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Figure 1. Novel Object Motion Generation. Given a 4D scene and an edited first frame with a new object (left), we generate plausible
motion for the object in subsequent frames (right).

Abstract

Recent advances in dynamic scene reconstruction using Neu-
ral Radiance Fields (NeRFs) and Gaussian Splatting (GS)
have created a demand for effective 4D editing tools. While
existing methods primarily focus on appearance alterations
or object removal, the challenge of adding objects to 4D
scenes, which requires understanding of objects’ interac-
tions with the original scene, remains largely unexplored.
We present a novel approach to address this gap, focusing
on generating plausible motion for newly added objects in
4D scenes. Our key finding is that 2D image-based diffu-
sion models carry strong scene interaction priors that can
be extracted from a static scene-object frame and propa-
gated to novel frames of a dynamic 3D scene. Concretely,
our method takes an object and its initial placement in a
single frame as input, aiming to generate its position and
orientation throughout the entire sequence. We first capture
the object’s appearance, shape, and interaction with the
original scene from the static edited frame via fine-tuning
a 2D diffusion-based editor. Building on this, we propose
an iterative algorithm that leverages the fine-tuned diffusion
model to generate frame-to-frame motion for the new object.
We show that our method significantly improves 4D motion
generation for the new objects compared to prior works on
the diverse D-NeRF scene dataset.

1. Introduction

Dynamic view synthesis techniques aim to reconstruct
dynamic 3D scenes from captured videos, enabling free-
viewpoint and immersive virtual playback. By synthesizing
photorealistic novel-view images through rendering, Neural
Radiance Fields (NeRF) [35], Gaussian Splatting [26], and

their variants have become the leading representations for
3D [3, 4, 19, 69] and 4D dynamic scenes [27, 32, 41, 56]. Be-
yond mere scene representation, there is a growing interest in
creating new, varied scenes derived from original scenes via
scene editing. The ability to edit these 3D and 4D represen-
tations has significant real-world applications, particularly in
the gaming industry, virtual reality, and robotics. Numerous
studies have addressed different 3D and 4D scene editing
challenges, such as adding objects [10, 16, 30, 36, 45, 61],
removing objects, or altering appearances [20].

In 3D, many works allow adding geometry to the original
scene [10, 16, 30, 36, 45, 61], but the problem of generat-
ing motion for the new object to match the original scene
motion is not well-studied. For 4D scenes, previous works
have learned to predict an object and its six degree of free-
dom (6DoF) pose given the input of scanned human point
clouds [40]. They demonstrated that they can generate 4D
motion of the object when the input is a sequence of point
clouds. However, their work is limited to human-object inter-
action and the type of objects is constrained by the training
data. For adding objects to generic 4D scenes, understanding
how the added object interacts with the scene to generate
motion is crucial. Our work pioneers in this area.

The object-adding problem in 4D scenes can be broken
down into two main stages: adding the object to a static
frame and generating the motion for the added object. While
many works address the former [10, 16, 30, 36, 45, 61], there
is a lack of research on the latter. One might attempt to use
scene flow and geometry from the original 4D scene to move
the object. However, as shown in Fig. 2, even high-quality
4D representations like 4DGS [56] lack reliable scene flow,
and tracking methods like Dynamic3DGS [32] may not work
out of the box. In this work, we focus on the challenge of
generating motion for a new object in a given 4D scene. Our
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key finding is that 2D image-based diffusion models carry
strong scene interaction priors. We show how to extract them
from a static scene-object frame and propagate them to novel
frames of a dynamic 3D scene.
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Figure 2. Challenge. (Left) Most 4D representations achieve high-
quality novel view reconstruction but fail to ensure accurate scene
flow or surface geometry, leading to noisy, inconsistent point clouds.
We illustrate a naive approach where a soldier’s scene flow (blue)
moves a novel object (green, a boxing glove) by attaching it to
nearby points (red), resulting in incorrect motion and highlighting
the need for our scene flow–agnostic approach. (Right) While dense
3D tracking methods exist, they require costly multi-view setups,
do not work out of the box, and do not guarantee good novel view
reconstruction.

At a high level, we first aim to learn the new object’s
shape, appearance and interaction from the static edited
scene via a pretrained diffusion model. Using the learned
information and the 2D priors from the diffusion model,
we then predict the object’s six degrees of freedom (6DoF)
information in subsequent frames. An illustration of our
approach is shown in Fig. 3.

Two-Stages Motion Generation: 2D generative diffu-
sion models have a strong understanding of complex multi-
object interactions [15, 18, 62] and have been adopted for
2D image manipulation [7, 47, 67, 68]. However, while 2D
diffusion models can theoretically generate object motion,
maintaining consistent appearance and interaction across
frames is challenging, as demonstrated in our experiments.
To address this, our Stage 1 fine-tunes a 2D diffusion-based
editor to capture the object’s shape, appearance, and inter-
actions from a single static edited frame (Fig. 3, Stage 1).
The fine-tuned editor then generates consistent 2D images
of the object interacting with the scene in subsequent frames.
In Stage 2 (Fig. 3, Stage 2), we lift these 2D edits to 4D by:
1) initializing the object’s pose in each frame based on its
pose in the previous frame, and 2) refining the pose through
iterative 4D object lifting and regenerating 2D edits, similar
to Instruct-NeRF2NeRF[20]. Our method significantly im-
proves 4D motion generation for new objects compared to
prior works, as demonstrated on the diverse D-NeRF scene
dataset. Our contributions can be summarized as:

• We find that 2D image diffusion models carry strong scene
interaction priors useful for object motion generation.

• We show how to leverage 2D diffusion interaction priors
from a static scene-object frame and lift their 2D object
generations to 4D via an iterative reconstruction.

• Our experiments demonstrate that our scene flow-agnostic
generates more faithful motion compared to prior motion
generation pipelines.

2. Related Work

2.1. Dynamic Scene Reconstruction and Editing
To expand the success of NeRF into the temporal domain, re-
searchers have pursued the strategy of modeling scenes in 4D
domain with time dimension [29, 38, 39, 41, 57]. Some ap-
proaches to include time are, DyNeRF [29] using keyframe-
based training, VideoNeRF [57] using a spatiotemporal irra-
diance field from a single video as well as [13, 38, 39, 41, 53]
which introduce scene deformations for multi-view and
monocular videos by, e.g., a separate MLP. 4D Gaussian
Splatting (4DGS) [32, 56], a successor to 3D Gaussian Splat-
ting (GS) [27], extends GS for dynamic scenes by using a de-
formation field to model Gaussian motions. These methods
enable fast reconstruction and real-time novel view synthesis
for dynamic scenes.

Extending the success in 3D editing, there is grow-
ing interest in developing algorithms for 4D editing. 4D-
editor [23] removes objects by propagating input segmenta-
tion masks throughout the 4D representation and replacing
the segmented area with content from a pre-trained inpaint-
ing model. Control4D [46] learns a 4D GAN [11] from the
inconsistent outputs of ControlNet [67] to avoid inconsis-
tent supervision signals for 4D portrait editing. AvatarStu-
dio [34] introduces view-and-time-aware Distillation Sam-
pling to distill information from two different diffusion mod-
els. Most diffusion-based 4D editing methods focus on
human avatars [34, 46] or are limited to appearance changes
[22, 34, 37, 46]. Instruct 4D-to-4D [37] and CTRL-D [22]
use I-P2P[7] for editing but primarily target appearance mod-
ifications. In contrast, our approach enables both object
addition and motion generation. Concurrently, CTRL-D
also fine-tunes I-P2P for editing but remains focused on ap-
pearance changes. There has been no research specifically
addressing the incorporation of new objects into generic 4D
representations.

2.2. Generation and Reconstruction of Interactions
Several works focus on the task of human-object interac-
tion reconstruction from different kinds of data sources
like single image [58, 60, 66], video [12, 49, 59], and
multi-view capturing [5, 24, 50], and synthetization of
them as well [8, 21, 33, 52, 54, 70]. Other line of
works focus on 3D reconstruction of hand-object interac-
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Figure 3. Approach: In Stage 1, we start with the first frame (see Input, Frame 1) in our 4D sequence and an edited version including a new
object (Input, Edited Frame 1). We create a Paired Multi-view Dataset of rendered images before and after the edit ( Stage 1 , top). Then,
we fine-tune a LDM (latent diffusion model) using this dataset to capture the scene-object interaction. This enables the LDM to accurately
place the object into the 2D rendered image of the original scene in any frame. In Stage 2 , we generate the object’s pose frame by frame.
Fist, we inititialze the objects 6DoF pose at frame f by it’s pose in frame f-1 ( Stage 2 , bottom box). Using the fine-tuned editor, we create
pseudo GT images for frame f showing the object interacting with the scene for each frame f ( Stage 2 , top box). Then we optimize the
current pose by minimizing the photometric loss (right) between the rendered image and the corresponding pseudo ground truth. Red arrows
indicate the backward gradient direction in this process.

tion [6, 9, 25, 51, 72, 73]. For more general multi-object
interaction, Dhamo et al. [14] use an input scene graph
where objects are represented as nodes and their relationships
as edges to synthesize a set of bounding boxes and object
shapes placed at the right arrangement. GraphDreamer [17]
generates compositional 3D NeRF scenes from scene graphs
by optimizing an SDS loss from a text-to-image diffusion
model. Petrov et al. [40] learn from a dataset of human-
object interactions to predict an object and its six degrees
of freedom (6DoF) pose from scanned human point clouds.
However, their work lacks rendering capabilities, is limited
to human-object interactions, and is constrained by the ob-
jects in their training data. While prior work focuses on
human-object interactions or 3D, our approach targets object
interactions in general 4D scenes.

2.3. 4D Scene Generation
Video diffusion models have been explored as priors for
4D generation [48]. More recently, image, multiview, and
video diffusion models are jointly used as priors for 4D
generation [2, 31, 43, 63–65, 71]. Ren et al. and Yin et al.
[43, 63] focus on single image to 4D. Most similar to our
works are Bahmani et al. and Ling et al. [2, 31] which first
synthesize a static 3D scene and then animate the 3D scene
with an SDS loss from text-to-video diffusion models. On
the other hand, our task has a 4D scene given, and a key
challenge is attending to it and understanding the interaction
of the novel object with it. Since their model generates
images from a text prompt instead of being conditioned on
an unedited image as our work, and since video diffusion is

hard to fine-tune on a single frame edit, we find their methods
fail to produce motion in line with the desired scene.

3. Method
In this section, we introduce the proposed method to generate
plausible motion of a new object in a dynamic scene. We
begin by introducing the given task in Sec. 3.1, before giving
an overview of our method in Sec. 3.2. Then, we provide
details of the individual stages of our pipeline in Sec. 3.3
and Sec. 3.4.

3.1. Motion Generation Task
We formulate a novel motion generation task. As input we
assume N frames of a 4D scene representation, denoted
as G0,G1, ...,GN and a 3D representation O of an object
that is posed within the coordinate space of G0 by a 6-DOF
pose T0 ∈ SE(3). The goal of our method is to infer poses
T1, ...,TN ∈ SE(3) that determine plausible motion of the
object over the course of the sequence.

Scene Representations. The given formulation is agnostic
to the underlying dynamic scene and object representations,
requiring only that they be jointly renderable via a differen-
tiable function Rv, i.e. I = Rv(G,T ◦ O), given arbitrary
camera pose v, and that T can be optimized via reconstruc-
tion error gradients. Unlike many existing methods, our
approach does not rely on accurate scene flow. While we
illustrate our method using 3D Gaussian Splatting [27] for
the object [27] for the object O and 4DGS [56] it is gener-



alizable to other representations such as NeRF. Optimization
is performed independently for each scene-object pair.

3.2. 4D Object-Mover Overview
To generate motion for a new 3D object within a given 4D
scene, two key steps are required: 1) understanding the in-
teraction of the object with the scene, and 2) generating
novel motion based on this interaction. Thus, we present
a two stage approach. Stage 1 (cf. Sec. 3.3) extracts infor-
mation about the interaction information between the object
and the scene by finetuning a pre-trained latent diffusion
model [7] on pairs of original and edited renderings. Stage
2 (cf. Sec. 3.4) uses the extracted information and the pre-
trained models priors to sequentially generate the motion
for the object frame by frame. Specifically, the fine-tuned
diffusion model generates 2D images including novel object
poses, which are lifted to 4D by optimizing the object poses
over the sequence via a photometric loss.

3.3. Stage 1 - Extracting Object Interaction
The first stage of our pipeline utilizes the given first frame
G0 and the given object O with pose T0 ∈ SE(3) to learn
the object-scene interaction via fine-tuning. We fine-tune an
image-to-image latent diffusion model to map from views
of the original scene to edited ones. In the following, we
describe our fine-tuning dataset and strategy.
Data Preparation. The dataset consists of paired images
captured from the given representation at frame 0, with and
without the object. First, we generate a set V of 360◦ cameras
positioned around the scene with azimuth angles ranging
from 0 to 2π. Then, we capture our fine-tuning dataset
D = {(Rv(G0), Rv(G0,T ◦ O))}v∈V by rendering original
and edited scenes at frame 0 for all v ∈ V .
Latent Diffusion Model (LDM). Our goal is to use a diffu-
sion model to generate 2D images of an object interacting
with the scene in subsequent frames. We achieve this by
fine-tuning the model to extract the object’s shape, pose,
and interaction from the edited static frame. This fine-tuning
shifts the model’s distribution, enabling accurate synthesis of
2D images with precise placement and realistic motion. We
use Instruct-Pix2Pix (I-P2P) [7], a diffusion-based method
specialized for image editing. Conditioned on an RGB image
cI and a text-based editing instruction cT which is processed
by text encoder ET (cT ), the model takes a noised image (or
pure noise) zt as input and aims to produce z0 - edited ver-
sion of cI based on cT . In our method, we use the unedited
scene’s rendered images for cI , the noised rendered images
of the edited scene as zt, and optimize cT . Formally, the
diffusion model predicts the noise in zt, using the denoising
U-Net ϵθ as follows:

ϵ̂ = ϵθ(zt; t, cI , ET (cT )) (1)

This noise prediction ϵ̂ can be used to derive ẑ0, the estimate
of the edited image. The denoising process can be queried

with a noisy image zt at any timestep t ∈ [0, T ], with larger
t (more noise) produce estimates of ẑ0 with more variance,
and smaller t values will yield lower variance estimates that
adhere more closely to the visible image signal in zt.
Fine-tuning. For an image x = Rv(G0,T ◦ O), the dif-
fusion process adds noise to the encoded latent z0 = E(x)
producing a noisy latent zt. We optimize the denoising net-
work ϵθ, the text encoder ET () and the prompt cT . Similar to
optimizing text-to-image generative diffusion models [44],
we minimize the following latent diffusion reconstruction
objective:
LLDM = EE(x),cI ,ϵ,t

[
∥ϵ− ϵθ(zt, t, cI , ET (cT )))∥22

]
(2)

where ϵ ∼ N (0, 1) is the true noise added to the latent
representation and cI = Rv(G0) is the conditioning image.

3.4. Stage 2 - Motion Generation
Our goal is to determine the 6DoF pose of the object for
each frame. We achieve this by generating 2D pseudo
ground truth images of the object interacting with the scene
in subsequent frames using the fine-tuned Instruct-Pix2Pix
model from Stage 1 (see Fig. 3, Stage 2). The object’s
motion generation is reformulated as an iterative reconstruc-
tion problem, optimizing each frame’s pose by minimizing
the photometric loss between the rendered image and the
pseudo ground truth. This process is iterative, with each
frame’s pose initialized by the optimized pose from the
previous frame. Additionally, we use an iterative dataset
update method to regularly update the pseudo ground truth
images to stabilize the optimization task.

Iterative Generation: To generate the object’s pose
for a frame, we first create a set of 2D pseudo ground
truth images of the object interacting with the scene in
that frame. Formally, for a given frame f , we generate
the pseudo ground truth set Df = {Iv}v∈V , where
Iv = Ut(Rv(Gf ,Tf ◦ O)) is the output image from the
fine-tuned diffusion editor U , obtained by denoising the
noised version of the rendered image Rv(Gf ,Tf ◦ O) at
noise level t. The rendering of the scene without the object,
Rv(Gf ), is used as the conditioning image.

Next we reconstruct the the object pose for frame f using
the generated pseudo ground truth Df . We initialize the cur-
rent pose with the previous pose Tf−1 and find the optimal
Tf by solving the following optimization problem:

Tf = argmin
T̂f

∑
v∈V

[
SSIM(Rv(Gf , T̂f ◦ O), Iv)

+ ∥Rv(Gf , T̂f ◦ O)− Iv)∥2
]
,

(3)

where SSIM represents the structural similarity loss [55].

Iterative Dataset Update. Since the 2D pseudo



ground truth images lack temporal and 3D consistency,
optimizing with fully denoised images can cause the object
to drift, especially when the target pose is far from the
current one due to fast motion. To address this, similar to
I-N2N [20], we use images generated by denoising noised
versions of the rendered images at varying noise levels,
which provide intermediate guidance toward the target pose.
We iteratively replace 2D images in the training dataset with
those generated by our finetuned LDM, where the noise level
determines whether the edited image resembles the current
rendering or the input prompt. This process gradually aligns
the 3D representation with the LDM’s distribution and
supports our 6DoF reconstruction task by offering small
2D corrections, making pose adjustment easier. Formally,
every L = 10 iterations, we replace a pseudo ground truth
image Iv ∈ Df with Iv ← Ut(Rv(Gf ,Tf ◦ O)), where t is
uniformly sampled from [tmin, tmax].
Post-processing. Since we use a 2D diffusion model without
temporal information, each frame’s pseudo ground truth im-
ages are not temporally consistent with the previous frames.
Therefore, the optimized object motion from the generative
motion generation will likely be non-smooth. To address
this, apply a smoothing technique to the resulted squence
T1, ...,TN from iterative generation process.

4. Experiments
Dataset Preparation. We use the 4D sequences from the D-
NeRF dataset [41], specifically using the 4D reconstructions
from [56] For each scene, we sample N frames from the
4D sequence and treat them as independent reconstructions.
To edit each 4D scene, we use publicly available 3D assets
to obtain the desired object mesh. We create a multiview
dataset of the 3D object in Blender, apply Gaussian Splatting
for reconstruction, and manually place the object in the first
frame of the 4D scene. Implementation details are provided
in the supplementary material.
Processing Time. Each scene is fine-tuned with I-P2P for
2400 iterations in Stage 1, followed by 1000 iterations per
frame in Stage 2 (32 frames per scene). On average, the
entire process takes 4 hours per scene (2.5 hours for Stage 1,
1.5 hours for Stage 2).
Evaluation Metrics. Below we define the metrics we used
for evaluating our method:
Directional Clip Similarity (D-CLIP). The Clip model has
a strong visual understanding [42]. We measure the mean
cosine similarity between two directions of change in the
CLIP embedding: from the original to the edited first frame,
and from before to after the edit in other frames. Formally,
the directional Clip similarity [28] is defined as

D-CLIP =
1

|V ||F |
∑

v∈V,f∈F

cos sim(∆v
f ,∆

v
0), (4)

where ∆v
f = Clip(Rv(Gf ,Tf ◦O)−Clip(Rv(Gf )). V and

F represent the sets of viewpoints and frames, respectively,
and | · | denotes the cardinality of a set.
Chamfer Distance (CD). For each scene we evaluate in this
section, we manually prepare a ground truth editing for the
sequences’ middle and end frame. We measure the mean
Chamfer distance (CD) between the predicted points of the
object and the ground truth mesh vertices.

4.1. Comparison with Baselines

We compare our method with the following baselines:
Instruct-NeRF2NeRF (I-N2N) [20]. I-N2N is a method
for editing static 3D NeRF scenes using text prompts. It
iteratively updates the multiview dataset with edited images
from the text-conditioned diffusion editor I-P2P, which is
then used to reoptimize the NeRF representation. We ex-
tend I-N2N to 4D, optimizing the object’s poses across all
views and frames simultaneously. Unlike the original I-N2N,
which modifies scene color and shape, this baseline focuses
on the per-frame 6DoF transformation of the object.
Text-to-4D [1, 31]: These works generate 4D scenes from
text prompts in two stages: first, a 3D-aware text-to-image
diffusion model creates a static 3D scene, then SDS loss
from a text-to-video model animates it by guiding a defor-
mation network. Given a static 3D scene with a new object,
we adopt this second stage for animation. We explore two
variations: T2V-SDS-A, which directly optimizes the per-
frame 6DoF object pose using SDS loss, and T2V-SDS-B,
which instead models per-point motion with a deformation
network, following the original approach.
Gluing. (GLUE) We attach the object to the scene and use
the scene’s 3D scene flow from 4DGS [56] to move the
object. Specifically, for each object point that is in contact
with the scene in frame 0 (i.e., within a 3 cm distance from a
scene point), we calculate its distance to the nearest scene
point. We then adjust the object’s pose in later frames to
maintain this distance.

Result Analysis. We present our results in Fig. 5
and compare our generated object poses against the
baselines and the ground truth in Fig. 4 and Tab. 1. Since we
focus on motion, results are best seen in the supplementary
video. While baselines with T2V priors can sometimes
generate reasonable motions ( Fig. 4, T2V-SDS-B, Soldier +
Glove), it often fails to generate motion that is consistent
with the original scene’s motion or distorting the object
shape to match the diffusion model’s distribution condition-
ing on the input prompt. This is likely because the original
scene’s motion and the object fall outside the distribution
of the T2V diffusion model. Similarly, I-P2P cannot add
the objects to the 2D rendered images in new frames
and therefore fails on the motion generation task. While
4DGS [56] achieves impressive 4D scene reconstruction
and novel view synthesis results, its resulting scene flows



Bulldozer + Cubes T-Rex + Wizard hat Soldier + Glove Builder + Bucket Builder + Top hat Mutant + Axe Avg.
Method CD↓ D-CLIP↑ CD↓ D-CLIP↑ CD↓ D-CLIP↑ CD↓ D-CLIP↑ CD↓ D-CLIP↑ CD↓ D-CLIP↑ CD↓ D-CLIP↑

T2V-A 70.3 0.36 13.0 0.40 43.8 0.30 67.2 0.26 103.1 0.29 63.4 0.45 60.1 0.34
T2V-B 362.8 0.23 14.8 0.22 68.9 0.25 106.2 -0.05 250.1 0.07 61.8 0.44 144.1 0.19
GLUE 14.5 0.41 14.4 0.35 34.0 0.24 5.5 0.28 8.8 0.64 9.9 0.44 14.5 0.39
I-N2N 70.1 0.43 16.5 0.44 59.0 0.26 71.2 0.22 93.8 0.21 47.1 0.43 59.61 0.33
Ours 3.1 0.46 6.7 0.45 7.2 0.37 3.7 0.27 8.3 0.67 9.1 0.42 6.35 0.44

Table 1. Qualitative Results. We evaluate our method against the baselines and ground truth using Chamfer Distance (CD) in cm and
Directional CLIP similarity (D-Clip). Our method significantly outperforms the baseline in both metrics.
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Figure 4. Qualitative Comparison. Illustration showing our results compared to ground truth and other baselines. While we are able to
generate consistent interaction with the ground truth, other baselines failed to produce plausible motions.

can be flawed, as reconstructing 3D scene flow is not its
primary objective. As a result, the gluing baseline fails to
produce reasonable object motion (eg. Fig 4, Bulldozer +
Cubes). Our method, on the other hand, does not require
3D scene flow, can generate plausible motion for the new
object in a 4D scene, showing consistent interaction between
the original scene and the object, as well as maintaining
the interaction from the first edited frame. Similarly,
quantitative results significantly outperform baselines in
both Chamfer distance and D-Clip metrics (Tab. 1).

4.2. Ablation Study

In this section, we discuss the effectiveness of the design of
the two-stage motion generation system:
Without stage 1 (w/o stage 1). In this setting, we use the
pretrained default I-P2P model with a manual text instruction
describing the scene and interaction, instead of fine-tuning
I-P2P in Stage 1.
Without iterative generation (w/o IG). Intead of initializing
the objects pose from a fully optimized previous frame, in
this setting, we jointly optimize the object’s pose for all



Original 1st Frame
4D edited scene

Figure 5. Qualitative Results. Our method can effectively generates plausible motions for various objects in D-NeRF scenes.

frames at once. We initialize the pose as given in the first
frame. We use the fine-tuned I-P2P from the first stage with
the dataset update scheme to generate 2D edited images for
pose reconstruction.

Without iterative dataset update (w/o IDU). Our approach
generates a pseudo ground truth image dataset using the fine-
tuned diffusion model before the optimization of a frame
and continuously updates the dataset during the optimization
process. In this ablation, we instead only generate the pseudo
ground truth once before optimization and start generation
from full noise.

We find that without fine-tunning, I-P2P failed to generate
images of the scene interacting with the new object (Fig. 7).
Hence, the generated motion is implausible. Without the
iterative motion generation scheme (w/o IG), the objects fail
to follow the motion of the scene (Fig. 6, 3rd row). This

full w/o stage 1 w/o IG w/o IDU
Chamfer distance (cm)

Bulldozer + Cubes 3.1 14.6 64.3 2.7
T-Rex + Wizard hat 6.7 26.0 16.6 15.8
Soldier + Glove 7.2 17.1 53.5 6.1
Builder + Bucket 3.7 63.9 63.5 9.0
Builder + Top hat 8.3 27.4 90.8 6.8
Mutant + Axe 9.1 51.1 51.7 31.1

Mean 6.3 33.3 56.7 11.91

Table 2. Ablation results illustrating the importance of each com-
ponent of our two-stage system. The evaluation metric is the mean
Chamfer distance between the object’s point cloud and the ground
truth mesh’s vertices in the middle frame and the last frame. Lower
values indicate better results.
occurs because when the desired position of the object in a
frame is too far from the current position (e.g. no overlap be-
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Figure 6. Ablation Study: Qualitative results showing the impotance of our proposed two-stage pipeline.

Conditioning Image Fine-tuned I-P2P Original I-P2P

Figure 7. Comparison between outputs from fined-tuned I-P2P (2nd
column) and original I-P2P (3rd column). We edit the conditioning
image (first row) on a novel frame of each scene. For the original
I-P2P we use the manual prompts (from top to bottom order):

”A dinosaur fossil wearing a wizard hat”, ”A humanoid mutant
holding an axe”, ”A lego bulldozer raising red blue green lego
blocks”. Clearly, I-P2P, without fine-tunning, cannot generate
desirable results.

tween target and current pose), photometric losses struggle
to provide correct gradients. Without iterative dataset update
(w/o IDU), some scenes can generate plausible motion, but
the object may drift into non-optimal positions, leading to in-
accurate motion in later frames (Fig. 6, 4th row). Generating

2D edits with full noise can produce a scene with the correct
object’s pose, but the desired pose might be far from the cur-
rent one. The iterative dataset update scheme generates 2D
edits that place the object between the desirable position and
the current position, allowing for gradual optimization of the
3D representation with the LDM’s distribution. Evaluation
against the ground truth suggests that all components are
essential for our method (Tab. 2).

5. Conclusion

We present a scene flow–agnostic approach to a novel 4D
editing problem: generating motion for a new object in
dynamic 4D scenes. Given a 4D scene with an edited first
frame containing a newly inserted object, we aim to generate
plausible motion for that object. Our key finding is that 2D
image-based diffusion models carry strong scene interaction
priors that can be extracted from a static scene-object frame
and propagated to novel frames of a dynamic 3D scene.

Based on this observation, we proposed a two-stage
method: in the first stage, we learn the new object’s shape,
appearance, and interaction with the original scene by fine-
tuning a diffusion-based editor. In the second stage, we
iteratively generate the 6DoF motion from one frame to the
next by lifting the 2D edited images from the fine-tuned
editor to 4d. We demonstrate that our method significantly
improves 4D motion generation for new objects compared
to prior works on the diverse D-NeRF scene dataset.

We believe our findings can inspire future works in the
area of 4D motion generation: distilling motion, and object
interaction knowledge into 3D, from models pre-trained on
large corpora of 2D images.
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