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Abstract
Many applications in machine learning and
decision-making rely on procedures to aggregate
human preferences. In such tasks, individuals
express ordinal preferences over a set of items
through votes, ratings, or pairwise comparisons.
We then summarize their collective preferences
as a ranking. Standard methods for preference
aggregation are designed to return rankings that
arbitrate individual disagreements in ways that
are faithful and fair. In this work, we introduce a
paradigm for selective aggregation, where we can
avoid the need to arbitrate dissent by abstaining
from comparison. We summarize collective pref-
erences as a selective ranking – i.e., a partial order
where we can only compare items where at least
100 · (1− τ)% of individuals agree. We develop
algorithms to build selective rankings that achieve
all possible trade-offs between comparability and
disagreement, and derive formal guarantees on
their safety and stability. We conduct an extensive
set of experiments on real-world datasets to bench-
mark our approach and demonstrate its function-
ality. Our results show selective aggregation can
promote transparency and robustness by revealing
disagreement and abstaining from arbitration.

1 Introduction
Many of our most important systems rely on procedures
where we elicit and aggregate human preferences. In such
systems, we ask a group of individuals to express ordinal
preferences over a set of items through votes, ratings, or
pairwise comparisons. We then use these data to order items
in a way that reflects the collective preferences. Over the
past century, we have applied this pattern to reap transforma-
tive benefits from collective intelligence – in elections [20],
search [26], and alignment [21].
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Standard methods for preference aggregation express col-
lective preferences as a ranking – i.e., a total order over n
items where we can determine the collective preference be-
tween items by comparing their positions. Rankings reflect
an approximate summary of collective preferences. This is
because it is impossible to define a coherent order when in-
dividuals disagree. This impossibility, which is enshrined in
foundational results such as Condorcet’s Paradox [20] and
Arrow’s Impossibility Theorem [9], has framed preference
aggregation as an exercise in arbitration. “In tasks where
individuals disagree, how can we summarize their collective
preferences in a way that is faithful and fair?”

Over the past few decades, we have developed countless
algorithms from this perspective [see 4, 75] to reap benefits
from collective intelligence in new use cases:

• Supporting Group Decisions – e.g., to fund grant propos-
als or hire employees [16, 76],

• Learning Preferences – e.g., to learn consumer prefer-
ences over products [17] or content [21].

• Communicating Consensus – e.g., to rank colleges [19]
or benchmark language models [61].

In many of these new use cases, however, we do not need a
total order. When we aggregate preferences to fund grant
proposals, a total order can lead to worse decisions as we
arbitrarily select the top k items on the list. When we
aggregate preferences to rank colleges, a total order can
strongly influence where students apply and how institu-
tions invest [see e.g., 43, 28, 27, 68]. When we aggregate
preferences to predict helpfulness [25], a total order can
lead us to overlook minority views by silently enshrining
the views of a slim majority.

In this work, we propose to address these challenges through
selective aggregation. In this paradigm, we express collec-
tive preferences as a tiered ranking – i.e., a partial order
where we are only allowed to compare items in different
tiers. We view tiers as a simple solution to avoid the impossi-
bility of arbitration: given a pair of items where individuals
express conflicting preferences, we can place them in the
same tier to abstain from comparison. We capitalize on this
structure to develop new representation for collective prefer-
ences that can reveal disagreement, and new algorithms that
can allow us to control it.
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Fig. 1. Comparison of collective preferences for a task where p = 5 users express their ordinal preferences over n = 4 items as a
ranking with ties. Standard methods represent the collective preferences of all users as a ranking – i.e., a total order over n items. The
resulting structure orders items in a way that minimizes disagreement but does not reveal its existence or severity. In comparison, selective
aggregation represent the collective preferences as a selective ranking – i.e., a partial order with m ≤ n tiers where we can only compare
items in different tiers, and guaranteed that any such comparison will overrule at most 100τ% of users. The resulting structure reveals
disagreement through its tiers and dissent parameter τ ∈ [0, 0.5). Setting τ = 0 reveals that all users unanimously prefer {A,B} to
{C,D}. Setting τ = 2

5
shows that we can recover a total order when we are willing to overrule 40% of users.

Our main contributions include:

1. We introduce a paradigm for selective preference aggre-
gation in which we summarize collective preferences as
a selective ranking – i.e., a tiered ranking where each
comparison will align with the collective preferences of
at least 100(1− τ)% of users.

2. We develop algorithms to construct all possible selective
rankings for a preference aggregation task. Our algo-
rithms are fast, easy to implement, and guaranteed to
behave in ways that are safe and predictable.

3. We conduct a comprehensive empirical study of pref-
erences aggregation in modern use cases with diverse
preference data. Our results show how selective rankings
can improve transparency and robustness compared to
existing approaches.

4. We demonstrate how selective aggregation can learn from
subjective annotations through a case study in toxicity
detection. Our results show our machinery can improve
performance and align predictions with a plurality of
users.

5. We provide a Python library for selective preference ag-
gregation on GitHub.

Related Work

Our work is motivated by a growing set of applications
where we aggregate conflicting preferences. In machine
learning, such issues arise in tasks such as data annota-
tion [7, 53, 29] and alignment [62, 21, 24] as a result of
ambiguity, subjectivity, or lack of expertise [57, 62, 77]. In
medicine, for example, conflicting annotations reflect un-

certainty regarding ground truth [see e.g., 71, 65, 55, 51].
In content moderation, conflicting annotations reflect differ-
ences in opinion [39, 34].

Our work is related to an extensive stream of work in social
choice [45]. This body of work develops mathematical
foundations for preference aggregation by defining salient
voting rules and characterizing their properties [see e.g.,
14, 49, for a list]. Although much of the effort is driven by
the impossibility of reconciling individual preferences [see
e.g., 9, 58], few works mention that we could abstain from
arbitration by representing collective preferences as a partial
order. In effect, abstention is not a viable option in many of
the applications that motivate work in this area. In voting,
for example, aggregating ballots into a partial order can lead
to elections that fail to identify a single winner [50].

On a technical front, our work is related to a stream of re-
search on rank aggregation [13, 26, 36, 3]. Although most
work focuses on rankings that represent collective prefer-
ences as a total order, some focus on coarser representations
such as bucket orderings [see e.g., 2, 6, 33, and references
therein]. For example, Achab et al. [2] view bucket order-
ings as a low-dimensional total order and characterize their
potential for recovery. Andrieu et al. [6] view bucket order-
ings as a vehicle to efficiently combine multiple rankings. In
general, these differences in motivation lead to differences
in algorithm design and interpretation. For example, items
that we would consider “equivalent” in a bucket ordering
would be “incomparable” in a tiered ranking.
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2 Framework
We consider a standard preference aggregation task where
we wish to order n items in a way that reflects the collective
preferences of p users. We start with a dataset where each
instance πk

i,j represents the pairwise preference of a user
k ∈ [p] := {1, . . . , p} between a pair of items i, j ∈ [n]:

πk
i,j =


1 if user k strictly prefers i to j ⇔ i

k
≻ j

0 if user k is indifferent ⇔ i
k∼ j

−1 if user k strictly prefers j to i⇔ i
k
≺ j

Pairwise preferences can represent a wide range of ordi-
nal preferences, including labels, ratings, and rankings. In
practice, we can convert all of these formats to pairwise pref-
erences as described in Appendix A.2. In doing so, we can
avoid restrictive assumptions on elicitation. For example,
users can state that items are equivalent by setting πk

i,j = 0,
or express preferences that are intransitive. In what follows,
we assume that datasets contain all pairwise preferences
from all users for clarity. We describe how to relax this as-
sumption in Section 4, and work with datasets with missing
preferences in Section 5.

Collective Preferences as Partial Orders Standard ap-
proaches express collective preferences as a ranking – i.e.,
a total order over n items where we can compare any pair
of items. We consider an alternative approach in which we
express collective preferences as a tiered ranking:

Definition 2.1. A tiered ranking T is a partial ordering of n
items into m tiers T := (T1, . . . , Tm) such that ∪ml=1Tl =
[n] and Tl ∩ Tl′ = ∅ for all tiers Tl, Tl′ ∈ T .

Tiers provide a way to abstain from arbitration. Given a
pair of items where users disagree, we can place them in the
same tier and “agree to disagree.” Given a tiered ranking, we
only make claims about collective preferences by comparing
items in different tiers. Formally, we denote the collective
preferences as:

πi,j(T ) :=


1 if i ∈ Tl, j ∈ Tl′ for l < l′,

−1 if i ∈ Tl, j ∈ Tl′ for l > l′,

⊥ if i, j ∈ Tl for any l

Given tiered ranking T , we say that a pairwise comparison
between items i, j is valid if πi,j(T ) ̸= ⊥. We refer to a
valid pairwise comparison as a selective comparison.

Selective Aggregation Given a dataset of pairwise prefer-
ences over n items from p users, a selective ranking Sτ is
a partial order that maximizes the number of comparisons
that align with the preferences of at least 1− τ% of users.

We can express Sτ as the optimal solution to an optimization
problem over the space of all tiered rankings T:

max
T∈T

Comparisons(T )

s.t. Disagreements(T ) ≤ τp
(SPAτ )

Here, the objective maximizes the number of valid compar-
isons in a tiered ranking T

Comparisons(T ) :=
∑

i,j∈[n]

I [πi,j(T ) ̸= ⊥]

The constraints restrict the fraction of individual preferences
that can be contradicted by any valid comparison in T

Disagreements(T ) := max
i,j∈[n]

∑
k∈[p]

I
[
πi,j(T ) = 1, πk

i,j ̸= 1
]

The dissent parameter τ limits the fraction of individual
preferences that can be violated by any selective comparison.
Given a selective ranking Sτ that places item i in a tier above
item j, at most 100 · τ% of users may have stated i ̸≻ j.

We restrict τ ∈ [0, 0.5) to guarantee that selective ranking
Sτ aligns with a majority of users, and is unique (see Ap-
pendix B for a proof). In this regime, we can set τ to trade
off coverage for alignment as shown in Fig. 2. Setting τ = 0
returns a selective ranking that reflects unanimity by show-
ing all comparisons on which all users agree. Setting τ just
shy of 0.5 reflects a selective ranking that maximizes tiers
without overruling a majority of users. The trade-off is anal-
ogous to the trade-off in selective classification [32, 30, 40]:
we output a partial order (selective classifier) that sacrifices
“comparisons” (coverage) to reduce “disagreement” (error).
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Fig. 2. All possible selective rankings for the task in Fig. 1 where
we aggregate the preferences of p = 5 users over n = 4 items
{A,B,C,D}. We show the comparability and disagreement of
each solution to SPAτ on the left, and their selective rankings
on the right. Here, the solution for τ ∈ [0, 1

5
] reveals that all

users unanimously prefer {A,B} to {C,D}. The solution for
τ ∈ ( 1

5
, 2
5
], reveals that we can recover a single winner if we

are willing to make claims that overrule at most 1 user, while the
solution for τ ∈ ( 2

5
, 1
2
] reveals we can only recover a total order if

we are willing to overrule at most 2 users.
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3 Algorithms
We present an algorithm to construct selective rankings in
Algorithm 1 and depict its behavior in Fig. 4.

Algorithm 1 Selective Preference Aggregation

Input: {πk
i,j}i,j∈[n],k∈[p] preference dataset

Input: τ ∈ [0, 0.5) dissent parameter

1: wi,j ←
∑

k∈[p] I
[
πk
i,j ≥ 0

]
for all i, j ∈ [n]

2: VI ← [n]

3: AI ← {(i→ j) | wi,j ≥ τp}
4: VT ← ConnectedComponents(VI , AI)

5: AT ← {(T → T ′) | ∃i ∈ T, j ∈ T ′ : (i→ j) ∈ AI}
6: l1, . . . , l|T | ← TopologicalSort(VT , AT )

Output: Sτ ← (Tl1 , Tl2 , . . . , Tl|T |) τ -selective ranking

Algorithm 1 constructs a selective ranking from a dataset of
pairwise preferences and a dissent parameter τ ∈ [0, 0.5).
The procedure first builds a directed graph over items
(VI , AI). Here, each vertex corresponds to an item, and
each arc corresponds to a collective preference that we must
not contradict in a tiered ranking. Given (VI , AI), the pro-
cedure then builds a directed graph over tiers (VT , AT ). In
Line 4, it calls the ConnectedComponents routine to identify
the strongly connected components of (VI , AI) which be-
come the set of supervertices VT = {T1, . . . , T|VT |}, where
each supervertex contains items in the same tier. In Line 5,
it defines arcs between tiers – drawing an arc from T to
T ′ whose respective elements are connected by an arc in
AI . Given (VT , AT ), the procedure determines an ordering
among tiers by calling the TopologicalSort routine in Line 6.
In this case, the graph will admit a topological sort as it is a
directed acyclic graph.

Correctness We show that Algorithm 1 recovers the
unique optimal solution to SPAτ in Theorem B.2. The
result follows from the fact that the directed graph (VT , AT )
defines a tiered ranking that is both feasible and optimal
with respect to SPAτ . Specifically, the tiered ranking must
obey the disagreement constraint in SPAτ because we only
draw arcs for pairs of items where at least τp users disagree
in Line 3. The tiered ranking maximizes the objective of
SPAτ because the ConnectedComponents routine in Line 4
partitions vertices in a way that maximizes the number of
tiers, which subsequently maximizes the selective compar-
isons under the disagreement constraint.

Recovering All Selective Rankings Algorithm 1 is meant
to recover a selective ranking in settings where we can set
the value of τ a priori (e.g., τ = 0% to enforce unanimity).
In many applications, we may wish to set τ after seeing the
entire path of selective rankings. In a hiring task where we
only have the resources to hire 3 candidates, for example,

we can choose the smallest value of τ from the solution
path such that the top tier contains ≤ 3 candidates. In
cases where a top three does not exist, this can lead us to
hire fewer candidates or save resources. In a prediction
task where labels encode collective preferences, we could
aggregate annotations with a selective ranking and treat τ
as a hyperparameter to control overfitting.

In these situations, we can produce a solution path of se-
lective rankings– i.e., a finite set of selective rankings that
covers all possible solutions to SPAτ for τ ∈ [0, 1

2 ] [see
e.g., 66]. We observe that a finite solution path must exist as
each selective ranking is specified by the arcs in Line 3. In
practice, we can compute all selective rankings efficiently
by: (1) identifying a smaller subset of dissent parameters to
consider as per Proposition 3.1; and (2) re-using the graph
of strongly connected components across iterations.

Proposition 3.1. Given a dataset of pairwise preferencesD,
let SW denote a finite set of selective rankings for dissent
parameters in the set:

W =
{

w
p ≤

1
2 | w =

∑
k∈[p]

I
[
πk
i,j ≥ 0

]
for i, j ∈ [n]

}
∪ {0}

Let Sτ be a selective ranking for an arbitrary value of τ ∈
[0, 1

2 ). Then, SW contains a selective ranking Sτ ′ such that
Sτ ′ = Sτ for some dissent value τ ′ ≤ τ.

We describe this procedure in Algorithm 2. Both Algo-
rithms 1 and 2 run in time O(n2p) – i.e., they are linear
in the number of individual pairwise preferences elicited
(see Appendix B.4). As we show in Fig. 3, however, the
resulting approach can lead to an improvement in runtime.
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Fig. 3. Runtimes to produce all selective rankings for a synthetic
task with p = 10 users and n items described in Appendix B.
We show results for a naïve approach where we call Algorithm 1
for all possible dissent values, and a solution path algorithm in
Appendix B. All results reflect timings on a consumer-grade laptop
with 2.3 GhZ and 16 GB of RAM.
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Fig. 4. Graphical representations used to construct selective rankings for the preference aggregation task in Fig. 1. Given a dataset with
5 users and 4 items, we compute a set of weights wi,j =

∑
k∈[p] I

[
πk
i,j ≥ 0

]
in Line 1. Given a dissent parameter τ , we first build a

directed graph (VI , AI) over items by drawing arcs between aggregate preferences with weight wi,j ≥ τp. We then condense (VI , AI)
into a directed acyclic graph of supervertices (VT , AT ) by identifying its strongly connected components (shown in yellow). Here, the
selective rankings for τ = 0 and τ = 2

5
have 2 and 4 tiers, respectively.

4 Theoretical Guarantees
In this section, we present formal guarantees on the stability
and recovery guarantees of selective rankings.

On the Recovery of Condorcet Winners and Smith Sets
One of the primary use cases for preference aggregation is
to identify items that are collectively preferred to all others.
Consider, for example, an application where we aggregate
preferences to choose the most valuable player in a sports
league or a subset of “top” grant proposals to fund [11]. In
Theorem 4.1, we show that we can identify these items from
a solution path of selective rankings.

Theorem 4.1. Consider a preference aggregation task
where a majority of users prefer item i0 to all other items.
There exists a threshold value τ0 ∈ [0, 0.5) such that, for
every τ > τ0, every selective ranking Sτ will place i0 as
the sole item in its top tier.

Theorem 4.1 provides a formal recovery guarantee that en-
sures we recover a Condorcet winner or a Smith set [see e.g.,
63] when they exist. In practice, the result implies that we
can identify such “top items” by constructing and inspecting
a solution path of selective rankings.

In tasks where a majority of users prefers an item to all
others, the solution path will contain a selective ranking
whose top tier consists of a single item. In this case, we can
recover the “single winner” and report the threshold value
τ0 as a measure of consensus.

In tasks where such a majority does not exist, every selective
ranking Sτ for τ ∈ [0, 0.5) will include at least two items
in the top tier. In settings where we aggregate preferences
to identify a “single winner,” we can point to the solution
path as evidence that no such winner exists and use it as a
signal that further deliberation is required [see e.g., 56].

Stability with Respect to Missing Preferences Standard
methods can output rankings that change dramatically once
we elicit missing preferences [10, 35, 44]. In Proposi-
tion 4.2, we show that we can build a selective ranking that
will abstains from unstable comparisons by setting missing
preferences to πk

i,j = 0.

Proposition 4.2. Consider a preference aggregation task
where we are given a dataset with missing preferences Dinit.
Let Dtrue ⊇ Dinit be a complete dataset where we elicit
missing preferences, andDsafe ⊇ Dinit be a complete dataset
where we set missing preferences to πk

i,j = 0. Given τ ∈
[0, 1

2 ), let Ssafe
τ and Strue

τ denote selective rankings for Dsafe

and Dtrue. Then for any selective comparison πi,j(S
safe
τ ) ∈

{−1, 1}, we have:

πi,j(S
true
τ ) = πi,j(S

safe
τ ).

This means a selective ranking Ssafe
τ that we produce using

the imputed datasetDsafe will only include comparisons that
will hold on the full dataset.

Proposition 4.2 provides a simple way to ensure stability
when working with datasets where we are missing prefer-
ences from certain users for certain items. In such cases, we
can always build a S is “robust to missingness” in the sense
that it will abstain from comparisons that may be invalidated
once we elicit missing preferences.

Stability with Respect to New Items In Proposition 4.3,
we characterize the stability of selective aggregation as we
add a new item to our dataset.

Proposition 4.3. Consider a task where we start with a
dataset of all pairwise preferences from p users over n items,
which we then update to include all pairwise preferences
for a new n+1th item. For any τ ∈ [0, 1

2 ), let Sn
τ and Sn+1

τ

denote selective rankings over n items and n + 1 items,
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respectively. Then for any two items i, j ∈ [n], we have:

πi,j(S
n+1
τ ) ∈ {−1, 1}, πi,j(S

n
τ ) = πi,j(S

n+1
τ )

The result shows that adding a new item to a selective rank-
ing will either maintain each comparison or abstain. That is,
adding a new item can only collapse items that were in dif-
ferent tiers into a single tier. However, it cannot lead items
in the same tier to split. Nor can it lead items in different
tiers to invert their ordering.

On Setting the Dissent Parameter We can draw on the re-
sult in Proposition 4.2 to set the dissent parameter to ensure
that selective rankings admit comparisons that are robust to
missing or noisy preferences. By treating missing prefer-
ences as abstentions, we can build selective rankings that
will only admit claims would not be invalidated if we were
to elicit missing preferences or correct noisy preferences.
In a preference aggregation task where we are missing 5%
of preferences, we can set τ ≥ 0.05 to ensure that a se-
lective rankings will only support comparisons that would
remain valid if we were to elicit missing preferences. In a
task where where we elicit noisy preferences, we we can
set τ ≥ 0.05 to ensure that a selective ranking will only
support comparisons that would remain valid if we were to
to correct noisy preferences.

5 Experiments
In this section, we present experiments comparing our ap-
proach to standard methods in social choice and machine
learning. Our goals are twofold: (1) to discuss the properties
and behavior of selective aggregation on real-world datasets
from modern applications; and (2) to evaluate the stability of
selective rankings with respect to missing preferences and
adversarial responses. We include details in Appendix D,
and code to reproduce our results on GitHub.

Setup We work with 5 datasets from different domains
shown in Table 1. Each dataset encodes user preferences
over items as votes, ballots, ratings, or rankings. We process
each dataset to convert these data into pairwise comparisons
– allowing for ties. We then use the same processed dataset to
build rankings for our approach and 4 baseline approaches.
We construct a solution path of selective rankings for all
dissent values using Algorithm 2, and report solutions for 3
values of τ :

• SPA0, the solution for τ = 0. It captures a selective
ranking that reflects unanimous collective preferences.

• SPAmin, the solution for τmin > 0, i.e., the smallest dis-
sent value that yields a selective ranking with 2+ tiers.
It captures the minimum disagreement needed for any
collective comparison.

• SPAmaj, the solution for τmax < 0.5, i.e., the largest dissent
value. It captures the most granular collective comparison
supported by the data.

We construct rankings using the following baseline methods:

• Voting Rules: We consider Borda [12] and Copeland [22],
which are voting rules from social choice that rank items
based on position or pairwise wins.

• Median Rankings: We consider Kemeny [42], which re-
turns a ranking that minimizes disagreement by solving a
discrete optimization problem. We use the coranko library
[5], and use the ’BioConsert’ heuristic for datasets greater
than 10 items, due to runtime constraints.

• Sampling: We consider MC4, which returns a ranking
through a sampling-based approach [26], and can be
viewed as an analog of Copeland [31].

Results We summarize the specificity, disagreement, and
robustness of rankings from all methods and all datasets in
Table 1. In what follows, we discuss these results.

On Selective Rankings Our results highlight different
ways a selective ranking can reveal disagreement – e.g.,
through the dissent parameter, the structure of tiers, or a

Selective Standard

Dataset Metrics SPA0 SPAmin SPAmaj Borda Copeland Kemeny MC4

nba

n = 7 items
p = 100 users
28.6% missing
NBA [52]

Disagreement Rate
Abstention Rate

# Tiers
# Top Items
∆ Sampling

∆-Adversarial

0.0%
100.0%

1
7

0.0%
0.0%

2.0%
42.9%

2
3

0.0%
0.0%

6.4%
28.6%

4
1

0.0%
0.0%

8.3%
–
7
1

4.8%
19.0%

8.3%
–
7
1

4.8%
19.0%

8.1%
–
7
1

4.8%
14.3%

7.9%
–
6
1

0.0%
19.0%

survivor

n = 39 items
p = 6 users
0.0% missing
Purple Rock [54]

Disagreement Rate
Abstention Rate

# Tiers
# Top Items
∆ Sampling

∆-Adversarial

0.0%
94.9%

2
1

0.0%
0.0%

0.2%
42.5%

5
1

0.0%
0.0%

0.2%
42.5%

5
1

0.0%
0.0%

6.8%
–

39
1

1.3%
2.6%

6.6%
–

39
1

0.8%
1.8%

6.7%
–

39
1

0.9%
1.6%

6.4%
–

39
1

0.8%
3.1%

lawschool

n = 20 items
p = 5 users
0% missing
LSData [46]

Disagreement Rate
Abstention Rate

# Tiers
# Top Items
∆ Sampling

∆-Adversarial

0.0%
40.5%

4
12

0.0%
0.0%

0.3%
36.8%

6
12

0.0%
0.0%

3.1%
4.2%

15
2

0.0%
0.0%

4.7%
–

20
1

1.6%
3.7%

4.2%
–

20
1

1.1%
2.6%

4.1%
–

20
1

29.5%
45.8%

4.2%
–

20
1

0.5%
2.6%

csrankings

n = 175 items
p = 5 users
0% missing
csrankings.org [23]

Disagreement Rate
Abstention Rate

# Tiers
# Top Items
∆ Sampling

∆-Adversarial

0.0%
100.0%

1
175

0.0%
0.0%

0.0%
98.9%

2
1

0.0%
0.0%

0.1%
95.5%

3
1

0.0%
0.0%

12.3%
–

175
1

0.8%
3.1%

12.2%
–

175
1

0.8%
1.7%

13.7%
–

175
1

9.0%
11.1%

12.2%
–

175
1

0.1%
0.1%

sushi

n = 10 items
p = 5, 000 users
0.0% missing
Kamishima [41]

Disagreement Rate
Abstention Rate

# Tiers
# Top Items
∆ Sampling

∆-Adversarial

0.0%
100.0%

1
10

0.0%
0.0%

13.6%
64.4%

2
8

0.0%
0.0%

42.6%
0.0%

10
1

0.0%
0.0%

42.6%
–

10
1

0.0%
2.2%

42.6%
–

10
1

0.0%
2.2%

42.6%
–

10
1

2.2%
11.1%

42.6%
–

10
1

2.2%
11.1%

Table 1. Comparability, disagreement, and robustness of rankings
for all methods on all datasets. We report the following metrics
for each ranking: Disagreement Rate, i.e., the fraction of collec-
tive preferences that conflict with users; Abstention Rate, i.e., the
fraction of collective preferences that abstain from comparison; #
Tiers, the number of tiers or ranks. # Top Items, i.e., the number
of items in the top tier or rank. ∆-Sampling, the average fraction
of collective preferences that are inverted when we drop 10% of
individual preferences; and ∆-Adversarial, the maximum fraction
of collective preferences that are inverted when we flip 10% of
individual preferences, respectively.
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Fig. 5. Consensus rankings of U.S. law schools produced by selective preference aggregation and voting rules on the lawschool dataset.
Here: the selective rankings for SPAmin and SPAmaj correspond to dissent values of τmin = 1

5
and τmax = 2

5
, respectively; Borda90

corresponds to the ranking from Borda on a dataset where we drop 10% of individual preferences.

combination of both. When seeking a single winner, we can
report the threshold dissent for the top tier to contain only
one item. This varies across datasets: 0.0 for survivor to
over 0.48 for nba. In general, there is no guarantee that a
preference aggregation task will admit a single winner. In
law, for example, we find that even most granular selective
ranking SPAmaj contains two items in its top tier: Stanford
and Yale. In this case, we find that the ranking arises when
we set the dissent τmax = 2

5 . As we discuss in Theorem 4.1,
this implies that these two schools are collectively preferred
to all other schools in at least 3 of the 5 rankings.

We can apply a similar line of reasoning to identify dissent
values where a selective ranking would achieve a total order.
In such cases, the corresponding dissent parameter reflects
the number of individual preferences we must be willing
to overrule to achieve consensus. For example, SPAmaj on
sushi returns a total order for a τ = 0.4998, indicating
existing consensus, whereas law does not return a total order
at any level of dissent, signaling deep underlying differences
on certain items, including the top tier.

On Robustness One of the main limitations of standard
approaches for preference aggregation is their sensitivity.
In effect, it is well-known that such methods can return
rankings that change dramatically when we change their
inputs [10, 35, 44]. In Table 1, we evaluate the robustness
of rankings with respect to two kinds of issues that arise
frequently in practice: (1) missingness and (2) misreporting.
In particular, we show how the collective preferences for
each ranking change when we apply the method on a cor-
rupted dataset where we randomly drop 10% of individual
preferences, or randomly invert 10% of preferences. We
repeat this process 100 times and report the number of inver-
sions between the collective preferences we obtain using the

original dataset and the output produced using the corrupted
datasets.

Our results in Table 1 highlight how selective rankings are
robust to such effects. In particular, we observe that 0.0% of
the collective preferences expressed in a selective ranking
will change when we drop or corrupt 10% of preferences.
In contrast, we find that existing methods can often exhibit
varying degrees of brittleness. On the nba dataset, for ex-
ample, we find that the collective preferences expressed in
rankings from Borda and Copeland changed an average of
4.8% when we drop 10% of individual preferences, and up
to 19.0% when we flip them.

On the Arbitrariness of Arbitration Our results high-
light how principled approaches to preference aggregation
can output conflicting summaries for collective preferences.
As shown in Fig. 5, voting rules such as Borda and Copeland
can identify the same set of top items yet exhibit differences
at less salient positions (see e.g., differences in Berkeley,
Michigan and Northwestern). In some cases, these effects
can arise due to differences in individual preferences. In
Fig. 5, for example, we find that Borda and Copeland rank
Yale, Stanford and Harvard as the top-3 law schools. How-
ever, these rankings will change once we drop 10% of pref-
erences Borda90 and Copeland90. In other cases, they may
arise due to algorithm design. For instance, in Table 1, Ke-
meny arbitrarily breaks a tie in preference between coaches
Steve Nash and Monty Williams in the nba dataset, causing
it to have higher disagreement than MC4, which allows for
ties. When individuals express conflicting preferences, there
are often many equally principled approaches to arbitration.
In practice, these effects can compromise the significance
and legitimacy of using rankings — as they lead to systems
where the top items are determined by differences in algo-
rithm design rather differences in individual preferences.
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6 Learning by Agreeing to Disagree
Some of the most salient use cases for preference aggrega-
tion in machine learning arise when we wish to align models
with the collective preferences of their users. In the sim-
plest case, we would recruit users to label training examples.
Given their labels, we would then aggregate them to train a
model or fine tune it [47]. We often rely on such approaches
in tasks such as medical image segmentation [38] where
individuals express conflicting preferences due to ambigu-
ity [65] or subjectivity [34, 29]. In such settings, standard
aggregation methods such as majority vote can lead to mod-
els whose predictions reflect the collective preferences of
the majority [64, 21]. In what follows, we explore how
selective aggregation can mitigate these effects by returning
training labels that better account for all annotators’ views.

Setup We consider a task to build a classifier to detect
toxic conversations with a language model. We work with
the DICES dataset [8], which contains individual toxicity
labels for n = 350 conversations from p = 123 users. Here,
each label is defined as yki ∈ {1,−1, 0} if user k labels
conversation i as {toxic, benign, unsure}, respectively.
We randomly split users into two groups: a group of ptrain =
5 users whose labels we use to train our model; and a group
of ptest = 118 users whose labels we use to evaluate the
predictions of the model at an individual level once it is
deployed. We set the relative size of each group to reflect
the relative size of annotators and end-users in practice – i.e.,
where a company would collect labels from a small subset
of users to train a model that assigns predictions to a large
population.

We use this setup to construct four sets of training labels. We
aggregate discordant annotations, where one conversation
is labeled as toxic and the other non-toxic. We drop all
annotations where a user rates a conversation as “unsure" –
i.e., where yi,k = 0. This ensures that yi,k ∈ {−1, 1}.

• yMaj
i := I

[∑
k∈[p] I

[
yki = 1

]
≥

∑
k∈[p] I

[
yki = −1

]]
,

which reflects a common approach to aggregate labels
in machine learning [60]. When an item has split votes,
yMaj
i is set to toxic.

• yBorda
i ∈ [280], aggregate labels from a variant of Borda

for pairwise preferences [15].

• ySPA
i ∈ [15], which reflects aggregate labels from SPA

for the maximum τ < 0.5.

• yExp
i ∈ {0, 4}, which reflects granular safety labels

elicited from an in-house expert. This reflects a base-
line where we choose to train a model using annotations
from a single human expert.

We process the training labels from each method to ensure
that we can use a standard training procedure across similar

methods. We use the training labels from each method to
fine-tuning a BERT-Mini model [70] that maps tokens to
their respective toxicity labels, and denote these models as
fSPA, fMaj, fBorda, fExpert.

We evaluate how each method performs with respect to
individuals and users in a specific group in terms of the
following measures:

BERk(f
all) := 1

2TPRk(f
all) + 1

2FPRk(f
all) (1)

LabelError(yall) :=
1

p

p∑
k=1

BERk(y
all) (2)

PredictError(f all) :=
1

p

p∑
k=1

BERk(f
all) (3)

Here: LabelError (2) captures the discrepancy between indi-
vidual labels and aggregate labels for an average user in a
group. PredictError (3) captures the discrepancy between
individual labels and predictions of a model trained with
aggregate labels. We compute these measures with respect
to aggregate labels and predictions after applying thresholds
to optimize BER. We report these measures in terms of BER
for the sake of clarity, as the data exhibits class imbalance
that can vary across users. We include additional details on
our setup in Appendix D.5.

Results We summarize our results at a group level in
Fig. 6a and an individual level in Fig. 6b.

Our results in Fig. 6a highlight how SPA aggregates labels
in a way that minimizes disagreement across users – achiev-
ing a label error of 28.2% (c.f., 37.8% with yMaj). Moreover,
the improved alignment in training labels can lead to prop-
agate into an improved alignment in the predictions of the
model. In this case, fSPA has a train prediction error of
29.9% (c.f., 38.4 % on fBorda) and 39.9% test prediction
error (c.f., 44.5 % with fBorda).

Our results in Fig. 6b, we show how the prediction error
is distributed across the ptrain = 5 annotators in the train
set – i.e., users whose preferences we would collect and
observe, as well as the ptest = 118 held out annotators,
whose preferences we would not be able to know. In this
case, we find that roughly 60% of users achieve an individual
BER of 40% or less under ySPA, compared to roughly 20%
of users for yBorda and yMaj.

Our broadly results highlight a benefit from building models
using labels that encode collective preferences. In this case,
the large values of label error for yExp imply that many users
disagree with their annotations. The result suggests that
there is considerable inherent disagreements among the user
population. These findings capture the performance of each
approach in a task where we threshold the predictions of
each method to optimize the balanced error rate. In practice,
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(a) Collective error rates – label error and prediction error – for each method on the
DICES dataset. We report values for the train split with annotators and the test set of
p = 118 held-out users. Selective aggregation achieves the lowest error across all
types and splits, and generalizes, with less difference in label and predictive error than
both Borda and majority vote.
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(b) Cumulative distributions of individual error rates for models built using different
methods for label aggregation. For each model f , we plot the fraction of users
ptest = 118 users in the test set where BER(f) ≤ δ for δ ∈ [0, 1].

we observe similar findings at other salient operating points
– e.g., the most accurate model that can achieve a collective
TPR of 90%. In such cases, baselines such as majority vote
may underperform as their labels can only capture binary
information.

7 Concluding Remarks
In many applications where we aggregate human prefer-
ences, disagreement should be treated as a “signal, not
noise” [7]. We proposed an alternative paradigm to aggre-
gate preferences in such settings—summarizing collective
preferences as a partial order. This approach can reveal
disagreement to end-users, allow them to reason about it,
and control it.

Our work develops foundations for this paradigm. We
designed an algorithm that is simple, versatile, and safe.
Its main limitation is that it behaves conservatively when
datasets are missing many individual preferences. Such
datasets are common in settings where elicitation is a bottle-
neck—either because it is costly or because we must elicit
preferences over a large item set.

In these cases, we can still express collective preferences
as selective rankings. However, each ranking may collapse
into a single tier. This behavior is intentional—it flags
where any comparison could be invalidated by missing pref-
erences. But it is also impractical at scale—most datasets
are sparse and contain few overlapping ratings. Looking
forward, we can extend our paradigm to these settings by
adopting probabilistic assumptions [see e.g., 2], or by devel-
oping procedures that streamline elicitation [e.g., via RLAIF
48].
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A Supplementary Material for Section 2

A.1 Notation

We provide a list of the notation used throughout the paper in Table 2.

Object Symbol Description
Items i ∈ [n] := {1, . . . , n} The objects being ordered, for which users have expressed preferences.
Users k ∈ [p] := {1, . . . , p} Individuals expressing preferences for given items.
Individual preferences πk

i,j ∈ {−1, 0, 1} Pairwise preference between items i and j for user k.
Tiered ranking T The unordered set of supervertices (tiers) created during the creation of a selective ranking.
Collective preference πi,j(T ) ∈ {−1, 0, 1} The preference between items i and j in a given ranking.
Selective ranking S The ranking outputted by SPAτ (D).
Dissent parameter τ ∈ [0, 1

2 ) The admitted dissent between two items i and j.

Table 2. Notation

A.2 Encoding Individual Preferences as Pairwise Comparisons

Representation Notation Conversion Tasks
Labels yki ∈ {0, 1} πk

i,j = I
[
yki > ykj

]
− I

[
yki > ykj

]
Pairwise annotations„ i.e fine-tuning

Ratings yki ∈ [m] πk
i,j = I

[
yki > ykj

]
− I

[
ykj > yki

]
5-Star Ratings, i.e Product Ratings

Rankings rk : [n]→ [n] πk
i,j = I

[
rk(i) > rk(j)

]
− I

[
rk(i) < rk(j)

]
Item Orderings, i.e Grant Proposals [11]

Table 3. Data structures that capture ordinal preferences over n items. Each representation can be converted into a set of
(
n
2

)
pairwise

preferences in a way that ensures (and assumes) transitivity. Item-level representations require fewer queries but may be subject to
calibration issues between annotators.

One of the benefits in developing machinery to aggregate preferences is that it can provide practitioners with flexibility in
deciding how to elicit and aggregate the preferences. In practice, such choices involve trade-offs that we discuss briefly
below. Specifically, eliciting pairwise preferences from users requires more queries than other approaches [37]. However,
it may recover a more reliable representation of ordinal preferences than ratings or rankings [i.e., 59]. In tasks where we
work with a few items, we can elicit preferences as ratings, rankings, or pairwise comparisons. In tasks where we elicit
rankings, we can convert them into pairwise comparisons without a loss of information. In this case, eliciting pairwise
comparisons can test implicit assumptions such as transitivity. In tasks where we elicit labels and ratings, the conversion is
lossy – since we are converting cardinal preferences to ordinal preferences. In practice, this conversion can resolve issues
related to calibration across users [see e.g, 74, 73]. In theory, it may also resolve disagreement [58].
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B Supplementary Material for Section 3
This appendix provides supplementary material for Section 3, including proofs of the claims in this section and an description
of the solution path algorithm.

B.1 Proof of Correctness

Lemma B.1. Consider the graph before running condensation or topological sort, but after pruning edges with weights
below τp. Items can be placed in separate tiers without violating Disagreements(T ) ≤ τp if and only if there is no cycle in
the graph involving those items.

Proof. We start by connecting the edges in a graph to conditions on the items in a tiered ranking and eventually expand that
connection to show the one-to-one correspondence between cycles and tiers.

First note that for any items i, j: wi,j > τ ⇐⇒
∑p

k=1 1
[
πk
i,j ̸= 1

]
> τp. This follows trivially from the definition

of wi,j :=
∑p

k=1 1
[
πk
i,j ̸= 1

]
. From this, we know that if and only if there exists an arc (i, j) that is not pruned before

condensation, we cannot have a tiered ranking with πT
i,j = −1 without violating Disagreements(T ) ≥ τp.

If there exists a cycle in this graph, then we know the items in that cycle must be placed in the same tier. To show this,
consider some edge i, j in the cycle. We know item j cannot be in a lower tier than i without violating the disagreements
property, from the above. So item j must be in the same or a higher tier. But item j has an arrow to another item, k, which
must be in the same or a higher tier than both j and i, and so on, until the cycle comes back to item i. This corresponds to
the constraint that all items must be in the same tier.

If a set of items is not in a cycle, then these items do not need to be placed in the same tier. If the items are not in a cycle,
then there exists a pair of items (i, j) such that there is no path from j to i. Thus i can be placed in a higher tier than j
without violating any disagreement constraints. Thus not all items in this set need to be placed in the same tier.

Thus we have shown that for a graph pruned with a given value of τ , items can be placed in separate tiers for a tiered ranking
based on that same parameter τ , if and only if there is no cycle in the graph involving all of these items.

We draw on this Lemma to prove the main result:

Theorem B.2. Given a preference aggregation task with n items and p users, Algorithm 1 returns the optimal solution to
SPAτ for any dissent parameter τ ∈ [0, 1

2 ).

Proof of Theorem B.2. Consider that items in our solution are in the same tier if and only if they are part of a cycle in the
pruned graph (i.e., if and only if they are in the same strongly connected component). So items are in the same tier if and
only if they must be in the same tier for the solution to be feasible. No other feasible tiered ranking could have any of these
items in separate tiers. So no other tiered ranking could have any more tiers, or any more comparisons. To do so would
require placing some same-tier items in different tiers. Thus, our solution is maximal with respect to the number of tiers,
and with respect to the number of comparisons.

B.2 Proof of Uniqueness

Theorem B.3. The optimal solution to SPAτ is unique for τ ∈ [0, 0.5).

Proof of Theorem B.3. Let T denote an optimal solution to SPAτ . We will show that the optimality T is fully specified by:
(1) the items in each tier and (2) the ordering between tiers. That is, if we were to produce a tiered ranking T ′ that assigns
different items to each tier, or that orders tiers in a different way would be suboptimal or infeasible.

Consider a tiered ranking T that is feasible with respect to SPAτ for some τ ∈ [0, 0.5). Let T ′ denote a tiered ranking
where we swap the order of two tiers in T . We observe that the T ′ must violate a constraint. To see this, consider any pair of
items i, j such that πi,j(T ) = 1 before the swap, but πj,i(T

′) = 1 after the swap. One such pair must exist for any swapping
of tier orders, because all tiers are non-empty. Because we elicited complete preferences, one of the following conditions

3
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must hold: ∑
k∈[p]

I
[
πk
i,j ̸= 1

]
> τp (4)

∑
k∈[p]

I
[
πk
j,i ̸= 1

]
> τp (5)

Assuming that T was an optimal solution to SPAτ , we observe that the condition in Eq. (4) must be violated be-
cause the original optimal solution was valid. Thus, we must have that

∑
k∈[p] I

[
πk
j,i ̸= 1

]
> τp. This implies that

Disagreements(T ′) > τp for this tiered ranking. Thus, swapping the order of tiers violates constraints because τ < 0.5.

Now note that any separation of items from within the same tier is not possible without violating a constraint. This follows
from Lemma B.1, which states that items that are part of a cycle in our graph representation of the problem1, must be in the
same tier for a solution to be valid. And, as specified in our algorithm, we know our optimal solution has tiers only where
there are cycles in the graph representation of the problem. So any tiers in the optimal solution cannot be separated.

We can still merge two tiers together without violating constraints, but such an operation reduces the number of comparisons
and would no longer be optimal. And after merging two tiers, the only valid separation operation would be simply to undo
that merge (since any other partition of the items in that merged tier, would correspond to separating items that were within
the same tier in the optimal solution). So we cannot use merges as part of an operation to reach a valid alternative optimal
solution.

So we know that for the optimal solution, we cannot separate out any items within the same tier, and we cannot reorder any
of the tiers. Merging, meanwhile, sacrifices optimality. Thus, the original optimal solution is unique.

B.3 Constructing All Possible Selective Rankings

We start with a proof for Proposition 3.1.

Proof of Proposition 3.1. Recall that Algorithm 1, an edge (i, j) with weight wi,j is excluded if at least τp users disagree
with the preference j ≻ i. We observe that wi,j =

∑
k∈[p] I

[
πk
i,j ≥ 0

]
corresponds the number of users who disagree with

the preference j ≻ i. Given a dataset, denote the set of dissent values that could lead to different outputs as:

W = {0} ∪

τ ′ | ∃i, j : τ ′ =

1

p

∑
k∈[p]

I
[
πk
i,j ≥ 0

] < 1
2


This corresponds to the set of unique wi,j/p for all i, j, with the value 0 included as well. To see this, note wi,j =∑

k∈[p] I
[
πk
i,j ≥ 0

]
. We will now show the following Lemma, which will resolve the original claim.

Lemma B.4. Given any two adjacent elements a, b ∈ W ∪ { 12}. All dissent values in τ ∈ [a, b) lead to the same selective
ranking as the selective ranking for τ = a.

Proof. To show this, note that there exists no edge i→ j such that ap < wi,j < bp. If there did exist, then we would have

a <
wi,j

p
< b.

This would imply thatW would have to include an additional between a and b. But a and b are adjacent inW . This is a
contradiction.

Since there exists no edge i→ j such that ap < wi,j < bp, there exists no edge such that the decision to include its arc in
the graph changes based on what value of dissent we select in [a, b). Recall that we exclude i→ j iff wij ≥ τp

Now that we know that for any two adjacent values a, b inW ∪ { 12}, all dissent values in [a, b) lead to the same tiered
ranking as with dissent value a, we know that for any dissent value τ ∈ [0, 1

2 ), the largest value of τ ′ ∈ W that is ≤ τ will

1after pruning edges of weight below τ

4
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lead to the same tiered ranking. Simply substitute τ in for a, and the smallest value above τ inW ∪ { 12} for b (such a value
exists, on both sides, because 0 and 1

2 are both ∈ W ∪ { 12}, and τ ∈ [0. 12 )).

Thus we have shown the required claim.

Algorithm We present an algorithm to construct a solution path of selective rankings in Algorithm 2.

Algorithm 2 Solution Path Algorithm

Input: D = {πk
i,j}i,j∈[n],k∈[p] preference dataset

1: S = {} initialize solution path

Construct Initial Preference Graph for τ = 0

2: wi,j ←
∑

k∈[p] I
[
πk
i,j ≥ 0

]
for all i, j ∈ [n] wi,j = # preferences claiming i ⪰ j

3: VI ← [n] Vertices represent items

4: AI ← {(i→ j) | wi,j ≥ 0} Arcs for observed preferences

Construct Selective Rankings for All Possible Dissent Values

5: W ← {wi,j for all i, j ∈ [n] | wi,j < ⌈p2⌉} ∪ {0} Set of dissent parameters (see Proposition 3.1)

6: for τ ∈ W do
7: AI ← AI/{(i→ j) ∈| wi,j ≥ τp} Add arcs with support ≥ τp

8: VT ← ConnectedComponents((T,AT )) Group items into tiers

9: AT ← {(T → T ′) | ∃i ∈ T, j ∈ T ′ : (i→ j) ∈ AI} Add edges between items to supervertex

10: (l1, . . . , l|VT |)← TopologicalSort((VT , AT )) Sort components based on directed edges

11: Sτ ← (Tl1 , . . . , Tl|VT |)

12: S ← S ∪ {Sτ}
13: end for
Output: S Selective rankings that cover the comparison-disagreement frontier

Given a preference dataset Algorithm 2 returns a finite collection of selective rankings S that achieve all possible trade-offs
of comparability and dissent. The procedure improves the scalability by restricting the values of the dissent parameter τ as
per Proposition 3.1 in Line 2, and by reducing the overhead of computing graph structures. In this case, we construct the
preference graph once in Line 4, and progressively add arcs with sufficient support in Line 7.

Algorithm 2 assumes a complete preference dataset – i.e., where we have all pairwise preferences from all users. In practice,
we can satisfy this assumption by imputing missing preferences to 0 as described in Proposition 4.2. Alternatively, we can
also add an additional step after Line 7 to check that the item graph (VI , AI) remains connected.

Details on Synthetic Dataset in Fig. 3 We benchmarked Algorithm 2 to Algorithm 1 in Fig. 3 on synthetic preference
aggregation tasks where we could vary the number of users and items. We fixed the number of users to p = 10 users. For
each user k ∈ [p], we sampled their pairwise preferences as πk

i,j ∼ Uniform(1, 0,−1).

B.4 Proofs of Algorithm Runtime

Algorithm 1 Line 1 computes a sum while visiting each pairwise preference for each judge, taking O(n2p) time. All
subsequent steps are linear in the graph size: both ConnectedComponents and TopologicalSort are linear in input size, and
the other steps are just operations on each edge. So the total runtime is O(n2p).

Algorithm 2 Note that |W| = ⌈p2⌉, because wij only takes integer values and there are ⌈p2⌉ integers between 0 and ⌈p2⌉
inclusive of 0 and exclusive of ⌈p2⌉. so the for loop runs ⌈p2⌉ times, and everything in the loop runs in time linear in the
graph size, so O(n2). Thus the whole runtime of the loop is O(n2p). The preprocessing, as before, is O(n2p) time. Note
that computingW can be done in O(n2p) time: just iterate through all wij for each of the ⌈p2⌉ possible distinct values,
and add the value toW if it occurs at least once. Thus the total runtime is the sum of a constant number of O(n2p) steps,
meaning the total runtime is O(n2p).
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C Supplementary Material for Section 4
This appendix provides proofs and additional results to support the claims in Section 4.

C.1 On the Top Tier

Theorem C.1. Consider a preference aggregation task where at most α < 1
2 of users strictly prefer one item over all other

items. Given any τ ∈ [0, 1
2 ), the tiered ranking from SPAτ will include at least two items in its top tier.

Proof. We show the contrapositive: having > (1− τ) users rank an item first guarantees having only one item in the top tier.
Without loss of generality, call an item with > (1− τ) users rating a specific item first A. Consider WLOG any other item
B. No more than τ users claim either of B ≻ A or B ∼ A, because we know > (1− τ) users claim A ≻ B. So for any
tiered ranking that places some other item B in the same tier as A, we could instead place A above all other items in that
tier, and have one more item. Since the result of our algorithm must have the maximal number of tiers, we cannot have a
case where A is in the same tier as any other item.

Lemma C.2. Consider a preference aggregation task where a majority of users strictly prefer an item i0 over all items
i ̸= i0. There exists some threshold dissent τ0 ∈ [0, 1

2 ) such that for all τ > τ0, every selective ranking we obtain by solving
SPAτ will place i0 as the sole item in its top tier.

Proof. Let α denote the fraction of users who strictly prefer i0 over all items. Since α > 1
2 , we observe that at most

1− α < 1− 1
2 users can express a conflicting preference. Given any item i ̸= i0, let τ0 = 1− α denote the fraction who

users who believe either of i ≻ i0 or i ∼ i0. For any tiered ranking that places i0 and i in the same tier, we could instead
place i above all other items in that tier, and have one more tier. Since our algorithm returns a tiered ranking with the
maximal number of tiers, we cannot have a case where i is in the same tier as any other item.

C.2 On Missing Preferences

Proof of Proposition 4.2. If we are missing preferences, our algorithm’s behavior is to assume all missing preferences
would be in disagreement with any asserted ordering. This exactly corresponds to the actual disagreement if the true values
are all asserted equivalence/indifference, and an upper bound on dissent if the preferences are directional. By doing this, we
guarantee that the disagreement property will be satisfied under any possible missingness mechanism, even a worst-case
adversarial mechanism. We denote missingness as πk(i, j) =? if the preference is missing. This property is trivial to show.
Consider that

Disagreements(T ) := max
i,j∈T,T ′

T≻T ′

∑
k∈[p]

I
[
πk
i,j ̸= 1

]
≤ max

i,j∈T,T ′

T≻T ′

∑
k∈[p]

1
[
πk
i,j ∈ {0,−1, ?}

]
= max

i,j∈T,T ′

T≻T ′

∑
k∈[p]

I
[
πk
i,j ∈ {0,−1}

]
if we we set all missing values πk

i,j =? to πk
i,j = 0

Given that overall disagreement when preferences are imputed cannot increase, we have that πi,j(S
true
τ ) = πi,j(S

safe
τ ).

More formally: from the disagreements argument above, we know that Dsafe has the same or more disagreements for any
preference than does Dtrue. Every selective comparison in Ssafe

τ corresponds to a pair of items in distinct strongly connected
components under the constraints from Dsafe (see Lemma B.1). When we relax to only the constraints from Dtrue, we cannot
have more disagreement for any preferences, so those items will remain in distinct strongly connected components. Since
they remain in distinct strongly connected components, Lemma B.1 tells us the two items will not be in the same tier.

To show that the two items will have the same ordering in both tiered rankings, note that even under Dtrue there must be a
constraint on one of the two directions of the preference2. And that constraint will still hold under Dsafe, which is no less
constrained than Dtrue. Thus, Strue

τ cannot have a preference in the opposite direction from Ssafe
τ

2Given a dataset of complete pairwise preferences and τ ∈ [0, 1
2
), we must have that at least one of the following holds:∑

k∈[p] I
[
πk
i,j ̸= 1

]
> τp or

∑
k∈[p] I

[
πk
i,j ̸= −1

]
> τp. (This is because for the former claim to be true, we’d need at least
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C.3 On the Distribution of Dissent

A selective ranking only allows comparisons that violate at most τp of preferences in a dataset. In practice, these violations
may be disproportionately distributed across users or items. For example, we may have a task with τ = 1

p where the same
user disagrees with all comparisons in a dataset. Alternatively, the violations may be equally distributed across users – so
that there is no coalition of users who agrees with all preferences. In Remark C.3, we bound the number of users who can
disagree with a selective ranking.

Remark C.3. A τ -selective ranking contradicts the preferences of at most p2

4 · τp users.

The result in Remark C.3 only applies in tasks where the number of users exceeds the number of selective comparisons.
In other tasks – where the number of selective comparisons exceeds the number of users – the statement is vacuous as we
cannot rule out a worst-case where every user disagrees with at least one comparison.

Proof. We observe that a selective ranking with a single tier makes no claims. Thus we can restrict our attention to cases
where the τ -selective ranking contains at least two tiers. Given a selective ranking with more than 2 tiers, then any user who
disagrees with the ranking of items from non-adjacent tiers, also disagrees with the ranking of two items in adjacent tiers.
So every user with a conflict must disagree about the ordering of at least one pair of items in adjacent tiers. This bounds the
number of users who disagree as τ times the number of distinct pairs of items in adjacent tiers. This is because no more than
τ proportion of users can disagree with any one pairing.

The number of distinct, adjacent-tier pairs is of the form
∑|T |−1

l=1 nlnl+1 where tier ; contains nl items, and all the tiers
together contain all n items (

∑
i=l |T |nl = n). This quantity is maximized when we have |T | = 2 tiers that contain n

2 items
each (rounding if n is odd). In this case, the maximum value is n

4 (or slightly below if n is odd). The worst case is tight,
achieved with two tiers, each with half the items, and an even number of items.

C.4 On Stability with Respect to New Items

We start with a simple counterexample to show that selective rankings do not satisfy the “independence of irrelevant
alternatives” axiom [9].

Example C.4 (Selective Rankings do not Satisfy IIA). Consider a preference aggregation task where we have pairwise
preferences from 2 users for 2 items i and j where both users agree that i ≻ j.

User 1 : i ≻ j

User 2 : i ≻ j

In this case, every τ -selective ranking would be πi,j(T ) = 1 for any τ ∈ [0, 0.5).

Suppose we elicit preferences for a third item z, and discover that each user asserts that z is equivalent to a different item:

User 1 : i ∼ z ≻ j ←→ i ≻ j z ≻ j i ∼ z

User 2 : i ≻ j ∼ z ←→ i ≻ j j ∼ z i ≻ z

In this case, every τ -selective ranking would be πi,j(T ) = 0 for all τ ∈ [0, 1
2 ). This violates IIA because the relative

comparison πi,j(T ) changes depending on the preferences involving z.

Proposition C.5. Consider a preference aggregation task where for a given τ ∈ [0, 1
2 ) we construct a selective ranking

Sn using a dataset D of complete pairwise preferences from p users over n items in the itemset [n]. Say we elicit pairwise
preferences from all p users with respect to a new item n+ 1 ̸∈ [n] and construct a selective ranking Sn+1 for the same τ
over the new itemset [n+ 1] := [n] ∪ {n+ 1}.

Given any two items i, j ∈ [n], we have that (πi,j(Sn+1) = πi,j(Sn)) ∨ (πi,j(Sn+1) = 0).

Proof. It is sufficient to show the following:

(1− τ)p preferences to be 1, which then forces the latter claim to be false because we’ve set (1− τ)p > τp values to be something other
than -1).

7
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• When πi,j(Sn) ̸= −1, we never have πi,j(Sn+1) = −1
• When πi,j(Sn) ̸= 1, we never have πi,j(Sn+1) = 1.

Given a dataset of complete pairwise preferences and τ ∈ [0, 1
2 ), at least one of the following conditions must hold:

Condition A:
∑
k∈[p]

I
[
πk
i,j ̸= 1

]
> τp

Condition B:
∑
k∈[p]

I
[
πk
i,j ̸= −1

]
> τp

This is because for Condition A to be False, we would need at least (1− τ)p preferences to be 1, which then forces Claim B
to be true because we have set (1− τ)p > τp values to be something other than −1.

Consider WLOG that Condition A holds. If
∑

k∈[p] I
[
πk
i,j ̸= 1

]
> τp, then we know that πi,j(Sn) ̸= 1. Otherwise

we would violate the disagreement constraint in SPAτ . Note that eliciting preferences for a new item does not change∑
k∈[p] I

[
πk
i,j ̸= 1

]
. So we still have

∑
k∈[p] I

[
πk
i,j ̸= 1

]
> τp, and we still have πi,j(Sn+1) ̸= 1. Thus, we have that both

πi,j(Sn) ̸= 1 and πi,j(Sn+1) ̸= 1. We can apply a symmetric argument to show Condition B holds. In this case, we would
have that

∑
k∈[p] I

[
πk
i,j ̸= −1

]
> τp and see that both πi,j(Sn) ̸= −1 and πi,j(Sn+1) ̸= −1.

This guarantees that the claim of Proposition 4.3 cannot be violated. When πi,j(Sn) = 0 so too does πi,j(Sn+1) = 0. When
πi,j(Sn) ̸= −1 we never have πi,j(Sn+1) = −1, when πi,j(Sn) ̸= 1 we never have πi,j(Sn+1) = 1. Thus we have proven
the claim by cases.

Proposition C.6. Consider a preference aggregation task where we have a complete dataset D with n items and p users.
Let:

• wij :=
∑

k∈[p] I
[
πk
i,j ̸= −1

]
denote the number of users who disagree with the claim j ≻ i.

• mij ∈ {1, . . . , wij − τp}
• S′

τ be the selective ranking on a dataset with mij preferences between items i and j having been inverted.

Then for any pair of items i, j ∈ [n] where
mi,j < wi,j − τp.

We have that:
πi,j(Sτ ) = 1 =⇒ πi,j(S

′
τ ) ̸= −1

That is, a collective preference expressed in a selective ranking between items i and j cannot be inverted unless mi,j + 1
preferences are inverted.

Since wi,j ≥ 0.5p when πi,j(Sτ ) = 1, we can also say that if πi,j(Sτ ) = 1, then πi,j(S
′
τ ) ̸= −1 provided m(D) + pτ <

0.5 · p

Proof. Let wi,j(D) := I
[
πk
i,j ̸= −1

]
denote the number of users who disagree with j ≻ i in the dataset D. Let m denote

the number of preferences that are flipped in the dataset – we assume a worst case outcome, where all flipped preferences
are between i and j (which we denote mi,j , and set equal to m). In a dataset where we flip m preferences the number of
users who disagree with j ≻ i is no lower than w −m. A comparison i ≻ j can only invert to j ≻ i if the proportion of
disagreement with j ≻ i falls below τ .

w −m

p
< τ.

We can re-arrange this inequality to obtain:

m > w − pτ .

Thus, a comparison i ≻ j will invert to j ≻ i only if m > w − pτ .
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D Supplementary Material for Sections 5 and 6
In what follows, we include additional details and results for the experiments in Section 5 and our demonstration in Section 6.

D.1 Descriptions of Datasets

Dataset n p Format Description
nba 101 Voters 7 Coaches Ballots 2021 NBA Coach of the Year Award, where sports journalists vote for the top 3 coaches

lawschool 26 Schools 5 Rankings Rankings Top U.S. law schools ranked by 5 organizations based on academic performance,
reputation, and other metrics in 2023.

survivor 40 Seasons 6 Fans Rankings Rankings task where 6 fans of the show Survivor rank seasons 1-40 from best to worst.

sushi 10 Sushi Types 5,000 Respondents Pairwise Benchmark recommendation dataset collected in Japan, where participants provided
pairwise preferences over 10 different types of sushi: ebi (shrimp), anago (sea eel),
maguro (tuna), ika (squid), uni (sea urchin), ikura (salmon roe), tamago (egg), toro
(fatty tuna), tekka-maki (tuna roll), and kappa-maki (cucumber roll).

csrankings 175 Departments 5 Subfields Rankings Rankings of computer science departments from csrankings.org based on research
output in AI, NLP, Computer Vision, Data Mining, and Web Retrieval.

Table 4. Overview of datasets. We consider five datasets from salient use cases of preference aggregation.

D.2 List of Metrics

In what follows, we provide detailed descriptions of the metrics in Table 1.

Metric Formula Description

AbstentionRate(T )
1

n(n− 1)

∑
i,j∈[n]

I [πi,j(T ) = ⊥] Given a selective ranking over n items T , the abstention rate
represents the fraction of pairwise comparisons where we
abstain.

DisagreementRate(T ,D) 1

n(n− 1)p

∑
k∈[p]

∑
i,j∈[n]

I
[
πk
i,j ̸= πi,j(T ), πi,j(T ) ̸= ⊥

]
Given a ranking over n items T , the disagreement rate repre-
sents the fraction of individual preferences in D that disagree
with the collective preferences in T .

#Tiers(Sτ ) |Sτ | Given a selective ranking Sτ , the number of tiers. For standard
methods, each rank is converted to a tier.

#TopItems(Sτ ) |T1| Given Sτ = (T1, . . . , Tm), the number of items in the top tier.
For standard methods, each rank is converted to a tier.

DisagreementPerUser(T ,D) median
k∈[p]

1

n(n− 1)/2

∑
i,j∈[n]

I
[
πk
i,j ̸= πi,j(T )

]
The median fraction of preference violations across users.

∆ Sampling (T,D) median
b∈{1,...,Nb}

[∑
i,j∈[n] I

[
Ti,j ̸= T b

i,j ∧ Ti,j ̸= 0 ∧ T b
i,j ̸= 0

]∑
i,j∈[n] I [Ti,j ̸= 0]

]
Given the ranking produced on the full dataset T , the median
proportion of collective preferences that are inverted when
we drop 10% of preferences. We construct a bootstrap esti-
mate by applying the method to Nb datasets where we ran-
domly drop 10% of all preferences and obtain Nb rankings
{T 1, . . . , TNb}.

∆ Adversarial (T,D) max
b∈{1,...,Nb}

[∑
i,j∈[n] I

[
Ti,j ̸= T b

i,j ∧ Ti,j ̸= 0 ∧ T b
i,j

]
̸= 0∑

i,j∈[n] I [Ti,j ̸= 0]

]
Given the original ranking T , the maximum proportion of
collective preferences inverted when we flip 10% of individual
preferences. We construct a bootstrap estimate where we first
apply the method to Nb datasets where we randomly flip 10%
of all preferences and obtain Nb rankings {T 1, T 2, . . . , TNb}.

Table 5. Metrics used to evaluate comparability, disagreement, and robustness of rankings in Table 1 and Appendix D.4

D.3 Selective Ranking Paths

We present the solution paths of selective rankings for each dataset in Section 5 in Fig. 7 to Fig. 11.
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Fig. 7. Selective rankings for the nba dataset (n = 7 items and p = 100 users). We show the tradeoff between comparision and
disagreement (left) and the unique rankings over the dissent path (right).
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Fig. 8. Selective rankings for the survivor dataset (n = 39 items and p = 6 users). We show the tradeoff between comparision and
disagreement (left) and the unique rankings over the dissent path (right).
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Fig. 9. Selective rankings for the Sushi dataset (n = 10 items and p = 5000 users). We show the tradeoff between comparision and
disagreement (left) and the unique rankings over the dissent path (right). Note that only a subset of dissent values are shown for clarity.
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Fig. 10. Selective rankings for the csrankings dataset (n = 175 items and p = 5 users). We show the tradeoff between comparision
and disagreement (left) and the unique rankings over the dissent path (right).
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Fig. 11. Selective rankings for the lawschool dataset (n = 20 items and p = 5 users). We show the tradeoff between comparision and
disagreement (left) and the unique rankings over the dissent path (right).
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D.4 Expanded Table of Results

We include an expanded version of our results for all methods and all datasets in Appendix D.4. This table covers the same
results as in Table 1, but includes the following additional metrics:

1. ∆ Abstentions [Intervention], which measures the proportion of strict collective preferences (e.g., A ≻ B or A ≺ B) that
turn into ties or abstentions in the ranking that we obtain after running the method on a modified dataset.

2. ∆ Specifications [Intervention], which measures the proportion of ties or abstentions that turn into ties or abstentions in
the ranking that we obtain after running the method on a modified dataset.

We report these values for same interventions we consider in Section 5, namely: Sampling, where we run the method
on a dataset where we randomly omit 10% of individual preferences; and Adversarial, where we run the method on a
dataset where we randomly flip 10% of individual preferences. Each value corresponds to a bootstrap estimates where
we perform the same estimate 100 times. For clarity, we list the ∆ − Sampling as ∆ − Inversions − −Sampling, and
∆− Adversarial−−Inversions.

Selective Traditional

Dataset Metrics SPA0 SPAmin SPAmaj Borda Copeland Kemeny MC4

nba

n = 7 items
p = 100 users
28.6% missing
NBA [52]

Disagreement Rate
Median Disagreement per User

Abstention Rate
# Tiers

# Top Items
Dissent

∆ Inversions Sampling
∆ Inversions Adversarial

∆ Specifications Sampling
∆ Specifications Adversarial

∆ Abstentions Sampling
∆ Abstentions Adversarial

0.0%
0.0%

100.0%
1
7

0.0000
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

2.0%
0.0%

42.9%
2
3

0.2600
0.0%
0.0%
9.5%
9.5%
0.0%

19.0%

6.4%
4.8%

28.6%
4
1

0.4900
0.0%
0.0%
0.0%
0.0%

28.6%
28.6%

8.3%
4.8%
0.0%

7
1
–

4.8%
19.0%

0.0%
0.0%
0.0%
0.0%

8.3%
4.8%
0.0%

7
1
–

4.8%
19.0%
0.0%
0.0%
0.0%
4.8%

8.1%
9.5%
0.0%

7
1
–

4.8%
14.3%
0.0%
0.0%
0.0%
0.0%

7.9%
9.5%
4.8%

6
1
–

14.3%
19.0%

0.0%
4.8%
9.5%

33.3%

survivor

n = 39 items
p = 6 users
0.0% missing
Purple Rock [54]

Disagreement Rate
Median Disagreement per User

Abstention Rate
# Tiers

# Top Items
Dissent

∆ Inversions Sampling
∆ Inversions Adversarial

∆ Specifications Sampling
∆ Specifications Adversarial

∆ Abstentions Sampling
∆ Abstentions Adversarial

0.0%
0.0%

94.9%
2
1

0.0000
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

0.2%
0.1%

42.5%
5
1

0.1667
0.0%
0.0%
0.0%
5.1%

52.4%
57.5%

0.2%
0.1%

42.5%
5
1

0.3333
0.0%
0.0%
0.0%
0.0%

57.5%
57.5%

6.8%
7.2%
0.0%

39
1
–

1.3%
2.6%
0.0%
0.0%
0.0%
0.0%

6.6%
7.1%
0.4%

39
1
–

0.8%
1.8%
0.4%
0.4%
0.1%
0.4%

6.7%
7.1%
0.0%

39
1
–

0.9%
1.6%
0.0%
0.0%
0.0%
0.4%

6.4%
6.8%
0.0%

39
1
–

0.8%
3.1%
0.1%
0.3%
0.1%
0.7%

lawschool

n = 20 items
p = 5 users
0% missing
LSData [46]

Disagreement Rate
Median Disagreement per User

Abstention Rate
# Tiers

# Top Items
Dissent

∆ Inversions Sampling
∆ Inversions Adversarial

∆ Specifications Sampling
∆ Specifications Adversarial

∆ Abstentions Sampling
∆ Abstentions Adversarial

0.0%
0.0%

40.5%
4

12
0.0000

0.0%
0.0%
0.0%
0.0%

59.5%
59.5%

0.3%
0.0%

36.8%
6

12
0.2000

0.0%
0.0%

11.1%
0.0%

28.2%
0.0%

3.1%
1.6%
4.2%

15
2

0.4000
0.0%
0.0%
0.0%
0.5%

95.8%
95.8%

4.7%
4.2%
0.0%

20
1
–

1.6%
3.7%
0.0%
0.0%
0.0%
0.0%

4.2%
2.6%
0.0%

20
1
–

1.1%
2.6%
0.0%
0.0%
0.0%
1.6%

4.1%
2.1%
0.0%

20
1
–

29.5%
45.8%
0.0%
0.0%
0.0%
0.0%

4.2%
2.6%
0.5%

20
1
–

0.5%
2.6%
0.0%
0.0%
0.5%
1.6%

csrankings

n = 175 items
p = 5 users
0% missing
csrankings.org [23]

Disagreement Rate
Median Disagreement per User

Abstention Rate
# Tiers

# Top Items
Dissent

∆ Inversions Sampling
∆ Inversions Adversarial

∆ Specifications Sampling
∆ Specifications Adversarial

∆ Abstentions Sampling
∆ Abstentions Adversarial

0.0%
0.0%

100.0%
1

175
0.0000

0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

0.0%
0.0%

98.9%
2
1

0.2000
0.0%
0.0%
0.0%
0.0%
1.1%
0.0%

0.1%
0.1%

95.5%
3
1

0.4000
0.0%
0.0%
0.0%
0.0%
4.5%
4.5%

12.3%
12.3%

0.0%
175

1
–

0.8%
3.1%
0.0%
0.0%
0.0%
0.0%

12.2%
12.6%
0.0%

175
1
–

0.8%
1.7%
0.1%
0.1%
0.0%
0.1%

13.7%
13.5%
0.0%

175
1
–

9.0%
11.1%
0.0%
0.0%
0.0%
0.0%

12.2%
12.3%

0.0%
175

1
–

0.1%
0.1%
0.0%
0.0%
0.0%
0.0%

sushi

n = 10 items
p = 5, 000 users
0.0% missing
Kamishima [41]

Disagreement Rate
Median Disagreement per User

Abstention Rate
# Tiers

# Top Items
Dissent

∆ Inversions Sampling
∆ Inversions Adversarial

∆ Specifications Sampling
∆ Specifications Adversarial

∆ Abstentions Sampling
∆ Abstentions Adversarial

0.0%
0.0%

100.0%
1

10
0.0000

0.0%
0.0%
0.0%
0.0%
0.0%
0.0%

13.6%
13.3%
64.4%

2
8

0.0020
0.0%
0.0%
0.0%
0.0%

35.6%
0.0%

42.6%
42.2%
0.0%

10
1

0.4998
0.0%
0.0%
0.0%
0.0%

100.0%
100.0%

42.6%
42.2%

0.0%
10
1
–

0.0%
2.2%
0.0%
0.0%
0.0%
0.0%

42.6%
42.2%
0.0%

10
1
–

0.0%
2.2%
0.0%
0.0%
0.0%
0.0%

42.6%
42.2%
0.0%

10
1
–

2.2%
11.1%
0.0%
0.0%
0.0%
0.0%

42.6%
42.2%

0.0%
10
1
–

2.2%
11.1%

0.0%
0.0%
0.0%

15.6%
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Fig. 12. ROC model curves on the training set for all four methods. We highlight the label for each method closest to tpr> 90% on labels
with a large dot. fSPA is the only method whose chosen operating point keeps the true-positive rate above 80 % on the model output while
controlling FPR.

D.5 Supplementary Material for Section 6

Selective Aggregation with Binary Annotations A key challenge in applying SPA to the DICES dataset is that it elicits
categorical labels for each item individually, rather than comparative ratings. This conversion can create unnecessary
equivalence, where a pairwise preference is inferred as a tie (πk

i,j = 0). This is not a reflection of a user’s true judgment but
an artifact of two limitations: (1) users annotate items individually rather than comparing them, and (2) the annotations are
restricted to {0, 1} instead of granular ratings. For example, a user may believe item A is significantly more toxic than item
B, but the conversion results in a tie if both were labeled "toxic" a distinction that is lost in this setting.

We address this by running a variant of selective aggregation where we construct aggregate labels from users who express
a strict preference between items – i ≻ j or j ≻ i. In addition, we assume that users who have not asserted an opinion
(because of dataset scope) are “deferring judgment" to those who have.

For each pair of items i, j ∈ [n], we define:

• si,j :=
∑

k∈[p] I
[
πk
i,j = 1

]
denote number of users who strictly prefer item i to item j

• sj,i :=
∑

k∈[p] I
[
πk
i,j = −1

]
denote the number of users who strictly prefer item j to item i.

• The aggregate preference weight wi,j as the proportion of users who strictly prefer i to j among those who expressed a
strict preference, scaled to n items. Note that all item pairs had at least 1 preference:

wi,j := n · si,j
si,j + sj,i

In this setup, the dissent parameter τ no longer maintains its standard interpretation because users may not assign a
preference to each item, and items may be assigned different weights. As a result, we produce selective rankings for all
possible dissent parameters that lead to a connected graph in Algorithm 2. In this case, the maximum dissent value is
specified to a threshold value where Line 4 returns a disconnected graph.

D.6 Model Training
All experiments used 5-fold cross-validation on the training split. We fine-tuned a BERT-Mini model; all fine-tuning
experiments used 5-fold cross-validation on the training split. We optimized with a learning rate of 2× 10−5 for up to 25
epochs, employing early stopping. We trained in mini-batches of size 16 and enabled oversampling of minority classes in
each batch.
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