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ABSTRACT

Active learning strategy to query samples closest to the decision boundary can be
an effective strategy for sampling the most uncertain and thus informative samples.
This strategy is valid only when the sample’s “closeness” to the decision bound-
ary can be estimated. As a measure for evaluating closeness to a given decision
boundary of a given sample, this paper considers the least probable disagreement
region (LPDR) which is a measure of the smallest perturbation on the decision
boundary leading to altered prediction of the sample. Experimental results show
that the proposed LPDR-based active learning algorithm consistently outperforms
other high performing active learning algorithms and leads to state-of-the-art per-
formance on various datasets and deep networks.

1 INTRODUCTION

Active learning (Cohn et al., 1996) is a subfield in machine learning for attaining sample efficiency
by intelligently selecting a small subset of unlabeled samples for their labels to be used in training.
In many real-world learning problems, a large collection of unlabeled samples is assumed available,
and the labels of the most informative samples are iteratively queried for retraining the model based
on various query strategies such as uncertainty sampling (Lewis & Gale, 1994; Scheffer et al., 2001;
Culotta & McCallum, 2005; Wang et al., 2010; Nguyen et al., 2021), model change (Settles et al.,
2008; Freytag et al., 2014; Ash et al., 2020), Bayesian active learning (Pinsler et al., 2019; Shi & Yu,
2019), core-set (Sener & Savarese, 2018), error reduction (Roy & McCallum, 2001; Yoo & Kweon,
2019), variance reduction (Schein & Ungar, 2007), discriminative sampling (Sinha et al., 2019;
Gissin & Shalev-Shwartz, 2019; Zhang et al., 2020; Gu et al., 2020), feature matching between
unlabeled and validation dataset (Gudovskiy et al., 2020), active Thomson sampling (Bouneffouf
et al., 2014), minimize the redundancy by clustering (Yang et al., 2021), two-way exploration (Zhang
et al., 2015), and adaptive batch mode (Chakraborty et al., 2014). Active learning attempts to achieve
high accuracy using as few labeled samples as possible.

In uncertainty-based sampling–the most popular strategy, quantifying precisely the uncertainty re-
mains an open question, and this paper is focused on this issue. This strategy is often considered for
its simplicity and relatively low computational load, and it enhances the performance of the current
model by utilizing the labels of the unlabeled samples whose predicted class is most vague (Settles,
2009; Yang et al., 2015; Sharma & Bilgic, 2017). It is generally understood that unlabeled sample
closest to the decision boundary is the most informative as the sample is the most uncertain (Balcan
et al., 2007; Kremer et al., 2014; Ducoffe & Precioso, 2018). Balcan et al. theoretically show that
selecting unlabeled samples with the smallest margin to the decision boundary attains exponential
improvement over random sampling in terms of sample complexity for binary classification with
linear separators (Balcan et al., 2007). However, many uncertainty-based sampling for multiclass
classification with deep network do not take into account the closeness of the sample to the decision
boundary for the reason that in multiclass classification with deep network, it is difficult to identify
samples closest to the decision boundary as the sample’s closeness based on Euclidean distance is
often not readily measurable (Ducoffe & Precioso, 2018; Mickisch et al., 2020).

This paper proposes a closeness measure that can be evaluated in multiclass classification with deep
network as a measure of uncertainty. We assume that the most uncertain and thus the most infor-
mative samples will have their labels most “sensitive” to the smallest perturbation of the decision
boundary, and that these samples are “closest” to the decision boundary. Here, the closeness are
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defined as the sample’s sensitiveness to the perturbation of the decision boundary, and it is based on
the disagree metric between the decision boundary and its perturbation. The main contributions of
this paper are summarized as follows.

1. This paper defines a measure of sample’s closeness to the decision boundary referred to
as the least probable disagreement region (LPDR) based on the disagree metric between
hypotheses.

2. This paper introduces a hypothesis sampling method with a measure of disagreement in
sampled hypotheses, referred to as the disagree ratio, for obtaining the sample order in
terms of LPDR without evaluating the LPDR.

3. This paper proposes a high performing active learning algorithm of querying unlabeled
samples closest to the decision boundary in terms of LPDR.

2 RELATED WORK

Various forms of uncertainty measure have been studied. Entropy (Shannon, 1948) based uncertainty
sampling strategy queries unlabeled samples yielding the maximum entropy from the predictive dis-
tribution, but it does not perform well for multiclass-classification tasks as entropy does not equate
well with the closeness to the decision boundary (Joshi et al., 2009). Mutual information based
strategy which includes the BALD (Houlsby et al., 2011), DBAL (Gal et al., 2017), and Batch-
BALD (Kirsch et al., 2019) queries unlabeled samples yielding the maximum mutual information
between predictions and model parameters. The DBAL approximates the posterior of the model
parameters of deep network by MC-dropout sampling, but each batch selection is independently
conducted, and this leads to data inefficiency as correlations between data points in the batch are
not taken into account (Kirsch et al., 2019). To address this deficiency, BatchBALD is introduced,
but BatchBALD theoretically computes all possible mutual information between batch-wise predic-
tions and model parameters, and for this reason, it is not appropriate for large query size. Variation
ratio (Freeman, 1965) with ensemble method (Beluch et al., 2018) based on query by committee
(QBC) strategy (Seung et al., 1992) queries unlabeled samples yielding the maximum variation
ratio in labels predicted by the multiple networks, but it requires high computational load: each net-
work belonging to the ensemble must be individually trained. Gradient based strategy (Ash et al.,
2020) measures uncertainty as the gradient magnitude with respect to parameters in the final layer
and queries unlabeled samples where these gradients span a diverse set of directions, but it requires
high computational load when the dimension of parameters is large.

3 LEAST PROBABLE DISAGREEMENT REGION (LPDR)

This section theoretically defines LPDR and proposes “empirical LPDR” to approximate LPDR
based on sampling from the instance and hypothesis spaces. In addition, a brute-force method for
evaluating the empirical LPDR of each sample is described in determining the order of the closeness
to the decision boundary.

3.1 DEFINITION OF LPDR

Let X , Y , D, and H be respectively the instance space, the label space, the joint distribution over
(x, y) ∈ X × Y , and the hypothesis space of h : X → Y . The (pseudo) metric between two
hypotheses, referred to as disagree metric, is defined as the probability of the disagreement region in
X where labels are predicted differently by the two hypotheses (Hanneke et al., 2014; Hsu, 2010).
For h1, h2 ∈ H, the disagree metric between h1 and h2 is defined as:

ρ(h1, h2) := PX∼D[h1(X) 6= h2(X)]

where X is random variable from D. The LPDR of a sample for a given hypothesis is defined as the
least probable disagreement region for the hypothesis that contains the sample. For given ĥ ∈ H, let
H(ĥ,x) be the set of hypotheses disagreed with ĥ on x ∈ X :

H(ĥ,x) := {h ∈ H : h(x) 6= ĥ(x)},

2



Under review as a conference paper at ICLR 2022

(a) (b)

Figure 1: Examples of LPDR and empirical LPDR. (a) LPDR of x for given ĥ in binary classification
with the linear classifier. Here x is uniformly distributed in R2. The h2 and h3 disagree with ĥ in
prediction on x, and |θ2|/π is the infimum for {ρ(h, ĥ) : h ∈ H(ĥ,x)}. Thus, Lĥ(x) = |θ2|/π. (b)
Empirical LPDR of xi for ĥ on MNIST dataset. The set of x-axis values of the blue dots for xi are
{ρ

S
(hc, ĥ) : hc ∈ HC(ĥ,xi)}, and L̃ĥ(xi) = min{ρ

S
(hc, ĥ) : hc ∈ HC(ĥ,xi)} (blue arrow).

then the LPDR of x for ĥ is defined as follows:

Lĥ(x) := inf
h∈H(ĥ,x)

ρ(h, ĥ).

The LPDR of x for ĥ is the measure of closeness in terms of the disagree metric between ĥ and
h that can alter the predicted label of x. The sample with the smallest LPDR is assumed to be
the sample most sensitive to the small perturbation of the decision boundary and thus closest to the
decision boundary.

Figure 1a shows an example of LPDR of x for given ĥ in the binary classification with a set of
linear classifier, H = {h : h(x) = sgn(xTw),w ∈ W = R2} where x is uniformly distributed
on X = R2. In X , x is a data point and w is represented as lw = {x : xTw = 0}. Let θi
be the angle between lwi and lŵ, then the ρ(hi, ĥ) = |θi|/π where the unit of θi is radian and
−π ≤ θi ≤ π since hi(x) 6= ĥ(x) for all x between lwi and lŵ. Here, h1(x) = ĥ(x), while
h2(x) 6= ĥ(x) and h3(x) 6= ĥ(x), thus h2, h3 ∈ H(ĥ,x). In this case, |θ2|/π is the infimum for
{ρ(h, ĥ) : h ∈ H(ĥ,x)}, therefore Lĥ(x) = |θ2|/π.

Henceforth, unless otherwise stated, ĥ will denote the hypothesis learned from labeled samples
denoted by L and LPDR for ĥ is evaluated on unlabeled samples denoted by U in this paper.

3.2 EMPIRICAL LPDR

In general, it is infeasible to explicitly evaluate LPDR for the following two reasons: 1) ρ cannot
be explicitly evaluated when D is unknown, and 2) it is difficult to evaluate ρ(h, ĥ) for all h ∈ H
especially when |H| =∞.

To address the first reason, ρ(h, ĥ) can be approximated as

ρ
S
(h, ĥ) =

1

S

S∑
i=1

I
[
h(Xi) 6= ĥ(Xi)

]
,

where I[·] is an indicator function, and X1, . . . , XS are i.i.d. random variables from D. By strong
law of large number, |ρ

S
(h, ĥ)− ρ(h, ĥ)| → 0 with probability 1 as S →∞.

To address the second issue, we considerHC ⊂ H of size C satisfying the following property.

Property 1 For any given x ∈ U and any h ∈ H with ρ(h, ĥ) ≤ maxx∈U Lĥ(x), there exists
hc ∈ HC ⊂ H satisfying that hc(x) = h(x) and that for any ε > 0,

|ρ(h, ĥ)− ρ(hc, ĥ)| < ε

as C →∞.
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ForHC satisfying Property 1, we define empirical LPDR as follows:

L̃ĥ(x) := inf
hc∈HC(ĥ,x)

ρ
S
(hc, ĥ). (1)

Here for given x ∈ U and ĥ, HC(ĥ,x) = {hc ∈ HC : hc(x) 6= ĥ(x)}. The empirical LPDR
converges to LPDR and the rank-orders based on the empirical LPDR and LPDR are equivalent
when

logC

S
→ 0 (2)

as min(S,C)→∞ by the following theorem.

Theorem 1 Suppose thatHC is the set of hypotheses satisfying Property 1 where U = {xi}Mi=1 and
Eq. 2 holds, then the following two statements can be made.

1. (convergence) For any x ∈ U ,

|L̃ĥ(x)− Lĥ(x)| → 0.

2. (rank-order consistency) If Lĥ(xi) 6= Lĥ(xj) for i 6=j, then

L̃ĥ(xi) < L̃ĥ(xj) =⇒ Lĥ(xi) < Lĥ(xj)

with probability tending to 1 as min(S,C)→∞, where S is the number of i.i.d. random variables
for approximating ρ and C = |HC |.

The proof of Theorem 1 is deferred to Appendix A.1.

3.3 BRUTE-FORCE SEARCH FOR EMPIRICAL LPDR

To constructHC satisfying Property 1, we consider Gaussian sampling of parameters corresponding
to hypotheses with gradually increasing variance based on the following conjecture:

Conjecture 1 Suppose that h is sampled with w ∼ N (ŵ, Iσ2) where w, ŵ ∈ W are parameters
of h, ĥ respectively, then E[ρ(h, ĥ)] is continuous and strictly increasing with σ.

The theoretical and empirical verifications of Conjecture 1 are presented in Appendix C.1. At first,
many h(k) are sampled with w(k) ∼ N (ŵ, Iσ2

k) , and a set of hypotheses H(k) is constructed as
H(k) = {h(k)n : (k − 1)ε < ρ

S
(h

(k)
n , ĥ) < kε}Nn=1 by the selection of sampled hypotheses. Then,

HC can be constructed as:

HC =

K⋃
k=1

H(k)

with {σk}Kk=1 such that σk < σk+1 where K is the smallest value satisfying that HC(ĥ,x) 6= ∅ for
all x ∈ U . Here, for any h ∈ H with ρ(h, ĥ) ≤ maxx∈U Lĥ(x), there exists k ∈ [K] such that
(k−1)ε ≤ ρ(h, ĥ) ≤ kε, and thus |ρ

S
(h

(k)
n , ĥ)−ρ(h, ĥ)| < ε for all h(k)n ∈ H(k). Sampling largeN

hypotheses from each σk provides a high probability that there exists h(k)n such that h(k)n (x) = h(x)
for x ∈ U , so that Property 1 is stochastically satisfied. Also, by setting S � logC, Eq. 2 is
satisfied. Consequently, the empirical LPDR of x for ĥ is obtained by Eq. 1.

Figure 1b depicts an example of L̃ĥ(xi) for xi ∈ U on MNIST dataset. The xi is the ith sample
ordered by empirical LPDR. The set of x-axis values of the blue dots on the horizontal line, whose
y-axis value is i, are {ρ

S
(hc, ĥ) : hc ∈ HC(ĥ,xi)}. Thus, L̃ĥ(xi) is the x-axis value of the leftmost

blue dot for xi (indicated by the blue arrow).
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(a) (b)

Figure 2: The need for regulating σ (MNIST). (a) The disagree ratios of the samples goes to 0 as σ
decreases and goes to 0.9 as σ increases. (b) The E[ρ

S
(h, ĥ)] for h ∈ HB decreases as the number

of labeled samples increases whenHB is constructed with a static σ for all acquisition steps.

3.4 RANK OF LPDR

Samples with small LPDR are more sensitive to perturbation of the decision boundary, thus the label
of the samples are more likely to be altered by the hypothesis perturbation. That is the disagreement
in sampled hypotheses with ĥmay have an inverse relation with empirical LPDR. This paper defines
a measure of the disagreement in sampled hypotheses with ĥ on x, referred to as disagree ratio:

D(ĥ,x) :=
|HB(ĥ,x)|
|HB |

=
1

N

N∑
n=1

I[hn(x) 6= ĥ(x)]

where HB(ĥ,x) = {hn ∈ HB : hn(x) 6= ĥ(x)},HB = {hn}Nn=1, and hn is sampled with wn ∼
N (ŵ, Iσ2). Then, we formulate the following conjecture:

Conjecture 2 Suppose thatHB is constructed with w ∼ N (ŵ, Iσ2) and 0 < σ <∞. Then,

D(ĥ,x1) > D(ĥ,x2)⇐⇒ Lĥ(x1) < Lĥ(x2) (3)

with probability tending to 1 as |HB | → ∞ where D(ĥ,x) = |HB(ĥ,x)|/|HB |.

The theoretical and empirical verifications of Conjecture 2 are presented in Appendix C.2. The Eq. 3
of Conjecture 2 implies that we can use D(ĥ,x) to identify the order of Lĥ(x), required to query
closest samples to hypothesis. Our motivation is to find a measure to identify the order of LPDR
without evaluating the empirical LPDR. We would like the measure evaluation to be computationally
lighter than that of the empirical LPDR.

Obtaining the order of LPDR by the disagree ratio can reduce time over the brute-force search for
empirical LPDR in Section 3.3. Let M , K, N , and S be the number of unlabeled samples, grid
for σk, sampled hypotheses for each σk, and i.i.d. random variables from D for approximating ρ,
respectively. The brute-force search requires time complexity ofO(M ×K×N ×S). While, using
the disagree ratio requires the time complexity of O(M × N ). In the results of the active learning
performance comparison between evaluating empirical LPDR by brute-force search and evaluating
the order of empirical LPDR by using disagree ratio on various datasets, there is no significant
difference in the performance between the two methods (See Appendix D).

4 LPDR-BASED ACTIVE LEARNING

This section introduces the proposed LPDR-based active learning algorithm with the disagree ratio
referred to as ‘DRAL’ and its variation with the weighted disagree ratio referred to as ‘DRAL+’.
This paper considers a pool-based active learning that queries q most informative samples from
randomly sampled pool data P ⊂ U of size m where U is unlabeled samples.

4.1 VARIANCE FOR DISAGREE RATIO

When constructingHB , setting σ is an important issue as shown in the following theorem:
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Algorithm 1 DRAL
Input:
L0, U0 : Initial labeled and unlabeled samples
σ2 : Initial variance for sampling
ρ∗ : Target disagree metric (= q/m)

Procedure:
for step t = 0 to T − 1 do

Obtain ŵt by training with Lt
for n = 1 toN do

wn ∼ N (ŵt, Iσ
2)

ρ′ = ρ
S
(hn, ĥt)

σ ← σe−β(ρ
′−ρ∗) where β > 0

end for
D(ĥt,xi) for i ∈ IPt = {j : xj ∈ Pt ⊂ Ut}
I∗ = argmaxI⊂IPt ,|I|=q

∑
i∈I D(ĥt,xi)

Lt+1=Lt∪{(xi, yi)}i∈I∗ , Ut+1=Ut\{xi}i∈I∗
end for

Algorithm 2 DRAL+

Input:
L0, U0, σ2, ρ∗

Procedure:
for step t = 0 to T − 1 do

Obtain ŵt by training with Lt
Evaluate empirical error ε̂t of ĥt
for n = 1 toN do

wn ∼ N (ŵt, Iσ
2)

Evaluate empirical error εn of hn
γn = e−(εn−ε̂t)

ρ′ = ρ
S
(hn, ĥt), then update σ

end for
Dw(ĥt,xi) for i ∈ IPt
I∗ = argmaxI⊂IPt ,|I|=q

∑
i∈I Dw(ĥt,xi)

Update Lt+1 and Ut+1

end for

Theorem 2 Consider the binary classification with the linear classifier on bounded X , i.e., H =
{h : h(x) = sgn(xTw)} and supx∈X ‖x‖∞ < ∞. Suppose that HB = {hn}Nn=1 is constructed
with wn ∼ N (ŵ, Iσ2) for given ĥ ∈ H. Then, for all x ∈ X , 1) D(ĥ,x)→ 0 when σ → 0 and 2)
D(ĥ,x)→ 1/2 when σ →∞ in probability as N→∞, where D(ĥ,x)= |HB(ĥ,x)|/|HB |.

The proof of Theorem 2 is deferred to Appendix A.2. The implication of Theorem 2 is that when
σ is too small or too large, it would be difficult to obtain the order of LPDR by comparing the
disagree ratios. In practice, N is finite, thus setting σ for HB is more important. Figure 2a shows
that the disagree ratios of samples converge to 0 as σ → 0 and converge to 0.9 as σ increases
when |HB | = 100. Thus, it is required to set an appropriate σ, but finding an appropriate σ is
computationally prohibitive. Additionally, the behavior ofD(ĥ,x) with the fixed σ is not same with
respect to the number of labeled samples. Figure 2b shows that E[ρ

S
(hn, ĥ)] for hn ∈ HB decreases

as the number of labeled samples increases on MNIST dataset whenHB is constructed with a static
σ = 0.1 for all acquisition steps in active learning. Decrease in E[ρ

S
(hn, ĥ)] leads to decrease in

|HB(ĥ,x)| for each x, eventually D(ĥ,x) converges to zero.

To address these problems, σ needs to be regulated at each acquisition step to keep E[ρ
S
(hn, ĥ)]

static. In Figure 6c of Appendix C.1, E[ρ
S
(hn, ĥ)] is almost a linear function of log σ in the ascen-

sion, that is, σ ∝ eβE[ρS (hn,ĥ)] for some β > 0. Based on this observation, we can keep E[ρ
S
(hn, ĥ)]

static by updating σ as follows:
σ ← σe−β(ρS−ρ

∗)

where ρ∗ is the target disagree metric (see Appendix E: E[ρ
S
(hn, ĥ)] is securely guided towards the

target value). The remaining question is how to determine an appropriate ρ∗. To identify q most
informative samples from unlabeled sample set of size m, we set ρ∗ = q/m and achieved high
performance (see Appendix F: the proposed algorithm shows high performance when ρ∗ = q/m).

4.2 ALGORITHM WITH DISAGREE RATIO (DRAL)

The proposed LPDR-based active learning algorithm with the disagree ratio referred to as ‘DRAL’
is provided in Algorithm 1. Let Lt, Ut and Pt ⊂ Ut be labeled samples, unlabeled samples, and
pool data of size m at step t respectively. At step t, ŵt is obtained by training with Lt, then hn is
sampled with wn ∼ N (ŵt, Iσ

2) for n = 1, . . . , N . Here, σ is updated so that the E[ρ
S
(hn, ĥt)]

achieves the target value ρ∗. Then, DRAL queries the top q unlabeled samples having the highest
disagree ratio from Pt.

4.3 ALGORITHM WITH WEIGHTED DISAGREE RATIO (DRAL+)

When calculating the disagree ratio, each sampled hypothesis is given equal weight. However, we
observe performance variation among the sampled hypotheses (See Appendix G). For this reason,
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Table 1: Settings for data and acquisition size. Acquisition size denotes the number of initial labeled
samples + query size for each step (the size of pool data)→ the number of final labeled samples.

Dataset Model
# of parameters
sampled / total

Data size
train / validation / test

Acquisition size

MNIST S-CNN 1.3K/1.2M 55,000 / 5,000 / 10,000 20 +20 (2,000) → 1,020
CIFAR10 K-CNN 5.1K/2.2M 45,000 / 5,000 / 10,000 200 +400 (4,000) → 9,800

SVHN K-CNN 5.1K/2.2M 68,257 / 5,000 / 26,032 200 +100 (2,000) → 10,200
CIFAR100 WRN-16-8 51.3K/11.0M 45,000 / 5,000 / 10,000 5,000 +2,000 (10,000) → 25,000

Tiny ImageNet WRN-16-8 409.8K/11.4M 90,000 / 10,000 / 10,000 10,000 +5,000 (20,000) → 50,000
HAM10000 WRN-16-8 14.3K/11.0M 7,015 / 1,500 / 1,500 500 +300 (3,000) → 3,500

this paper introduces weighting factor γn on hn such that more/less weight is placed on hn that
performs better/worse than ĥ on labeled samples. The weighting factor is given below as

γn = e−(εn−ε̂t),

where εn and ε̂t are the empirical errors of hn and ĥt respectively. Then, the following weighted
disagree ratio can be defined as shown below as

Dw(ĥt,x) :=

∑N
n=1 γnI[hn(x) 6= ĥt(x)]∑N

n=1 γn
.

The details of the algorithm and the framework with the weighted disagree ratio referred to as
‘DRAL+’ are provided in Algorithm 2 and Appendix M. In the results of the performance compar-
ison between DRAL+ and DRAL on various datasets, DRAL+ consistently either performs better
than or comparable with DRAL (See Appendix H).

5 EXPERIMENTS

This section discusses experimental results for performance comparison with the baseline active
learning algorithms on benchmark datasets in deep learning. A total of 6 benchmark datasets
are used for experiments: MNIST (LeCun et al., 1998), CIFAR10 (Krizhevsky et al., 2009),
SVHN (Netzer et al., 2019), CIFAR100 (Krizhevsky et al., 2009), Tiny ImageNet (subset of the
ILSVRC dataset containing 200 categories; Russakovsky et al., 2015), and HAM10000 (Tschandl
et al., 2018) datasets. Three CNN networks are used as deep networks: S-CNN, K-CNN (Chollet
et al., 2015) and Wide-ResNet (WRN-16-8; Zagoruyko & Komodakis, 2016). Results are averaged
over 5 repetitions. The settings for data, initial, and query sizes are summarized in Table 1. We
use 100 forward passes for MC-dropout sampling, and ensemble consists of 5 networks of identical
architecture but different random initialization and random batches. There is no significant perfor-
mance difference between when parameter sampling is performed in the entire layer and in the last
layer, thus parameters are sampled in the last layer for computational efficiency. We set hyperparam-
eters for DRAL+ as σ0 = 0.01, β = 1, and N = 100 in convenience as DRAL+ is robust against
hyperparameters (see Appendix I). The details of datasets, networks, and training settings are pre-
sented in Appendix B. Figure 3–5 show plots of test accuracy enlarged in appropriate to accentuate
the performance difference among different methods: initial labeled sample sizes are not shown in
the figures. Figures that include initial labeled sample size are presented in Appendix K.

5.1 RESULTS FOR MNIST, CIFAR10 AND SVHN

A number of experiments are conducted to compare performance of DRAL+ with the baseline ac-
tive learning algorithms including state-of-the-art algorithms. Figure 3 shows the test accuracy with
respect to the number of labeled samples on MNIST, CIFAR10 and SVHN datasets. Each algorithm
is denoted as follows ‘Entropy’: entropy-based uncertainty sampling (Shannon, 1948), ‘Coreset’:
core-set selection (Sener & Savarese, 2017), ‘MC-BALD’: MC-dropout sampling with BALD (Gal
et al., 2017), ‘MC-VarR’: MC-dropout sampling with variation ratio (Ducoffe & Precioso, 2015),
‘ENS-VarR’: ensemble method with variation ratio (Beluch et al., 2018), and ‘BADGE’: batch ac-
tive learning by diverse gradient embeddings (Ash et al., 2020). Overall, DRAL+ either consistently
performs best or comparable with other algorithms on both datasets. Entropy shows the poor per-
formance compared to other uncertainty-based algorithms in all results. Coreset shows the worst
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(a) (b) (c)

Figure 3: The performance comparison of DRAL+ with the baseline active learning algorithms on
MNIST (a), CIFAR10 (b) and SVHN (c) datasets. Overall, DRAL+ consistently either performs
best or comparable with all other algorithms regardless of dataset.

(a) (b)

Figure 4: The performance comparison of DRAL+ with the baseline active learning algorithms on
on CIFAR100 (a) and Tiny ImageNet (b) datasets with WRN-16-8 networks. These datasets are
more difficult. DRAL+ outperforms all other algorithms on more difficult tasks.

performance compared to all other algorithms including Random. MC-BALD performs comparable
with DRAL+ on SVHN, but it shows the poor performance on MNIST and CIFAR10. MC-VarR
and ENS-VarR show a significant performance drop compared to DRAL+ on all datasets. BADGE
performs comparable with DRAL+ on MNIST and CIFAR10 datasets, but is shows a significant
performance drop compared to DRAL+ on SVHN dataset. It is observed that the performance of
other algorithms has a relatively strong dataset or network dependency compared to DRAL+.

Furthermore, the running time of DRAL+ for active learning is comparable to Entropy, MC-BALD,
MC-VarR and Coreset. ENS-VarR requires about 5 times more computational load than DRAL+,
and BADGE requires several times more computational load than DRAL+ when the parameter
dimension and query size are very large such as Tiny ImageNet with WRN-16-8. The details of the
running time is presented in Table 4 of Appendix J.

5.2 RESULTS FOR CIFAR100 AND TINY IMAGENET

Experiments on more difficult task are conducted. Figure 4 shows test accuracy with respect to
the number of labeled samples on Tiny ImageNet dataset with WRN-16-8. CIFAR100 and Tiny
ImageNet are considered to be more difficult task than other benchmark datasets. Even on more
difficult tasks, DRAL+ outperforms all other algorithms.

5.3 RESULTS FOR HAM10000

Additional experiments are conducted to compare the performance of the algorithms on imbalanced
HAM10000 dataset with WRN-16-8. Figure 5a shows the results of the test accuracy with respect
to the number of labeled samples. DRAL+ outperforms all other algorithms compared. Figure 5b
shows the results of AUC with respect to the number of labeled samples. DRAL+ performs better
than or comparable with all other algorithms.
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(a) (b)

Figure 5: The performance comparison on imbalanced HAM10000 dataset with WRN-16-8 in terms
of the test accuracy (a) and AUC (b). DRAL+ performs better than or comparable with all other
algorithms.

Table 2: The mean ± standard deviation of the performance differences (%) relative to DRAL+

for each algorithm and each dataset. The negative value indicates lower performance compared to
DRAL+, and the asterisk (∗) indicates that the p-value ls less than 0.05 in one-sample t-test for the
performance differences. DRAL+ consistently and significantly outperforms other algorithms for
all datasets, while the performance of the algorithms except DRAL+ vary depending on datasets.

MNIST CIFAR10 SVHN CIFAR100 T. ImageNet HAM10000
DRAL+[ours] 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Random -3.26±0.44∗ -1.05±0.26∗ -2.94±0.15∗ -1.16±0.49∗ -0.99±0.45∗ -2.24±0.48∗

Entropy41 -1.01±0.26∗ -0.97±0.35∗ -1.75±0.13∗ -0.69±0.32∗ -1.40±0.36∗ -0.69±0.42∗

Coreset36 -3.34±0.78∗ -4.77±0.19∗ -5.93±0.35∗ -0.28±0.33 -0.90±0.32∗ -1.13±0.33∗

MC-BALD14 -1.70±0.48∗ -1.25±0.35∗ -0.29±0.04∗ -0.67±0.22∗ -0.58±0.39∗ -1.75±0.37∗

MC-VarR10 -0.67±0.31∗ -0.75±0.46∗ -0.90±0.10∗ -0.42±0.24∗ -0.64±0.49∗ -1.63±0.38∗

ENS-VarR3 -0.47±0.36∗ -0.65±0.48∗ -0.82±0.07∗ -1.07±0.21∗ -1.43±0.30∗ -0.52±0.26∗

BADGE1 -0.26±0.10∗ -0.22±0.44 -1.46±0.05∗ -0.31±0.77 -0.79±0.51∗ -0.86±0.29∗

5.4 SUMMARY

Each cell of Table 2 presents the mean and standard deviation of five ∆̄s for each algorithm and
dataset, where ∆̄ is the average of performance differences relative to DRAL+ over all steps for
each repetition. The negative value indicates lower performance compared to DRAL+, and the
asterisk (∗) indicates the p-value is less than 0.05 in one-sample t-test for the null of no difference
versus the alternative that the DRAL+ is better. DRAL+ consistently outperforms other algorithms
on all datasets, while the performance of the algorithms except DRAL+ vary depending on datasets.
Furthermore, DRAL+ shows significant performance improvement in most cases (39 out of 42).

6 CONCLUSION

This paper defines a measure of sample’s closeness to the decision boundary of the current network
referred to as the least probable disagreement region (LPDR) based on the disagree metric between
hypotheses. In addition, this paper introduces a hypothesis sampling method with a measure of
disagreement in sampled hypotheses referred to as the disagree ratio for obtaining the order of LPDR
without explicit or empirical evaluation of LPDR for computational efficiency. Based on the order
of LPDR, this paper proposes an uncertainty-based active learning algorithm of querying unlabeled
samples closest to the current decision boundary in terms of LPDR.

The proposed LPDR-based active learning algorithm consistently outperforms all high performing
active learning algorithms and leads to state-of-the-art active learning performance on all datasets in
this paper. In addition, the proposed algorithm is simple enough to perform only parameter pertur-
bation and can be applied to a variety of classification tasks with both shallow and deep networks.
Furthermore, the proposed algorithm runs fast enough to comparable to entropy-based uncertainty
sampling for it requires a low computational load. In conclusion, LPDR-based sampling with the
disagree ratio by parameter perturbation is an effective active learning algorithm based on the un-
certainty of the current network.
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A PROOFS OF THEOREMS

A.1 PROOF OF THEOREM 1

Since M <∞ and Lĥ(xi) 6= Lĥ(xj) for i 6= j, there exists δ > 0 such that

δ = min
i 6=j
|Lĥ(xi)− Lĥ(xj)|,

and our strategy is to show that supi |L̃ĥ(xi)− Lĥ(xi)| < δ/2 in probability.

At first, we prove the convergence of empirical LPDR to LPDR. Since |I[h(x) 6= ĥ(x)]| ≤ 1 for
any h ∈ H, Hoeffding’s inequality implies that for any ε > 0,

P
[
|ρ
S
(h, ĥ)− ρ(h, ĥ)| ≥ ε

]
≤ 2e−c1ε

2S

with c1 > 0, and

P

[
sup

hc∈HC(ĥ,x)

|ρ
S
(hc, ĥ)− ρ(hc, ĥ)| ≥ ε

]
≤ 2Ce−c1ε

2S (4)

because |HC(ĥ,x)| ≤ C. Furthermore, Property 1 implies that for any ε > 0, the following holds:
For all h ∈ H(ĥ,x),

|ρ(hc, ĥ)− ρ(h, ĥ)| < ε (5)

as C →∞ because of Property 1. Additionally, by Eq. 4 and 5, for any ε > 0, we have that⋂
h∈H(ĥ,x)

{
∃hc ∈ HC(ĥ,x) s.t. |ρS(hc, ĥ)− ρ(h, ĥ)| < 2ε

}
(6)

with probability equal to or greater than 1 − 2Ce−c1ε
2S when C is sufficiently large. It is because

the |ρS(hc, ĥ) − ρ(h, ĥ)| ≤ |ρS(hc, ĥ) − ρ(hc, ĥ)| + |ρ(hc, ĥ) − ρ(h, ĥ)| and Eq. 6 implies that
suphc∈HC(ĥ,x) |ρS (h, ĥ)− ρ(h, ĥ)| < ε with probability equal to or greater than 1− 2Ce−c1ε

2S .

Then,
inf

hc∈HC(ĥ,x)
ρ
S
(hc, ĥ)− 2ε ≤ inf

h∈H(ĥ,x)
ρ(h, ĥ) ≤ inf

hc∈HC(ĥ,x)
ρ
S
(hc, ĥ) + 2ε (7)

with probability equal to or greater than 1 − 2Ce−c1ε
2S . We’ll prove the lower bound and upper

bound of Eq. 7 separately.

Let the setH∗C(ĥ,x) ⊂ HC(ĥ,x) be a smallest subset satisfying the Property 1, i.e. all elements of
H∗C(ĥ,x) are used to approximate ρ(h, ĥ) for all h ∈ H(ĥ,x). Then, Eq. 6 implies that

inf
hc∈H∗C(ĥ,x)

ρS(ĥ,x)− 2ε ≤ inf
h∈H(ĥ,x)

ρ(ĥ,x)

with probability equal to or greater than 1−2Ce−c1ε
2S when S is sufficiently large. In addition, the

property of infimum implies that infhc∈HC(ĥ,x) ρS(ĥ,x)−2ε ≤ infhc∈H∗C(ĥ,x) ρS(ĥ,x)−2ε,which

proves the lower bound of Eq. 7. Also, Eq 4 implies that
⋂
hc∈HC(ĥ,x){|ρS(hc, ĥ)− ρ(hc, ĥ)| < ε}

with probability equal to or greater than 1− 2Ce−c1ε
2S when S is sufficiently large. Thus we have

inf
hc∈HC(ĥ,x)

ρ(ĥ,x) ≤ inf
hc∈HC(ĥ,x)

ρS(ĥ,x) + 2ε,

and by the property of infimum, infh∈H(ĥ,x) ρ(ĥ,x) ≤ infhc∈HC(ĥ,x) ρ(ĥ,x), which proves the
upper bound of Eq. 7.

Consequently, by the definition of LPDR and empirical LPDR,

P
[
|L̃ĥ(x)− Lĥ(x)| < 2ε

]
≥ 1− 2Ce−c1ε

2S , (8)
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which goes to 1 as min(S,C) → ∞ and logC/S → 0 by Eq. 2. This implies the convergence of
empirical LPDR to LPDR. Next, we prove the rank-order consistency between the empirical LPDR
and LPDR of {xi}Mi=1. It is trivial that

P
[

max
i∈[M ]

|L̃ĥ(xi)− Lĥ(xi)| ≥ 2ε

]
is equal to or less than

M∑
i=1

P
[
|L̃ĥ(xi)− Lĥ(xi)| ≥ 2ε

]
=

M∑
i=1

{
1− P

[
|L̃ĥ(xi)− Lĥ(xi)| < 2ε

]}
,

and it has the upper bound of 2MCe−c1ε
2S by the Eq. 8. Consequently,

max
i∈[M ]

|L̃ĥ(xi)− Lĥ(xi)| < 2ε (9)

with probability tending to 1 as min(S,C)→∞ by Eq. 2, and it holds for any ε such that 0 < 2ε <
δ/2. Then the uniform convergence of empirical LPDR on {xi}Mi=1, denoted by the Eq. 9., implies
that the maximum difference between all pairs of Lĥ(xi) and L̃ĥ(xi) is less than the minimum of
pair-wise differences of Lĥ(xi)s with probability tending to 1 as min(S,C) → ∞. Therefore, it
implies the rank-order consistency between the empirical LPDR and LPDR:⋂

i6=j

{
L̃ĥ(xi)− L̃ĥ(xj) > 0 =⇒ Lĥ(xi)− Lĥ(xj) > 0

}
with probability tending to 1 as as min(S,C)→∞ because the contra-positive such that ifLĥ(xi)−
Lĥ(xj) ≤ 0, then

Lĥ(xi)− Lĥ(xj) < −δ < 0

and
L̃ĥ(xi)− L̃ĥ(xj) < Lĥ(xi)− Lĥ(xj) + 4ε < −δ + 4ε ≤ 0

holds uniformly on i 6= j with probability tending to 1 as min(S,C) → ∞ by the Eq. 9 implying
that

max
i 6=j
|L̃ĥ(xi)− Lĥ(xj)| < 4ε =

⋂
i6=j

{
|L̃ĥ(xi)− Lĥ(xj)| < 4ε

}
with probability tending to 1 as min(S,C)→∞.

A.2 PROOF OF THEOREM 2

The disagree ratio is

D(ĥ,x) =
1

N

N∑
n=1

I
[
hn(x) 6= ĥ(x)

]
,

and hn(x) disagrees with ĥ(x) if sgn(xTwn) 6= sgn(xTŵ), here, sgn(0) = 1. Let ‖ŵ‖ = 1
without the loss of generality, ‖x‖ 6= 0 to avoid the null, and note that

xTwn = xTŵ + σxTen

where en = (Zn1, . . . , Zn|w|)
T and Znk ∼ N (0, 12). Then, when N →∞, ∀x,

D(ĥ,x)→
{

P
[
σxTen ≥ −xTŵ

]
, xTŵ < 0

P
[
σxTen < −xTŵ

]
, xTŵ ≥ 0

in probability.

In the first fold of xTŵ < 0,

P
[
σxTen ≥ −xTŵ

]
= P

[
σxTen ≥ |xTŵ|

]
= P

[
σ‖x‖Z ≥ |xTŵ|

]
= 1− Φ

(
a (x, ŵ)

σ

)
where Z ∼ N (0, 12), Φ is the cumulative distribution function of the normal distribution, and
a (x, ŵ) = |xTŵ|/‖x‖. Note that σxTen ∼ N (0, σ2‖x‖2).

14



Under review as a conference paper at ICLR 2022

Table 3: Settings for training.

Dataset Model Epochs
Batch
size

Optimizer Learning Rate
Learning Rate Schedule
×decay [epoch schedule]

MNIST S-CNN 50 32 Adam 0.001 -
CIFAR10 K-CNN 150 64 Adam 0.0001 -

SVHN K-CNN 150 64 Adam 0.0001 -
CIFAR100 WRN-16-8 100 128 Nesterov 0.05 ×0.2 [60, 80]

Tiny ImageNet WRN-16-8 200 128 Nesterov 0.1 ×0.2 [60, 120, 160]
HAM10000 WRN-16-8 100 64 Nesterov 0.05 ×0.2 [60, 80]

Next, in the second fold of xTŵ ≥ 0,

P
[
σxTen < −xTŵ

]
= P

[
σ‖x‖Z > |xTŵ|

]
= 1− Φ

(
a (x, ŵ)

σ

)
.

Here, Φ(∞) = 1 and Φ(0) = 1/2 by the smoothness of Φ. Consequently, in both folds,

D(ĥ,x)→ 1− Φ

(
a (x, ŵ)

σ

)
=

{
0, σ → 0

1/2, σ →∞

in probability as N →∞.

B DATASETS, NETWORKS AND EXPERIMENTAL SETTINGS

B.1 BENCHMARK DATASETS

MNIST (LeCun et al., 1998) is a handwritten digit dataset which has 60, 000 training samples and
10, 000 test samples in 10 classes. Each sample is a black and white image and 28× 28 in size.

CIFAR10 and CIFAR100 (Krizhevsky et al., 2009) are tiny image datasets which has 50, 000 train-
ing samples and 10, 000 test samples in 10 and 100 classes respectively. Each sample is a color
image and 32× 32 in size.

SVHN (Netzer et al., 2019) is a real-world digit dataset which has 73, 257 training samples and
26, 032 test samples in 10 classes. Each sample is a color image and 32× 32 in size.

Tiny ImageNet is a subset of the ILSVRC (Russakovsky et al., 2015) dataset which has 100, 000
samples in 200 classes. Each sample is a color image and 64 × 64 in size. In experiments, Tiny
ImageNet is split into two parts: 90, 000 samples for training and 10, 000 samples for test.

HAM10000 (Tschandl et al., 2018) is a imbalanced dermatoscopic image dataset which has 10, 015
samples in 7 classes. Each sample is a color image and resized to 75 × 75. In experiments,
HAM10000 is split into two parts: 8, 515 samples for training and 1, 500 samples for test.

All datasets are used without any preprocessing of images.

B.2 DEEP NETWORKS

S-CNN (Chollet et al., 2015) consists of [3×3×32 conv − 3×3× 64 conv − 2×2 maxpool −
dropout (0.25) − 128 dense − dropout (0.5) − # class dense − softmax] layers, and it is used for
MNIST.

K-CNN (Chollet et al., 2015) consists of [two 3×3×32 conv − 2×2 maxpool - dropout (0.25) −
two 3×3×64 conv − 2×2 maxpool - dropout (0.25) − 512 dense − dropout (0.5) − # class dense -
softmax] layers, and it is used for CIFAR10, SVHN, and CIFAR100.

WRN-16-8 (Zagoruyko & Komodakis, 2016) is a wide residual network that has 16 convolutional
layers and a widening factor 8, and it is used for CIFAR100 and Tiny ImageNet.
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B.3 EXPERIMENTAL SETTINGS

Training settings regarding number of epochs, batch size, optimizer, learning rate, and learning
rate schedule are summarized in Table 3. The model parameters are initialized with He normal
initialization (He et al., 2015) for all experimental settings. For all experiments, the initial labeled
samples for each repetition are randomly sampled according to the distribution of the training set.

C VERIFICATION OF CONJECTURES

C.1 VERIFICATION OF CONJECTURE 1

Theoretical verification:

Consider the binary classification with a set of linear classifiers,

H = {h : h(x) = sgn(xTw),w ∈ W = R2}

where x is uniformly distributed on X = R2. By the duality between w and x (Tong & Chang,
2001), inW , w is a point and x is represented by the hyperplane, lx = {w ∈ W : sgn(xTw) = 0}.
Let h be a sampled hypothesis with w ∼ N (ŵ, Iσ2), θ̂ be the angle of ŵ = (ŵ1, ŵ2)T, i.e.,
tan θ̂ = ŵ2/ŵ1, θ be the angle of w = (w1, w2)T, i.e., tan θ = w2/w1, and θx be the angle
between lx and positive x-axis. Here, θ, θx ∈ [−π + θ̂, π + θ̂] in convenience. When θx or π + θx
is between θ and θ̂, h(x) 6= ĥ(x), otherwise h(x) = ĥ(x). Thus, ρ(h, ĥ) = |θ − θ̂|/π
Using Box-Muller transform (Box, 1958), w can be generated by

w1 = ŵ1 + σ
√
−2 log u cos(2πv), w2 = ŵ2 + σ

√
−2 log u sin(2πv)

where u and v are independent uniform random variables on [0, 1]. Then, ‖w − ŵ‖ = σ
√
−2 log u

and (w2 − ŵ2)/(w1 − ŵ1) = tan(2πv), i.e., the angle of w − ŵ is 2πv. Here,

‖ŵ‖ sin(θ − θ̂) = σ
√
−2 log u sin(2πv − θ) (10)

by using the perpendicular line from ŵ to the line passing through the origin and w (see the Fig-
ure 6a–6b for its geometry), and Eq. 10 is satisfied for all θ. For given u and v, θ is continuous and
the derivative of θ with respect to σ is

dθ

dσ
=

√
−2 log u sin2(2πv − θ)
‖ŵ‖ sin(2πv − θ̂)

, thus

{
dθ
dσ > 0, v ∈ ( θ̂

2π ,
π+θ̂
2π )

dθ
dσ < 0, v ∈ [0,1] \ [ θ̂2π ,

π+θ̂
2π ]

.

Then,
dρ(h, ĥ)

dσ
= sgn(θ − θ̂) dθ

dσ
> 0 where v /∈

{ θ̂

2π
,
π + θ̂

2π

}
.

Thus, ρ(h, ĥ) is continuous and strictly increasing with σ when v 6= θ̂/2π or v 6= (π + θ̂)/2π. Let
ρ(h, ĥ) = g(σ, u, v), then

E[ρ(h, ĥ)] = E[g(σ, u, v)] =

∫
g(σ, u, v)h(u)h(v)dudv

where h(u) = I[0 < u < 1] and h(v) = I[0 < v < 1]. For 0 < σ1 < σ2,

E[g(σ2, u, v)]− E[g(σ1, u, v)] =

∫
g(σ2, u, v)h(u)h(v)dudv −

∫
g(σ1, u, v)h(u)h(v)dudv > 0

Empirical verification:

Figure 6c shows the empirical results for various datasets with deep networks. The E[ρ
S
(h, ĥ)] is

mostly continuous and strictly increasing with log σ when h is sampled with w ∼ N (ŵ, Iσ2) on
MNIST, CIFAR10, SVHN, CIFAR100, Tiny ImageNet, and HAM10000 datasets. Therefore, these
results empirically substantiates Conjecture 1.
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(a) (b)

(c)

Figure 6: The verification of Conjecture 1. (a)–(b) Theoretical verification in binary classification
with the linear classifier h(x) = sgn(xTw) on uniformly distributed x ∈ X = R2. Let h be
a sampled hypothesis with w ∼ N (ŵ, Iσ), then ρ(h, ĥ) = |θ − θ̂|/π where −π + θ̂ ≤ θ ≤
π + θ̂. Here, ρ(h, ĥ) is continuous and strictly increasing with σ, thus E[ρ(h, ĥ)] is continuous
and strictly increasing with σ. (c) Empirical verification for various datasets with deep networks.
The E[ρ

S
(h, ĥ)] is mostly continuous and strictly increasing with log σ when h is sampled with

w ∼ N (ŵ, Iσ2).

C.2 VERIFICATION OF CONJECTURE 2

Theoretical verification:

Consider the binary classification with a set of linear classifiers,

H = {h : h(x) = sgn(xTw),w ∈ W = R2}

where x is uniformly distributed on X = R2. By the duality between w and x (Tong & Chang,
2001), inW , w is a point and x is represented by the hyperplane, lx = {w ∈ W : sgn(xTw) = 0}.

LetHB be the set of h sampled with w ∼ N (ŵ, Iσ2), θ̂ be the angle of ŵ, θ be the angle of w, and
θx be the angle between lx and positive x-axis as in Figure 7a. Here, the lines with angles θx and
π + θx are same, thus we consider θx ∈ [−π2 + θ̂, π2 + θ̂]. Let

W(ŵ,x) =

{
{w : θ ∈ (θx, π + θx)} θx > θ̂

{w : θ ∈ (−π + θx, θx)} θx < θ̂
,

then W(ŵ,x) is corresponding with H(ĥ,x), and thus D(ĥ,x) = |HB(ĥ,x)|/|HB | → P[w ∈
W(ŵ,x)] with probability tending to 1 as |HB | → ∞. Let d1, d2 be the distances between ŵ and
lx1 , lx2 respectively, and

W1 =W(ŵ,x1) \W(ŵ,x2), W2 =W(ŵ,x2) \W(ŵ,x1)
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(a) (b)

(c)

Figure 7: The verification of Conjecture 2. (a)–(b) Theoretical verification in binary classification
with the linear classifier h(x) = sgn(xTw) on uniformly distributed x ∈ X = R2. Let HB be
the set of h sampled with w ∼ N (ŵ, Iσ2). The D(ĥ,x) → P[w ∈ W(ŵ,x)] decreases as d
increases with probability tending to 1 as |HB | → ∞. While, Lĥ(x) = |θx − θ̂|/π increases as
d increases. Thus, D(ĥ,x1) > D(ĥ,x2) ⇔ Lĥ(x1) < Lĥ(x2). (c) Empirical verification for
various datasets with deep networks the strong negative rank correlation coefficients of from −0.95
to −0.94 between the empirical LPDR and the disagree ratio are observed for log σ ∈ (−6,−2).

as in Figure 7b. Suppose that d1 < d2, then
P[w ∈ W(ŵ,x1)] = P[w ∈ W(ŵ,x2)] + P[w ∈ W1]− P[w ∈ W2] > 0

since |W1| = |W2| and φ(w1|ŵ, σ2) > φ(w2|ŵ, σ2) for all pairs of w1 ∈ W1,w2 ∈ W2 that
are symmetric at the origin of ŵ, where φ(·|ŵ, σ2) is the probability density function of bivariate
normal distribution with mean ŵ and covariance matrix Iσ2. Thus,

d1 < d2 ⇐⇒ D(ĥ,x1) > D(ĥ,x2)

with probability tending to 1 as |HB | → ∞.

Meanwhile, Lĥ(x) = |θx − θ̂|/π and di = ‖ŵ‖ sin |θxi − θ̂|, then

d1 < d2 ⇐⇒ |θx1 − θ̂| < |θx2 − θ̂| ⇐⇒ Lĥ(x1) < Lĥ(x2).

Therefore,
D(ĥ,x1) > D(ĥ,x2)⇐⇒ Lĥ(x1) < Lĥ(x2)

with probability tending to 1 as |HB | → ∞.

Empirical verification:

Figure 7c shows the empirical results for various datasets with deep networks. Spearman’s rank
correlation coefficient (Spearman, 1904) between the empirical LPDR and the disagree ratio is close
to −1 in certain range of σ in all experimental settings–strong negative correlation coefficients of
from −0.95 to −0.94 are observed for log σ ∈ (−6,−2). Therefore, these results empirically
substantiates Conjecture 2.
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(a) (b) (c)

Figure 8: The performance comparison between using empirical LPDR and using the disagree ratio
on MNIST with S-CNN (a), CIFAR10 with K-CNN (b), and CIFAR100 with WRN-16-8 (c). There
is no significant difference in the performance between the two methods. Thus, LPDR-based active
learning can be performed by using the disagree ratio.

(a) (b)

Figure 9: The E[ρ
S
(hn, ĥ)] and log σ with respect to the labeling proceeds for all experimental

settings. The proposed algorithm reliably guides the E[ρ
S
(hn, ĥ)] to be the target value by increasing

the variance of sampling as the number of labeled samples increases.

D EMPIRICAL LPDR VS DISAGREE RATIO

Figure 8 compares the active learning performance between evaluating empirical LPDR by brute-
force search and evaluating the order of empirical LPDR by using disagree ratio on MNIST with
S-CNN, CIFAR10 with K-CNN, and CIFAR100 with WRN-16-8. In all cases, there is no significant
difference in the performance between the two methods. As a result, LPDR-based active learning
can be conducted without evaluating empirical LPDR instead empirical LPDR order is obtained
through disagree ratio.

E REGULATING σ TO KEEP E[ρ
S
(hn, ĥ)] STATIC AT ρ∗

Figure 9a shows E[ρ
S
(hn, ĥ)] in Algorithm 1 with respect to the active learning progress. For all ex-

periments, the proposed algorithm reliably guides the E[ρ
S
(hn, ĥ)] to be ρ∗ = q/m (MNIST: 0.01,

CIFAR10: 0.1, SVHN: 0.05, CIFAR100: 0.2, Tiny ImageNet: 0.25, HAM10000: 0.1). Figure 9b
shows log σ with respect to the active learning progress. For all experiments, the σ increases as the
labeling proceeds. As the number of labeled samples increases, the larger variance is required to
keep E[ρ

S
(hn, ĥ)] static at ρ∗ for unlabeled samples move away from the decision boundary of ĥ

due to an increase in the network confidence.

F FINAL TEST ACCURACY VS ρ∗

Figure 10 shows the final test accuracy with respect to ρ∗ on MNIST, CIFAR10, and CIFAR100
datasets. The results show that the proposed algorithm performs well at around ρ∗ = q/m (MNIST:
0.01, CIFAR10: 0.1, CIFAR100: 0.2). In addition, the range of ρ∗, associated with the high perfor-
mance, is wide; thus, DRAL is robust against the ρ∗ in the wide range.
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(a) (b) (c)

Figure 10: The final accuracy with respect to the ρ∗ on MNIST (a), CIFAR10 (b), and CIFAR100
(c) datasets. The proposed algorithm shows high performance when ρ∗ = q/m.

(a) (b) (c)

(d) (e) (f)

Figure 11: The empirical errors of the learned and the sampled hypotheses with respect to the
number of labeled samples for MNIST (a), CIFAR10 (b), SVHN (c), CIFAR100 (d), Tiny ImageNet
(e), and HAM10000 (f) datasets. It is observed that the empirical errors of the sampled hypotheses
have various values.

G EMPIRICAL ERRORS OF SAMPLED HYPOTHESES

Figure 11 shows the empirical errors on L of the sampled hypotheses with respect to the number
of labeled samples for MNIST, CIFAR10, SVHN, CIFAR100, Tiny ImageNet, and HAM10000
datasets. The empirical errors of sampled hypotheses have various values.

H DRAL+ VS DRAL

Figure 12 shows the performance comparison between DRAL+ and DRAL with respect to the num-
ber of labeled samples on MNIST, CIFAR10, SVHN, CIFAR100, Tiny ImageNet, and HAM10000
datasets. Overall, DRAL+ consistently either performs better or comparable with DRAL regardless
of the experimental settings. When the empirical errors of the sampled hypotheses are mostly zero
such as the results of MNIST, CIFAR100, and Tiny ImageNet, there is no significant difference in
performance between DRAL+ and DRAL. However, when the mean empirical error of the sampled
hypotheses is larger than the empirical error of the learned hypothesis such as the results of CI-
FAR10, SVHN, and HAM10000, DRAL+ brings a significant performance improvement compared
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(a) (b) (c)

(d) (e) (f)

Figure 12: The performance comparison between DRAL+ and DRAL on MNIST (a), CIFAR10
(b), SVHN (c), CIFAR100 (d), Tiny ImageNet (e), and HAM10000 (f) datasets. Overall, DRAL+

consistently either performs better than or comparable with DRAL regardless of the experimental
settings.

to DRAL. The larger the variance in the empirical errors of the sampled hypotheses, the larger the
performance gap between DRAL+ and DRAL tends to be.

I ROBUSTNESS OF DRAL+ AGAINST HYPERPARAMETERS

DRAL+ has four hyperparameters: 1) the initial σ = σ0, 2) the positive hyperparameter β, 3)
the number of sampled hypotheses N , and 4) the layer of the network to which sampling is applied.
The σ0 has no significant effect on the performance of DRAL+ for σ is adaptively regulated to make
ρ′ = ρ∗ while hypothesis sampling. Figure 13 shows the performance comparison with respect to
β, N , and sampling layer on MNIST, CIFAR10, and CIFAR100 datasets. Figure 13a–13c show
that there is no significant performance difference for various β ∈ {0.1, 1, 10} on all datasets. The
robustness against β is based on the sufficient buffer for regulating σ since the range of ρ∗ associated
with the best performance is wide. Figure 13d–13f show that there is no significant performance
difference for various N ∈ {5, 10, 20, 50, 100, 200} on all datasets. Figure 13g–13i show that there
is no significant performance difference whether parameter sampling is applied to the entire layers
or on the last layer of the network. The robustness against N or sampling layer is based on the
sufficient discrimination in the disagree ratio for identifying q most informative unlabeled samples
with a small number of sampled hypotheses by setting ρ∗ = q/m.

J RUNNING TIME

In Table 4, the mean of running time for active learning are given for all algorithms and datasets. The
unit is minutes, and the value in parentheses is the ratio to Entropy. The running time of DRAL+

increased by only 1-7% compared to Entropy on all datasets except MNIST, and it is comparable to
MC-BALD, MC-VarR, and Coreset. The relatively large running time in MNIST is because it takes
a very short time to train the model compared to that of the acquisition. Ens-VarR requires about 5
times more computational load than DRAL+ on all datasets, and BADGE requires twice and more
than eight times the computational load on CIFAR100 and TinyImageNet datasets, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13: The performance comparison with respect to the hyperparameters of DRAL+ on MNIST,
CIFAR10, and CIFAR100 datasets. (a) – (c) β. (d) – (f) N . (g) – (i) sampling layer. DRAL+ is
robust against β, N , and sampling layer.

Table 4: The mean of running time (minutes) for active learning are given for all algorithms and
datasets. The value in parentheses is the ratio to Entropy. We observe that DRAL+ operates as fast
as Entropy, and that ENS-VarR or BADGE require a large computational load.

MNIST CIFAR10 SVHN CIFAR100 T. ImageNet HAM10000
DRAL+[ours] 7.9 (139) 100 (107) 192 (104) 396 (103) 4,589 (101) 311 (101)
Entropy41 5.7 (100) 93 (100) 186 (100) 385 (100) 4,547 (100) 307 (100)
Coreset36 14.4 (254) 139 (149) 237 (128) 439 (114) 4,722 (104) 321 (104)
MC-BALD14 6.8 (119) 99 (106) 180 (97) 441 (115) 4,828 (106) 403 (131)
MC-VarR10 6.8 (119) 101 (108) 187 (101) 443 (115) 4,861 (107) 403 (131)
ENS-VarR3 24.9 (438) 575 (616) 885 (477) 2,274 (591) 23,394 (515) 1,744 (568)
BADGE1 11.0 (193) 141 (151) 238 (128) 864 (224) 39,265 (864) 326 (106)

K RESULTS FOR TEST ACCURACY

Figure 14 shows the test accuracy with respect to the number of labeled samples from initial to final
step for all experimental settings.

L ROBUSTNESS OF DRAL+ AGAINST INITIAL LABELED SIZE

Figure 15 shows the performance comparison with respect to the number of initial labeled samples
on MNIST, CIFAR10, and CIFAR100 datasets. There is no significant performance difference ac-
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(a) (b) (c)

(d) (e) (f)

Figure 14: The test accuracy with respect to the number of labeled samples from initial to final step
for all experimental settings.

(a) (b) (c)

Figure 15: The performance comparison with respect to the number of initial labeled samples on
MNIST (a), CIFAR10 (b), and CIFAR100 (c) datasets. The proposed algorithm is robust against to
the number of initial labeled samples and performs well even when the initial size is much smaller.

cording to the number of initial labeled samples. The proposed algorithm is robust against to the
number of initial labeled samples and performs well even when the initial size is much smaller.

M FRAMEWORK OF DRAL+

Figure 16 shows the framework of the proposed algorithm.

23



Under review as a conference paper at ICLR 2022

Figure 16: The framework of the proposed algorithm.
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