loss. This is a common assumption in the previous works, e.g., [32], but was usually
presented in an informal way. Here we define the “shift” in formally. Without loss of generality, we
will compare the empirical loss L̂ with L′ , L−minw L(w)+minw L̂(w) to remove the “vertical
difference” between L̂ and L. Notice that minw L(w) and minw L̂(w) are constants and do not affect
our generalization guarantee.

Definition 3 ((δ, R)-shift gap). For ξ ≥ 0, δ ∈ Rd, and fixed functions L and L̂, we define the
(δ, R)-shift gap between L and L̂ with respect to a point w as

ξδ(w) = max
v∈B(R)

|L′(w + v + δ)− L̂(w + v)|

where L′(w) , L(w)−minw L(w) + minw L̂(w), and B(R) is the d-dimensional ball with radius
R centered at 0.

From the above definition, we know that the two functions match well after the shift δ if ξδ(w) is
very small. For example, ξδ(w) = 0 means L is locally identical to L̂ after the shift δ. Since L̂ is
computed on a set of random samples fromD, the actual shift δ between L̂ and L is a random variable,
ideally with zero expectation3.

2Here we abuse the name “valley”, since ŵ∗ is essentially a point at the center of a valley.
3It may not be zero, as we are talking about the shift between two loss functions, rather than the difference

between empirical/population loss values.
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Assumption 1 (Random shift assumption). For a given population loss L and a random empirical
loss L̂, constants R > 0, r ≥ r > 0, ξ ≥ 0, a vector δ̄ ∈ Rd with r ≥ δ̄i ≥ r for all i ∈ [d], a
minimizer ŵ∗, we assume that there exists a random variable δ ∈ Rd correlated with L̂ such that
Pr(δi = δ̄i) = Pr(δi = −δ̄i) = 1

2 for all i ∈ [d], and the (δ, R)-shift gap between L and L̂ with
respect to ŵ∗ is bounded by ξ.

Clearly, δ has 2d possible values for a given shift vector δ̄, each with probability 2−d. Notice that
Assumption 1 does not say that the difference between L and L̂ can only be one of the 2d possible
δ. Instead, it says after applying the shift δ, the two functions have bounded L∞ distance, which
is a much milder assumption. It is also worth noting that our Definition 1 can mask out the central
interval (−r, r) because we have r ≥ δ̄i ≥ r in Assumption 1. Therefore, r cannot be arbitrarily
large, otherwise Assumption 1 does not hold. Our second assumption stated below can be seen as an
extension of Definition 2.
Assumption 2 (Locally asymmetric). For a given population loss L̂, and a minimizer ŵ∗, there
exist orthogonal directions u1, · · · ,uk ∈ Rd s.t. ui is (r, r, pi, ci)-asymmetric with respect to
ŵ∗ + v − 〈v,ui〉ui for all v ∈ B(R′) and i ∈ [k].

Assumption 2 states that if ui is an asymmetric direction at ŵ∗, then the point ŵ∗+v−〈v,ui〉ui
that deviates from ŵ∗ along the perpendicular direction of ui, is also asymmetric along the direction
of ui. In other words, the neighborhood around ŵ∗ is an asymmetric valley.

Under the above assumptions, we are ready to state our theorem, which says the empirical minimizer
is not necessarily the optimal solution, and a biased solution leads to better generalization. We defer
the proof to Appendix B.
Theorem 1 (Bias leads to better generalization). For any l ∈ Rk, if Assumption 1 holds for R = ‖l‖2,
Assumption 2 holds for R′ = ‖δ̄‖2 + ‖l‖2, and 4ξ

(ci−1)pi < li ≤ max{r − δ̄i, δ̄i − r}, then we have

EδL(ŵ∗)− EδL

(
ŵ∗ +

k∑
i=1

liu
i

)
≥

k∑
i=1

(ci − 1)lipi/2− 2kξ > 0

Remark on Theorem 1. It is widely known that the empirical minimizer is usually different from
the true optimum. However, in practice it is difficult to know how the training loss shifts from the
population loss. Therefore, the best we could it to minimize the empirical loss function (with some
regularizers). However, Theorem 1 states that in the asymmetric case, we should pick a biased
solution even if the shift is unknown. This insight can be distilled into practical algorithms to achieve
better generalization, as we will discuss in Section 5.

4.2 Validating assumptions

We conducted a series of experiments with modern deep networks to show that the two assumptions
introduced above are generally valid.
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Figure 3: Shift exists between empirical loss and population loss for ResNet-110 on CIFAR-10.

Verification of Assumption 1. We show that a shift between L and L̂ is quite common in practice,
by taking a ResNet-110 trained on CIFAR-10 as an example. Notice that we use test loss to represent
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L in practice. Since we could not visualize a shift in a high dimensional space, we randomly sample
an asymmetric direction u (more results are shown Appendix C) at the SGD solution ŵ∗. The blue
and red curves shown in Figure 3(a) are obtained by calculating L̂(ŵ∗ + lu) and L′(ŵ∗ + lu) for
l ∈ [−3, 3], which correspond to the training and test loss, respectively.

We then try different shift values of δ to “match” the two curves. As shown in Figure 3(a), after
applying a horizontal shift δ=0.4 to the test loss, the two curves overlap almost perfectly. Quantita-
tively, we can use the shift gap defined in Definition 3 to evaluate how well the two curves match
each other after shifting. It turns out that ξδ=0.4 =0.03, which is much lower than ξδ=0 =0.22 before
shifting (δ has only one dimension here). In Figure 3(b), we plot ξδ/ξ0 as a function of δ. Clearly,
there exists a δ that minimizes this ratio, indicating a good match.

We conducted the same experiments for different directions, models and datasets, and similar
observations were made. Please refer to Appendix C for more results.

Verification of Assumption 2. This is a mild assumption that can be verified empirically. For
example, we take a SGD solution of ResNet-110 on CIFAR-10 as ŵ∗, and specify an asymmetric
direction u for ŵ∗. We then randomly sample 100 different local adjustments for v ∈ B(25). Based
on these adjustments, we present the mean loss curves and standard variance zone on the asymmetric
direction u for all the points ŵ∗ + v − 〈v,u〉u in Figure 4. As we can see, the variance of these
curves are very small, which means all of them are similar to each other. Moreover, we verified that
u is (4, 2, 0.1, 5.22)-asymmetric with respect to all neighboring points.

5 Averaging Generates Good Bias

In the previous section, we show that when the loss landscape of a local minimum is asymmetric,
a solution with bias towards the flat side of the valley has better generalization performance. One
immediate question is that how can we obtain such a solution via practical algorithms? Below we
show that it can be achieved by simply taking the average of SGD iterates during the course of
training. We first analyze the one dimensional case in Section 5.1, and then extend the analysis to the
high dimensional case in Section 5.2.

Note that weight averaging is a classical algorithm in optimization [41], and recently regained its
popularity in the context of deep learning [25, 5, 51]. Our following analysis can be viewed as a
theoretical justification of recent algorithms that based on SGD iterates averaging.

5.1 One dimensional case

For asymmetric functions, as long as the learning rate is not too small, SGD will oscillate between the
flat side and the sharp side. Below we focus on one round of oscillation, and show that the average
of the iterates in each round has a bias on the flat side. Consequently, by aggregating all rounds of
oscillation, averaging SGD iterates leads to a bias as well.

For each individual round i, we assume that it starts from the iteration when SGD goes from sharp
side to flat side (denoted as wi0), and ends at the iteration exactly before the iteration that SGD goes
from sharp side to flat side again (denoted as wiTi

). Here Ti denotes the number of iterations in the
i-th rounds. The average iterate in the i-th round can be written as w̄ , 1

Ti

∑Ti

j=0 w
i
j . For notational

simplicity, we will omit the super script i on wij .

The following theorem shows that the expectation of the average has bias on the flat side. To get a
formal lower bound on w̄, we consider the asymmetric case where r = 0, and also assume lower
bounds for the gradients on the function. We defer the proof to Appendix D.
Theorem 2 (SGD averaging generates a bias). Assume that a local minimizerw∗ = 0 is a (r, 0, a+, c)-
asymmetric valley, where b− ≤ ∇L(w) ≤ a− < 0 for w < 0, and 0 < b+ ≤ ∇L(w) ≤ a+ for
w ≥ 0. Assume −a− = ca+ for a large constant c, and −(b−−ν)b+

= c′ < ec/3

6 . The SGD updating
rule is wt+1 = wt − η(∇L(w) + ωt) where ωt is the noise and |ωt| < ν, and assume ν ≤ a+. Then
we have

E[w̄] > c0 > 0,

where c0 is a constant that only depends on η, a+, a−, b+, b− and ν.
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Theorem 2 can be intuitively explained by Figure 5. If we run SGD on this one dimensional function,
it will stay at the flat side for more iterations as the magnitude of the gradient on this side is much
smaller. Therefore, the average of the locations is biased towards the flat side.
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Figure 4: Training loss mean and variance for
the neighborhood of ŵ∗ at the direction of u.
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Figure 5: SGD iterates and their average on
an asymmetric function.

5.2 High dimensional case

For high dimensional functions, the analysis on averaging SGD iterates would be more complicated
compared to that given in the previous subsection. However, if we only care about the bias on a
specific direction u, we could directly apply Theorem 2 with one additional assumption. Specifically,
if the projections of the loss function onto u along the SGD trajectory satisfy the assumptions in
Theorem 2, i.e., being asymmetric and the gradient on both sides have upper and lower bounds, then
the claim of Theorem 2 directly applies. This is because only the gradient along the direction u will
affect the SGD trajectory projected onto u, and we could safely omit all other directions.

We find that this assumption holds empirically. For a given SGD solution, we fix a random asymmetric
direction u ∈ Rd, and sample the loss surface on direction u that passes the t-th epoch of SGD
trajectory (denoted aswt), i.e., evaluate L̂(wt+ lu), for 0 ≤ t ≤ 200 and l ∈ [−15, 15]. As shown in
the Figure 6, after the first 40 epochs, the projected loss surfaces becomes relatively stable. Therefore,
we can directly apply Theorem 2 to the direction u.

As we will see in Section 6.1, compared with SGD solutions, SGD averaging indeed creates bias
along different asymmetric directions, as predicted by our theory.

6 Experimental Observations
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Figure 6: Projection of the training loss
surface onto an asymmetric direction u

In this section, we empirically show that asym-
metric valleys create interesting illusions when
visualizing high dimensional loss landscape in
low dimensional space. In addition, as a refine-
ment of judging the generalization performance
by the sharpness/flatness of a local minimum,
we show that where the solution locates at a local
minimum basin is important. We also find that
batch normalization [24] seems to be a major
cause for asymmetric valleys in deep networks,
but the results are deferred to Appendix H due
to space limit.

6.1 Experiments with weight averaging

Recently, Izmailov et al. [25] proposed the stochastic weight averaging (SWA) algorithm, which
explicitly takes the average of SGD iterates to achieve better generalization. Inspired by their
observation that “SWA leads to solutions corresponding to wider optima than SGD”, we provide a
more refined explanation in this subsection. That is, averaging weights leads to “biased” solutions in
an asymmetric valley, which correspond to better generalization.

Specifically, we run the SWA algorithm (with deceasing learning rate) with popular deep networks,
including ResNet-56, ResNet-110, ResNet-164, VGG-16, and DenseNet-100, on various datasets
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Figure 8: The average of SGD has a bias on
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Table 1: Training and test accuracy on CIFAR-100.

Network CIFAR-100
train test

ResNet-110-SWA 94.98% 78.94%
ResNet-110-SGD 97.52% 78.29%
ResNet-164-SWA 97.48% 80.69%
ResNet-164-SGD 99.12% 76.56%

including CIFAR-10, CIFAR-100, SVHN and STL-10, following the configurations in [25]. Then we
run SGD with small learning rate from the SWA solutions to find a solution located in the same basin
(denoted as SGD).

In Figure 7, We draw an interpolation between the solutions obtained by SWA and SGD4. One can
observe that there is no “bump” between these two solutions, meaning they are located in the same
basin. Clearly, the SWA solution is biased towards the flat side, which verifies our theoretical analysis
in Section 5. Further, we notice that although the biased SWA solution has higher training loss than
the solution found by SGD, it indeed yields lower test loss. This verifies our analysis in Section 4.
Similar observations are made on other networks and other datasets, which we present in Appendix E.

To further support our claim, we list our result in Table 1, from which we can observe that SGD
solutions always have higher training accuracy, but worse test accuracy, compared to SWA solutions.
This supports our claim in Theorem 1, which states that a bias towards the flat sides of asymmetric
valleys could help improve generalization, although it yields higher training error.

Verifying Theorem 2. We further verify that averaging SGD solutions creates a bias towards the
flat side in expectation for many other asymmetric directions, not just for the specific direction we
discussed above.

We take a ResNet-110 trained on CIFAR-100 as an example. Denote uinter as the unit vector pointing
from the SGD solution to the SWA solution, urand as another unit random direction, and the direction
uinter + urand is used to explore the asymmetric landscape.

The results are shown in Figure 8, from which we can observe that SWA has a bias on the flat side
compared with the SGD solution. We create 10 different random vectors for each network and each
dataset, and similar observations can be made (see more examples in Appendix F).

Batch size effect In addition to SWA algorithm, we also observe similar trend when training with
different batch sizes. The results are deferred to Appendix G.

6.2 Illusions created by asymmetric valleys

We further point out that visualizing the “width” of a given solutionw in a low-dimensional space
may lead to illusive results. For example, one visualization technique used in [25] is to show how the
loss changes along many random directions vi’s drawn from the d-dimensional Gaussian distribution.

We take the large batch and small batch solutions from the previous subsection as an example.
Figure 9 visualizes the “width” of the two solutions using the method described above. From the

4Izmailov et al. [25] have done a similar experiment.
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figure, one may draw the conclusion that small batch training leads to a wider minimum compared to
large batch training. However, these two solutions are in fact from the same basin (see the discussion
in Appendix G). In other words, the loss curvature near the two solutions looks different because they
are located at different locations in a same asymmetric valley, instead of being located at different
local minima. Similar observation holds for SWA and SGD solutions, see Figure 105 .
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Figure 9: Random ray of large batch and
small batch solution.
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Figure 10: Random ray of SGD and SWA
solution

7 Conclusion

In this paper, we introduced the notion of asymmetric valley to characterize the loss landscape of deep
networks, expanding the current research that simply categorizes local minima by sharpness/flatness.
This notion allowed us to analyze and understand the geometry of loss landscape from a new
perspective. For example, based on a formal definition of asymmetric valley, we showed that a biased
solution lying on the flat side of the valley generalizes better than the exact empirical minimizer.
Further, it is proved that by averaging the weights obtained along the SGD trajectory naturally leads
to such biased solution. We also conducted extensive experiments with state-of-the-art deep models
to analyze the properties of asymmetric valleys. It is showed that due to the existence of asymmetric
valleys, intriguing illustions can be created when visualizing high dimensional loss surface in the
1D space. We hope this work will deepen our understanding on the loss landscape of deep neural
networks, and inspire new theories and algorithms that further improve generalization.
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