
Under review as a conference paper at ICLR 2024

IS INVERSE REINFORCEMENT LEARNING HARDER
THAN STANDARD REINFORCEMENT LEARNING?

Anonymous authors
Paper under double-blind review

ABSTRACT

Inverse Reinforcement Learning (IRL)—the problem of learning reward func-
tions from demonstrations of an expert policy—plays a critical role in developing
intelligent systems, such as those that understand and imitate human behavior.
While widely used in applications, theoretical understandings of IRL admit unique
challenges and remain less developed compared with standard RL theory. For
example, it remains open how to do IRL efficiently in standard offline settings with
pre-collected data, where states are obtained from a behavior policy (which could
be the expert policy itself), and actions are sampled from the expert policy.
This paper provides the first line of results for efficient IRL in vanilla offline and
online settings using polynomial samples and runtime. We first design a new IRL
algorithm for the offline setting, Reward Learning with Pessimism (RLP), and show
that it achieves polynomial sample complexity in terms of the size of the MDP, a
concentrability coefficient between the behavior policy and the expert policy, and
the desired accuracy. Building on RLP, we further design an algorithm Reward
Learning with Exploration (RLE), which operates in a natural online setting where
the learner can both actively explore the environment and query the expert policy,
and obtain a stronger notion of IRL guarantee from polynomial samples. We
establish sample complexity lower bounds for both settings showing that RLP and
RLE are nearly optimal. Finally, as an application, we show that the learned reward
functions can transfer to another target MDP with suitable guarantees when the
target MDP satisfies certain similarity assumptions with the original (source) MDP.

1 INTRODUCTION

Inverse Reinforcement Learning (IRL) aims to recover reward functions from demonstrations of
an expert policy (Ng & Russell, 2000; Abbeel & Ng, 2004), in contrast to standard reinforcement
learning which aims to learn optimal policies for a given reward function. IRL has applications in
numerous domains such as robotics (Argall et al., 2009; Finn et al., 2016), target-driven navigation
tasks (Ziebart et al., 2008; Sadigh et al., 2017; Kuderer et al., 2015; Pan et al., 2020; Barnes et al.,
2023), game AI (Ibarz et al., 2018; Vinyals et al., 2019), and medical decision-making (Woodworth
et al., 2018; Hantous et al., 2022). The learned reward functions in these applications are typically
used for replicating the expert behaviors in similar or varying downstream environments. Broadly, the
problem of learning reward functions from data is of rising importance beyond the scope of IRL—For
example, it is a main step in Reinforcement Learning from Human Feedback (RLHF) (Christiano
et al., 2017), a widely adopted paradigm for aligning modern large-scale systems such as Large
Language Models (Ouyang et al., 2022; Bai et al., 2022; OpenAI, 2023; Touvron et al., 2023).

Despite the significant success that IRL has achieved in practical applications (Agarwal et al., 2020;
Finn et al., 2016; Sadigh et al., 2017; Kuderer et al., 2015; Woodworth et al., 2018; Wu et al., 2020;
Ravichandar et al., 2020; Vasquez et al., 2014), theoretical understanding is still in an early stage,
especially when compared with standard RL (finding optimal policy under a given reward) where the
theory is more established. The main challenge in IRL: (i) Non-uniqueness of reward for any IRL
problem, for example, 0 is always a solution. Therefore, it is not sufficient to merely recover one
reward. The recent literature considers recovering a set of feasible rewards, defined as the rewards
that enable the expert policy to achieve optimality (Metelli et al., 2021; Lindner et al., 2023; Metelli
et al., 2023). (ii) As far as we know, there are no results for more standard settings in RL theory, such
as learning from interactive online access to the environment (known as online RL), or from offline

1

Under review as a conference paper at ICLR 2024

demonstrations (referred to as offline RL). (iii) A more nuanced issue in IRL, relating to both (i)
and (ii), concerns the selection of a distance metric between the estimated reward set and the ground
truth reward set. Literature has various choices, such as reward that leads to uniformly accurate Q/V
functions over all states and actions. However, these are predominantly suitable for simulator settings
and are less sensible for the online or offline settings. Recently, Lindner et al. (2023) proposes a
metric for measuring the accuracy of Q-function merely at initial states in an online setting. However,
this metric is notably weak, for instance, it fails to distinguish two IRL problems with completely
different transitions.

Is IRL more difficult than standard RL?

In this paper, we initiate the study of IRL in standard episodic tabular Markov Decision Processes
(MDPs) where we propose a suitable new metrics, and design learning algorithms that are efficient
in the sample complexity and runtime in both online and offline settings. Our contributions can be
summarized as follows.

• We build metrics for both offline and online settings, based on the recovery of reward mapping,
which converts a parameter set into solutions for an IRL problem, providing an answer to the
longstanding non-uniqueness issue in IRL. Our new metrics not only extend the existing uniform
accurate V -function metric from simulator settings to trajectory settings, but they also fully
capture behavior of policies. As a result, IRL in trajectory settings becomes both learnable and
practical (See Section 3).

• Leveraging the estimation of an evaluation policy, we establish a performance metric for the
offline setting. Informed by the pessimism principle, a common aspect in standard offline RL, we
design an offline IRL algorithm, REWARD LEARNING WITH PESSIMISM(RLP). This algorithm
achieves a rate of Õ

(
C⋆H4S2/ϵ2

)
(up to log factors) when ϵ is small, where C⋆ is a single-policy

concentrability coefficient between the behavior policy and the evaluation policy (See Section 4).
• We establish a performance metric in online settings based on the estimation of all policies.

Building on reward-free exploration techniques, as well as RLP, We develop an online IRL algo-
rithm REWARD LEARNING WITH EXPLORATION, which achieves a rate of Õ

(
H4S2A/ϵ2

)
(up

to log factors) for any online IRL problem (See Section 5).
• We establish an Õ

(
C⋆H2Smin {S,A}/ϵ2

)
sample complexity for lower bound for any of-

fline IRL problem. Turning to online settings, we prove a sample complexity lower bound of
Õ
(
C⋆H2SAmin {S,A}/ϵ2

)
for any online IRL problem. When S < A, our upper bounds for

offline/online settings match the lower bounds except for the horizon factor (See Section 4-5).
• We further provide results for a transfer learning setting, where the learned reward mapping is

transferred to and evaluated in a target MDP\R(different from the original MDP\R). We provide
theoretical guarantees for both RLP and RLE, under certain similarity assumptions between the
original (source) and target MDP\Rs that are more relaxed compared to the constraints in existing
work within this context (See Section 6).

1.1 RELATED WORK

Inverse reinforcement learning Inverse reinforcement learning (IRL) was first proposed by Ng &
Russell (2000). Since its introduction, IRL has been enhanced by numerous influential studies that
have made notable contributions to the field. These include feature matching (Abbeel & Ng, 2004),
maximum margin (Ratliff et al., 2006), maximum entropy (Ziebart et al., 2008), and two model-free
methods: relative entropy (Boularias et al., 2011), and generative adversarial imitation learning (Ho
& Ermon, 2016). Other significant works include Bayesian IRL (Ramachandran & Amir, 2007)
which subsume IRL and reduction method (Brantley et al., 2019).

IRL has been successfully applied in many domains including target-driven navigation tasks (Ziebart
et al., 2008; Sadigh et al., 2017; Kuderer et al., 2015; Pan et al., 2020), robotics (Argall et al., 2009;
Finn et al., 2016; Hadfield-Menell et al., 2016; Kretzschmar et al., 2016; Okal & Arras, 2016; Kumar
et al., 2023; Jara-Ettinger, 2019), medical decision-making (Woodworth et al., 2018; Hantous et al.,
2022; Gong et al., 2023; Yu et al., 2019; Chadi & Mousannif, 2022), and game play AI (Finn et al.,
2016; Fu et al., 2017; Qureshi et al., 2018; Brown et al., 2019).

Despite their successful applications, these methods offer limited theoretical guarantees. Recently,
Metelli et al. (2021) pioneered the investigation of the sample complexity of IRL within generative

2

Under review as a conference paper at ICLR 2024

models. Their work was expanded upon by Metelli et al. (2023), who introduced a framework based
on Hausdorff-based metrics for measuring distances between reward sets, examined relationships
between different metrics, and provided corresponding lower bounds. However, these results still
rely on the premise of generative models, which might not align with real-world situations. Dexter
et al. (2021) also contributed to the theoretical analysis in the generative setting, but their focus was
on MDP\R with continuous states and discrete actions. Subsequently, Lindner et al. (2023) ventured
into the exploration setting, thereby circumventing the need for generative models. Nonetheless, their
metric, which relies on rewards leading to accurate Q functions over the initial state, has a significant
weakness. Our work strives to address these limitations by introducing more suitable metrics and
extending IRL to both online and offline learning settings, which are more characteristic of real-world
applications.

Relationship with existing RL theory Our work builds upon various existing techniques from
the sample-efficient RL literature to design our algorithms and establish our theoretical results. For
the offline setting, we utilize the pessimism principle, a commonly adopted strategy in standard
offline RL, to construct our offline IRL algorithm, REWARD LEARNING WITH PESSIMISM (RLP).
Moreover, our assumption (Assumption 4.1) takes inspiration from the single-policy concentrability
assumption prevalent in offline RL (Kidambi et al., 2020; Jin et al., 2021; Yu et al., 2020; Kumar
et al., 2020; Rashidinejad et al., 2021; Xie et al., 2021; 2022). For online exploration, we rely on
the reward-free exploration techniques (Jin et al., 2020; Li et al., 2023) to find a desired behavior
policy. Specifically, we adopt the exploration scheme proposed by Li et al. (2023), allowing effective
exploration of the unknown environment and the identification of a desired behavior policy that fulfills
a certain coverage assumption with all policies. Furthermore, we extend the theoretical analysis of
this scheme to the online IRL setting. We note theoretical results on imitation learning (Abbeel & Ng,
2004; Ratliff et al., 2006; Ziebart et al., 2008; Levine et al., 2011; Fu et al., 2017) and reinforcement
learning from human feedback (Zhu et al., 2023a;b; Wang et al., 2023; Zhan et al., 2023); our setting
is related to these problems, though the techniques are different and the results do not directly imply
each other. Additional related work in Appendix A.

2 PRELIMINARIES

Markov Decision Processes without Reward. We consider episodic Markov Decision Processes
without Reward (MDP\R), specified byM = (S,A, H,P), where S is the state space with |S| = S,
A is the action space with |A| = A, H is the horizon length, P = {Ph}h∈[H] where Ph(·|s, a) ∈
∆(S) is the transition probability at step h.

Reward functions. A reward function r : [H]× S ×A → [−1, 1] maps a state-action-time step
triplet (h, s, a) to a reward rh(s, a). Given an MDP\RM and a reward function r, we denote the
MDP induced byM and r asM∪ r. A policy π = {πh(· | s)}h∈[H],s∈S , where πh : S → ∆(A)
maps a state to a acion distribution.

Values and visitation distributions. For any policy π and any reward function r, we define
the value function V π

h (·; r) : S → R at each time step h ∈ [H] by the expected cumulative

reward: V π
h (s; r) = Eπ

[∑H
h′=h rh′(sh′ , ah′) | sh = s

]
, where Eπ denotes the expectation with

respect to the random trajectory induced by π in the MDP\R, that is, (s1, a1, s2, a2, ..., sH , aH),
where ah ∼ πh(sh), rh = rh(sh, ah), sh+1 ∼ Ph(· | sh, ah). Similarly, we denote the Q-function at
time step h as : Qπ

h(s, a; r) = Eπ

[∑H
h′=h rh′(sh′ , ah′) | sh = s, ah = a

]
. The advantage function

Aπ
h(·;) : S ×A → R is defined as Aπ

h(s, a; r) := Qπ
h(s, a; r)− V π

h (s; r) and we say a policy is an
optimal policy ofM∪ r if Aπ

h(s, a; r) ≤ 0 holds for all (h, s, a) ∈ [H]× S ×A. Additionally, we
represent the set of all optimal policies forM∪ r as Π⋆

M∪r and denote the set of all deterministic
policies forM∪ r as Πdet

M∪r.

We introduce dπh to denote the state(-action) visitation distributions associated with policy at time
step h ∈ [H]: dπh(s) := P(sh = s|π) and dπh(s, a) := P(sh = s, ah = a|π). Lastly, We define the
operators Ph and Vh by [PhVh+1](s, a) := E[Vh+1(sh+1)|sh = s, ah = a] and [VhVh+1](s, a) :=
Var[Vh+1(sh+1)|sh = s, ah = a] applying to any value function Vh+1 at time step h + 1. In this
paper, we will frequently employ P̂h and V̂h to represent empirical counterparts of these operators
constructed based on estimated models.

3

Under review as a conference paper at ICLR 2024

2.1 INVERSE REINFORCEMENT LEARNING

An Inverse Reinforcement Learning (IRL) problem is denoted as a pair (M, πE), whereM is an
MDP\R and πE is a policy called the expert policy. The goal of IRL is to interact with (M, πE), and
recover reward function r that are feasible for (M, πE), in the sense that πE an optimal policy for
MDPM∪ r. Noting that learning one feasible reward function is trivial (the zero reward r ≡ 0 is
feasible for any πE), we consider the stronger goal of recovering a set of feasible rewards. Concretely,
we focus on recovering a specific and diverse set of feasible rewards widely considered in the IRL
literature (Ng & Russell, 2000; Metelli et al., 2023; Lindner et al., 2023), which we restate through
the concept of a reward mapping.

Let V = V1× · · ·×VH andA = A1× · · ·×AH , where Vh :=
{
Vh ∈ RS | ∥Vh∥∞ ≤ H − h+ 1

}
and Ah :=

{
Ah ∈ RS×A

≥0 | ∥Ah∥∞ ≤ H − h+ 1
}

. Here, sets V and A serve as parameter sets,

representing the parameters of the V -functions and the advantage functions, respectively. LetRall

denote the set of all possible reward functions on [H]× S ×A.

Definition 2.1 (Reward mapping). The (ground truth) reward mapping R : V ×A 7→ Rall for an IRL
problem (M, πE) is the mapping that maps any (V,A) ∈ V ×A to the following reward function r:

rh(s, a) = [R(V,A)]h(s, a) := −Ah(s, a)× 1
{
a /∈ supp

(
πE
h(· | s)

)}
+ Vh(s)− [PhVh+1](s, a),

(2.1)

where we recall that Ph is the transition probability ofM at step h.

We will also use notation R̂ to denote an estimated reward mapping, which is in general an arbitrary
mapping from V ×A 7→ Rall. The importance of the ground truth reward mapping is that it always
produces feasible rewards, as stated in the following classical result (Ng & Russell, 2000) (see
also Lindner et al. (2023)).
Lemma 2.2 (Reward mapping produces a set of feasible rewards). Let R be the (ground truth) reward
mapping for (M, πE). Then for any (V,A) ∈ V ×A, the reward function r = R(V,A) in Eq.(2.1) is
feasible for (M, πE). Further, if feasible reward r satisfies that sup(h,s,a)∈[H]×S×A |rh(s, a)| ≤ 1,
there exists a pair (V,A) ∈ V ×A such that r = R(V,A).

Lemma 2.2 suggests the recovery of the reward mapping R itself as a natural learning goal for
IRL–an accurate estimator R̂ ≈ R guarantees R̂(V,A) ≈ R(V,A) for any (V,A) ∈ V × A, and
thus imply accurate estimation of the entire set R(V ×A) in precise ways which we specify in the
sequel.

We will frequently consider recovering the reward mapping on a subset Θ ⊂ V × A. We use the
following standard definition of covering numbers to measure the capacity of such Θ’s:

Definition 2.3 (Covering number). For any Θ ⊂ V × A let VΘ

h := {Vh : (V,A) ∈ Θ} denote the
restriction of Θ onto Vh for any h ∈ [H]. The ϵ-covering number of Θ is defined as

N (Θ; ϵ) := max
h∈[H]

N (VΘ

h ; ϵ),

where N (VΘ

h ; ϵ) is the ϵ-covering number of VΘ

h w.r.t. ∥ · ∥∞ norm.

We always have logN (Θ; ϵ) ≤ min {log |Θ|,O(S log(H/ϵ))} by combining the (trivial) bound
for the finite case and the standard covering number bound for the “full set” case with Θ = V ×
A (Vershynin, 2018) respectively. Further, the left-hand side can be much smaller than the right-hand
side if Θ admits additional structure (for example, if VΘ

h lies in a low-dimensional subspace of RS).

3 PERFORMANCE METRICS FOR IRL

3.1 METRIC FOR IRL

Our metric for IRL is to recover the ground truth reward mapping R in a suitable distance. Given a
policy π, we first define a metric for rewards by measuring the difference between the V -functions of
π induced by two rewards. Then, when presented with a parameter set Θ ∈ V ×A, we can naturally
define a metric for reward mappings based on the metric for rewards we defined before.

4

Under review as a conference paper at ICLR 2024

Definition 3.1. Given an MDP\R M and a policy π, We define the (pre)metric dπ for any pair
(r, r′) ∈ Rall ×Rall by

dπ(r, r′) := sup
h∈[H]

Eπ|V π
h (sh; r)− V π

h (sh; r
′)|. (3.1)

We further define dall(r, r′) := supπ d
π(r, r′).

Definition 3.2. Given an MDP\RM and a policy π, we define the (pre)metric Dπ
Θ for any pair

(R,R′) by

Dπ
Θ(R,R′) := sup

(V,A)∈Θ
dπ(R(V,A),R′(V,A)). (3.2)

We further define Dall
Θ (R,R′) := supπ D

π
Θ(R,R′) = sup(V,A)∈Θ dall(R(V,A),R′(V,A)) corre-

spondingly.

dπ is expressed via |V π
h (· | r)− V π

h (· | r′)| over the visitation distributions at any horizon induced by
the policy π, which guarantees that this metric comprehensively captures the behavior of π across all
reachable states. In Section 3.3, we will see that our paper considers the trajectory setting in which
we can only interact with the environment through trajectories. As a result, we can only require
accurate recovery in frequently visitable states and do not care about accurate recovery in rarely
visitable states. Dπ

Θ is defined via the worst-case dπ over the parameter set Θ. Furthermore, taking
supremum over π, we obtain two stronger metircs dall and Dall

Θ .

3.2 RELATIONSHIP WITH EXISTING METRICS

Here we will mainly discuss the relationship between our metric defined in Section 3.1 and metrics in
the existing works (Metelli et al., 2021; 2023; Lindner et al., 2023). The main differences lie in two as-
pects: (i) Metrics between rewards(differences of d). (ii) Reward aggregation approaches(differences
of D).

Metrics between rewards. We compare our metric to the dGV ⋆ (Eq.(C.1)) metric proposed by
Metelli et al. (2023), specifically in regards to how they measure the difference between V -functions
associated with different rewards. We prove that our method is stronger than the one employed in
Metelli et al. (2023), and on the other hand, there exist specific counterexamples where our method is
able to make distinctions, while their approach fails to do so (Lemma C.1).

For metric dall, we show a significant characteristic that is not found in existing metrics: a small
dall distance between (r, r̂) indicates that near-optimal policies under reward r̂ continue to be nearly
optimal in the environment induced by r (Proposition C.5). This reveals a crucial application of
learned rewards that exhibit small dall distances from the ground truth rewards: these learned rewards
can be utilized to execute standard RL algorithms that aim to find near-optimal policies. We defer the
detailed discussion of metrics between rewards to Appendix C.1.

Reward aggregation approaches. Given a metric d defined onRall, our paper employs a reward
aggregation approach that relies on utilizing a (pre)metric DM between reward mappings, induced by
d. Contrarily, Metelli et al. (2021); Lindner et al. (2023); Metelli et al. (2023) utilized a Hausdorff
(pre)metric to derive a metric DH between reward sets, induced by d. It will be demonstrated that if
DM and DH are induced by the same reward metric, then DM is strictly stronger than DH. Broadly
speaking, our metric DM can capture more comprehensive information for a single parameter pair
(V,A). Additionally, in certain scenarios, applying the Hausdorff metric can trivialize the problem.
We defer the detailed discussion of the reward aggregation approaches to Appendix C.2. We also
consider merics used in Lindner et al. (2023) and show that this metric can’t fully capture transitions
of MDP\R (Proposition C.4).

3.3 LEARNING SETTINGS

In this paper, we consider two settings: the offline setting and the online setting. The latter is also
known as active exploration IRL, as proposed in Lindner et al. (2023). Next, we give detailed
definitions of the two settings.

Offline IRL. A learner only has access to a dataset D consisting of K trajectories without reward
{(sτh, aτh, eτh)}

K,H
τ=1,h=1. Here s1 is a fixed initial state, ah ∼ πb

h(·|sh) and sh+1 ∼ Ph(· | sh, ah),

5

Under review as a conference paper at ICLR 2024

where πb is a behavior policy (is unknown to the learner), and eh represents an expert feedback,
which is given by

eh =

{
aEh ∼ πE

h(·|sh) in option 1,
1
{
ah ∈ supp

(
πE
h(·|sh)

)}
in option 2.

(3.3)

Option 1 is a commonly employed setting in the related literature (Metelli et al., 2021; Lindner
et al., 2023; Metelli et al., 2023). But we also consider Option 2, since Option 2 is simpler and more
fundamental for IRL problems when compared to Option 1, as indicated by Eq.(2.1). Furthermore, if
we opt for Option 1, we need to enforce the following well-posed assumption for the expert policy
πE.
Assumption 3.3 (Well-posedness). We assume that there exists a ∆ > 0 such that

min
(h,s,a):πE

h(a|s) ̸=0
πE(a|s) ≥ ∆. (3.4)

Assumption 3.3 is also made in the works of Metelli et al. (2023). We remark that Assumption 3.3 is
necessary: if an optimal action a at a frequently visited state is never returned (which might occur
when πE

h(a|s) is too small), we are consequently unable to determine 1
{
a ∈ supp

(
πE
h(·|s)

)}
, which

could result in a significant error as revealed in Eq.(2.1).

Constrained by the offline setting, our access is limited to the trajectories executed by the behavior
policy πb. Here, we cannot reach states with low visitation probabilities under πb and therefore
expect to recover a reward mapping R̂ with a small Dπ

Θ(R̂,R⋆) for any π is unrealistic. Instead, our
goal in the offline setting is to recover a reward mapping R̂ attaining a small Dπval

Θ (R̂,R⋆). for πval

that exhibits concentrability (Assumption 4.1) with the behavior policy πb, where R⋆ denotes the
ground truth reward mapping. In this paper, we utilize the notation (M, πE, πb, πval) to denote an
offline IRL problem.

Online IRL A learner can obtain a trajectory as follows. Each episode starts with a fixed initial
state s1.

For each h, the learner observes sh, chooses an action ah to play, then receives a feedback eh and
transits to the next states sh+1 ∼ Ph(· | sh, ah). In this case, when we receive the first type of
feedback, the well-posed condition described in Eq.(3.4) remains necessary.

In this setting, we possess the freedom to explore the environment unrestricted by a certain behavior
policy. Consequently, we can approximate the ground truth mapping on any policy within a given
parameter set Θ ⊂ V×A. In other words, our learning goal in the online learning setting is to recover
a reward mapping that exhibits a small Dall

Θ distance compared to the ground truth reward mapping.

4 INVERSE REINFORCEMENT LEARNING IN THE OFFLINE SETTING

In this section, we initially introduce our algorithm, referred to as REWARD LEARNING WITH
PESSIMISM (RLP). Subsequently, we provide the sample complexity of this algorithm and conclude
by presenting a lower bound result for the IRL problem in the offline setting.

4.1 ALGORITHM

In this section, we propose a meta-algorithm, termed REWARD LEARNING WITH PESSIMISM (full
description in Algorithm 1) to solve the offline IRL problem defined in Section 3.3. We also prove
that RLP is provably sample-efficient, i.e., RLP can recover ground truth reward mapping with small
learning error, within a polynomial number of samples.

At a high level, RLP simultaneously recovers the transition kernel of MDP\R and the expert policy,
integrating the imitation learning algorithm (Rajaraman et al., 2020) and the pessimistic algorithm
for offline RL (Li et al., 2023).

RLP utilizes empirical MDP and Pessimism frameworks, operating through two distinct phases.

• (Empirical MDP): In this phase, we construct an estimated transition kernel P̂h and an estimated
expert policy π̂E according to Eq.(4.1) and Eq.(4.2). So that P̂hVh+1 : S ×A → R approximates
PhVh+1 : S ×A → R and supp

(
π̂E
h(·|s)

)
approximates supp

(
πE
h(·|s)

)
.

6

Under review as a conference paper at ICLR 2024

Algorithm 1 REWARD LEARNING WITH PESSIMISM

1: Input: Dataset D = {(sτh, aτ
h, e

τ
h)}K,H

τ=1,h=1 collected by executing πb in M, parameter set Θ ∈ V × A,
confidence level δ and error tolerance ϵ.

2: Initialization: R̂(V,A) = 0 for all θ = (V,A) ∈ Θ.
3: for (h, s, a) ∈ [H]× S ×A do
4: Compute the empirical transition kernel P̂h, the empirical expert policy π̂E and the penalty term bθh for

all θ ∈ Θ as follows:

P̂h(s
′ | s, a) = 1

Nb
h(s, a) ∨ 1

∑
(sh,ah,sh+1)∈D

1
{
(sh, ah, sh+1) = (s, a, s′)

}
, (4.1)

π̂E
h(a | s) =


1

Nb
h
(s)∨1

·
∑

(sh,ah,eh)∈D 1 {(sh, eh) = (s, a)} in option 1,
1

Nb
h,1

(s)∨1
·
∑

(sh,ah,eh)∈D 1 {(sh, ah, eh) = (s, a, 1)} in option 2,
(4.2)

bθh(s, a) =

C ·min

{√
logN (Θ; ϵ/H)ι

Nb
h(s, a) ∨ 1

[
V̂hVh+1

]
(s, a) +

H logN (Θ; ϵ/H)ι

Nb
h(s, a) ∨ 1

+
ϵ

H

(
1 +

√
logN (Θ; ϵ/H)ι

Nb
h(s, a) ∨ 1

)
, H

}
,

(4.3)

where Nb
h(s, a) :=

∑
(sh,ah)∈D 1 {(sh, ah) = (s, a)}, Nb

h(s) :=
∑

a∈A Nb
h(s, a), Nb

h,1(s) :=∑
(sh,ah,eh) 1 {(sh, eh) = (s, 1)}, ι := log (HSA/δ) and C > 0 is an absolute constant.

5: Compute R̂ by

[R̂(V,A)]h(s, a) = −Ah(s, a) · 1
{
a /∈ supp

(
π̂E
h(·|s)

)}
+ Vh(s)− [P̂hVh+1](s, a)− bθh(s, a) (4.4)

6: Output: Estimated reward mapping R̂.

• (Pessimism in face of uncertainty): In this phase, a penalty function bθh(s, a) is computed for
any θ = (V,A) ∈ Θ, (h, s, a) ∈ [H] × S × A using Eq.(4.3). Here bθh serves as a measure of
uncertainty arising from approximating P̂hVh+1 with PhVh+1. Finally, we compute estimated
R̂(V,A) for all θ = (V,A) ∈ Θ by Eq.(4.4), which incorporates the explicit form of reward
mapping Eq.(2.1) with penalty terms.

4.2 THEORETICAL GUARANTEE

Assumption 4.1 (Single-policy concentrability in the L1 form). We assume that evaluation policy
πval satisfies the following single-policy concentrability with behavior policy πb:∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a)

dπ
b

h (s, a)
≤ C⋆HS., (4.5)

Here C⋆ is a constant and we follow the convention: 0/0 = 0.

Assumption 4.1 characterizes the gap between the visitation distributions of the evaluation policy
πval and the behavior policy πb. The assumption of single-policy concentrability is common in the
literature of RL (Xie et al., 2021). Our L1 form single-policy concentrability assumption is milder
than the L∞ form typically adopted in most offline RL works (Xie et al., 2021; Rashidinejad et al.,
2021). This is due to the fact that every policy pair exhibiting C⋆ single-policy concentrability in the
L∞ form also satisfies C⋆A single-policy concentrability in the L1 form. Now, we are already to
present the sample complexity of RLP (Algorithm 1).
Theorem 4.2 (Sample complexity of RLP). Suppose the single-policy concentrability between
πval and πb (Assumption 4.1). In addition, we assume πE is well-posed (Assumption 3.3) when
we receive feedback in option 1. Then with probability at least 1 − δ, RLP (Algorithm 1) outputs
a reward mapping R̂ such that

[
R̂(V,A)

]
h
(s, a) ≤ [R⋆(V,A)]h(s, a) for all (V,A) ∈ Θ and

(h, s, a) ∈ [H]× S ×A, and Dπval

Θ

(
R⋆, R̂

)
≤ 2ϵ, within

Õ
(
C⋆H4S logN (Θ; ϵ/H)

ϵ2
+

C⋆H2S(η +H logN (Θ; ϵ/H))

ϵ

)
(4.6)

7

Under review as a conference paper at ICLR 2024

samples, where poly log (H,S,A, 1/δ) are omitted and η is defined as 1/∆ in option 1 and as 1 in
option 2 (∆ is specified in Definition 3.3).

The proof of Theorem 4.2 is deferred to Section E. To the best of our knowledge, this result is the
first theoretical guarantee for offline IRL algorithms. To highlight the main term of our results, we
further character the log-covering number logN (Θ; ϵ/H) in the following scenarios: (i) When Θ is a
finite parameter set, the log-covering number logN (Θ; ϵ/H) can be upper-bounded by its cardinality
|Θ|. As a result, our sample complexity becomes Õ

(
C⋆H4S log |Θ|/ϵ2

)
when ϵ is small. (ii) When

Θ = V ×A, the log-covering number logN (Θ; ϵ/H) can be upper-bounded by Õ(S), resulting in a
sample complexity of Õ

(
C⋆H4S2/ϵ2

)
. And it’s worth noting that in the case where the feedback is

in option 1, 1/∆ brought by the well-posedness assumption only emerges in the burn-in term.

We highlight the scenario where πval = πE, as this setting is prevalent in cases where only expert
trajectories are available,i.e., πb = πE.

Corollary 4.3 (πval = πE). Suppose the single-policy concentrability between πval and πb (As-
sumption 4.1) and sup(h,s,a)∈[H]×S×A |[R⋆(V,A)]h(s, a)| ≤ 1 for any (V,A) ∈ Θ, where R⋆ is
the ground truth reward mapping. Then with probability at least 1− δ, RLP (Algorithm 1) outputs
a reward mapping R̂ such that

[
R̂(V,A)

]
h
(s, a) ≤ [R⋆(V,A)]h(s, a) for all (V,A) ∈ Θ and

(h, s, a) ∈ [H]× S ×A, and Dπval

Θ

(
R⋆, R̂

)
≤ 2ϵ, within

Õ
(
C⋆H3S logN (Θ; ϵ/H)

ϵ2
+

C⋆H2S(A+H logN (Θ; ϵ/H))

ϵ

)
, (4.7)

samples, where poly log (H,S,A, 1/δ) are omitted.

When πval = πE, we can gain an additional H factor in the main term due to a total invariance property
(See Section E). Additionally, when πval = πE, the necessity of the well-posedness assumption is
alleviated, as demonstrated in Eq.(4.7). This stems from the concentrability between πE and πb,
facilitating the learning of supp

(
πE
h(·|s)

)
even without the well-posedness assumption. We remark

that Theorem 4.3 also provides sample complexity of a significant scenario where the data consists
of full trajectories drawn from πE, i.e., πE = πb. In this case, we have C⋆ = 1, and therefore the
sample complexity can be further reduced to Õ(H3S logN (Θ; ϵ/H)/ϵ2).

Theoretical lower bound in the offline setting. We provide the following lower bound, for the
case where Θ = V ×A. This lower bound shows that our rate is sharp when S ≤ A.

Theorem 4.4 (Informal version of Theorem H.2). Suppose Θ = V × A, then any algorithm that
returns a reward mapping up to ϵ distance with the ground truth reward mapping for all offline IRL
problems with probability at least 2/3 has to take at least Ω

(
C⋆H2Smin {S,A}/ϵ2

)
samples.

Additionally, in Section E.4, we provide a discussion about RLP through a unifying framework to
illustrate how pessimism can yield the IRL guarantee in a modular fashion.

5 IRL IN THE ONLINE SETTING

In this section, we extend IRL to the standard online learning setting. We present our online IRL
algorithm, referred to as REWARD LEARNING WITH EXPLORATION (RLE), along with its theoretical
guarantee, and subsequently establish the lower bound for online IRL problems.

5.1 ALGORITHM

Building on RLP, we develop REWARD LEARNING WITH EXPLORATION (RLE) to address online
IRL problems as specified in Section 3.3. RLE first uses the reward-free exploration strategy
(Algoeithm 2) to find a desired behavior policy πb with concentrability with all policies, then collects
K episodes generated by πb, and finally calls to compute an estimated reward mapping. Here, we
utilize NH episodes for computing πb, where N is specified in Algorithm 2. The total number of
episodes of our algorithm is K +NH . The full description of RLE is deferred to Section F.

In the following, we present the theoretical guarantees of RLE.

8

Under review as a conference paper at ICLR 2024

Theorem 5.1 (Sample complexity of RLE). Suppose πE is well-posed (Assumption 3.3) when we
receive feedback in option 1. Then with probability at least 1 − δ, RLE (Algorithm 6) outputs
a reward mapping R̂ such that

[
R̂(V,A)

]
h
(s, a) ≤ [R⋆(V,A)]h(s, a) for all (V,A) ∈ Θ and

(h, s, a) ∈ [H]× S ×A, and Dall
Θ (R⋆, R̂) ≤ 2ϵ, provided that

K ≥ Õ
(
H4SA logN (Θ; ϵ/H)

ϵ2
+

H2SA(η + logN (Θ; ϵ/H))

ϵ

)
, KH ≥ N ≥ Õ

(√
H9S7A7K

)
,

where η is specified in Theorem 4.2 and Õ hides poly log (H,S,A, 1/δ).

Relation with the offline setting When taking N = Õ
(√

H9S7A7K
)

in Theorem 5.1, the

total number of sample episodes K + NH becomes Õ
(
H4SA logN (Θ; ϵ/H)/ϵ2

)
(we hide the

burn-in term). Comparing this sample complexity with that of our offline algorithm, which achieves
Õ
(
C⋆H4S logN (Θ; ϵ/H)/ϵ2

)
(we hide the burn-in term), we observe that the sample complexity of

Algorithm 6 has one less C⋆ factor but one additional A factor. We provide the following explanation
for this. As is shown in our interaction protocol, our algorithm finds a desired behavior policy πb

which can be considered to have Õ(A) single-policy concentrability1(Eq.(B.3)) with all policies.
Subsequently, the offline algorithm RLP is executed to obtain the estimated reward mapping according
to the data collected by following the behavior policy. Therefore, in this case, we can roughly see
C⋆ = A, which yields the sample complexity of Algorithm 6 Õ

(
H4SA logN (Θ; ϵ/H)/ϵ2

)
.

Comparison with the bound in Lindner et al. (2023) Lindner et al. (2023) achieves a sample
complexity of O(H4SA/ϵ2) in the special case where |Θ| = poly(S,A,H), which matches the
sample complexity of Algorithm 6. However, the metric proposed in Lindner et al. (2023) has a
significant weakness, as demonstrated in Appendix C.3.

Theoretical lower bound in the offline setting. We provide the following lower bound, for the
case where Θ = V ×A. This lower bound shows that our rate is sharp when S ≤ A.
Theorem 5.2 (Informal version of Theorem G.2). Suppose Θ = V × A, then any algorithm that
returns a reward mapping up to ϵ distance with the ground truth reward mapping for all online IRL
problems with probability at least 2/3 has to take at least Ω

(
H3SAmin {S,A}/ϵ2

)
samples.

6 TRANSFER LEARNING

As a further extension, we consider the transfer learning setting, where rewards learned in a source
MDP\R are transferred to a target MDP\R (possibly different from the source MDP\R). Inspired
by the single-policy concentrability assumption, we define two novel concepts: weak-transferability
(Definition I.2) and transferability (Definition I.3) serving as measures to ascertain the level of
similarity between two MDP\Rs.

We prove that our algorithms RLP and RLE still are applicable to transfer learning. When the
target MDP\R exhibits a low week-transferability (transferability), transfer learning is proven to
be implemented with a polynomial sample complexity in terms of the size of the MDP\R and the
week-transferability (transferability) coefficient under certain metrics (Theorem I.4 and I.5). We
provide guarantees for performing RL algorithms with learned rewards in different environments
(Corollary I.6, Corollary I.7). As a new application, we illustrate that our transfer learning approach
can be adapted to do transfer learning between two IRL problems sample-efficiently.

7 CONCLUSION

In this paper, we propose a novel algorithm for Inverse Reinforcement Learning (IRL) in the offline
setting, using polynomial samples and runtime. Building upon our offline algorithm, we design an
algorithm for IRL in the online setting, employing the same complexity as prior work, but under
a stronger performance metric. We believe our work opens up many important questions, such
as designing better metrics for IRL problems, generalizing our IRL algorithms to the function
approximation setting, and developing more computationally efficient algorithms.

1In this context, the notion of ”concentrability” is somewhat distinct from the definition provided in Assump-
tion 4.1. Nevertheless, it still yields a similar outcome, as demonstrated in the proof of Theorem 5.1.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Alekh Agarwal, Nan Jiang, and Sham M Kakade. Reinforcement learning: Theory and algorithms.
MIT, 2020.

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

Sanjeev Arora, Simon Du, Sham Kakade, Yuping Luo, and Nikunj Saunshi. Provable representation
learning for imitation learning via bi-level optimization. In International Conference on Machine
Learning, pp. 367–376. PMLR, 2020.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence
15, pp. 103–129, 1995.

Matt Barnes, Matthew Abueg, Oliver F Lange, Matt Deeds, Jason Trader, Denali Molitor, Markus
Wulfmeier, and Shawn O’Banion. Massively scalable inverse reinforcement learning in google
maps. arXiv preprint arXiv:2305.11290, 2023.

Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse reinforcement learning. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
182–189. JMLR Workshop and Conference Proceedings, 2011.

Kiante Brantley, Wen Sun, and Mikael Henaff. Disagreement-regularized imitation learning. In
International Conference on Learning Representations, 2019.

Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In International
conference on machine learning, pp. 783–792. PMLR, 2019.

Mohamed-Amine Chadi and Hajar Mousannif. Inverse reinforcement learning for healthcare appli-
cations: A survey. 2022.

Jonathan D Chang, Masatoshi Uehara, Dhruv Sreenivas, Rahul Kidambi, and Wen Sun. Mitigating
covariate shift in imitation learning via offline data without great coverage. arXiv preprint
arXiv:2106.03207, 2021.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Gregory Dexter, Kevin Bello, and Jean Honorio. Inverse reinforcement learning in a continuous state
space with formal guarantees. Advances in Neural Information Processing Systems, 34:6972–6982,
2021.

Zihan Ding, Yuanpei Chen, Allen Z Ren, Shixiang Shane Gu, Hao Dong, and Chi Jin. Learning
a universal human prior for dexterous manipulation from human preference. arXiv preprint
arXiv:2304.04602, 2023.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In International conference on machine learning, pp. 49–58. PMLR, 2016.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse reinforce-
ment learning. arXiv preprint arXiv:1710.11248, 2017.

Wei Gong, Linxiao Cao, Yifei Zhu, Fang Zuo, Xin He, and Haoquan Zhou. Federated inverse
reinforcement learning for smart icus with differential privacy. IEEE Internet of Things Journal,
2023.

10

Under review as a conference paper at ICLR 2024

Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. Cooperative inverse
reinforcement learning. Advances in neural information processing systems, 29, 2016.

Khaoula Hantous, Lilia Rejeb, and Rahma Hellali. Detecting physiological needs using deep inverse
reinforcement learning. Applied Artificial Intelligence, 36(1):2022340, 2022.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. Advances in neural information
processing systems, 31, 2018.

Ashesh Jain, Brian Wojcik, Thorsten Joachims, and Ashutosh Saxena. Learning trajectory preferences
for manipulators via iterative improvement. Advances in neural information processing systems,
26, 2013.

Julian Jara-Ettinger. Theory of mind as inverse reinforcement learning. Current Opinion in Behavioral
Sciences, 29:105–110, 2019.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for
reinforcement learning. In International Conference on Machine Learning, pp. 4870–4879. PMLR,
2020.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pp. 5084–5096. PMLR, 2021.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. MOReL: Model-
based offline reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

Henrik Kretzschmar, Markus Spies, Christoph Sprunk, and Wolfram Burgard. Socially compliant
mobile robot navigation via inverse reinforcement learning. The International Journal of Robotics
Research, 35(11):1289–1307, 2016.

Markus Kuderer, Shilpa Gulati, and Wolfram Burgard. Learning driving styles for autonomous
vehicles from demonstration. In 2015 IEEE international conference on robotics and automation
(ICRA), pp. 2641–2646. IEEE, 2015.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Sateesh Kumar, Jonathan Zamora, Nicklas Hansen, Rishabh Jangir, and Xiaolong Wang. Graph
inverse reinforcement learning from diverse videos. In Conference on Robot Learning, pp. 55–66.
PMLR, 2023.

Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse reinforcement learning with
gaussian processes. Advances in neural information processing systems, 24, 2011.

Gen Li, Yuling Yan, Yuxin Chen, and Jianqing Fan. Minimax-optimal reward-agnostic exploration in
reinforcement learning, 2023.

David Lindner, Andreas Krause, and Giorgia Ramponi. Active exploration for inverse reinforcement
learning, 2023.

Andreas Maurer and Massimiliano Pontil. Empirical bernstein bounds and sample variance penaliza-
tion. arXiv preprint arXiv:0907.3740, 2009.

Alberto Maria Metelli, Giorgia Ramponi, Alessandro Concetti, and Marcello Restelli. Provably
efficient learning of transferable rewards. In International Conference on Machine Learning, pp.
7665–7676. PMLR, 2021.

Alberto Maria Metelli, Filippo Lazzati, and Marcello Restelli. Towards theoretical understanding of
inverse reinforcement learning, 2023.

11

Under review as a conference paper at ICLR 2024

Ofir Nachum and Mengjiao Yang. Provable representation learning for imitation with contrastive
fourier features. Advances in Neural Information Processing Systems, 34:30100–30112, 2021.

Andrew Y Ng and Stuart J Russell. Algorithms for inverse reinforcement learning. In Proceedings of
the Seventeenth International Conference on Machine Learning, pp. 663–670, 2000.

Ellen Novoseller, Yibing Wei, Yanan Sui, Yisong Yue, and Joel Burdick. Dueling posterior sam-
pling for preference-based reinforcement learning. In Conference on Uncertainty in Artificial
Intelligence, pp. 1029–1038. PMLR, 2020.

Billy Okal and Kai O Arras. Learning socially normative robot navigation behaviors with bayesian
inverse reinforcement learning. In 2016 IEEE international conference on robotics and automation
(ICRA), pp. 2889–2895. IEEE, 2016.

OpenAI. Gpt-4 technical report, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Aldo Pacchiano, Aadirupa Saha, and Jonathan Lee. Dueling rl: reinforcement learning with trajectory
preferences. arXiv preprint arXiv:2111.04850, 2021.

Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos Theodorou,
and Byron Boots. Agile autonomous driving using end-to-end deep imitation learning. arXiv
preprint arXiv:1709.07174, 2017.

Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos A Theodorou,
and Byron Boots. Imitation learning for agile autonomous driving. The International Journal of
Robotics Research, 39(2-3):286–302, 2020.

Ahmed H Qureshi, Byron Boots, and Michael C Yip. Adversarial imitation via variational inverse
reinforcement learning. arXiv preprint arXiv:1809.06404, 2018.

Nived Rajaraman, Lin Yang, Jiantao Jiao, and Kannan Ramchandran. Toward the fundamental limits
of imitation learning. Advances in Neural Information Processing Systems, 33:2914–2924, 2020.

Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In IJCAI, volume 7,
pp. 2586–2591, 2007.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-
forcement learning and imitation learning: A tale of pessimism. Advances in Neural Information
Processing Systems, 34:11702–11716, 2021.

Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning. In
Proceedings of the 23rd international conference on Machine learning, pp. 729–736, 2006.

Harish Ravichandar, Athanasios S Polydoros, Sonia Chernova, and Aude Billard. Recent advances in
robot learning from demonstration. Annual review of control, robotics, and autonomous systems,
3:297–330, 2020.

Stephane Ross and J Andrew Bagnell. Reinforcement and imitation learning via interactive no-regret
learning. arXiv preprint arXiv:1406.5979, 2014.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings,
2011.

Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active preference-based learning
of reward functions. 2017.

12

Under review as a conference paper at ICLR 2024

Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew Bagnell. Deeply
aggrevated: Differentiable imitation learning for sequential prediction. In International conference
on machine learning, pp. 3309–3318. PMLR, 2017.

Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. Advances
in neural information processing systems, 20, 2007.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Dizan Vasquez, Billy Okal, and Kai O Arras. Inverse reinforcement learning algorithms and features
for robot navigation in crowds: an experimental comparison. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1341–1346. IEEE, 2014.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Yuanhao Wang, Qinghua Liu, and Chi Jin. Is rlhf more difficult than standard rl? arXiv preprint
arXiv:2306.14111, 2023.

Bryce Woodworth, Francesco Ferrari, Teofilo E Zosa, and Laurel D Riek. Preference learning in
assistive robotics: Observational repeated inverse reinforcement learning. In Machine learning for
healthcare conference, pp. 420–439. PMLR, 2018.

Zheng Wu, Liting Sun, Wei Zhan, Chenyu Yang, and Masayoshi Tomizuka. Efficient sampling-based
maximum entropy inverse reinforcement learning with application to autonomous driving. IEEE
Robotics and Automation Letters, 5(4):5355–5362, 2020.

Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridg-
ing sample-efficient offline and online reinforcement learning. Advances in neural information
processing systems, 34:27395–27407, 2021.

Tengyang Xie, Dylan J Foster, Yu Bai, Nan Jiang, and Sham M Kakade. The role of coverage in
online reinforcement learning. arXiv preprint arXiv:2210.04157, 2022.

Tian Xu, Ziniu Li, and Yang Yu. Error bounds of imitating policies and environments. Advances in
Neural Information Processing Systems, 33:15737–15749, 2020a.

Yichong Xu, Ruosong Wang, Lin Yang, Aarti Singh, and Artur Dubrawski. Preference-based
reinforcement learning with finite-time guarantees. Advances in Neural Information Processing
Systems, 33:18784–18794, 2020b.

Chao Yu, Guoqi Ren, and Jiming Liu. Deep inverse reinforcement learning for sepsis treatment. In
2019 IEEE international conference on healthcare informatics (ICHI), pp. 1–3. IEEE, 2019.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn, and
Tengyu Ma. MOPO: Model-based offline policy optimization. arXiv preprint arXiv:2005.13239,
2020.

Wenhao Zhan, Masatoshi Uehara, Nathan Kallus, Jason D Lee, and Wen Sun. Provable offline
reinforcement learning with human feedback. arXiv preprint arXiv:2305.14816, 2023.

Banghua Zhu, Jiantao Jiao, and Michael I Jordan. Principled reinforcement learning with human
feedback from pairwise or k-wise comparisons. arXiv preprint arXiv:2301.11270, 2023a.

Banghua Zhu, Hiteshi Sharma, Felipe Vieira Frujeri, Shi Dong, Chenguang Zhu, Michael I Jordan,
and Jiantao Jiao. Fine-tuning language models with advantage-induced policy alignment. arXiv
preprint arXiv:2306.02231, 2023b.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

13

Under review as a conference paper at ICLR 2024

A ADDITIONAL RELATED WORK

Imitation learning A closely related field to IRL is Imitation Learning, which focuses on learning
policies from demonstrations, in contrast to IRL’s emphasis on learning rewards from expert demon-
strations (Bain & Sammut, 1995; Abbeel & Ng, 2004; Ratliff et al., 2006; Ziebart et al., 2008; Pan
et al., 2017; Finn et al., 2016). Imitation learning has been extensively studied in the active setting
(Ross et al., 2011; Ross & Bagnell, 2014; Sun et al., 2017), and theoretical analyses for Imitation
Learning have been provided by (Rajaraman et al., 2020; Xu et al., 2020a; Chang et al., 2021). More
recently, the concept of Representation Learning for Imitation Learning has gained considerable
attention (Arora et al., 2020; Nachum & Yang, 2021). While Imitation can be implemented by IRL
(Abbeel & Ng, 2004; Ratliff et al., 2006; Ziebart et al., 2008), it is important to note that IRL has
wider capabilities than Imitation Learning since the rewards learned through IRL can be transferred
across different environments (Levine et al., 2011; Fu et al., 2017).

Reinforcement learning from human feedback Reinforcement Learning from Human Feedback
(RLHF) bears a close relation to IRL, particularly because the process of learning rewards is a crucial
aspect of both approaches (Zhu et al., 2023a;b; Wang et al., 2023; Zhan et al., 2023). RLHF has been
successfully applied in various domains, including robotics (Jain et al., 2013; Sadigh et al., 2017;
Ding et al., 2023) and game playing (Ibarz et al., 2018). Recently, RLHF has attracted considerable
attention due to its remarkable capability to integrate human knowledge with large language models
(Ouyang et al., 2022; OpenAI, 2023). Furthermore, the theoretical foundations of RLHF have been
extensively developed in both tabular and function approximation settings (Zhan et al., 2023; Xu
et al., 2020b; Pacchiano et al., 2021; Novoseller et al., 2020; Zhu et al., 2023a; Wang et al., 2023).

B USEFUL ALGORITHMIC SUBROUTINES FROM PRIOR WORKS

In this section, we give the algorithm procedures of finding behavior policy πb in Algorithm 6. The
algorithm procedures are directly quoted from Li et al. (2023), with slight modification.

B.1 ALGORITHM: FINDING BEHAVIOR POLICY πb

Algorithm 2, a component of Li et al. (2023, Algorithm 1), aims to identify a suitable behavior
policy. This is achieved by estimating the occupancy distribution dπ, which is induced by any
deterministic policy π, through a meticulously designed exploration strategy. At each stage h,
Algorithm2 invokes Algorithm procedure 3 to compute an appropriate exploration policy, denoted
as πexplore,h, and subsequently collects N sample trajectories by executing πexplore,h. These steps
facilitate the estimation of the occupancy distribution dπh+1 for the next stage, h + 1. Finally, the
behavior policy πb ∼ µb is computed by invoking Algorithm 4.

We highlight that the behavior policy π output by Algorithm 2 has following property Li et al. (2023)∑
h∈[H]

∑
(s,a)∈S×A

d̂πh(s, a)

Eπ′∼µb

[
d̂π
′

h (s, a)
] ≲ HSA, (B.3)

for any deterministic policy π ∈ Πdet.

B.2 SUBROUTINE: COMPUTING EXPLORATION POLICY πexplore,h

We proceed to describe Algorithm 3, originally proposed in Li et al. (2023, Algorithm 3), which is
designed to compute the desired exploration policy πexplore,h. At a high level, this algorithm calculates
the exploration policy by approximately solving the subsequent optimization sub-problem, utilizing
the Frank-Wolfe algorithm:

µ̂h ≈ arg max
µ∈∆(Π)

∑
(s,a)∈S×A

log

[
1

KH
+ E

π∼µ

[
d̂πh(s, a)

]]
, (B.4)

14

Under review as a conference paper at ICLR 2024

Algorithm 2 Subroutine for computing behavior policy (Li et al., 2023)
1: Input: state space S , action space A, horizon length H , initial state distribution ρ, target success

probability 1− δ, threshold ξ = cξH
3S3A3 log(HSA/δ).

2: Draw N i.i.d. initial states sn,01
i.i.d.∼ ρ (1 ≤ n ≤ N), and define the following functions

d̂π1 (s) =
1

N

N∑
n=1

1{sn,01 = s}, d̂π1 (s, a) = d̂π1 (s) · π1(a|s) (B.1)

for any deterministic policy π : [H]× S → ∆(A) and any (s, a) ∈ S ×A.
3: for h = 1, ...,H − 1 do
4: Call Algorithm 3 to compute an exploration policy πexplore,h.
5: Draw N independent trajectories {sn,h1 , an,h1 , . . . , sn,hh+1}1≤n≤N using policy πexplore,h and

compute

P̂h(s
′
|s, a) = 1 {Nh(s, a) > ξ}

max
{
Nh(s, a), 1

} N∑
n=1

1
{
sn,hh = s, an,hh = a, sn,hh+1 = s

′
}
, ∀(s, a, s′) ∈ S×A×S,

where Nh(s, a) =
∑N

n=1 1
{
sn,hh = s, an,hh = a

}
.

6: For any deterministic policy π : S × [H]→ ∆(A) and any (s, a) ∈ S ×A, define
d̂πh+1(s) =

〈
P̂h(s|·, ·), d̂πh(·, ·)

〉
, d̂πh+1(s, a) = d̂πh+1(s) · πh+1(a|s). (B.2)

.
7: Call Algorithm 4 to compute a behavior policy πb.
8: Output: the behavior policy πb.

Algorithm 3 Subroutine for solving Eq.(B.4) (Li et al., 2023).

1: Initialize: µ(0) = δπinit for an arbitrary policy πinit ∈ Π, Tmax = ⌊50SA log(KH)⌋.
2: for t = 0, 1..., Tmax do
3: Compute the optimal deterministic policy π(t),b of the MDP Mh

b = (S ∪
{saug},A, H, P̂aug,h, rhb), where rhb is defined in Eq.(B.5), and P̂aug,h is defined in Eq.(B.6);
let π(t) be the corresponding optimal deterministic policy of π(t),b in the original state space.

4: Compute

αt =
1

SAg(π(t), d̂, µ(t))− 1

g(π(t), d̂, µ(t))− 1
, where g(π, d̂, µ) =

∑
(s,a)∈S×A

1
KH + d̂πh(s, a)

1
KH + Eπ∼µ[d̂πh(s, a)]

.

Here, d̂πh(s, a) is computed via Eq.(B.1) for h = 1, and Eq.(B.2) for h ≥ 2.
5: If g(π(t), d̂, µ(t)) ≤ 2SA then exit for-loop.
6: Update

µ(t+1) = (1− αt)µ
(t) + αt 1π(t) .

7: Output: the exploration policy πexplore,h = Eπ∼µ(t) [π] and the weight µ̂h = µ(t).

HereMh
b = (S ∪ {saug},A, H, P̂aug,h, rhb), where saug is an augmented state as before, and the

reward function is chosen to be

rhb,j(s, a) =

{ 1
1

KH +E
π∼µ(t)

[
d̂π
h(s,a)

] ∈ [0,KH], if (s, a, j) ∈ S ×A× {h};

0, if s = saug or j ̸= h.
(B.5)

In addition, the augmented probability transition kernel P̂aug,h is constructed based on P̂ as follows:

P̂aug,h
j (s

′
| s, a) =

{
P̂j(s

′ | s, a), if s
′ ∈ S

1−
∑

s′∈S P̂j(s
′ | s, a), if s

′
= saug

for all (s, a, j) ∈ S ×A× [h];

(B.6a)

P̂aug,h
j (s

′
| s, a) = 1(s

′
= saug) if s = saug or j > h. (B.6b)

15

Under review as a conference paper at ICLR 2024

B.3 SUBROUTINE: COMPUTING FINAL BEHAVIOR POLICY πb

We proceed to describe Algorithm 4, originally proposed in (Li et al., 2023, Algorithm 2), which
is designed to compute the final behavior policy πb πexplore,h, based on the estimated occupancy
distributions specified in Algorithm 2. Algorithm 4 follows a similar fashion of Algorithm 3.
Algorithm 4 computes the behavior policy by approximately solving the subsequent optimization
sub-problem, utilizing the Frank-Wolfe algorithm:

µ̂b ≈ arg max
µ∈∆(Π)


H∑

h=1

∑
(s,a)∈S×A

log

[
1

KH
+ Eπ∼µ

[
d̂πh(s, a)

]] . (B.7)

Algorithm 4 Subroutine for solving Eq.(B.7) (Li et al., 2023).

1: Initialize: µ(0)
b = δπinit for an arbitrary policy πinit ∈ Π, Tmax = ⌊50SAH log(KH)⌋.

2: for t = 0, 1..., Tmax do
3: Compute the optimal deterministic policy π(t),b of the MDP Mb = (S ∪

{saug},A, H, P̂aug, rb), where rb is defined in Eq.(B.8), and P̂aug is defined in Eq.(B.9);
let π(t) be the corresponding optimal deterministic policy of π(t),b in the original state space.

4: Compute

αt =
1

SAH g(π(t), d̂, µ
(t)
b)− 1

g(π(t), d̂, µ
(t)
b)− 1

, where g(π, d̂, µ) =

H∑
h=1

∑
(s,a)∈S×A

1
KH + d̂πh(s, a)

1
KH + Eπ∼µ

[
d̂πh(s, a)

] .
Here, d̂πh(s, a) is computed via Eq.(B.1) for h = 1, and Eq.(B.2) for h ≥ 2.

5: If g(π(t), d̂, µ
(t)
b) ≤ 2HSA then exit for-loop. Update

µ
(t+1)
b = (1− αt)µ

(t)
b + αt1π(t) .

6: Output: the behavior policy πb = E
π∼µ(t)

b

[π] and the associated weight µ̂b = µ
(t)
b .

Here,Mb = (S ∪ {saug},A, H, P̂aug, rb), where saug is an augmented state and the reward function
is chosen to be

rb,h(s, a) =


1

1
KH +E

π∼µ
(t)
b

[
d̂π
h(s,a)

] ∈ [0,KH], if (s, a, h) ∈ S ×A× [H];

0, if (s, a, h) ∈ {saug} × A× [H].
(B.8)

In addition, the augmented probability transition kernel P̂aug is constructed based on P̂ as follows:

P̂aug
h (s

′
| s, a) =

{
P̂h(s

′ | s, a), if s
′ ∈ S

1−
∑

s′∈S P̂h(s
′ | s, a), if s

′
= saug

for all (s, a, h) ∈ S ×A× [H];

(B.9a)

P̂aug
h (s

′
| saug, a) = 1(s

′
= saug) for all (a, h) ∈ A× [H]. (B.9b)

It’s evident that the augmented state behaves as an absorbing state, associated with zero immediate
rewards.

C RELATIONSHIP WITH EXISTING METRICS

C.1 METRICS BETWEEN REWARDS

Here we will mainly discuss the relationship between our metric defined in Section 3.1 and metrics in
the existing works (Metelli et al., 2021; 2023; Lindner et al., 2023). Metelli et al. (2023) consider the

16

Under review as a conference paper at ICLR 2024

following metric2

dGV ⋆(r, r̂) = max
π̂∈Π⋆

M∪r̂

max
(h,s)∈[H]×S

∣∣∣V ⋆
h (s; r)− V π̂

h (s; r)
∣∣∣. (C.1)

We remark that dGV ⋆(r, r̂) is utilized in the simulator setting (Metelli et al., 2023) and is not directly
comparable with our metrics since dGV ⋆ takes maximum over all (h, s). However, we can compare
the following aspect: Metelli et al. (2023) considers V ⋆ − V π , whereas we consider V π on r vs r̂. It
can be shown that our method that considers V π on r vs r̂ subsumes theirs when we consider optimal
policies.
Lemma C.1. For anyM, (r, r̂) and (h, s) ∈ [H]× S , we have

sup
π∈Π⋆

M∪r∪Π⋆
M∪r̂

|V ⋆
h (s; r)− V π

h (s; r)| ≤ 2 sup
π∈Π⋆

M∪r∪Π⋆
M∪r̂

|V π
h (s; r)− V π

h (s; r̂)|.

Conversely, there exist aM with S = A = 2, H = 2, (h, s, a) ∈ [H]×S ×A and a pair (r, r̂) such
that supπ∈Π⋆

M∪r∪Π⋆
M∪r̂
|V ⋆

h (s; r)−V π
h (s; r)| = 0, but supπ∈Π⋆

M∪r∪Π⋆
M∪r̂
|V π

h (s; r)−V π
h (s; r̂)| ≥ 1.

C.2 REWARD AGGREGATION METHODS

Since we have defined the metric between rewards and characterized the relationship with metrics
in Metelli et al. (2023). This naturally leads to the following question: given a metric for rewards,
how to measure IRL algorithms? Our method is to use the reward mapping metric induced by the
metric for rewards. But the metric for IRL algorithms used in Metelli et al. (2023) is a bit different
from ours. Before presenting the performance metric for IRL algorithms used in Metelli et al. (2023),
we first define the feasible reward set. Given a reward mapping R : V × A 7→ Rall, we say a
reward set R ⊂ Rall is a feasible reward set induced by R, if R = image(R). They used the
Hausdorff (pre)metric DH(R, R̂) between the exact feasible reward setR and the estimated feasible
set R̂ ⊂ Rall which is defined by

DH(R, R̂) := max
{
sup
r∈R

inf
r̂∈R̂

d(r, r̂), sup
r̂∈R̂

inf
r∈R

d(r, r̂)
}
,

where d is a given metric between rewards. Their learning goal is to find an estimated feasible set
R̂, attaining a small DH(R, R̂). Different from our mapping-based metric, the Hausdorff metric
measures only the gap between the exact feasible setR and the estimated feasible set R̂, but can’t
measure the gap between rewards for every parameter (V,A). In fact, given a metric between rewards,
our mapping-based metric is stronger than the Hausdorff metric.
Lemma C.2 (DM is stronger than DH). Given an IRL problem (M, πE) and a (pre)metric d :
Rall ×Rall 7→ R≥0 between rewards. We define the corresponding Hausdorff metric DH for any pair
(R,R′) by

DH(R,R′) := max

{
sup
r∈R

inf
r′∈R′

d(r, r′), sup
r′∈R′

inf
r∈R

d(r, r′)

}
,

and the mapping-based metric is defined for any pair (R,R′) by

DM(R,R′) := sup
V ∈V,A∈A

d(R(V,A),R′(V,A)),

LetR andR′ are feasible reward set induced by R and R′, then we have

DH(R,R′) ≤ DM(R,R′).

We then present the following lemma which demonstrates that for some d, DM is strictly stronger
than DH.

2Technically, the metric defined in Metelli et al. (2023) considers the value function difference overall
(h, s) ∈ [H]× S, which is more suitable for the generative model setting, and clearly cannot be minimized in
the online setting in general, due to the potential existence of unreachable states; We have adapted their metric to
look at the initial value function only, which is more suitable for the online setting.

17

Under review as a conference paper at ICLR 2024

Lemma C.3. There exists a metric d which is a metric between rewards such that for any IRL
problem (M, πE), there exists another IRL problem (M̂, π̂E) such that DH(R⋆, R̂) = 0, but
DM(R⋆, R̂) ≥ 1/2, where DH and DM are the Hausdorff metric and mapping-based metric
induced by d, respectively; R⋆ and R̂ are the feasible sets of (M, πE) and (M̂, π̂E), respectively;
R⋆ and R̂ are the reward mappings induced by (M, πE) and (M̂, π̂E), respectively.

C.3 DISSCUSSION OF EXISTING METRIC FOR ONLINE IRL

We also consider the performance metric proposed in Lindner et al. (2023). They consider the
metric between IRL problems τ = (M, πE) and τ̂ = (M̂, π̂E), where (M̂, π̂E) is the recovered IRL
problem. We then present the performance metric of Lindner et al. (2023):

DL(τ, τ̂) := max

{
sup
r∈Rτ

inf
r̂∈Rτ̂

sup
π̂⋆∈Π⋆

M̂∪r̂

max
a

∣∣∣Qπ⋆

1 (s1, a;M∪ r)−Qπ̂⋆

1 (s1, a;M∪ r)
∣∣∣, (C.2)

sup
r̂∈Rτ̂

inf
r∈Rτ

sup
π⋆∈Π⋆

M∪r

max
a

∣∣∣Qπ⋆

1 (s1, a;M∪ r)−Qπ̂⋆

1 (s1, a;M∪ r)
∣∣∣}, (C.3)

where the Rτ ,Rτ̂ the set of all feasible rewards set for IRL problems τ, τ̂ , respectively, π⋆ ∈
Π⋆
M∪r, π̂⋆ ∈ Π⋆

M̂∪r̂
, and Qπ

1 (·|M ∪ r) represent the Q-function induced byM∪ r. The following
proposition demonstrates that if πE = π̂E, then DL(τ, τ̂) = 0, indicating that D solely measures
the closeness between πE and π̂E without capturing the closeness betweenM and M̂. However, in
contrast to imitation learning, where the recovery of the expert policy suffices, IRL necessitates the
retrieval of transition dynamics. This becomes especially crucial when leveraging learned rewards for
transfer learning. Merely recovering the expert policy is insufficient for performing RL algorithms
with learned rewards in a different environment.
Proposition C.4. For any τ = (M, πE) and τ̂ = (M̂, π̂E), if πE = π̂E, then DL(τ, τ̂) = 0.

C.4 GUARANTEE FOR PERFORMING RL ALGORITHM WITH LEARNED REWARDS

Significantly, the metric dall possesses a substantial advantage: a policy that is near-optimal under a
certain reward remains near-optimal under a reward that is close to the original one as per dall. This
is a crucial feature that was lacking in the previously established metrics. Specifically, the metrics
presented in the works of Metelli et al. (2023); Lindner et al. (2023) only took into consideration the
optimal policy, without providing for the evaluation of near-optimal policies.
Proposition C.5 (dall suffices for recovering πE). Given an MDP\R M, let (r, r̂) be a pair of
rewards such that dall(r, r̂) ≤ ϵ. Suppose that π̂ is a ϵ′-optimal policy in the MDP M ∪ r̂, i.e,
V ⋆
1 (s1; r̂)− V π̂

1 (s1; r̂) ≤ ϵ′, then

V ⋆
1 (s1; r)− V π̂

1 (s1; r) ≤ 3ϵ+ ϵ′.

Proposition C.5 provides a guarantee for performing standard RL algorithms aiming to find near-
optimal policies with learned rewards (having a small dall error).
Proposition C.6. Given an MDP\RM, let (r, r̂) be a pair of reward such that dπ(r, r̂) ≤ ϵ, where
π is an ϵ̄-optimal policy in the MDPM∪ r. Suppose that r̂h(s, a) ≤ rh(s, a) for any (h, s, a) ∈
[H] × S × A. Let π̂ be an ϵ′-optimal policy in the MDPM∪ r̂, i.e, V ⋆

1 (s1; r̂) − V π̂
1 (s1; r̂) ≤ ϵ′,

then we have
V ⋆
1 (s1; r)− V π̂

1 (s1; r) ≤ ϵ+ ϵ′ + 2ϵ̄.

Proposition C.6 illustrates that when the monotonicity condition: r̂h(s, a) ≤ rh(s, a) is satisfied,
the performance of performing RL algorithms with learned rewards (having small dπ error) can be
guaranteed. This proposition is applicable to our offline IRL algorithm, and in the algorithm design,
we employ pessimism techniques to ensure that the recovered rewards satisfy the monotonicity
condition. Later, we will observe that Proposition C.6 is applicable to our offline and online IRL
algorithms. It is important to note that Proposition C.6 also provides a guarantee for performing
standard RL algorithms with learned rewards (with a small dπ error) in different environments (see
Corollary I.6, Corollary I.7).

18

Under review as a conference paper at ICLR 2024

C.5 PROOFS FOR SECTION C

proof of Lemma C.1. When π ∈ Π⋆
M∪r, we have

|V ⋆
h (s; r)− V π

h (s; r)| = |V ⋆
h (s; r)− V ⋆

h (s; r)| = 0 ≤ sup
π∈Π⋆

M∪r∪Π⋆
M∪r̂

|V π
h (s; r)− V π

h (s; r̂)|.

(C.4)

Let π⋆ ∈ Π⋆
M∪r, and then we directly have

V π⋆

(s; r) = V ⋆(s; r).

When π ∈ Π⋆
M∪r̂, we have

0 ≤ V ⋆
h (s; r)− V π

h (s; r) ≤ V π⋆

h (s; r)− V π
h (s; r) + V π

h (s; r̂)− V π⋆

h (s; r̂)

= V π⋆

h (s; r)− V π⋆

h (s; r̂) + V π
h (s; r̂)− V π

h (s; r)

≤
∣∣∣V π⋆

h (s; r)− V π⋆

h (s; r̂)
∣∣∣+ |V π

h (s; r̂)− V π
h (s; r)|

≤ 2 sup
π∈Π⋆

M∪r∪Π⋆
M∪r̂

|V π
h (s; r)− V π

h (s; r̂)|. (C.5)

where the first line comes from π ∈ Π⋆
M∪r̂: V π

h (s; r̂) − V π⋆

h (s; r̂) ≥ 0 and the second line uses
triangle inequality. Combining Eq.(C.4) and Eq.(C.5), we complete the proof. For the second part
of Lemma C.1, we consider an MDP\RM with H = 1, S = 2 and A = 2, which is specified by
S = {sa, sb},A = ag, ab. The transition dynamics are given by

P1(sa|sa, ag) = 1, P1(sa|sa, ab) = P1(sb|sa, ab) = 1/2, and P(s1 = sg) = 1,

which implies that the initial state is sg . We then construct rewards r and r̂ as follows:

r1(sa, ag) = 1, r1(sa, ab) = 1,

r̂1(sa, ag) = 1, r̂1(sa, ab) = 0.

By the construction of r, for any policy π, we have π ∈ Π⋆
M∪r, which means Π⋆

M∪r̂Π
⋆
M∪r. Hence,

we obtain that

sup
π∈Π⋆

M∪r∪Π⋆
M∪r̂

|V ⋆
1 (sa; r)− V π

1 (sa; r)| = sup
π∈Π⋆

M∪r∪Π⋆
M∪r̂

|V ⋆
1 (sa; r)− V ⋆

1 (sa; r)| = 0. (C.6)

On the other hand, we consider the policy πbad which is given by πbad
1 (ab|sa) = 1. Then, we have

sup
π∈Π⋆

M∪r∪Π⋆
M∪r̂

|V π
h (s; r)− V π

h (s; r̂)| ≥ |V πbad

h (s; r)− V πbad

h (s; r̂)| = |1− 0| = 1. (C.7)

Proof of Lemma C.2. Since R and R′ are induced by R and R′, then for any r ∈ R and r′ ∈ R,
there exist V , V ′ ∈ V , A, A ∈ A such that

r = R(V,A), r′ = R′(V ′, A′).

Then, we have

sup
r∈R

inf
r′∈R′

d(r, r′) = sup
V ∈V,A∈A

inf
V ′∈V,A′∈A

d(R(V,A),R′(V ′, A′))

≤ sup
V ∈V,A∈A

d(R(V,A),R′(V,A)) = DM(R,R′).

Similarly, we obtain
sup
r′∈R′

inf
r∈R

d(r, r′) ≤ DM(R,R′).

Hence, we conclude that
DH(R,R′) ≤ DM(R,R′).

19

Under review as a conference paper at ICLR 2024

Proof of Lemma C.3. Fix a (s̄, ā) ∈ S ×A, we define metric d by

d(r, r′) := |r1(s̄, ā)− r′1(s̄, ā)|. (C.8)

Give an IRL problem (M, πE), let P be the transition dynamics of (M, πE). Let s⋆ :=
arg mins∈S P1(s|s̄, ā). By the Pigeonhole Principle, we have P1(s

⋆|s̄, ā) ≤ 1/S ≤ 1/2. We
construct transition P′ by

P′1(s⋆|s̄, ā) = 1. (C.9)

Let M̂ = (S,A, H,P′), π̂E = πE, and R̂ be the reward mapping induced by (M̂, π̂E). For any
(V,A) ∈ V̄ × Ā, we define (V ′, A′) ∈ V̄ × Ā by{

V2(s
⋆) = [P1V2](s̄, ā)

Vh(s) = Vh(s) (h, s, a) ̸= (1, s̄, ā),
A′ = A. (C.10)

Then we have

d
(
R(V,A), R̂(V ′, A′)

)
= |[R(V,A)]1(s̄, ā)− [R(V,A)]1(s̄, ā)| (C.11)

=
∣∣∣−A1(s̄, ā) · 1

{
ā ∈ supp

(
πE
1 (·|s̄)

)}
+ V1(s)− [P1V2](s̄, ā)

−
{
−A′1(s̄, ā) · 1

{
ā ∈ supp

(
π̂E
1 (·|s̄)

)}
+ V ′1(s)− [P′1V ′2](s̄, ā)

}∣∣∣
= |[P′1V ′2](s̄, ā)− [P1V2](s̄, ā)|
= |V2(s

⋆)− [P1V2](s̄, ā)| = 0 (C.12)

On the other hand, for any (V ′, A′) ∈ V̄ × Ā, we define (V,A) ∈ V̄ × Ā by{
V2(s) = V ′2(s

⋆), s ∈ S,
Vh(s) = V ′h(s) h ̸= 2,

(C.13)

which implies that

[P1V2](s̄, ā) = V ′2(s
⋆) = [P′1V ′2](s̄, ā). (C.14)

Hence, we have

d
(
R(V,A), R̂(V ′, A′)

)
= |[R(V,A)]1(s̄, ā)− [R(V,A)]1(s̄, ā)| (C.15)

=
∣∣∣−A1(s̄, ā) · 1

{
ā ∈ supp

(
πE
1 (·|s̄)

)}
+ V1(s)− [P1V2](s̄, ā)

−
{
−A′1(s̄, ā) · 1

{
ā ∈ supp

(
π̂E
1 (·|s̄)

)}
+ V ′1(s)− [P′1V ′2](s̄, ā)

}∣∣∣
= |[P′1V ′2](s̄, ā)− [P1V2](s̄, ā)| = 0 (C.16)

Combining Eq.(C.11) and Eq.(C.15), we have DH(R, R̂) = 0.

On the other hand, we define (Ṽ , Ã) ∈ V̄ × Ā as follows:{
Ṽ2(s

⋆) = H − 1,

Ṽh(s) = 0, (h, s) ̸= (2, s⋆),
Ã ≡ 0. (C.17)

Then we have

DM(R, R̂) ≥ d
(
R(Ṽ , Ã), R̂(Ṽ , Ã)

)
=
∣∣∣[P′1Ṽ2

]
(s̄, ā)−

[
P1Ṽ2

]
(s̄, ā)

∣∣∣
= |(H − 1)(P1(s

⋆|s̄, ā)− 1)| ≥ H − 1

2
≥ 1

2
. (C.18)

20

Under review as a conference paper at ICLR 2024

Proof of Proposition C.4. Let Rτ and R τ̂ be the reward mappings induced by τ and τ̂ , respectively.
For any θ = (V,A), we define rθ = Rτ (V,A) and r̂θ = R τ̂ (V,A). By construction of reward
mapping and definition of optimal policy, we have π ∈ Π⋆

M∪r is equivalent to

Ah(s, a) · 1
{
πE
h(a|s) = 0

}
= 0, ∀(h, s, a) s.t. πh(a|s) ̸= 0. (C.19)

Similarly, π ∈ Π⋆
M̂∪r̂θ

is equivalent to

Ah(s, a) · 1
{
π̂E
h(a|s) = 0

}
= Ah(s, a) · 1

{
πE
h(a|s) = 0

}
= 0, ∀(h, s, a) s.t. πh(a|s) ̸= 0.

(C.20)

Hence, we can conclude that Π⋆
M∪rθ = Π⋆

M̂∪r̂θ
. Notice that Rτ =

{
rθ | θ = (V,A)

}
and Rτ ={

r̂θ | θ = (V,A)
}

, we further obtain that DL(τ, τ̂) = 0.Then we have

sup
r∈Rτ

inf
r̂∈Rτ̂

sup
π̂⋆∈Π⋆

M̂∪r̂

max
a

∣∣∣Qπ⋆

1 (s1, a;M∪ r)−Qπ̂⋆

1 (s1, a;M∪ r)
∣∣∣

= sup
θ∈Θ

inf
θ′∈Θ

sup
π̂⋆∈Π⋆

M̂∪r̂θ′

max
a

∣∣∣Qπ⋆

1 (s1, a;M∪ rθ)−Qπ̂⋆

1 (s1, a;M∪ rθ)
∣∣∣

= inf
θ∈Θ

sup
π̂⋆∈Π⋆

M̂∪r̂θ

max
a

∣∣∣Qπ⋆

1 (s1, a;M∪ rθ)−Qπ̂⋆

1 (s1, a;M∪ rθ)
∣∣∣ = 0, (C.21)

where the last line is due to Π⋆
M∪rθ = Π⋆

M̂∪r̂θ
. Follow the same proof of Eq.(C.21), we have

sup
r̂∈Rτ̂

inf
r∈Rτ

sup
π⋆∈Π⋆

M∪r

max
a

∣∣∣Qπ⋆

1 (s1, a;M∪ r)−Qπ̂⋆

1 (s1, a;M∪ r)
∣∣∣ = 0. (C.22)

Combining Eq.(C.21) and Eq.(C.22), we conclude that DL(τ, τ̂) = 0.

proof of Proposition C.5. Let π be an optimal policy ofM∪ r̂, then we have

V ⋆(s1; r)− V π̂(s1; r) = V ⋆(s1; r)− V π(s1; r) + V π(s1; r)− V π(s1; r̂) + V π(s1; r̂)− V π̂(s1; r)

≤ |V ⋆(s1; r)− V π(s1; r)|+ |V π(s1; r)− V π(s1; r̂)|+
∣∣∣V π(s1; r̂)− V π̂(s1; r)

∣∣∣
≤ 2dall(r, r̂) + dall(r, r̂) + ϵ′ = 3ϵ+ ϵ′,

where the last line is valid since
|V ⋆(s1; r)− V π(s1; r)| ≤ 2dall(r, r̂) (by Lemma C.5.)

|V π(s1; r)− V π(s1; r̂)| ≤ dall(r, r̂) (by definition of dall.)∣∣∣V π(s1; r̂)− V π̂(s1; r)
∣∣∣ ≤ ϵ′. (by definition of π̂.)

Proof of Proposition C.6. Since π̂ is an ϵ-optiaml policy inM∪ r̂, we have

ϵ′ + V π̂(s1; r̂) ≥ V π(s1; r̂). (C.23)
In the same way, π is an ϵ̄-optiaml policy inM∪ r, and therefore, we obtain that

ϵ̄+ V π(s1; r) ≥ V π̂(s1; r). (C.24)
And by r̂h(s, a) ≤ rh(s, a) for all (h, s, a) ∈ [H]× S ×A, we have

V π(s1; r) ≥ V π(s1; r̂), V π̂(s1; r) ≥ V π̂(s1; r̂). (C.25)
Combining Eq.(C.23), Eq.(C.24) and Eq.(C.25), we conclude that

ϵ′ + ϵ̄+ V π(s1; r) ≥ ϵ′ + V π̂(s1; r) ≥ ϵ′ + V π̂(s1; r̂) ≥ V π(s1; r̂). (C.26)
Hence, we have

|V π(s1; r)− V π̂(s1; r)| ≤ |ϵ′ + ϵ̄+ V π(s1; r)− ϵ′ + V π̂(s1; r)|+ ϵ̄

≤ |ϵ′ + ϵ̄+ V π(s1; r)− V π(s1; r̂)|+ ϵ̄

≤ 2ϵ̄+ ϵ′ + |V π(s1; r)− V π(s1; r̂)| ≤ ϵ+ ϵ′ + 2ϵ̄, (C.27)
where the first and last line is by triangle inequality and the second is by Eq.(C.26).

21

Under review as a conference paper at ICLR 2024

D TECHNICAL TOOLS

Lemma D.1 (Xie et al. (2021)). Suppose N ∼ Bin(n, p) where n ≥ 1 and p ∈ [0, 1]. Then with
probability at least 1− δ, we have

p

N ∨ 1
≤ 8 log(1/δ)

n
.

Theorem D.2 (Metelli et al. (2023)). Let P and Q be probability measures on the same measurable
space (Ω,F), and let A ∈ F be an arbitrary event. Then,

P(A) +Q(Ac) ≥ 1

2
exp (−DKL(P,Q)) ,

where Ac = Ω \ A is the complement of A.

Theorem D.3 (Metelli et al. (2023)). Let P0,P1, . . . ,PM be probability measures on the same
measurable space (Ω,F), and let A1, . . . , AM ∈ F be a partition of Ω. Then,

1

M

M∑
i=1

Pi(A
c
i) ≥ 1−

1
M

∑M
i=1 DKL(Pi,P0)− log 2

logM
,

where Ac = Ω \A is the complement of A.

E PROOFS FOR SECTION 4

E.1 SOME LEMMAS

Lemma E.1 (Concentration event). Under the setting of Theorem 4.2, there exists an absolute
constant C1, C2 such that the concentration event E holds with probability at least 1− δ, where

E :=

{
(i):
∣∣∣[(Ph − P̂h)Vh+1

]
(s, a)

∣∣∣ ≤ bθh(s, a) ∀ θ = (V,A) ∈ Θ, (h, s, a) ∈ [H]× S ×A,

(E.1)

(ii):
1

Nh(s, a) ∨ 1
≤ C1ι

Kdπ
b

h (s, a)
∀(h, s, a) ∈ [H]× S ×A, (E.2)

(iii): Ne
h(s, a) ≥ 1 ∀(s, a) ∈ S ×A s.t. dπ

b

h (s, a) ≥ C2ηι

K
, a ∈ supp

(
πE
h(·|s)

)}
, (E.3)

where bh(s, a) is defined in Eq.(4.3), C⋆ is specified in Definition 4.1, and Ne
h(s), η are given by

Ne
h(s, a) :=

{∑
(sh,ah,eh)∈D 1 {(sh, eh) = (s, a)} in option 1,

N b
h(s, a) in option 2,

η :=

{
1
∆ in option 1,

1 in option 2.

Proof. When Nh(s, a) = 0, then P̂h(·|s, a) = 0, as a result, claim (i) holds trivially. We then
consider the case where Nh(s, a) ≥ 1.

For any h ∈ [H], we define Nϵ,h as an ϵ/H-net with respect to ∥ · ∥∞ norm for VΘ

h . By definition of
N (Θ; ϵ/H), we have

log |Nϵ,h| ≤ logN (Θ; ϵ/H).

For fixed Ṽh+1 ∈ Nϵ,h+1, (h, s, a) ∈ [H]×S ×A, by the empirical Bernstein inequality (Maurer &
Pontil, 2009, Theorem 4), there exists some absolute constant c > 0 such that

∣∣∣[(Ph − P̂h)Ṽh+1

]
(s, a)

∣∣∣ ≤√ c

N b
h(s, a) ∨ 1

[
V̂hṼh+1

]
(s, a) log

3HSA · |Nϵ,h+1|
δ

22

Under review as a conference paper at ICLR 2024

+
cH

N b
h(s, a) ∨ 1

log
3HSA · |Nϵ,h+1|

δ

≲

√
c logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

[
V̂hṼh+1

]
(s, a) +

cH logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

with probability at least 1− δ/(3HSA|Nϵ,h|). Here ≲ hides absolute constants. Taking the union
bound over all Ṽh+1 ∈ Nϵ,h+1 and (h, s, a) ∈ [H]× S ×A, we know that with probability at least
1− δ/3,∣∣∣[(Ph − P̂h)Ṽh+1

]
(s, a)

∣∣∣ ≲√c logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

[
V̂hṼh+1

]
(s, a) +

cH logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

hold simultaneously for all Ṽ ∈ Nϵ,h and (h, s, a) ∈ [H]× S ×A.

For any (V,A) ∈ Θ and h ∈ [H], there exists a Ṽh such that ∥Vh − Ṽh∥∞ ≤ ϵ/H . Denote
(Ṽ1, . . . , ṼH) as Ṽ . By applying the triangle inequality, we deduce that∣∣∣[(Ph − P̂h)Vh+1

]
(s, a)

∣∣∣ ≤ ∣∣∣[(P̂h − Ph

)
Ṽh+1

]
(s, a)

∣∣∣+ 2
∥∥Ṽ − V

∥∥
∞

≲

√
c logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

[
V̂hṼh+1

]
(s, a) +

cH logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

+
ϵ

H

≤

√
c logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

[
V̂hVh+1

]
(s, a) +

√
c logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

[
V̂h

(
Ṽh+1 − Vh+1

)]
(s, a)

+
cH logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

+
ϵ

H

≤

√
c logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

[
V̂hVh+1

]
(s, a) +

√
c logN (Θ; ϵ/H)ιϵ2

H2 ·N b
h(s, a) ∨ 1

+
cH logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

+
ϵ

H

=

√
c logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

[
V̂hVh+1

]
(s, a) +

cH logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

+
ϵ

H

(
1 +

√
c logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

)
(E.4)

holds with probability at least 1− δ/3 for all θ = (V,A) ∈ Θ and (h, s, a) ∈ [H]× S × A. Here
the third line is by

[
V̂hṼh+1

]
(s, a) ≤

[
V̂hVh+1

]
(s, a) +

[
V̂h

(
Ṽh+1 − Vh+1

)]
(s, a). On the other

hand, by |Vh|∞ ≤ H − h+ 1, we obtain that∣∣∣[(Ph − P̂h

)
Vh+1

]
(s, a)

∣∣∣ ≤ 2(H − h+ 1) ≤ 2H, (E.5)

for all V ∈ Θ and (h, s, a) ∈ [H]× S ×A. Recall that, bθh(s, a) is given by

bθh(s, a) = C ·min

{√
logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

[
V̂hVh+1

]
(s, a) +

H logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

+
ϵ

H

(
1 +

√
logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

)
, H

}
, (E.6)

for some absolute constant C. Combining Eq.(E.4) and Eq.(E.5), it turns out that Claims (ii) holds.

For claim (ii), notice that Nh(s, a) ∼ Bin(K, dπ
b

h (s, a)). Applying Lemma D.1 yields that

1

Nh(s, a) ∨ 1
≤ 8

K · dπb

h (sh, aEh)
· log(3HSA

δ
) ≤ C1ι

Kdπ
b

h (s, a)

23

Under review as a conference paper at ICLR 2024

for some absolute constant C1, with probability at least 1 − δ/(3HSA). Taking the union bound
yields claim (ii) over all (h, s, a) with probability at least 1− δ/3.

For claim (iii), in option 2, for any (h, s, a) ∈ [H] × S × A such that a ∈ supp
(
πE
h(·|s)

)
and

dπ
b

h (s, a) ≥ C2ηι
K , we have Ne

h(s, a) ∼ Bin
(
K, dπ

b

h (s, a) · πE
h(a|s)

)
. By direct computing, we

obtain that

P[Ne
h(s, a) = 0] = (1− dπ

b

h (s, a) · πE
h(a|s))K ≤

(
1−∆ · dπ

b

h (s, a)
)K

=

[
1−

(
δ

3HSA

)1/K

+

(
δ

3HSA

)1/K

−∆ · dπ
b

h (s, a)

]K

≤


(

δ

3HSA

)1/K

+ 1−
(

δ

3HSA

)1/K

−∆ · dπ
b

h (s, a)︸ ︷︷ ︸
≤0


K

≤
(

δ

3HSA

)1/K·K

=
δ

3HSA
,

where the second line follows from the well-posedness condition: πE(a|s) ≥ ∆ and the last inequality
is valid since

1−
(

δ

3HSA

)1/K

= 1− exp(− 1

K
log

δ

3HSA
) ≤ − C̃2

K
log

δ

3HSA
≤ C2ι

K
≤ ∆ · dπ

b

h (s, a),

where C̃2 and C2 are absolute constants and the last inequality comes from dπ
b

h (s, a) ≥ C2ηι
K = C2ι

∆·K .
Hence, it holds that

Ne
h(s, a) ≥ 1,

with probability at least 1− δ/(3HSA). Taking the union bound over all (h, s, a) ∈ [H]× S ×A
yields that

Ne
h(s, a) ≥ 1

holds with probability at least 1−δ/3 for all (s, a) ∈ S×A s.t. dπ
b

h (s, a) ≥ C2ηι
K , a ∈ supp

(
πE
h(·|s)

)
,

which implies that claim (iii) holds.

In option 1, notice that P[Ne
h(s, a) = 0] =

(
1− d

πb(s,a)
h (s, a)

)K
, with a similar argument, we can

prove the claim (iii) in option 1.

Further, we can conclude that the concentration event E holds with probability at least 1− δ.

Lemma E.2 (Performance decomposition for RLE). For any θ = (V,A) ∈ Θ, let rθ = R⋆(V,A)

and r̂θ = R̂(V,A), where R⋆ is the ground truth reward mapping and R̂ is the estimated reward
mapping output by RLP. On the event defined in Lemma E.1, for all θ ∈ Θ, h ∈ [H], we have

dπ
val(

rθ, r̂θ
)
≲

C⋆H2Sηι

K
+
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a)bθh(s, a),

where C⋆ is defined in Assumption 4.1 and η is specified in Lemma E.1

Proof. Consider a tuple (h, s, a) ∈ [H]×S×A. When a /∈ supp
(
πE
h(·|s)

)
, by definition of Ne

h(s, a),
we have Ne

h(s, a) = 0 By construction of π̂E
h(a|s) of Algorithm 1, we deduce that π̂E

h(a|s) = 0, and
therefore ∣∣1{a /∈ supp π̂E

h(·|s)
}
− 1

{
a /∈ supp

(
πE
h(·|s)

)}∣∣ = |0− 0| = 0.

When a ∈ supp
(
πE
h(·|s)

)
and dπ

b

h (s, a) < C2ηι
K , then∣∣1{a /∈ supp

(
π̂E
h(·|s)

)}
− 1

{
a /∈ supp

(
πE
h(·|s)

)}∣∣ ≤ 2.

24

Under review as a conference paper at ICLR 2024

If a ∈ supp
(
πE
h(·|s)

)
and dπ

b

h (s, a) ≥ C2ηι
K , then by concentration event E (iii), Ne

h(s, a) ≥ 1 which
implies that π̂E

h(a|s) > 0. Hence, we obtain that∣∣1{a /∈ supp
(
π̂E
h(·|s)

)}
− 1

{
a /∈ supp

(
πE
h(·|s)

)}∣∣ = |1− 1| = 0.

Thus We can conclude that∣∣1{a /∈ supp
(
π̂E
h(·|s)

)}
− 1

{
a /∈ supp

(
πE
h(·|s)

)}∣∣ ≤ 2 · 1
{
dπ

b

h (s, a) <
C2ηι

K
, a ∈ supp

(
πE
h(·|s)

)}
.

(E.7)

We then bound the
∣∣[rθh − r̂θh

]
(s, a)

∣∣ for all (h, s, a) ∈ [H]× S ×A:∣∣[rθh − r̂θh
]
(s, a)

∣∣ = ∣∣∣−Ah(s, a) · 1
{
a /∈ supp

(
πE
h(·|s)

)}
+ Vh(s)− [PhVh+1](s, a)

+Ah(s, a) · 1
{
a /∈ supp

(
π̂E
h(·|s)

)}
− Vh(s) +

[
P̂hVh+1

]
(s, a) + bθh(s, a)

∣∣∣
≤ Ah(s, a) ·

∣∣1{a /∈ supp
(
π̂E
h(·|s)

)}
− 1

{
a /∈ supp

(
πE
h(·|s)

)}∣∣+ ∣∣∣[(Ph − P̂h)Vh+1

]
(s, a)

∣∣∣+ bθh(s, a)

≤ 2H · 1
{
dπ

b

h (s, a) <
C2ηι

K
, a ∈ supp

(
πE
h(·|s)

)}
+
∣∣∣[(Ph − P̂h)Vh+1

]
(s, a)

∣∣∣+ bθh(s, a)

≤ 2H · 1
{
dπ

b

h (s, a) <
C2ηι

K
, a ∈ supp

(
πE
h(·|s)

)}
+ 2bθh(s, a), (E.8)

where the second line follows from the triangle inequality, the third line comes from Eq.(E.7), the
second last line follows from ∥Ah∥∞ ≤ H , the last line comes from the concentration event E (i).
Finally, we give the bound of Eπval |V πval

h (s; rθ)− V πval

h (s; r̂θ)|. By definition of the V function we
have

Eπval

∣∣∣V πval

h (s; rθ)− V πval

h (s; r̂θ)
∣∣∣ =∑

s∈S
dπ

val

h (s) ·
∣∣∣V πval

h (s; rθ)− V πval

h (s; r̂θ)
∣∣∣

=
∑
s′∈S

dπ
val

h (s′) ·

∣∣∣∣∣∣
∑
h′≥h

∑
(s,a)∈S×A

dπ
val

h′ (sh′ = s, ah′ = a|sh = s′) ·
[
rθh′ − r̂θh′

]
(s, a)

∣∣∣∣∣∣
≤
∑
h′≥h

∑
(s,a)∈S×A

{∑
s∈S

dπ
val

h (s) · dπ
val

h′ (s, a|sh = s)

}
·
∣∣[rθh′ − r̂θh′

]
(s, a)

∣∣
(i)

≤
∑
h′≥h

∑
(s,a)∈S×A

dπ
val

h′ (s, a) ·
∣∣[rθh′ − r̂θh′

]
(s, a)

∣∣
(ii)

≤
∑
h′≥h

∑
(s,a)∈S×A

dπ
val

h′ (s, a) ·
[
2H · 1

{
dπ

b

h (s, a) <
C2ηι

K
, a ∈ supp

(
πE
h(·|s)

)}
+ 2bθh(s, a)

]

≤
∑

h∈[H]

∑
(s,a)∈S×A

2Hdπ
val

h (s, a)

dπ
b

h (s, a)
dπ

b

h (s, a) · 1
{
dπ

b

h (s, a) <
C2ηι

K
, a ∈ supp

(
πE
h(·|s)

)}
+
∑
h≥1

∑
(s,a)∈S×A

2dπ
val

h (s, a)bθh(s, a)

≤ 2H · C2ηι

K
·
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a)

dπ
b

h (s, a)
+
∑
h≥1

∑
(s,a)∈S×A

2dπ
val

h (s, a)bθh(s, a)

(iii)

≲
C⋆H2Sηι

K
+
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a)bθh(s, a),

where dπ
val

h′ (sh′ = s, ah′ = a|sh = s) = Ph(sh′ = s, ah′ = a|sh = s), (i) is due to dπ
val

h′ (s, a) =∑
s∈S d

πval

h (s) · dπval

h′ (sh′ = s, ah′ = a|sh = s), (ii) follows from Eq.(E.8) and (iii) comes from
definition of C⋆-concentrability. This completes the proof.

25

Under review as a conference paper at ICLR 2024

E.2 PROOFS OF THEOREM 4.2

Proof. By Lemma E.2, we have

Dπval

Θ (R⋆, R̂) ≲
C⋆H2Sηι

K
+ sup

θ∈Θ

∑
h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a)bθh(s, a)︸ ︷︷ ︸
(I)

. (E.9)

Plugging Eq.(E.6) into Eq.(E.9), we obtain that

(I) =
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a)bh(s, a)

≲
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) ·

{√
logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

[
V̂hVh+1

]
(s, a) (E.10)

+
H logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

+
ϵ

H

(
1 +

√
logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

)}

≤
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) ·

√
logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

[VhVh+1](s, a)︸ ︷︷ ︸
(I.a)

+
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) ·

√
logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

[(
V̂h − Vh

)
Vh+1

]
(s, a)

︸ ︷︷ ︸
(I.b)

+
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) · H logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1︸ ︷︷ ︸

(I.c)

+ ϵ ·
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) ·

(
1

H
+

√
logN (Θ; ϵ/H)ι

H2 ·N b
h(s, a) ∨ 1

)
︸ ︷︷ ︸

(I.d)

(E.11)

where the last inequality comes from the triangle inequality. We study the four terms separately.
For the term (I.a), on the concentration event E , we have

(I.a) =
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) ·

√
logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

[VhVh+1](s, a)

≲
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) ·

√
logN (Θ; ϵ/H)ι

Kdπb(s, a)
[VhVh+1](s, a)

≤
√

H2 logN (Θ; ϵ/H)ι

K
·
∑

h∈[H]

∑
(s,a)∈S×A

√
dπ

val

h (s, a) ·

√
dπ

val

h (s, a)

dπ
b

h (s, a)

≤
√

H2 logN (Θ; ϵ/H)ι

K
·

√√√√∑
h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a)

dπ
b

h (s, a)
·
√∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a)

(by Cauchy-Schwarz inequality)

≤
√

C⋆H4S logN (Θ; ϵ/H)ι

K
, (E.12)

26

Under review as a conference paper at ICLR 2024

where the second line comes from concentration event E(ii), the third line is valid since ∥Vh+1∥∞ ≤
H and the last is by thw definition of C⋆-concentrability.

Next, we study the term (I.b). For any (h, s, a), we have∣∣∣[(V̂h − Vh

)
Vh+1

]
(s, a)

∣∣∣
=
[
(P̂hVh+1)

2 − (P̂hVh+1)
2 −

(
Ph(Vh+1)

2 − (PhVh+1)
2
)]
(s, a)

≤
∣∣∣[(P̂h − Ph)(Vh+1)

2
]
(s, a)

∣∣∣+ ∣∣∣[(P̂h + Ph)Vh+1 · (P̂h − Ph)Vh+1

]
(s, a)

∣∣∣
≤
∣∣∣[(P̂h − Ph)(Vh+1)

]
(s, a)

∣∣∣+ 2H
∣∣∣[(P̂h − Ph)Vh+1

]
(s, a)

∣∣∣
≲ c

√
H4ι

N b
h(s, a) ∨ 1

, (E.13)

where the second last inequality is by ∥Vh+1∥∞ ≤ H and the last inequality follows from the
Azuma-Hoeffding inequality. By applying Eq.(E.13), we can obtain the bound for the term (I.b):

(I.b) =
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) ·

√
logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

[(
V̂h − Vh

)
Vh+1

]
(s, a)

≤
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) ·

√√√√ logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

·
√

H4ι

N̂ b
h(s, a) ∨ 1

= (logN (Θ; ϵ/H))
1/2 ·

∑
h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) · Hι3/4{
N b

h (s, a) ∨ 1
}3/4

≤ (logN (Θ; ϵ/H))
1/2 ·

∑
h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) ·
√

1

N b
h (s, a) ∨ 1︸ ︷︷ ︸

(I.b.1)

+ (logN (Θ; ϵ/H))
1/2 ·

∑
h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) · H2ι3/2

N b
h (s, a) ∨ 1︸ ︷︷ ︸

(I.b.2)

, (E.14)

where the last line is from AM-GM inequality. For the term (I.b.1), on the concentration event E , we
have

(I.b.1) = (logN (Θ; ϵ/H))
1/2 ·

∑
h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) ·
√

1

N b
h (s, a) ∨ 1

≤ (logN (Θ; ϵ/H))
1/2 ·

∑
h∈[H]

∑
(s,a)∈S×A

√
dπ

val

h (s, a) ·

√
dπ

val

h (s, a)

Kdπ
b

h (s, a)

≤ (logN (Θ; ϵ/H))
1/2 ·

√
1

K
·

√√√√∑
h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a)

dπ
b

h (s, a)
·
√∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a)

≤
√

C⋆HS logN (Θ; ϵ/H)

K
·
√∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a)

=

√
C⋆H2S logN (Θ; ϵ/H)

K
, (E.15)

where the second line is directly from concentration event E(ii), the third line follows from Cauchy-
Schwarz inequality and the second last line comes from the definition of C⋆-concentrability. For the

27

Under review as a conference paper at ICLR 2024

term (I.b.2), on the concentration event E , we obtain

(I.b.2) = (logN (Θ; ϵ/H))
1/2 ·

∑
h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) · H2ι3/2

N b
h (s, a) ∨ 1

≤ (logN (Θ; ϵ/H))
1/2 ·

∑
h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) · H2ι5/2

Kdπ
b

h (s, a)

≤ (logN (Θ; ϵ/H))
1/2 · H

2ι5/2

K

∑
h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a)

dπ
b

h (s, a)

=
C⋆H3S logN (Θ; ϵ/H)ι5/2

K
, (E.16)

where the second line comes from concentration event E(ii), the third line follows from the definition
of C⋆-concentrability.
Combining Eq.(E.15) and Eq.(E.16), the term (I.b) can be bounded as follows:

(I.b) ≲

√
C⋆H2S logN (Θ; ϵ/H)

K
+

C⋆H3S logN (Θ; ϵ/H)ι5/2

K
. (E.17)

For the term (I.c), observe that
(I.c) = (I.b.2)/(Hι3/2).

Hence, by Eq.(E.16), we deduce that

(I.c) ≤ C⋆H2S logN (Θ; ϵ/H)ι

K
(E.18)

For the term (I.d),

(I.d) = ϵ ·
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) ·

(
1

H
+

√
logN (Θ; ϵ/H)ι

H2 ·N b
h(s, a) ∨ 1

)

= ϵ+ ϵ ·
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) ·

√
logN (Θ; ϵ/H)ι

H2 ·N b
h(s, a) ∨ 1

= ϵ+ ϵ ·
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) ·

√
logN (Θ; ϵ/H)ι

H2Kdπ
b

h (s, a)

= ϵ+ ϵ

√
logN (Θ; ϵ/H)ι

H2K
·
∑

h∈[H]

∑
(s,a)∈S×A

√
dπ

val

h (s, a)

√
dπ

val

h (s, a)

dπ
b

h (s, a)

≤ ϵ+ ϵ

√
logN (Θ; ϵ/H)ι

H2K

√∑
h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) ·

√√√√∑
h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a)

dπ
b

h (s, a)

≤ ϵ · (1 +
√

C⋆S logN (Θ; ϵ/H)ι

K
), (E.19)

where the second last line is by Cauchy-Schwarz inequality and the last line is by definition of
C⋆-concentrablity.
Combining Eq.(E.12), Eq.(E.17), Eq.(E.18) and Eq.(E.19), we deduce that

(I) ≲ (I.a) + (I.b) + (I.c) + (I.d)

≲

√
C⋆H4S logN (Θ; ϵ/H)ι

K
+

√
C⋆H2S logN (Θ; ϵ/H)

K
+

C⋆H3S logN (Θ; ϵ/H)ι5/2

K

+
C⋆H2S logN (Θ; ϵ/H)ι

K
+ ϵ · (1 +

√
C⋆S logN (Θ; ϵ/H)ι

K
)

28

Under review as a conference paper at ICLR 2024

≲

√
C⋆H4S logN (Θ; ϵ/H)ι

K
+

C⋆H3S logN (Θ; ϵ/H)ι5/2

K
+ ϵ.

Finally, plugging into Eq.(E.9), the final bound is given by

Dπval

Θ (R⋆, R̂) ≲
C⋆H2Sηι

K
+

√
C⋆H4S logN (Θ; ϵ/H)ι

K
+

C⋆H3S logN (Θ; ϵ/H)ι5/2

K
+ ϵ

The right-hand-side is upper bounded by 2ϵ as long as

K ≥ Õ
(
C⋆H4S logN (Θ; ϵ/H)

ϵ2
+

C⋆H2S(η +H logN (Θ; ϵ/H))

ϵ

)
.

Here poly log (H,S,A, 1/δ) are omitted.

E.3 PROOF OF COROLLARY 4.3

Proof of Corollary 4.3. In this section, we will consider the case that πval = πE.

Lemma E.3 (Concentration event). Under the setting of Theorem 4.2, there exists an absolute
constant C1, C2 such that the concentration event E holds with probability at least 1− δ, where

E :=

{
(i):
∣∣∣[(Ph − P̂h)Vh+1

]
(s, a)

∣∣∣ ≤ bθh(s, a) ∀ θ = (V,A) ∈ Θ, (h, s, a) ∈ [H]× S ×A,

(E.20)

(ii):
1

Nh(s, a) ∨ 1
≤ C1ι

Kdπ
b

h (s, a)
, ∀(h, s, a) ∈ [H]× S ×A, (E.21)

(iii): Ne
h(s, a) ≥ 1 ∀(h, s, a) ∈ S ×A s.t. d̄h(s, a) ≥

C2ι

K
, a ∈ supp

(
πE
h(·|s)

)}
, (E.22)

where bh(s, a) is defined in Eq.(4.3), C⋆ is specified in Definition 4.1, and Ne
h(s) is given by

Ne
h(s, a) :=

{∑
(sh,ah,eh)∈D 1 {(sh, eh) = (s, a)} in option 1,

N b
h(s, a) in option 2,

d̄h(s, a) :=

{
dπ

b

h (s) · πE(a|s) in option 1,

dπ
b

h (s, a) in option 2.
(E.23)

Proof. Repeating the arguments in the proof of Lemma E.1, we prove that claim (i), (ii) holds with
probability at least 1− 2δ

3 .
For claim (iii), in option 2, for any (h, s, a) ∈ [H] × S × A such that a ∈ supp

(
πE
h·|s
)

and
d̄h(s, a) ≥ C2ι

K , Ne
h(s, a) ∼ Bin

(
K, d̄h(s, a)

)
. By direct computing, we obtain that

P[Ne
h(s, a) = 0] =

(
1− d̄h(s, a)

)K
=

[
1−

(
δ

3HSA

)1/K

+

(
δ

3HSA

)1/K

− d̄h(s, a)

]K

≤


(

δ

3HSA

)1/K

+ 1−
(

δ

3HSA

)1/K

− d̄h(s, a)︸ ︷︷ ︸
≤0


K

≤
(

δ

3HSA

)1/K·K

=
δ

3HSA
,

29

Under review as a conference paper at ICLR 2024

where the last inequality is valid since

1−
(

δ

3HSA

)1/K

= 1− exp(− 1

K
log

δ

3HSA
) ≤ − C̃2

K
log

δ

3HSA
≤ C2ι

K
≤ d̄h(s, a),

where C̃2 and C2 are absolute constants. Hence, it holds that

Ne
h(s, a) ≥ 1,

with probability at least 1− δ/(3HSA). Taking the union bound over all (h, s, a) ∈ [H]× S ×A
yields that

Ne
h(s, a) ≥ 1

holds with probability at least 1−δ/3 for all (h, s, a) ∈ S×A s.t. d̄h(s, a) ≥ C2ι
K , a ∈ supp

(
πE
h(·|s)

)
,

which implies that claim (iii) holds. In option 2, it is crucial to observe that: that P[Ne
h(s, a)] =

(1− dπ
b

h (s, a))K = (1− d̄h(s, a))
K . By repeating similar arguments utilized in the proof of the case

of option 2, we can prove the claim (iii) holds. Further, we can conclude that the concentration event
E holds with probability at least 1− δ.

Recall that rθ = R⋆(V,A) and r̂θ = R̂(V,A) for any θ = (V,A) ∈ Θ. When πval = πE, repeating
the arguments in Lemma E.2, we have following decomposition:

dπ
val(

rθ, r̂θ
)
≤ 2H ·

∑
h∈[H]

∑
(s,a)∈S×A

dπ
E

h (s, a) · 1
{
d̄h(s, a) <

C2ι

K
, a ∈ supp

(
πE
h(·|s)

)}
+
∑

h∈[H]

∑
(s,a)∈S×A

2dπ
val

h (s, a)bθh(s, a)

≤ 2H ·
∑

h∈[H]

∑
(s,a)∈S×A

dπ
E

h (s, a)

d̄h(s, a)
· d̄h(s, a) · 1

{
d̄h(s, a) <

C2ι

K
, a ∈ supp

(
πE
h(·|s)

)}
+
∑

h∈[H]

∑
(s,a)∈S×A

2dπ
val

h (s, a)bθh(s, a)

≲
Hι

K
·
∑

h∈[H]

∑
(s,a)∈S×A

dπ
E

h (s, a)

d̄h(s, a)
+
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a)bθh(s, a)

≤ C⋆H2SAι

K
+
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a)bθh(s, a).

where the second last line is valid since∑
h∈[H]

∑
(s,a)∈S×A

dπ
E

h (s, a)

d̄h(s, a)
=
∑

h∈[H]

∑
(s,a)∈S×A

dπ
E

h (s) · πE
h(s, a)

dπ
b

h (s) · πE
h(s, a)

= A ·
∑

h∈[H]

∑
s∈S

dπ
E

h (s)

dπ
b

h (s)

= A ·
∑

h∈[H]

∑
s∈S

∑
a∈A dπ

E

h (s, a)∑
a∈A dπ

b

h (s, a)

≤ A ·
∑

h∈[H]

∑
(s,a)∈S×A

max
a∈A

dπ
E

h (s, a)

dπ
b

h (s, a)

≤ A ·
∑

h∈[H]

∑
(s,a)∈S×A

dπ
E

h (s, a)

dπ
b

h (s, a)

≤ C⋆HSA.

30

Under review as a conference paper at ICLR 2024

Similar as Eq.(E.9), we can decompose Dπval

Θ (R⋆, R̂) as follows:

DπE

Θ (R⋆, R̂) ≲
C⋆H2Sηι

K
+ sup

θ∈Θ

∑
(s,a)∈S×A

dπ
val

h (s, a)bθh(s, a)︸ ︷︷ ︸
(I)

(E.24)

We can decompose terms (I) into four terms (I.a), (I.b), (I.c), and (I.d) as in Eq.(E.11). Since we don’t
use claim (iii) in the proof of bounding (I.b), (I.c), and (I.d), Eq.(E.17), Eq.(E.18) and Eq.(E.19) still
holds on the concentration event E defined in Lemma E.1. In the following, we give an improved
bound of the term (I.a):

(I.a) =
∑

h∈[H]

∑
(s,a)∈S×A

dπ
E

h (s, a) ·

√
logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

[VhVh+1](s, a)

≤
∑

h∈[H]

∑
(s,a)∈S×A

dπ
E

h (s, a) ·

√
logN (Θ; ϵ/H)ι

Kdπb(s, a)
[VhVh+1](s, a)

=

√
logN (Θ; ϵ/H)ι

K
·
∑

h∈[H]

∑
(s,a)∈S×A

√
dπ

E

h (s, a) · [VhVh+1](s, a) ·

√
dπ

E

h (s, a)

dπ
b

h (s, a)

≤
√

logN (Θ; ϵ/H)ι

K
·
√∑

h∈[H]

∑
(s,a)∈S×A

dπ
E

h (s, a) · [VhVh+1](s, a) ·

√√√√∑
h∈[H]

∑
(s,a)∈S×A

dπ
E

h (s, a)

dπ
b

h (s, a)√
C⋆HS logN (Θ; ϵ/H)ι

K
·
√∑

h∈[H]

∑
(s,a)∈S×A

dπ
E

h (s, a) · [VhVh+1](s, a) (E.25)

We then give a sharp bound of
∑

h∈[H]

∑
(s,a)∈S×A dπ

E

h (s, a) · [VhVh+1] (s, a).∑
h∈[H]

∑
(s,a)∈S×A

dπ
E

h (s, a) · [VhVh+1] (s, a)

=

H∑
h=1

EπE [VarπE [Vh+1(sh+1)|sh, ah]]

(i)
=

H∑
h=1

EπE

[
E
[(
Vh+1(sh+1) +Ah(sh, ah) · 1

{
ah /∈ supp

(
πE(·|sh)

)}
+ rθh(sh, ah)− Vh(sh)

)2∣∣∣sh, ah]]
=

H∑
h=1

EπE

[(
Vh+1(sh+1) +Ah(sh, ah) · 1

{
ah /∈ supp

(
πE(·|sh)

)}
+ rθh(sh, ah)− Vh(sh)

)2]
(ii)
=

H∑
h=1

EπE

[(
Vh+1(sh+1) + rθh(sh, ah)− Vh(sh)

)2]

= EπE

(H∑
h=1

(
Vh+1(sh+1) + rθh(sh, ah)− Vh(sh)

))2


+ 2
∑

1≤h<h′≤H

EπE

[(
Vh+1(sh+1) + rθh(sh, ah)− Vh(sh)

)
·
(
Vh′+1(sh′+1) + rθ(s′h, a

′
h)− Vh(s

′
h)
)]

(iii)
= EπE

(H∑
h=1

(
Vh+1(sh+1) + rθh(sh, ah)− Vh(sh)

))2


= EπE

(H∑
h=1

rθh(sh, ah) +

H∑
h=1

(Vh+1(sh+1)− Vh(sh))

)2


31

Under review as a conference paper at ICLR 2024

= EπE

(H∑
h=1

rθh(sh, ah)− V1(s1)

)2


(iv)
= VarπE

(
H∑

h=1

rθh(sh, ah)

)
≤ H2., (E.26)

where (i) is by definition of reward mapping PhVh+1(s, a) = −Ah(s, a) · 1
{
a ∈ supp

(
πE
h(·|s)

)}
−

rθh(s, a) + Vh(s), (ii) comes from

1
{
ah ∈ supp

(
πE
h(·|sh)

)}
= 0

for any (sh, ah) ∈ supp
(
dπ

E

h (·)
)

, (iii) is valid since(
Vh+1(sh+1) + rθh(sh, ah)− Vh(sh)

)
E
dπE [Vh′+1(sh′+1)− Vh′(sh′) + rθh′(sh′ , ah′)|Fh+1] = 0,

and (iv) is by Θ ∈ Θ. Plugging Eq.(E.26) into Eq.(E.25), we deduce that

(I.a) ≤
√

C⋆H3S logN (Θ; ϵ/H)ι

K
. (E.27)

Combining Eq.(E.27), Eq.(E.17), Eq.(E.18) and Eq.(E.19), we have

(I) ≲ (I.a) + (I.b) + (I.c) + (I.d)

≲

√
C⋆H3S logN (Θ; ϵ/H)ι

K
+

√
C⋆H2S logN (Θ; ϵ/H)

K
+

C⋆H3S logN (Θ; ϵ/H)ι5/2

K

+
C⋆H2S logN (Θ; ϵ/H)ι

K
+ ϵ · (1 + ϵ

√
C⋆S logN (Θ; ϵ/H)ι

K
)

≲

√
C⋆H3S logN (Θ; ϵ/H)ι

K
+

C⋆H3S logN (Θ; ϵ/H)ι5/2

K
+ ϵ.

Pligging into Eq.(E.24), the final bound is given by

Dπval

Θ (R⋆, R̂) ≲
C⋆H2SAι

K
+

√
C⋆H3S logN (Θ; ϵ/H)ι

K
+

C⋆H3S logN (Θ; ϵ/H)ι5/2

K
+ ϵ

The right-hand-side is upper bounded by 2ϵ as long as

K ≥ Õ
(
C⋆H3S logN (Θ; ϵ/H)

ϵ2
+

C⋆H2S(A+H logN (Θ; ϵ/H))

ϵ

)
.

Here poly log (H,S,A, 1/δ) are omitted.

E.4 FRAMEWORK FOR OFFLINE INVERSE REINFORCEMENT LEARNING

Pessimism As shown in Eq.(E.28), that estimator reward mapping involves a penalty term bθh(s, a).
The reason for introducing the penalty term bθh(s, a) is to ensure that our reward satisfies the mono-

tonicity condition:
[
R̂(V,A)

]
h
(s, a) ≤

[
R̂(V,A)

]
h
(s, a), which is crucial for the guarantee of

the performance of RL algorithms with learned rewards, as demonstrated in Proposition C.6 and
Corollary I.6.

Condition E.4 . With probability at least 1 − δ, we have sup(V,A)∈Θ

∣∣∣[(Ph − P̂h)Vh+1

]
(s, a)

∣∣∣ ≤
bθh(s, a) and supp

(
π̂E
h(·|s)

)
⊂ supp

(
πE
h(·|s)

)
for all (h, s) ∈ [H]× S and all (V,A) ∈ Θ.

32

Under review as a conference paper at ICLR 2024

Algorithm 5 FRAMEWORK FOR OFFLINE INVERSE REINFORCEMENT LEARNING

1: Input: Dataset D collected by executing πb in M.
2: Recover the transition dynamics P̂ : [H]× S ×A → ∆S and expert policy π̂E =

{
π̂E
h : S ×∆(S)

}
and

design the bonus b : [H]× S ×A×Θ → R≥0 .
3: Compute R̂ by

[R̂(V,A)]h(s, a) = −Ah(s, a) · 1
{
a /∈ supp

(
π̂E
h(·|s)

)}
+ Vh(s)− [P̂hVh+1](s, a)− bθh(s, a)

(E.28)

4: Output: Estimated reward mapping R̂.

Theorem E.5 (Learning bound for Algorithm 5). Suppose that Condition E.4 holds. With probability
at least 1− δ, we have

[
R̂(V,A)

]
h
(s, a) ≤ [R⋆(V,A)]h(s, a) for all (h, s, a) ∈ [H]× S ×A, and

Dπval

Θ

(
R⋆, R̂

)
≤ sup

θ∈Θ

{
H ·

∑
h∈[H]

E
(s,a)∼dπval

h

[
1
{
a ∈ supp

(
πE
h(·|s)

)
, a /∈ supp

(
π̂E
h(·|s)

)}]
+ 2

∑
h∈[H]

E
(s,a)∼dπval

h

[
bθh(s, a)

]}
. (E.29)

Proof. When sup(V,A)∈Θ

∣∣∣[(Ph − P̂h)Vh+1

]
(s, a)

∣∣∣ ≤ bθh(s, a) and supp π̂E
h(·|s) ⊂ suppπE

h(·|s)
holds for all (h, s) ∈ [H]× S and all (V,A) ∈ Θ hold, we have[
R̂(V, h)

]
h
(s, a)− [R⋆(V, h)]h(s, a)

= −Ah(s, a) ·
[
1
{
a /∈ supp

(
π̂E
h(·|s)

)}
− 1

{
a /∈ supp

(
πE
h(·|s)

)}]
− [
(
P̂h − Ph

)
Vh+1](s, a)− bθh(s, a)

= −Ah(s, a) · 1
{
a ∈ supp

(
πE
h(·|s)

)
, a /∈ supp

(
π̂E
h(·|s)

)}︸ ︷︷ ︸
≤0

−[
(
P̂h − Ph

)
Vh+1](s, a)− bθh(s, a)︸ ︷︷ ︸
≤0

≤ 0,

(E.30)

where the second line is by supp
(
π̂E
h(·|s)

)
⊂ supp

(
πE
h(·|s)

)
and

sup(V,A)∈Θ

∣∣∣[(Ph − P̂h)Vh+1

]
(s, a)

∣∣∣ ≤ bθh(s, a). Further, by triangle inequality, we obtain
that∣∣∣[R̂(V, h)

]
h
(s, a)− [R⋆(V, h)]h(s, a)

∣∣∣
≤ Ah(s, a) · 1

{
a ∈ supp

(
πE
h(·|s)

)
, a /∈ supp

(
π̂E
h(·|s)

)}
+
∣∣∣[(P̂h − Ph

)
Vh+1](s, a)

∣∣∣+ bθh(s, a)

≤ H · 1
{
a ∈ supp

(
πE
h(·|s)

)
, a /∈ supp

(
π̂E
h(·|s)

)}
+ 2bθh(s, a), (E.31)

where the last line is due to Ah(s, a) ≤ H and
∣∣∣[(P̂h − Ph

)
Vh+1](s, a)

∣∣∣ ≤ bθh(s, a). Similar to the
proof of Lemma E.2, we have

dπ
val
(
R̂(V,A),R⋆(V,A)

)
≤
∑

h∈[H]

E
(s,a)∼dπval

h

[∣∣∣[R̂(V, h)
]
h
(s, a)− [R⋆(V, h)]h(s, a)

∣∣∣].
(E.32)

Combining Eq.(E.31) and Eq.(E.32), we obtain that

dπ
val
(
R̂(V,A),R⋆(V,A)

)
≤ H ·

∑
h∈[H]

E
(s,a)∼dπval

h

[
1
{
a ∈ supp

(
πE
h(·|s)

)
, a /∈ supp

(
π̂E
h(·|s)

)}]
+ 2

∑
h∈[H]

E
(s,a)∼dπval

h

[
bθh(s, a)

]
. (E.33)

By the definition of Dπval

Θ : Dπval

Θ

(
R⋆, R̂

)
= supθ∈Θ dπ

val
(
R̂(V,A),R⋆(V,A)

)
, we complete the

proof.

33

Under review as a conference paper at ICLR 2024

By Theorem E.5, all we need to do is design bθh and learn P̂, π̂E from the data to satisfy Condition E.4,
thereby obtaining an IRL algorithm. The crux of the problem lies in the design of bθh, P̂ and π̂E. In
RLP, we employ the pessimism technique from offline RL, and the construction of bθh and π̂E using
pessimism in RLP satisfies Condition E.4, as illustrated in the proof of Theorem 4.2.

F PROOFS FOR SECTION 5

F.1 FULL DESCRIPTION OF REWARD LEARNING WITH EXPLORATION

We propose a meta-algorithm, named REWARD LEARNING WITH EXPLORATION(RLE). The pseu-
docode of RLE is presented in Algorithm 6, where the algorithm contains the following three main
component

• (Exploring the unknown environment:) This segment involves computing a desired behavior
policy πb = Eπ∼µb [π], which takes the form of a finite mixture of deterministic policies. To
achieve this, we need to collect NH episodes of samples. We then execute this policy to
gather a total of K episodes worth of samples. Our exploration approach is based on lever-
aging the exploration scheme outlined in (Li et al., 2023, Algorithm 1). A comprehensive
description of this exploration method is postponed and will be provided in Section B. (cf.
line 2-3).

• (Subsampling:) For the sake of theoretical simplicity, we apply subsampling. For each
(h, s, a) ∈ [H] × S × A, we populate the new dataset with min

{
N̂b

h(s, a), Nh(s, a)
}

sample transitions. Here, N̂b
h(s, a), as defined in Eq.(F.1), acts as a lower bound on the total

number of visits to (h, s, a) among these K sample episodes, with high probability. (cf.
line 4).

• (Computing estimated reward mapping:) With the previously collected dataset at hand, we
then utilize the offline IRL algorithm RLP to compute the desired reward mapping.

Algorithm 6 REWARD LEARNING WITH EXPLORATION

1: Input: threshold ξ = cξH
3S3A3ι, confidence level δ.

2: Call Algorithm 2 to compute the explore policy πb.
3: Collect a dataset D = {(sτh, aτh, eτh)}

K,H
τ=1,h=1 by executing πb inM.

4: Subsampling: subsample D to obtain Dtrim, such that for each (h, s, a) ∈ [H] × S × A, Dtrim

contains min
{
N̂b

h(s, a), Nh(s, a)
}

sample transitions randomly drawn from D, where N̂b
h(s, a)

and Nh(s, a) are defined by

Nh(s, a) :=

K∑
τ=1

1 {(sτh, aτh = (s, a)} N̂b
h(s, a) :=

[
K

4
, E
π∼µb

[d̂πh(s, a)]−
Kξ

8N
− 3 log

HSA

δ

]
+

,

(F.1)

where d̂πh(s, a) is specified in Algorithm 2.
5: Call Algorithm 1 to compute the recovered reward mapping R̂.
6: Output: estimated reward mapping R̂.

We remark that our algorithm RLE follows a similar approach to that of Li et al. (2023, Algorithm 1).
We begin by computing a desired behavior policy, then proceed to collect data, and finally compute
results through the invocation of an offline algorithm. In contrast to the offline setting, we have the
flexibility to select the desired behavior. In the following, we will observe that the behavior policy πb

exhibits concentrability with any deterministic policy, as shown in Eq.(B.3). This property enables us
to achieve our learning goal within the online setting.

34

Under review as a conference paper at ICLR 2024

F.2 PROOF OF THEOREM 5.1

Lemma F.1 (Li et al. (2023)). Recall that ξ = cξH
3S3A3 log HSA

δ for some large enough constant
cξ > 0 (see line 1 in Algorithm 2). Then, with probability at least 1− δ, the estimated occupancy
distributions specified in Eq.(B.1) and (B.2) of Algorithm 2 satisfy

1

2
d̂πh(s, a)−

ξ

4N
≤ dπh(s, a) ≤ 2d̂πh(s, a) + 2eπh(s, a) +

ξ

4N
(F.2)

simultaneously for all (h, s, a) ∈ [H] × S × A and all deterministic Markov policy π ∈ Πdet,
provided that

KH ≥ N ≥ CN

√
H9S7A7K log

HSA

δ
and K ≥ CKHSA (F.3)

for some large enough constants CN , CK > 0, where, {eπh(s, a) ∈ R+} satisfies that∑
(s,a)∈S×A

eπh(s, a) ≤
2SA

K
+

13SAHξ

N
≲

√
SA

HK
∀h ∈ [H], π ∈ Πdet (F.4)

Notice that Eq.(F.2) only holds for π ∈ Πdet, however, we will show similar results also hold for any
stochastic policy.
For any stochastic policy π = Eπ′∼µ[π

′], dπ can be expressed as

dπh(s, a) = Eπ′∼µ

[
d̂π
′

h (s, a)
]
, ∀(h, s, a) ∈ [H]× S ×A,

where µ ∈ ∆(Πdet). Hence, we can define d̂π as

d̂πh(s, a) = Eπ′∼µ

[
d̂π
′

h (s, a)
]
, ∀(h, s, a) ∈ [H]× S ×A.

our definition of We remark that although µ is not unique,our definition of d̂π necessitates the
selection of a specific µ ∈ ∆(Πdet).

By Eq.(F.2), we have

1

2
d̂πh(s, a)−

ξ

4N
≤ dπh(s, a) = Eπ′∼µ

[
dπ
′

h (s, a)
]
≤ 2d̂πh(s, a) + 2Eπ′∼µ

[
eπ
′

h (s, a)
]
+

ξ

4N
1

2
d̂πh(s, a)−

ξ

4N
≤ dπh(s, a) = Eπ′∼µ

[
dπ
′

h (s, a)
]
≤ 2d̂πh(s, a) + 2Eπ′∼µ

[
eπ
′

h (s, a)
]
+

ξ

4N
.

(eπh(s, a) := Eπ′∼µ

[
eπ
′

h (s, a)
]
)

We also have∑
(s,a)∈S×A

eπh(s, a) =
∑

(s,a)∈S×A

Eπ′∼µ

[
eπ
′

h (s, a)
]
≤ 2SA

K
+

13SAHξ

N
≲

√
SA

HK
,

provided Eq.(F.3).
Lemma F.2 (Concentration event). Suppose Eq.(F.3). Under the setting of Theorem 5.1, there exists
an absolute constants C1, C2 ≥ 2 such that the concentration event E holds with probability at least
1− δ, where

E :=

{
(i):
∣∣∣[(Ph − P̂h)Vh+1

]
(s, a)

∣∣∣ ≤ bθh(s, a) ∀ θ = (V,A) ∈ Θ, (h, s, a) ∈ [H]× S ×A,

(ii):
1

2
d̂πh(s, a)−

ξ

4N
≤ dπh(s, a) ≤ 2d̂πh(s, a) + 2eπh(s, a) +

ξ

4N
∀(h, s, a) ∈ [H]× S ×A, π ∈ Π,

(iii): N̂ b
h(s, a) ≤ N b

h(s, a) ∀(h, s, a) ∈ [H]× S ×A,

(iv): N̂e
h(s, a) ≥ 1 ∀(s, a) ∈ S ×A s.t. N̂ b

h(s, a) ≥ max {C2ηι, 1}

}

35

Under review as a conference paper at ICLR 2024

where bθh(s, a) is defined in Eq.(4.3), N b
h(s, a) N̂

b
h(s, a) is defined in Eq.(F.1), η are specified in

Lemma E.1 and N̂e
h(s, a) is given by

N̂e
h(s, a) :=

{∑
(sh,ah,eh)∈Dtrim 1 {(sh, eh) = (s, a)} in option 1,

N̂ b
h(s, a) in option 2,

Proof. First, we observe that Claim (i) can be obtained by repeating a similar argument as in
Lemma E.1 and Claim (ii) can also be directly derived from Lemma F.1. And claim (iii) has been
shown in the proof of (Li et al., 2023, Theorem 2).

Next, we focus on (iv). For claim (iv), in option 1, we have

P
(
N̂e

h(s, a) = 0
)
=
(
1− πE

h(a|s)
)N̂b

h(s,a) ≤ exp
(
N̂ b

h(s, a) log (1− η)
)

≤ exp

(
log

δ

4HSA

)
=

δ

4HSA
,

for all (h, s, a) ∈ [H]× S ×A. The last line is valid since

N̂ b
h(s, a) log (1− η) ≤ C2 log

δ

HSA
· log (1− η)

η
≤ log

δ

4HSA
,

holds for sufficiently large constant C2. In option 2, we have

N̂e
h(s, a) = N̂ b

h(s, a) ≥ max {C2ηι, 1} ≥ 1,

for all (h, s, a) ∈ [H]× S ×A. This completes the proof.

F.3 PROOF OF THEOREM 5.1

Define

Ih =

{
(s, a) ∈ S ×A |Eπ′∼µb

[
d̂π
′

h (s, a)
]
≥ ξ

N
+

4(C2η + 3)ι

K

}
, (F.5)

for all h ∈ [H]. Then for (s, a) ∈ Ih, we have

N̂ b
h(s, a) ≥

K

4
Eπ′∼µb

[
d̂π
′

h (s, a)
]
− Kξ

8N
− 3ι ≥ C2ηι. (F.6)

By concentration event E (iv), we have

N̂e
h(s, a) ≥ 1,

By construction of π̂E in Algorithm 1, we deduce that∣∣1{a ∈ supp
(
πE
h(·|s)

)}
− 1

{
a ∈ supp

(
π̂E
h(·|s)

)}∣∣ = 0. (F.7)

for all (s, a) ∈ Ih.
With Ih at hand, we can decompose the dπ

(
rθ, r̂θ

)
for any π and θ ∈ Θ as follows:

dπ
(
rθh, r̂

θ
h

)
≤

∑
(h,s,a)∈[H]×S×A

dπh(s, a) ·
∣∣rθh(s, a)− r̂θh(s, a)

∣∣
≤
∑

h∈[H]

∑
(s,a)/∈Ih

dπh(s, a) ·
∣∣rθh(s, a)− r̂θh(s, a)

∣∣
︸ ︷︷ ︸

(I)

+
∑

h∈[H]

∑
(s,a)∈Ih

dπh(s, a) ·
∣∣rθ(s, a)− r̂θh(s, a)

∣∣
︸ ︷︷ ︸

(II)

,

(F.8)

where the first line follows the same argument in the proof of Lemma E.2. We then study the terms
(I) and (II) separately. For the term (I), by the construction of Algorithm 1, we obtain that

36

Under review as a conference paper at ICLR 2024

(I) =
∑

h∈[H]

∑
(s,a)/∈Ih

dπh(s, a) ·
∣∣rθ(s, a)− r̂θ(s, a)

∣∣
=
∑

h∈[H]

∑
(s,a)/∈Ih

dπh(s, a) · | −Ah(s, a)
(
1
{
a ∈ supp

(
πE
h(·|s)

)}
− 1

{
a ∈ supp

(
π̂E
h(·|s)

)})
−
[(

Ph − P̂h

)
Vh+1

]
(s, a)− bθh(s, a)|

≤
∑

h∈[H]

∑
(s,a)/∈Ih

dπh(s, a) ·
∣∣Ah(s, a) ·

(
1
{
a ∈ supp

(
π̂E
h(·|s)

)}
− ·1

{
a ∈ supp

(
πE
h(·|s)

)})∣∣
+
∣∣∣[(Ph − P̂h)Vh+1

]
(s, a)

∣∣∣+ bθh(s, a) (by triangle inequality)

(i)
≲ H ·

∑
h∈[H]

∑
(s,a)/∈Ih

dπh(s, a)

(ii)
≲ H ·

∑
h∈[H]

∑
(s,a)/∈Ih

(
2d̂πh(s, a) + 2eπh(s, a) +

ξ

4N

)
(iii)
≲ H ·

∑
h∈[H]

∑
(s,a)/∈Ih

d̂πh(s, a) +
ξH2SA

N
+

√
HSA

K

= H ·
∑

h∈[H]

∑
(s,a)/∈Ih

d̂πh(s, a)

Eπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1

KH

·
(
Eπ′∼µb

[
d̂π
′

h (s, a)
]
+

1

KH

)
+

ξH2SA

N
+

√
HSA

K

(iv)
≲

(
ξH

N
+

4H(C2η + 3)ι

K
+

1

K

) ∑
h∈[H]

∑
(s,a)/∈Ih

d̂πh(s, a)

Eπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1

KH

+
ξH2SA

N
+

√
HSA

K

≲

(
Hξ

N
+

4H(C2η + 3)ι

K
+

1

K

)
·HSA+

ξH2SA

N
+

√
HSA

K

≍ ξH2SA

N
+

H2SAηι

K
+

HSA

K
+

√
HSA

K
, (F.9)

where (i) is by ∥Ah∥∞, ∥Vh+1∥∞, bθh(s, a) ≤ H , (ii) comes from concentration E(ii), (iii) comes
from Eq.(F.2), and (iv) is by definition of Ih. For the term (I), conditioning on the concentration
event E , we have

(II) =
∑

h∈[H]

∑
(s,a)∈Ih

dπh(s, a) ·
∣∣rθh(s, a)− r̂θh(s, a)

∣∣
≤
∑

h∈[H]

∑
(s,a)∈Ih

dπh(s, a) ·
∣∣∣[(Ph − P̂h)Vh+1

]
(s, a)− bθh(s, a)

∣∣∣
≤ 2

∑
h∈[H]

∑
(s,a)∈Ih

dπh(s, a) · bθh(s, a)

≤
∑

h∈[H]

∑
(s,a)∈Ih

(
4d̂πh(s, a) + 4eπh(s, a) +

ξ

2N

)
· bθh(s, a)

≲
∑

h∈[H]

∑
(s,a)∈Ih

d̂πh(s, a) · bθh(s, a) +H ·
∑

h∈[H]

∑
(s,a)∈Ih

(
ξ

N
+ eπh(s, a)

)

≲
ξH2SA

N
+

√
HSA

K
+
∑

h∈[H]

∑
(s,a)∈Ih

d̂πh(s, a) · bθh(s, a), (F.10)

where the second line is by construction of Algorithm 1, the second last line is by bθh(s, a) ≲ H , the
last follows from (F.2). Further, we decompose the second term of Eq.(F.10) for any θ ∈ Θ by∑

h∈[H]

∑
(s,a)∈Ih

d̂πh(s, a) · bθh(s, a)

37

Under review as a conference paper at ICLR 2024

=
∑

h∈[H]

∑
(s,a)∈Ih

d̂πh(s, a) ·min

{√
logN (Θ; ϵ/H)ι

N̂ b
h(s, a) ∨ 1

[
V̂hVh+1

]
(s, a) +

H logN (Θ; ϵ/H)ι

N̂ b
h(s, a) ∨ 1

+
ϵ

H

(
1 +

√
logN (Θ; ϵ/H)ι

N̂ b
h(s, a) ∨ 1

)
, H

}
(i)
≤
∑

h∈[H]

∑
(s,a)∈Ih

d̂πh(s, a) ·

{
min

{√
logN (Θ; ϵ/H)ι

N̂ b
h(s, a) ∨ 1

[
V̂hVh+1

]
(s, a), H

}

+
H logN (Θ; ϵ/H)ι

N̂ b
h(s, a) ∨ 1

+
ϵ

H

(
1 +

√
logN (Θ; ϵ/H)ι

N̂ b
h(s, a) ∨ 1

)}

(ii)
≤
∑

h∈[H]

∑
(s,a)∈Ih

d̂πh(s, a) ·

{√√√√ logN (Θ; ϵ/H)ι
[
V̂hVh+1

]
(s, a) +H

N̂ b
h(s, a) ∨ 1 + 1/H

+
H logN (Θ; ϵ/H)ι

N̂ b
h(s, a) ∨ 1

+
ϵ

H

(
1 +

√
logN (Θ; ϵ/H)ι

N̂ b
h(s, a) ∨ 1

)}

(iii)
=
∑

h∈[H]

∑
(s,a)∈Ih

d̂πh(s, a) ·

√√√√√ logN (Θ; ϵ/H)ι
[
V̂hVh+1

]
(s, a) +H

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H︸ ︷︷ ︸

(II.a)

+
∑

h∈[H]

∑
(s,a)∈Ih

d̂πh(s, a) ·
H logN (Θ; ϵ/H)ι

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H︸ ︷︷ ︸

(II.b)

+
ϵ

H

∑
h∈[H]

∑
(s,a)∈Ih

d̂πh(s, a) ·

1 +

√√√√ logN (Θ; ϵ/H)ι

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H


︸ ︷︷ ︸

(II.c)

(F.11)

where the (i) is by inequality min {a+ b, c} ≤ min {a, c}+b (a, b, c ≥ 0), (ii) comes from inequality
min

{
x
y ,

z
w

}
≤ x+z

y+w and (iii) is valid since

N̂ b
h(s, a) =

[
K

4
, E
π∼µb

[d̂πh(s, a)]−
Kξ

8N
− 3 log

HSA

δ

]
+

≳ KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H

holds for all (s, a) ∈ Ih according to definition of I. We then study the three terms separately. For
the term (II.a), by the Cauchy-Schwarz inequality, we have

(II.a) ≤

 ∑
h∈[H]

∑
(s,a)∈S×A

d̂πh(s, a) · [logN (Θ; ϵ/H)ι[VhVh+1] (s, a) +H]


1/2

︸ ︷︷ ︸
(II.a.1)

×

 ∑
h∈[H]

∑
(s,a)∈S×A

d̂πh(s, a)

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H


1/2

︸ ︷︷ ︸
(II.a.2)

.

Observe that ∥Vh+1∥∞ ≤ H , then the term (II.a.1) can be upper bounded by

(II.a.1) =

√∑
h∈[H]

∑
(s,a)∈S×A

d̂πh(s, a) · [logN (Θ; ϵ/H)ι[VhVh+1] (s, a) +H]

38

Under review as a conference paper at ICLR 2024

≤

√√√√[H2 logN (Θ; ϵ/H)ι+H] ·
√∑

h∈[H]

∑
(s,a)∈S×A

d̂πh(s, a) ≍
√
H3 logN (Θ; ϵ/H)ι.

(F.12)

For the term (II.a.2), we have

(II.a.2) =

√√√√∑
h∈[H]

∑
(s,a)∈S×A

d̂πh(s, a)

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H

=

√√√√ 1

K
·
∑

h∈[H]

∑
(s,a)∈S×A

d̂πh(s, a)

Eπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/KH

≲

√
HSA

K
, (F.13)

which the last line comes from Eq.(B.3). Combining Eq.(F.12) and (F.13), we conclude that

(II.a) ≲

√
H4SA

K
. (F.14)

For the term (II.b), by Eq.(B.3), we have

(II.b) =
∑

h∈[H]

∑
(s,a)∈S×A

d̂πh(s, a) ·
H logN (Θ; ϵ/H)ι

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H

=
1

K
·
∑

h∈[H]

∑
(s,a)∈S×A

d̂πh(s, a) ·
H logN (Θ; ϵ/H)ι

Eπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/KH

≲
H2SA logN (Θ; ϵ/H)ι

K
. (F.15)

For the term (II.c), we have

(II.c) =
ϵ

H

∑
h∈[H]

∑
(s,a)∈Ih

d̂πh(s, a) ·

1 +

√√√√ logN (Θ; ϵ/H)ι

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H


= ϵ+

ϵ

H

∑
h∈[H]

∑
(s,a)∈Ih

√
d̂πh(s, a) ·

√√√√ d̂πh(s, a) logN (Θ; ϵ/H)ι

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H

≤ ϵ+
ϵ

H

√∑
h∈[H]

∑
(s,a)∈Ih

d̂πh(s, a) ·

√√√√∑
h∈[H]

∑
(s,a)∈Ih

d̂πh(s, a) logN (Θ; ϵ/H)ι

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H

≤ ϵ(1 +

√
SA logN (Θ; ϵ/H)ι

K
), (F.16)

where the second last line is by the Cauchy-Schwarz inequality and the last line is due to Eq.(F.13).

Then combining Eq.(F.10), Eq.(F.14), Eq.(F.15), and Eq.(F.16), we obtain the bound for the term (II)

(II) ≲ (II.a) + (II.b) + (II.c)

≲

√
H4SA logN (Θ; ϵ/H)ι

K
+

H2SA logN (Θ; ϵ/H)ι

K
+ ϵ(1 +

√
SA logN (Θ; ϵ/H)ι

K
)

≲

√
H4SA logN (Θ; ϵ/H)ι

K
+ ϵ, (F.17)

where the last line is from ϵ < 1. Finally, combining Eq.(F.9) and (F.14), we get the final bound

Dall
Θ

(
R⋆, R̂

)
= sup

π,θ∈Θ
dπ
(
rθh, r̂

θ
h

)
≤ I + II

39

Under review as a conference paper at ICLR 2024

≲
ξH2SA

N
+

H2SAηι

K
+

√
H4SA logN (Θ; ϵ/H)ι

K
+ ϵ.

Hence, we can guarantee Dall
Θ

(
R⋆, R̂

)
≤ 2ϵ, provided that

K ≥ Õ
(
H4SA logN (Θ; ϵ/H)

ϵ2
+

H2SA(η + logN (Θ; ϵ/H))

ϵ

)
, KH ≥ N ≥ Õ

(√
H9S7A7K

)
.

Here poly log (H,S,A, 1/δ) are omitted.

G LOWER BOUND IN THE ONLINE SETTING

G.1 LOWER BOUND OF ONLINE IRL PROBLEMS

We focus on the cases where Θ = V ×A. In this case logN (Θ; ϵ/H) = Õ(S), the upper bound of
the sample complexity of Algorithm 6 becomes Õ

(
H4S2A/ϵ2

)
(we hide the burn-in term).

Similar to the offline setting, we define (ϵ, δ)-PAC algorithm for online IRL problems for all ϵ, δ ∈
(0, 1) as follows.

Definition G.1. Fix a parameter set Θ, we say an online IRL algorithm A is a (ϵ, δ)-PAC algorithm
for online IRL problems, if for any IRL problem (M, πE), with probability 1− δ, A outputs a reward
mapping R̂ such that

Dall
Θ (R̂,R⋆) ≤ ϵ.

Theorem G.2 (Lower bound for online IRL problems). Fix parameter set Θ = V ×A and let A be
an (ϵ, δ)-PAC algorithm for online IRL problems, where δ ≤ 1/3. Then, there exists an IRL problem
(M, πE) such that, if H ≥ 4, S ≥ 130, A ≥ 2, there exists an absolute constant c0 such that the
expected sample complexity N is lower bounded by

N ≥ c0H
3SAmin {S,A}

ϵ2
,

where 0 < ϵ ≤ (H − 2)/1024;

Note that when S ≤ A, the lower bound scales with Ω
(
S2A

)
, matching the S2A factor dependence

observed in the upper bound (Theorem 5.1).

G.2 HARD INSTANCE CONSTRUCTION

Hard Instance Construction Our construction is a modification of the hard instance constructed
in the proof of Metelli et al. (2023, Theorem B.3). We construct the hard instance with 2S + 1 states,
A + 1 actions, and 2H + 2 stages for any H, S, A > 0. (This rescaling only affects S, H by at
most a multiplicative constant and thus does not affect our result). We then define an integer K by

K := min {S,A}.

Each MDP Mv is indexed by a vector w =
(
w

(i,j,k)
h

)
h∈[H],i∈[K],j∈[S],k∈[K]

∈ RHSKA and is

specified as follows:

• State space: S = {sstart, sroot, s1, . . . , sS , s̄1, . . . , s̄S}.
• Action space: A = {a0, a1, ..., aA}.
• Initial state: sstart, that is

P(s1 = sstart) = 1.

• Transitions:

40

Under review as a conference paper at ICLR 2024

– At stage 1, sstart can only transition to itself or si. The transition probabilities are given
by 

P1(sstart | sstart, a0) = 1

P1(si | sstart, ai) = 1 for all i ∈ [K],

P1(sj | sstart, ak) = 1
S for all j ∈ [S], k ≥ K + 1,

– At each stage h ∈ {2, . . . ,H + 1}, sstart can only transition to itself or si, si can only
transition to absorbing state s̄j . The transition probabilities are given by

Ph(sstart | sstart, a0) = 1,

Ph(si | sstart, ai) = 1 for all i ∈ [K],

Ph(sj | sstart, ak) =
1
S for all j ∈ [S], k ≥ K + 1,

Ph(s̄j | si, a0) = 1
S for all i ≥ K + 1, j ∈ [S],

Ph(s̄j | si, ak) =
1+ϵ′·w(i,j,k)

h−1

S for all i ∈ [K], j ∈ [S], k ∈ [A],

Ph(s̄j | s̄j , ak) = 1 for all j ∈ [S], k ≥ 0.

(G.1)

– At each stage h ∈ {H + 1, . . . , 2H + 2} and sstart can only transition to si and si can
only transition to absorbing state s̄j . The transition probabilities are given by

Ph(si | sstart, a0) =
1
S for all i ∈ [S],

Ph(si | sstart, ai) = 1 for i ∈ [K],

Ph(sj | sstart, ak) =
1
S for all j ∈ [S], k ≥ K + 1,

Ph(s̄j | si, ak) = 1
S for all i ∈ [K], j ∈ [S], k ≥ 0,

Ph(s̄j | s̄j , ak) = 1 for all i ∈ [S], k ≥ 0.

• Expert policy: expert policy πE plays action a0 at every stage h ∈ [H] and state s ∈ S . That
is

πE
h(a0|s) = 1, for all h ∈ [2H + 2], s ∈ S. (G.2)

To ensure the definition ofMw is valid, we enforce the following condition:∑
j∈[S]

w
(i,j,k)
h = 0,

for any h ∈ [H], i ∈ [K], k ∈ [A]. We define a vector spaceW by

W :=

w = (wj)j∈[S] ∈ {1,−1}
S
:
∑
j∈[S]

wj = 0

.

Let I denote [H]× [K]× [A], the Eq.(G.2) is equivalent to

w ∈ WI .

Further, we let P(w) =
{
P(w)
h

}
h∈[H]

to be the transition kernel of MDP\R Mw. In addition,

Given w ∈ WI , w ∈ W and index a ∈ I, we use the notation w
a← w to represent vector obtained

by replacing a component of w with w. For example, let w = (w
(i,j,k)
h)h∈[H],i∈[K],j∈[S],k∈[K],

w = (wj)j∈[S], a = (ha, ia, ja) and w = w
a← w and then w can be expressed as follows:

w
(i,j,k)
h =

{
wj (h, i, k) = (ha, ia, ka),

w
(i,j,k)
h otherwise.

(G.3)

By Metelli et al. (2023, Lemma E.6), there exists aW ⊆W such that∑
i∈[n]

(wi − vi)
2 ≥ S

8
, ∀v, w ∈ W̄, log

∣∣W∣∣ ≥ S

10
. (G.4)

41

Under review as a conference paper at ICLR 2024

Notations. To distinguish with different MDP\Rs, we denote V π
h

(
·; r,P(w)

)
be the value function

of π in MDP Mw ∪ r. Given two rewards r r′, we define dall(r, r′;P(w)) to be the dall metric
evaluated inMw:

dall(r, r′;P(w)) := sup
π,h∈[H]

EP(w),π

∣∣∣V π
h (sh; r,P(w))− V π

h (sh; r
′,P(w))

∣∣∣.
Correspondingly, given a parameter set Θ, two reward mappings R, R′, we can define
Dall

Θ (R,R′;P(w)) by

Dall
Θ (R,R′;P(w)) := sup

(V,A)∈Θ
dall
(
R(V,A),R′(V,A);P(w)

)
.

In the following, we always assume that w ∈ W̄ . We then present the following lemma which shows
the difference between two MDP\Rs M

w
a←v

andM
w

a←w
for any w ∈ WI and v ̸= w ∈ W .

Lemma G.3. Given any w ∈ WI , w ̸= v ∈ W , and index a = (ha, ia, ka) ∈ I, let R(w a←w),

R(w a←v) be the ground truth reward mapping induced by M
w

a←w
, M

w
a←v

, respectively. Set
Θ = V ×A. For any ϵ′ ∈ (0, 1/2] and any reward mapping R : V ×A → Rall, we have

7Dall
Θ

(
R(w a←w),R;P(w

a←w)
)
+Dall

Θ

(
R(w a←v),R;P(w

a←v)
)
≥ Hϵ′

16
,

where ϵ′ is specified in Eq.(G.1).

Proof. Step 1: Construct bad parameter (V bad, Abad). We construct the bad parameter
(V bad, Abad) ∈ V ×A as follows:

• We set Abad
h (s, a) = 0 for all (h, s, a) ∈ [2H + 2]× S ×A.

• We set V bad
h by

V bad
h (s) :=

{
(2H+2−h)·(wi−vi)

2 if s = s̄i, h = ha + 2,

0 other.
(G.5)

Directly by the construction of (V bad, Abad), we obtain that∑
i∈[S]

(wi − vi) · V bad
h (s̄i) =

∑
i∈[S]

(2H − ha)(wi − vi)
2

2
≥ H (wi − vi)

2

2
≥ HS

16
, (G.6)

where the last inequality is due to Eq.(G.4). We then denote R(w a←w)(V bad, Abad
)
,

R(w a←v)(V bad, Abad
)

as rbadw , rbadv , respectively.

Since Abad ≡ 0, any policy π ∈ Π⋆
M

w
a←w
∪rbadw

,Π⋆
M

w
a←v
∪rbadv

. More explicitly, any policy is optimal

inM
w

a←w
∪ rbadw andM

w
a←v
∪ rbadv .

Step 2: Construct test policies πtest,(1), πtest,(2). Let r = R
(
V bad, Abad

)
. Let πg be the greedy

policy ofM
w

a←w
∪ r. By Lemma 2.2, there exist a pair (V,A) ∈ V ×A such that

rh(s, a) = −Ah(s, a) · 1 {a /∈ supp (πg
h(· | s))}+ Vh(s)−

[
P(w

a←w)
h Vh+1

]
(s, a), (G.7)

We then construct test policy πtest,(1) by
π
test,(1)
h (a0 | sstart) = 1 h ≤ ha − 1

π
test,(1)
h (aia | sstart) = 1 h = ha

π
test,(1)
h (aka

| sia) = 1 h = ha + 1

π
test,(1)
h = πg

h h ≥ ha + 2

42

Under review as a conference paper at ICLR 2024

which implies that at stage h ≤ ha − 1, πtest,(1) always plays a0, at stage ha, πtest,(1) plays aia , then
transition to sia , at stage ha + 1, πtest,(1) plays aka

, then at stage h ≥ ha + 2, πtest,(1) is equal to the
greedy policy πg. By construction, we can conclude that

dπ
test,(1)

ha+1 (sia ;P(w
a←w)) = 1, V πtest,(1)

ha+2 (·|r,P(w
a←w)) = Vha+2(·)., (G.8)

the second equality is due to π
test,(1)
h = πg

h for any h ≥ ha + 2.

Further, we have

V πtest,(1)

ha+1 (sia ; r,P(
w

a←w)) = rha+1(sia , aka) +

[
P(w

a←w)
ha+1 V πtest,(1)

ha+2 (·|r,P(w
a←w))

]
(sia , aka)

= −Aha+1(sia , aka) · 1
{
aka /∈ supp

(
πg
ha+1(· | sia)

)}
+ Vha+1(s)−

[
P(w

a←w)
ha+1 Vha+2

]
(sia , aka

) +

[
P(w

a←w)
ha+1 Vha+2

]
= Vha+1(sia)− gap, (G.9)

where the first line is by the Bellman equation, the second line is due to Eq.(G.7) and
Eq.(G.8). Here gap is the advantage function at (ha + 1, sia , aka

), i.e, gap := Aha+1(sia , aka
) ·

1
{
aka
∈ supp

(
πg
ha+1(· | sia)

)}
. Then by definition of Dall

Θ (R(w a←w),R;P(w
a←w)), we can obtain

that

Dall
Θ

(
R(w a←w),R;P(w

a←w)
)

≥ dall
(
R(w a←w)(V bad, Abad

)
,R
(
V bad, Abad

)
;P(w

a←w)
)

= dall
(
rbadw , r;P(w

a←w)
)

≥ E
P(w

a←w),πtest,(1)

∣∣∣V πtest,(1)

ha+1 (s; rbadw ,P(w
a←w))− V πtest,(1)

ha+1 (s; r,P(w
a←w))

∣∣∣
=
∣∣∣V πtest,(1)

ha+1 (sia ; r
bad
w ,P(w

a←w))− V πtest,(1)

ha+1 (sia ; r,P(
w

a←w))
∣∣∣

=
∣∣V bad

ha+1(sia)− Vha+1(sia) + gap
∣∣, (G.10)

where the second last line is due to Eq.(G.8) and the last line is by Eq.(G.9) and πtest,(1) ∈
Π⋆
M

w
a←w
∪rbadw

: V πtest,(1)

ha+1 (sia ; r
bad
w ,P(w

a←w)) = V bad
ha+1(sia).

Next, we construct another test policy πtest,(2) as follows:
π
test,(2)
h (a0 | sstart) = 1 h ≤ ha − 1

π
test,(2)
h (aia | sstart) = 1 h = ha

π
test,(2)
h = πg

h h ≥ ha + 1.

The difference between πtest,(2) and πtest,(1) is that at stage ha πtest,(2) play the πg
ha+1(sia) instead

of aka . Similar to Eq.(G.8), we have

dπ
test,(2)

ha+1 (sia ;P(w
a←w)) = 1, V πtest,(2)

ha+1 (sia ; r,P(
w

a←w)) = Vha+1(sia) (G.11)

where the seconed equality is valid since π
test,(2)
h = πg

h for any h ≥ ha + 1.

Similar to Eq.(G.10), we have

Dall
Θ

(
R(w a←w),R;P(w

a←w)
)
≥ dall

(
rbadw , r;P(w

a←w)
)

≥ E
P(w

a←w),πtest,(2)

∣∣∣V πtest,(2)

ha+1 (s; rbadw ,P(w
a←w))− V πtest,(2)

ha+1 (s; r,P(w
a←w))

∣∣∣
=
∣∣∣V πtest,(2)

ha+1 (sia ; r
bad
w ,P(w

a←w))− V πtest,(2)

ha+1 (sia ; r,P(
w

a←w))
∣∣∣

=
∣∣V bad

ha+1(sia)− Vha+1(sia)
∣∣, (G.12)

43

Under review as a conference paper at ICLR 2024

where the second last is due to Eq.(G.11), the last line follows from πtest,(2) ∈ Π⋆
M

w
a←w
∪rbadw

:

V πtest,(2)

ha+1 (sia ; r
bad
w ,P(w

a←w)) = V bad
ha+1(sia). Combing Eq.(G.10) and Eq.(G.12), we have

2Dall
Θ

(
R(w a←w),R;P(w

a←w)
)
≥
∣∣V bad

ha+1(sia)− Vha+1(sia)
∣∣+ ∣∣V bad

ha
(sia)− Vha+1(sia) + gap

∣∣
≥ gap, (G.13)

where the second line comes from the triangle inequality.
Step 3: lower bound Dall

Θ

(
R(w a←v),R;P(w

a←v)
)

. We still use the test policy πtest,(1) inM
(w

a←v)
.

Since P(w
a←v)

h = P(w
a←w)

h for any h ≥ ha + 2, we have

V πtest,(1)

ha+2 (s̄i|r,P(w
a←v)) = V πtest,(1)

ha+2 (s̄i|r,P(w
a←w)) = Vha+2(s̄i), for all i ∈ [S], (G.14)

where the second equality comes from Eq.(G.8).

By the definition of Dall
Θ

(
R(w a←v),R;P(w

a←v)
)

, we have

Dall
Θ

(
R(w a←v),R;P(w

a←v)
)

≥ dall
(
rbadv , r;P(w

a←v)
)

≥ E
P(w

a←v),πtest,(1)

∣∣∣V πtest,(1)

ha+1 (s; rbadv ,P(w
a←v))− V πtest,(1)

ha+1 (s; r,P(w
a←v))

∣∣∣
=
∣∣∣V πtest,(1)

ha+1 (sia ; r
bad
v ,P(w

a←v))− V πtest,(1)

ha+1 (sia ; r,P(
w

a←v))
∣∣∣ (by construction of policy πtest,(1).)

=
∣∣∣V bad

ha+1(sia)− V πtest,(1)

ha+1 (sia ; r,P(
w

a←v))
∣∣∣

(i)
=

∣∣∣∣V bad
ha+1(sia)− rha+1(sia , aka

)−
[
P(w

a←v)
ha+1 Vha+2

]
(sia , aka

)

∣∣∣∣
=

∣∣∣∣V bad
ha+1(sia)− rha+1(sia , aka)−

[
P(w

a←w)
ha+1 Vha+2

]
(sia , aka)−

[(
P(w

a←v)
ha+1 − P(w

a←w)
ha+1

)
Vha+2

]
(sia , aka)

∣∣∣∣
≥
∣∣∣∣[(P(w a←v)

ha+1 − P(w
a←w)

ha+1

)
Vha+2

]
(sia , aka

)

∣∣∣∣− ∣∣∣∣V bad
ha+1(sia)− rha+1(sia , aka

)−
[
P(w

a←w)
ha+1 Vha+2

]
(sia , aka

)

∣∣∣∣
(by triangle inequality)

(ii)
=

∣∣∣∣[(P(w a←v)
ha+1 − P(w

a←w)
ha+1

)
Vha+2

]
(sia , aka

)

∣∣∣∣− ∣∣V bad
ha+1(sia)− Vha+1(sia) + gap

∣∣
≥
∣∣∣∣[(P(w a←v)

ha+1 − P(w
a←w)

ha+1

)
Vha+2

]
(sia , aka)

∣∣∣∣− ∣∣V bad
ha+1(sia)− Vha+1(sia)

∣∣− gap

(iii)
≥
∣∣∣∣[(P(w a←v)

sa+1 − P(w
a←w)

ha+1

)
Vha+2

]
(sia , aka)

∣∣∣∣− 3Dall
Θ

(
R(w a←w),R;P(w

a←w)
)
, (G.15)

where (i) is by the Bellman equation, (ii) is valid since

rha+1(sia , aka
) +

[
P(w

a←w)
ha+1 Vha+2

]
(sia , aka

)

= −Aha+1(sia , aka
) · 1

{
aka
∈ supp

(
πg
ha+1(·|sia)

)}
+ Vha+1(sia)

−
[
P(w

a←w)
ha+1 Vha+2

]
(sia , aka) +

[
P(w

a←w)
ha+1 Vha+2

]
(sia , aka) (by Eq.(G.7))

= −gap+ Vha+1(sia)

and (iii) is due to Eq.(G.12) and Eq.(G.13). We next analyse∣∣∣∣[(P(w a←v)
ha+1 − P(w

a←w)
ha+1

)
Vha+2

]
(sia , aka

)

∣∣∣∣. We move back to πtest,(1). By the construction

of πtest,(1) and the transition probabilities ofM
w

a←w
, we have

dπ
test,(1)

ha+2 (s̄i;P(w
a←w)) =

1 + ϵ′wi

S
, V πtest,(1)

ha+2 (s̄i; r,P(w
a←w)) = Vha+2(s̄i), ∀i ∈ [S].

(G.16)

44

Under review as a conference paper at ICLR 2024

By definition of Dall
Θ (R(w a←w),R;P(w

a←w)), we have

Dall
Θ

(
R(w a←w),R;P(w

a←w)
)

≥ E
P(w

a←w),πtest,(1)

∣∣∣V πtest,(1)

ha+2 (s; rbadw ,P(w
a←w))− V πtest,(1)

ha+2 (s; r,P(w
a←w))

∣∣∣
≥
∑
i∈[S]

dπ
test,(1)

ha+2 (s̄i) ·
∣∣∣V πtest,(1)

ha+2 (s̄i; r
bad
w ,P(w

a←w))− V πtest,(1)

ha+2 (s̄i; r, P(w
a←w))

∣∣∣
=
∑
i∈[S]

1 + ϵ′wi

S
·
∣∣V bad

ha+2(s̄i)− Vha+2(s̄i)
∣∣

≥
∑
i∈[S]

1

2S
·
∣∣V bad

ha+2(s̄i)− Vha+2(s̄i)
∣∣, (G.17)

where the last second is by Eq.(G.16) and the last line comes from ϵ′ ∈ (0, 1/2]. Applying Eq.(G.17),
we obtain that∣∣∣[(P(w a←v) − P(w

a←w)
)
Vha+2

]
(sia , aka)

∣∣∣
=

∣∣∣∣∣∣ϵ
′

S
·
∑
i∈[S]

Vha+2(s̄i) · (wi − vi)

∣∣∣∣∣∣
≥

∣∣∣∣∣∣ϵ
′

S
·
∑
i∈[S]

V bad
ha+2(s̄i) · (wi − vi)

∣∣∣∣∣∣− ϵ′

S
·
∑
i∈[S]

∣∣V bad
ha+2(s̄i)− Vha+2(s̄i)

∣∣ · |(wi − vi)|

(by triangle inequality)

≥

∣∣∣∣∣∣ϵ
′

S
·
∑
i∈[S]

V bad
ha+2(s̄i) · (wi − vi)

∣∣∣∣∣∣− 2ϵ′

S
·
∑
i∈[S]

∣∣V bad
ha+2(s̄i)− Vha+2(s̄i)

∣∣
≥ Hϵ′

16
− 2Dall

Θ

(
R(w a←w),R;P(w

a←w)
)
, (G.18)

where the second line is by the triangle inequality and the last line comes from Eq.(G.6)and Eq.(G.17).
Combining Eq.(G.15) and Eq.(G.18), we complete the proof.

G.3 PROOF OF THEOREM G.2

Proof of Theorem G.2. Our method is similar to the one used for the proof of Metelli et al. (2023,
Theorem B.3). For any ϵ ∈ (0, 1/2], δ ∈ (0, 1), We consider an online algorithm A such that for any
IRL problem (M, πE), we have

P
(M,πE),A

(
Dall

Θ

(
R⋆, R̂

)
≤ ϵ
)
≥ 1− δ, (G.19)

where P
(M,πE),A

denotes the probability measure induced by executing the algorithm A in the IRL

problem (M, πE), R⋆ is the ground truth reward mapping and R̂ is the estimated reward mapping
outputted by executing A in (M, πE). We define the the identification function for any (a,w) ∈
I ×WI by

Φa,w := arg min
v∈W

Dall
Θ

(
R(w a←v), R̂;P(w

a←v)
)
,

where R(w) is the ground truth reward mapping induced by (Mw, πE). Let v⋆ = Φa,w. For any
v ̸= v⋆ ∈ W , by definition of v⋆, we have

Dall
Θ

(
R(w a←v⋆), R̂;P(w

a←v⋆)
)
≤ Dall

Θ

(
R(w a←v), R̂;P(w

a←v)
)
.

45

Under review as a conference paper at ICLR 2024

By applying Lemma G.3, we obtain that

Hϵ′

16
≤ Dall

Θ

(
R(w a←v), R̂;P(w

a←v)
)
+ 7Dall

Θ

(
R(w a←v⋆), R̂;P(w

a←v⋆)
)
≤ 8Dall

Θ

(
R(w a←v), R̂;P(w

a←v)
)
.

Next, we set ϵ′ = 256ϵ
H which implies that

Hϵ′

16
≥ 16ϵ. (G.20)

Here, to employ Lemma G.3, we need ϵ′ ∈ (0, 1/2] which is equivalent to 0 < ϵ ≤ H/512. Then, it
holds that

Dall
Θ

(
R(w a←v), R̂;P(w

a←v)
)
≥ 2ϵ > ϵ,

which implies that

{v ̸= Φa,w} ⊆
{
Dall

Θ

(
R(w a←v), R̂;P(w

a←v)
)
> ϵ
}
. (G.21)

By Eq.(G.21), we have the following lower bound for the probability

δ ≥ sup
v∈W

P
(M

w
a←v

,πE),A

(
Dall

Θ

(
R(w a←v), R̂;P(w

a←v)
)
> ϵ
)

≥ sup
v∈W

P
(M

w
a←v

,πE),A
(v ̸= Φa,w)

≥ 1

|W|

∑
v∈W

P
(M

w
a←v

,πE),A
(v ̸= Φa,w), (G.22)

By applying Theorem D.3 with P0 = P
(M

w
a←0

,πE),A
, Pw = P

(M
w

a←w
,πE),A

, we have

1

|W|

∑
(Mw

a←v,πE),A

(v ̸= Φa,w) ≥ 1− 1

log |W|

 1

|W|

∑
v∈W

DKL(P
(M

w
a←v

,πE),A
, P
(M

w
a←0

,πE),A
)− log 2

.

(G.23)

Our next step is to bound the KL divergence. Using the same scheme in the proof (Metelli et al.,
2021, Theorem B.3), we can compute the KL-divergence as follows:

DKL(P
(M

w
a←v

,πE),A
, P
(M

w
a←0

,πE),A
)

= E
(Mw

a←v,πE),A

[
N∑
t=1

DKL

(
P(w

a←w)
ht

(· | st, at),P
(w a←0)
ht

(· | st, at)
)]

≤ E
(Mw

a←v,πE),A
[Nha

(sia , aka
)]DKL

(
P((w

a←v))
ha

(· | sia , aka
),P(w

a←0)
ha

(· | sia , aka
)

)
≤ 2(ϵ′)2E

(Mw
a←v,πE),A

[Nha
(sia , aka

)], (G.24)

where Nh(s, a) :=
∑N

t=1 1 {(ht, st, at) = (h, s, a)} for any given (h, s, a) ∈ [H]× S ×A and the
last inequality comes from Metelli et al. (2021, Lemma E.4). Combining Eq.(G.22) and Eq.(G.23),
we have

δ ≥ 1− 1

log(|W|)

 1

|W|

∑
v∈W

2(ϵ′)2E
(Mw

a←v,πE),A
[Nha

(sia , aka
)]− log 2


for any w. It also holds for any a ∈ I that

1

|W|

∑
v∈W

E
(Mw

a←v,πE),A
[Nha(sia , aka)] ≥

(1− δ) log |W| − log 2

2(ϵ′)2
. (G.25)

46

Under review as a conference paper at ICLR 2024

By summing Eq.(G.25) over all w, we obtain that∑
a∈I

1

|WI |

∑
w∈WI

1

|W|

∑
v∈W

E
(Mw

a←v,πE),A
[Nha(sia , aka)]

=
1

|WI |

∑
w∈WI

∑
a∈I

E(Mw,πE),A[Nha(sia , aka)]

≥ HKA
(1− δ) log |W| − log 2

2(ϵ′)2
. (G.26)

Hence, there exists a wbad ∈ WI such that

E(Mwbad ,πE),A[N] ≥
∑
a∈I

E(Mwbad ,πE),A

[
N t

ha
(sia , aka

)
]
≥ HKA

(1− δ) log |W| − log 2

2(ϵ′)2

= H3KA
(1− δ) log |W| − log 2

131072ϵ2
, (G.27)

where the last line is by ϵ′ = ϵ
256H . By taking δ = 1/3, we obtain that

E(Mwbad ,πE),A[N] ≥ H3KA
(1− δ) log |W| − log 2

131072ϵ2
= H3KA

2 log |W| − 3 log 2

393216ϵ2

= Ω

(
H3SKA

ϵ2

)
= Ω

(
H3SAmin {S,A}

ϵ2

)
, (G.28)

where the last line follows from Eq.(H.24) and log |W| ≥ S
10 .

H LOWER BOUND IN THE OFFLINE SETTING

H.1 LOWER BOUND OF OFFLINE IRL PROBLEMS

We direct our attention towards the lower bound analysis of the offline IRL problems, under the
performance metric described in Section 3.3, particularly in scenarios where Θ = V × A. In this
case logN (Θ; ϵ/H) is upper-bounded by Õ(S), and the corresponding upper bound of the sample
complexity becomes Õ

(
C⋆H4S2

ϵ2

)
.

Following Metelli et al. (2023) we define the (ϵ, δ)-PAC algorithm for offline IRL problems for all
ϵ, δ ∈ (0, 1).
Definition H.1 ((ϵ, δ)-PAC algorithm for offline IRL problems). We say an offline IRL algorithm A
is an (ϵ, δ)-PAC algorithm for offline IRL problems if for any offline IRL problem (M, πE, πb, πval)

and any parameter set Θ, with probability 1− δ, A outputs a reward mapping R̂ such that

Dπval

Θ (R̂,R⋆) ≤ ϵ.

Theorem H.2 (Lower bound for offline IRL problems). Fix Θ = V ×A and let A be an (ϵ, δ)-PAC
algorithm for offline IRL problems, where δ ≤ 1/3. Then, there exists an offline IRL problem
(M, πE, πb, πval) such that, if H,S ≥ 4, A ≥ 2, C⋆ ≥ 2, there exists an absolute constant c0 such
that the sample complexity N is lower bounded by

N ≥ c0C
⋆H2Smin {S,A}

ϵ2
.

where 0 < ϵ ≤ (H − 2)/1034.

The hard instance construction and the proof of Theorem H.2 and the hard instance construction
are deferred to Section H.2 and Section H.3, respectively. Our proof involves a modification of
the challenging instance constructed in Metelli et al. (2023). Specifically, when S ≤ A, the lower
bound scales with Ω

(
C⋆S2

)
, matching the C⋆S2 factor dependence observed in the upper bound

(Theorem 4.2).

47

Under review as a conference paper at ICLR 2024

H.2 HARD INSTANCE CONSTRUCTION

We consider the MDP\RMw indexed by vector w ∈ WI , defined in Section G. We assume C⋆ ≥ 2.
Fix i⋆ ∈ [K], we construct the behavior policy πb as follows:

πb
h(a0|sstart) = 1 for all i ∈ [K] and h ∈ [H − 1],

πb
H(ai|sstart) = 1

K for all i ∈ [K],

πb
H+1(a0|si) = 1 for all i ̸= i⋆,

πb
H+1(a0|si⋆) = 1− 1

C⋆ , πb
H+1(a1|si⋆) = 1

C⋆ ,

πb
h(a0|s̄i) = 1 for all i ∈ [S] and h ≥ H + 2.

(H.1)

And evaluation policy πval is defined by

πval
h (a0|sstart) = 1 for all i ∈ [K] and h ∈ [H − 1],

πval
H (ai⋆ |sstart) = 1,

πval
H+1(a0|si) = 1 for all i ̸= i⋆,

πval
H+1(a1|si⋆) = 1,

πval
h (a0|s̄i) for all i ∈ [S] and h ≥ H + 2.

(H.2)

For all w ∈ WI , we can show that πval has C⋆-concentrability inMw.

Lemma H.3. Suppose that ϵ′ ∈ (0, 1/2]. For any w ∈ WI , it holds that∑
(h,s,a)∈[2H+2]×S×A

dπ
val

(s, a)

dπb(s, a)
≤ 3C⋆(H + 2)S.

Proof. By the construction of behavior policy πb, we have

supp
(
dπ

val

h (·, ·)
)
⊆ {(sstart, a0), (sstart, ak⋆), (si⋆ , a1), (s̄1, a0), . . . , (s̄S , a0)}.

Since πb
h = πval

h for all h ∈ [H − 1], then

dπ
b

h (sstart, a0) = dπ
val

h (sstart, a0) = 1 (H.3)

for all h ∈ [H − 1].

At stage h = H , we have

dπ
b

H (sstart, ai⋆) =
1

K
, dπ

val

H (sstart, ai⋆) = 1. (H.4)

At stage h = H + 1, we have

dπ
b

H+1(si⋆ , a1) =
1

C⋆K
, dπ

val

H+1(si⋆ , a1) = 1. (H.5)

At stage h ∈ {H + 2, . . . , 2H + 2}, by direct computation, we obtain that

dπ
b

h (s̄j , a0) =
C⋆K − 1

C⋆SK
+

1 + ϵ′w
(i⋆,j,1)
H+1

C⋆SK
, dπ

val

h (s̄j , a1) =
1 + ϵ′w

(i⋆,j,1)
H+1

S
, (H.6)

for all j ∈ [S]. Since 0 < ϵ ≤ 1/2 and C⋆ ≥ 1, we have

dπ
b

h (s̄j , a0) =
C⋆K − 1

SK
+

1 + ϵ′w
(i⋆,j,1)
H+1

C⋆SK

≥ C⋆K − 1

SK
+

1

2C⋆SK
=

1

S
(1− 1

2C⋆K
) ≥ 1

2S
(H.7)

and

dπ
val

h (si⋆ , a1) =
1 + ϵ′w

(i⋆,j,1)
H+1

S
≤ 3

2S
, (H.8)

48

Under review as a conference paper at ICLR 2024

for all h ≥ H + 2. By Eq.(H.7) and (H.7), we obtain that

dπ
val

h (s̄j , a0)

dπ
b

h (s̄j , a0)
≤ 3, (H.9)

for all h ≥ H + 2.

Combining Eq.(H.3), Eq.(H.4) and Eq.(H.5), we have
2H+2∑
h=1

∑
(s,a)∈S×A

dπ
val

(s, a)

dπb(s, a)
=

∑
h∈[H−1]

dπ
val

h (sstart, a0)

dπ
b

h (sstart, a0)
+

dπ
val

H (sstart, ai⋆)

dπ
val

H (sstart, ai⋆)
(H.10)

+
dπ

val

H+1(si⋆ , a1)

dπ
b

H+1(si⋆ , a1)
+

∑
h≥H+2

∑
i∈[S]

dπ
val

h (s̄i, a0)

dπ
b

h (s̄i, a0)
(H.11)

= H − 1 +K + C⋆K +
∑

h≥H+2

∑
i∈[S]

dπ
val

h (s̄i, a0)

dπ
b

h (s̄i, a0)
(H.12)

≤ H − 1 +K + C⋆K + 3(H + 1)S ≤ C⋆(2H + 2)(2S + 1),
(H.13)

where the last second inequality is by Eq.(H.9) and the last inequality is by C⋆ ≥ 2. This completes
the proof.

Lemma H.3 demonstrate that πb and πval satisfies C⋆-concentrability (Assumption 4.1) in anyMw.

Notations. To distinguish with different MDP\Rs, we still use V π
h

(
·; r,P(w)

)
to denote the value

function of π in MDPMw ∪ r. Given two rewards r r′ and w ∈ WI , we define dπ
val

(r, r′;P(w)) by:

dπ
val

(r, r′;P(w)) := sup
π,h∈[H]

EP(w)

∣∣∣V πval

h (sh; r,P(w))− V πval

h (sh; r
′,P(w))

∣∣∣.
Correspondingly, given a parameter set Θ, two reward mappings R, R′, we define
Dπval

Θ (R,R′;P(w)) by

Dπval

Θ (R,R′;P(w)) := sup
(V,A)∈Θ

dπ
val
(
R(V,A),R′(V,A);P(w)

)
.

In this section, we only consider the case that Θ = V ×A.

Lemma H.4. Given any w ∈ WI , w ̸= v ∈ W , and i⋆ ∈ [K]. Let R(w a←w), R(w a←v) be the
ground truth reward mappings induced byM

w
a←w

,M
w

a←v
where a = (i⋆, H + 1, 1) ∈ I. Set

Θ = V ×A. For any rewarding mapping R and ϵ′ ∈ (0, 1/2], we have

7Dπval

Θ

(
R(w a←w),R;Pw

a←w
)
+Dπval

Θ

(
R(w a←v),R;Pw

a←v
)
≥ Hϵ′

16
.

Proof. We consider similar construction of bad parameter V bad, Abad in the Proof of Lemma G.3.
To summarize,

(
V bad, Abad

)
is given by

• We set Abad
h (s, a) = 0 for all (h, s, a) ∈ [2H + 2]× S ×A.

• We set V bad
h by

V bad
h (s) :=

{
(2H+2−h)·(wi−vi)

2 if s = s̄i, h = H + 2,

0 otherwise.
(H.14)

Similarly, we define rbadw , rbadv and r by

rbadw := R(w a←w)(V bad, Abad
)
, rbadw := R(w a←v)(V bad, Abad

)
, r := R

(
V bad, Abad

)
.

49

Under review as a conference paper at ICLR 2024

By definition of R(w a←w), R(w a←v), we have∣∣rbadw,H+1(si⋆ , a1)− rbadv,H+1(si⋆ , a1)
∣∣ = ∣∣∣∣[(P(w a←w)

H+2 − P(w
a←v)

H+2

)
V bad
H+1

]
(si⋆ , a1)

∣∣∣∣
= ϵ′ ·

∣∣∣∣∣∣
∑
i∈[S]

(wi − vi)V
bad
H+2

S

∣∣∣∣∣∣
=

Hϵ′

2S
·
∑
i∈[S]

(wi − vi)
2 ≥ Hϵ′

16
, (H.15)

where the last inequality follows from Eq.(G.4). By definition of Dπval

Θ , we have

Dπval

Θ

(
R(w a←w),R;P(w

a←w)
)
≥ dπ

val
(
rbadw , r;P(w

a←w)
)

≥ E
P(w

a←w),πval

∣∣∣V πval

H+2(s; r
bad
w ,P(w

a←w))− V πval

H+2(s; r,P(
w

a←w))
∣∣∣

=
∑
i∈[S]

1 + ϵ′ · wi

S

∣∣∣V πval

H+2(s̄i; r
bad
w ,P(w

a←w))− V πval

H+2(s̄i; r,P(
w

a←w))
∣∣∣

≥
∑
i∈[S]

ϵ′

2S

∣∣∣V πval

H+2(s; r
bad
w ,P(w

a←w))− V πval

H+2(s; r,P(
w

a←w))
∣∣∣,
(H.16)

where the last line is due to ϵ′ ∈ (0, 1/2]. By construction of πval, in MDP\RM
w

a←v
, the visiting

probability dπ
val

H+1 is given by

dπ
val

H+1

(
si⋆ , a1;P(w

a←w)
)
= 1.

For Dπval

Θ

(
R(w a←v),R;P(w

a←v)
)

, we also have

Dπval

Θ

(
R(w a←v),R;P(w

a←v)
)
≥ dπ

val
(
rbadv , r;P(w

a←v)
)

≥ E
P(w

a←v),πval

∣∣∣V πval

H+1(s; r
bad
v ,P(w

a←v))− V πval

H+1(s; r,P(
w

a←v))
∣∣∣

=
∣∣∣V πval

H+1(si⋆ ; r
bad
v ,P(w

a←v))− V πval

H+1(si⋆ ; r,P(
w

a←v))
∣∣∣

=

∣∣∣∣∣rbadv,H+1(si⋆ , a1)− rH+1(si⋆ , a1)

−
∑
i∈[S]

P(w
a←v)

H+1 (s̄i|si⋆ , a1) ·
(
V πval

H+2(s̄i; r
bad
v ,P(w

a←v))− V πval

H+2(s̄i; r,P(
w

a←v))
)∣∣∣∣∣

≥
∣∣rbadv,H+1(si⋆ , a1)− rH+1(si⋆ , a1)

∣∣
−
∑
i∈[S]

1 + ϵ′ · vi
S

·
∣∣∣V πval

H+2(s̄i; r
bad
v ,P(w

a←v))− V πval

H+2(s̄i; r,P(
w

a←v))
∣∣∣, (H.17)

where the second last line is by the bellman equation and the last line is due to the triangle inequality.

Since P(w
a←w)

h = P(w
a←w)

h and rbadw,h = rbadv,h for all h ≥ H + 2, we have

V πval

H+2(s̄i; r,P(
w

a←v)) = V πval

H+2(s̄i; r,P(
w

a←w)), V πval

H+2(s̄i; r
bad
v ,P(w

a←v)) = V πval

H+2(s̄i; r
bad
w ,P(w

a←w)).
(H.18)

Apply Eq.(H.18) to Eq.(H.17), we have

Dπval

Θ

(
R(w a←v),R;P(w

a←v)
)

50

Under review as a conference paper at ICLR 2024

≥
∣∣rbadv,H+1(si⋆ , a1)− rH+1(si⋆ , a1)

∣∣
−
∑
i∈[S]

1 + ϵ′ · vi
S

·
∣∣∣V πval

H+2(s̄i; r
bad
v ,P(w

a←v))− V πval

H+2(s̄i; r,P(
w

a←v))
∣∣∣

=
∣∣rbadv,H+1(si⋆ , a1)− rH+1(si⋆ , a1)

∣∣
−
∑
i∈[S]

1 + ϵ′ · vi
S

·
∣∣∣V πval

H+2(s̄i; r
bad
w ,P(w

a←w))− V πval

H+2(s̄i; r,P(
w

a←w))
∣∣∣

≥
∣∣rbadv,H+1(si⋆ , a1)− rH+1(si⋆ , a1)

∣∣
−
∑
i∈[S]

3

2S
·
∣∣∣V πval

H+2(s̄i; r
bad
w ,P(w

a←w))− V πval

H+2(s̄i; r,P(
w

a←w))
∣∣∣

≥
∣∣rbadv,H+1(si⋆ , a1)− rH+1(si⋆ , a1)

∣∣− 3Dπval

Θ

(
R(w a←w),R;P(w

a←w)
)
, (H.19)

where the last second inequality comes from ϵ′ ∈ (0, 1/2] and the last inequality comes from
Eq.(H.16).

We next bound
∣∣rbadw,H+1(si⋆ , a1)− rH+1(si⋆ , a1)

∣∣ by Dπval

Θ

(
R(w a←w),R;P(w

a←w)
)

.

Dπval

Θ

(
R(w a←w),R;P(w

a←w)
)
≥ dπ

val
(
rbadw , r;P(w

a←w)
)

≥ E
P(w

a←w),πval

∣∣∣V πval

H+1(s; r
bad
v ,P(w

a←w))− V πval

H+1(s; r,P(
w

a←w))
∣∣∣

=
∣∣∣V πval

H+1(si⋆ ; r
bad
w ,P(w

a←w))− V πval

H+1(si⋆ ; r,P(
w

a←w))
∣∣∣

=

∣∣∣∣∣rbadw,H+1(si⋆ , a1)− rH+1(si⋆ , a1)

−
∑
i∈[S]

P(w
a←w)

H+1 (s̄i|si⋆ , a1) ·
(
V πval

H+2(s̄i; r
bad
w ,P(w

a←w))− V πval

H+2(s̄i; r,P(
w

a←w))
)∣∣∣∣∣

≥
∣∣rbadw,H+1(si⋆ , a1)− rH+1(si⋆ , a1)

∣∣
−
∑
i∈[S]

1 + ϵ′ · wi

S
·
∣∣∣V πval

H+2(s̄i; r
bad
w ,P(w

a←w))− V πval

H+2(s̄i; r,P(
w

a←w))
∣∣∣

≥
∣∣rbadw,H+1(si⋆ , a1)− rH+1(si⋆ , a1)

∣∣
−
∑
i∈[S]

3

2S
·
∣∣∣V πval

H+2(s̄i; r
bad
w ,P(w

a←w))− V πval

H+2(s̄i; r,P(
w

a←w))
∣∣∣

≥
∣∣rbadw,H+1(si⋆ , a1)− rH+1(si⋆ , a1)

∣∣− 3Dπval

Θ

(
R(w a←w),R;P(w

a←w)
)
, (H.20)

where the last second inequality comes from ϵ′ ∈ (0, 1/2] and the last inequality is by Eq.(H.16).
Eq.(H.20) is equivalent to

4Dπval

Θ

(
R(w a←w),R;P(w

a←w)
)
≥
∣∣rbadw,H+1(si⋆ , a1)− rH+1(si⋆ , a1)

∣∣. (H.21)

Combining Eq.(H.19) and Eq.(H.21), we conclude that

7Dπval

Θ

(
R(w a←w),R;P(w

a←w)
)
+Dπval

Θ

(
R(w a←v),R;P(w

a←v)
)

≥
∣∣rbadw,H+1(si⋆ , a1)− rH+1(si⋆ , a1)

∣∣+ ∣∣rbadv,H+1(si⋆ , a1)− rH+1(si⋆ , a1)
∣∣

≥
∣∣rbadv,H+1(si⋆ , a1)− rbadw,H+1(si⋆ , a1)

∣∣ ≥ Hϵ′

16
, (H.22)

where the last inequality comes from Eq.(H.15). This completes the proof.

51

Under review as a conference paper at ICLR 2024

H.3 PROOF FOR THEOREM H.2

Our proof is similar to the proof of Theorem G.2 in Section G.

Proof of Theorem H.2. For any ϵ ∈ (0, 1/2], δ ∈ (0, 1), We consider an offline IRL algorithm A
such that for any IRL problem (M, πE), we have

P
(M,πE),A

(
Dπval

Θ

(
R⋆, R̂

)
≤ ϵ
)
≥ 1− δ, (H.23)

where P
(M,πE),A

denotes the probability measure induced by executing the algorithm A in the IRL

problem (M, πE), R⋆ is the ground truth reward mapping and R̂ is the estimated reward mapping
outputted by executing A in (M, πE). Fix i⋆ ∈ [S], We define the the identification function for any
w ∈ W by

Φw := arg min
v∈W

Dπval

Θ

(
R(w a←v), R̂;P(w

a←v)
)
,

where a = (i⋆, H + 1, 1), R(w a←v) is the ground truth reward mapping induced by (M
w

a←v
, πE).

Let v⋆ = Φa,w. For any v ̸= v⋆ ∈ W , by definition of v⋆, we have

Dπval

Θ

(
R(w a←v⋆), R̂;P(w

a←v⋆)
)
≤ Dπval

Θ

(
R(w a←v), R̂;P(w

a←v)
)
.

By applying Lemma G.3, we obtain that

Hϵ′

16
≤ Dπval

Θ

(
R(w a←v), R̂;P(w

a←v)
)
+ 7Dπval

Θ

(
R(w a←v⋆), R̂;P(w

a←v⋆)
)
≤ 8Dall

Θ

(
R(w a←v), R̂;P(w

a←v)
)
.

Next, we set ϵ′ = 256ϵ
H which implies that

Hϵ′

16
≥ 16ϵ. (H.24)

Here, to employ Lemma H.4, we need ϵ′ ∈ (0, 1/2] which is equivalent to 0 < ϵ ≤ H/512. Then, it
holds that

Dπval

Θ

(
R(w a←v), R̂;P(w

a←v)
)
≥ 2ϵ > ϵ,

which implies that

{v ̸= Φw} ⊆
{
Dπval

Θ

(
R(w a←v), R̂;P(w

a←v)
)
≥ ϵ
}
.

By Eq.(H.23), we have the following lower bound for the probability

δ ≥ sup
v∈W

P
(M

w
a←v

,πE),A

(
Dπval

Θ

(
R(w a←v), R̂;P(w

a←v)
)
≥ ϵ
)

≥ sup
v∈W

P
(M

w
a←v

,πE),A
(v ̸= Φw)

≥ 1

|W|

∑
v∈W

P
(M

w
a←v

,πE),A
(v ̸= Φw). (H.25)

By applying Theorem D.3 with P0 = P
(M

w
a←0

,πE),A
, Pw = P

(M
w

a←w
,πE),A

, we have

1

|W|

∑
v∈W

P
(M

w
a←w

,πE),A
(v ̸= Φw) ≥ 1− 1

log |W|

 1

|W|

∑
v∈W

DKL

(
P

(M
w

a←v
,πE),A

, P
(M

w
a←0

,πE),A

)
− log 2

.

(H.26)

Our next step is to bound the KL divergence. Using the same scheme in the proof (Metelli et al.,
2021, Theorem B.3), we can compute the KL-divergence as follows:

DKL(P
(M

w
a←v

,πE),A
, P
(M

w
a←0

,πE),A
)

52

Under review as a conference paper at ICLR 2024

= E
(Mw

a←v,πE),A

[
N∑
t=1

DKL

(
P(w

a←v)ht(· | st, at),P
(w a←0)
ht

(· | st, at)
)]

≤ E
(Mw

a←v,πE),A
[Nha

(sia , aka
)]DKL

(
P(w

a←v)
H+1 (· | si⋆ , a1),P

(w a←0)
H+1 (· | si⋆ , a1)

)
≤ 2(ϵ′)2E

(Mw
a←v,πE),A

[NH+1(si⋆ , a1)], (H.27)

where Nh(s, a) :=
∑N

t=1 1 {(ht, st, at) = (h, s, a)} for any given (h, s, a) ∈ [2H + 2] × S × A
and the last inequality comes from (Metelli et al., 2021, Lemma E.4). Combining Eq.(H.25) and
(H.26), we have

δ ≥ 1− 1

log(|W|)

 1

|W|

∑
v∈W

2(ϵ′)2E
(Mw

a←v,πE),A
[Nha

(si⋆ , a1)]− log 2


for any w. It also holds that

1

|W|

∑
v∈W

E
(Mw

a←v,πE),A
[NH+1(si⋆ , a1)] ≥

(1− δ) log |W| − log 2

2(ϵ′)2
. (H.28)

Hence, there exists a whard ∈ W such that

E(Mwhard ,πE),A[NH+1(si⋆ , a1)] ≥
(1− δ) log |W| − log 2

2(ϵ′)2
. (H.29)

By taking δ = 1/3, we have

E(Mwhard ,πE),A[NH+1(si⋆ , a1)] ≥
(1− δ) log |W| − log 2

2(ϵ′)2
=

2 log |W| − 3 log 2

6(ϵ′)2
= Ω

(
H2S

ϵ2

)
,

(H.30)

where the last equality follows from ϵ′ = 256ϵ
H and log

∣∣W∣∣ ≥ S
10 . By construction of πb, it holds

that NH+1(si⋆ , a1) ∼ Bin
(
K, 1

C⋆K

)
, which implies that

E(Mwhard ,πE),A[N] ≥ C⋆K · Ω
(
H2S

ϵ

)
= Ω

(
C⋆H2SK

ϵ2

)
= Ω

(
C⋆H2Smin {S,A}

ϵ2

)
.

I TRANSFER LEARNING

In this section, we explore the application of IRL in the context of transfer learning. Specifically,
we apply the rewards learned by Algorithm 1 and Algorithm 6 to do the same tasks in a different
environment.

To distinguish different environments, given a transition dynanmics P and policy π, we introduce
the following notations:

{
dP,πh

}
h∈[H]

represents the visitation probability induced by P and π, dP,π

signifies the metric dπ evaluated on P, and correspondingly DP,π
Θ denotes the metric Dπ

Θ evaluated
on P.

I.1 TRANSFER LEARNING BETWEEN IRL PROBLEMS

We introduce the transfer learning setting outlined in Metelli et al. (2021), where we consider two
IRL problems: (M, πE) (the source IRL problem), (M′, (π′)E) (the target IRL problem). Here,M,
M′ share the same state space and action space, but different dynamics. Suppose that we can learn
the source MDP and obtain a reward r. However, r is not necessarily a solution for (M′, (π′)E),
hence, in order to facilitate the transfer learning, we enforce the following assumption.

53

Under review as a conference paper at ICLR 2024

Assumption I.1. If r represents a solution to the source IRL problem (M, πE), it also stands as a
solution to the target IRL problem (M′, (π′)E).

We remark that in numerous practical scenarios, Assumption I.1 may not be precisely met, but could
be approximated: within a certain distance, the solutions to the two IRL problems are very close to
each other.

I.2 TRANSFER BETWEEN TWO MDP\RS

In this section, we consider a more general setting, where we focus solely on a source IRL problem
and a target MDP\R.

We consider two MDP\RsM = (S,A, H,P) (source MDP\R) andM′ = (S,A, H,P′) (the target
MDP\R), which share the same state space and action space, but different dynamics and an expert
policy πE. Let R⋆ be the ground truth reward mapping of the IRL problem (M, πE) and R̂ be the
estimated reward mapping learned from (M, πE). In the precious setting, we consider DP,π

(
R⋆, R̂

)
as performance metric. However, in transfer learning, we use DP′,π

Θ

(
R⋆, R̂

)
as our measure of

performance. That is we use the rewards learned by the source IRL problem to perform the same
tasks in a different environment and evaluate them in the new environment.

As we see in Section 1, Inverse reinforcement learning(IRL) and behavioral cloning(BC) are highly
related. As mentioned in Metelli et al. (2021), transfer learning makes IRL more powerful than BC,
and a lot of literature has used IRL to do transfer learning (Syed & Schapire, 2007; Metelli et al.,
2021; Abbeel & Ng, 2004; Fu et al., 2017; Levine et al., 2011).

Inspired by the single policy concentrability of policies, we propose the following transferability
assumption.
Definition I.2 (Weak-transferability). Given transitions (P,P′), and policies (π, π′), we say (P′, π′)
is Cwtran-weakly transferable from (P, π) if it holds that

sup
s,a

dP
′,π′

h (s, a)

dP,πh (s, a)
≤ Cwtran.

Definition I.3 (Transferability). Given source and target transitions P, P′, and target policy π′, we
say π′ is Ctran-transferable from P to P′ if it holds that

inf
π

sup
s,a

dP
′,π′

h (s, a)

dP,πh (s, a)
≤ Ctran.

Here, we introduce two notions: transferability and weak-transferability. We remark that given
a policy π and a dynamics (P,P′), transferability measures how hard one can lean the states π′

frequently goes to in P in a different environment P′ while given a policy pair (π, π′) and a dynamics
pair (P,P′), weak-transferability measures how hard one learn the states π frequently visits in P via
policy π′ in P′. Without transferability, we can’t obtain information on the policy of interest in the
target MDP, which makes transfer learning hard to perform.

I.3 THEORETICAL GUARANTEE

We then present the main theorem in this section.
Theorem I.4 (Transfer learning in the offline setting). Suppose (P′, πval) is Cwtran-weakly transfer-
able from (P, πb) (Definition I.2). In addition, we assume πE is well-posed (Definition 3.3) when
we receive feedback in option 1. Then with probability at least 1 − δ, RLP (Algorithm 1) outputs
a reward mapping R̂ such that

[
R̂(V,A)

]
h
(s, a) ≤ [R⋆(V,A)]h(s, a) for all (V,A) ∈ Θ and

(h, s, a) ∈ [H]× S ×A, and DP′,πval

Θ

(
R⋆, R̂

)
≤ 2ϵ, within

Õ
(
CwtranH4SA logN (Θ; ϵ/H)

ϵ2
+

CwtranH2SA(η +H logN (Θ; ϵ/H))

ϵ

)
, (I.1)

samples, where poly log (H,S,A, 1/δ) are omitted and η is defined in Eq.(3.3).

54

Under review as a conference paper at ICLR 2024

Theorem I.5 (Transfer learning in the online setting). Suppose πE is well-posed (Definition 3.4)
when we receive feedback in option 1. Let R⋆ be the ground truth reward mapping of IRL problem
(M, πE). Then with probability at least 1− δ, RLE (Algorithm 6) outputs a reward mapping R̂ such

that
[
R̂(V,A)

]
h
(s, a) ≤ [R⋆(V,A)]h(s, a) for all (V,A) ∈ Θ and (h, s, a) ∈ [H]× S ×A, and

sup
πvalis Ctran-transferable from P to P′

DP′,πval

Θ (R⋆, R̂) ≤ 2ϵ,

provided that

KH ≥ N ≥ Õ
(√

H9S7A7K
)
,

K ≥ Õ

(
CtranHSA

(
Ctran +H3 logN (Θ; ϵ/H)

)
ϵ2

+
CtranH2SA(η + logN (Θ; ϵ/H))

ϵ

)

where η is defined in Eq.(3.3) and Õ hides poly log (H,S,A, 1/δ).

Application: performing RL algorithms in different environments With Theorem I.4 and
Theorem I.5 in place, as a concrete application, we consider to utilize rewards learned by IRL
algorithms to execute RL algorithms in a different environment (M′). The following two corollaries
provide guarantees for the performance of learned rewards in executing RL algorithms in the offline
and online setting, respectively. Both of these corollaries are direct consequences of Proposition C.6.

Corollary I.6 (Performing RL algorithms with learned rewards in the offline setting). Fix θ =

(V,A) ∈ Θ, let rθ := R⋆(V,A) and r̂θ := R̂(V,A), where R̂ are recovered reward mapping
outputted by Algorithm 1. suppose that there exists a policy π such that π is ϵ̄-optimal in MDP
M′ ∪ rθ and (P′, π) is Cwtran-weakly transferable from (P, πb) (Definition I.2). Let π̂ be an ϵ′-
optimal policy inM′ ∪ r̂θ (learned by some RL algorithms with r̂θ). Under the same assumption of
Theorem I.4 , we have V ⋆

1 (s1;M′∪rθ)−V π̂
1 (s1;M′∪rθ) ≤ 2ϵ+ϵ′+2ϵ̄, provided that Algorithm 1

takes

Õ
(
CwtranH4SA logN (Θ; ϵ/H)

ϵ2
+

CwtranH2SA(η +H logN (Θ; ϵ/H))

ϵ

)
, (I.2)

samples.

Corollary I.7 (Performing RL algorithms with learned rewards in the online setting). Fix θ =

(V,A) ∈ Θ, let rθ := R⋆(V,A) and r̂θ := R̂(V,A), where R̂ are recovered reward mapping
outputted by Algorithm 6. suppose that there exists a policy π such that π is ϵ̄-optimal in MDP
M′ ∪ rθ and π is Ctran-transferable from P to P′ (Definition I.3). Let π̂ be an ϵ′-optimal policy in
M′∪r̂θ (learned by some RL algorithms with r̂θ), then we have V ⋆

1 (s1;M′∪rθ)−V π̂
1 (s1;M′∪rθ) ≤

2ϵ+ ϵ′ + 2ϵ̄, provided that

KH ≥ N ≥ Õ
(√

H9S7A7K
)
,

K ≥ Õ

(
CtranHSA

(
Ctran +H3 logN (Θ; ϵ/H)

)
ϵ2

+
CtranH2SA(η + logN (Θ; ϵ/H))

ϵ

)

Application: learning IRL problems by transfer learning We return to the topic of transfer learn-
ing between IRL problems. We note that our findings related to transfer learning between MDP\Rs
can also be employed in the context of transfer learning between IRL problems. As the illustrated in
Theorem I.4 and Theorem I.5, we can efficiently learn a R̂ such that the distance Dπval

Θ (R̂,R⋆) ≤ 2ϵ,
where R⋆ is the ground truth reward mapping of (M, πE). By Assumption I.1, the rewards induced
by R⋆ are solutions of

(
M′, (π′)E

)
, hence the rewards induced by R̂ approximate the solutions of(

M′, (π′)E
)

.

55

Under review as a conference paper at ICLR 2024

I.4 PROOF OF THEOREM I.4

Note that under the same assumptions in Theorem I.4, the concentration event E defined in Lemma E.1
still holds with 1− δ. By the week-transferablity of (πval, πb), we have∑

h∈[H]

∑
(s,a)∈S×A

dP
′,πval

h (s, a)

dP,π
b

h (s, a)
≤ Cwtran

∑
h∈[H]

∑
(s,a)∈S×A

1
{
dP
′,πval

h (s, a) ̸= 0
}

≤ Cwtran
∑

h∈[H]

∑
(s,a)∈S×A

1
{
a ∈ πval

h (·|s)
}
≤ CwtranHSA. (I.3)

For any θ = (V,A) ∈ Θ, define rθ = R⋆(V,A), and r̂θ = R̂(V,A). With Eq.(I.3) at hand, we can
repeat the proof of Lemma E.2, thereby obtaining that

dP
′,πval(

rθ, r̂θ
)
≲

CwtranH2SAηι

K
+
∑

h∈[H]

∑
(s,a)∈S×A

dP
′,πval

h (s, a)bθh(s, a)︸ ︷︷ ︸
(I)

, (I.4)

holds on the event E . where η, bθh(s, a) are specified in Lemma E.1.

Furthermore, similar to Eq.(E.11), and through the application of the triangle inequality, we can
decompose

∑
(s,a)∈S×A dP

′,πval

h (s, a)bθh(s, a) as follows:

(I) =
∑

h∈[H]

∑
(s,a)∈S×A

dP
′,πval

h (s, a)bθh(s, a)

≲
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) ·

{√
logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

[
V̂hVh+1

]
(s, a) +

H logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

}

+
∑

h∈[H]

∑
(s,a)∈S×A

dπ
val

h (s, a) · ϵ
H

(
1 +

√
logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

)

≤
∑

h∈[H]

∑
(s,a)∈S×A

dP
′,πval

h (s, a) ·

√
logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

[VhVh+1](s, a)︸ ︷︷ ︸
(I.a)

+
∑

h∈[H]

∑
(s,a)∈S×A

dP
′,πval

h (s, a) ·

√
logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1

[(
V̂h − Vh

)
Vh+1

]
(s, a)

︸ ︷︷ ︸
(I.b)

+
∑

h∈[H]

∑
(s,a)∈S×A

dP
′,πval

h (s, a) · H logN (Θ; ϵ/H)ι

N b
h(s, a) ∨ 1︸ ︷︷ ︸

(I.c)

+ ϵ ·
∑

h∈[H]

∑
(s,a)∈S×A

dP
′,πval

h (s, a) ·

(
1

H
+

√
logN (Θ; ϵ/H)ι

H2 ·N b
h(s, a) ∨ 1

)
︸ ︷︷ ︸

(I.d)

. (I.5)

Thanks to Eq.(I.3), we can employ a similar argument as in the proof of Eq.(E.12), Eq.(E.17),
Eq.(E.18), and Eq.(E.19), which allows us to deduce that

(I.a) ≲

√
CwtranH4SAnE logN (Θ; ϵ/H)ι

K
,

(I.b) ≲

√
CwtranH2SA logN (Θ; ϵ/H)

K
+

CwtranH3SA logN (Θ; ϵ/H)ι5/2

K
,

56

Under review as a conference paper at ICLR 2024

(I.c) ≲
CwtranH2SA logN (Θ; ϵ/H)ι

K
, ϵ · (1 +

√
CwtranSA logN (Θ; ϵ/H)ι

K
), (I.6)

Combining Eq.(I.4), Eq.(I.5) and Eq.(I.6), we conclude that

DP′,πval

Θ

(
R⋆, R̂

)
= sup

θ∈Θ
dP
′,πval(

rθ, r̂θ
)
≲

CwtranH2SAηι

K
+

√
CwtranH4SAnE logN (Θ; ϵ/H)ι

K

+
CwtranH3SAnE logN (Θ; ϵ/H)ι5/2

K
+ ϵ. (I.7)

The right-hand-side is upper bounded by 2ϵ as long as

K ≥ Õ
(
CwtranH4SA logN (Θ; ϵ/H)

ϵ2
+

CwtranH2SA(η +H logN (Θ; ϵ/H))

ϵ

)
.

Here poly log (H,S,A, 1/δ) are omitted.

I.5 PROOF OF THEOREM I.5

Under the assumptions in Theorem I.5, the concentration event E defined in Lemma F.2 still holds
with 1− δ. Fix π such that π satisfies Ctran-concentrability from P to P′. We define

Īh :=

{
(s, a) ∈ S ×A | d̂P

′,π
h (s, a) ≥ ξ

N
+ eπh(s, a)

}
,

for all h ∈ [H]. Similar to Eq.(F.8), we have the following decomposition:

dP
′,π
(
rθh, r̂

θ
h

)
≤

∑
(h,s,a)∈[H]×S×A

dP
′,π

h (s, a) ·
∣∣rθh(s, a)− r̂θh(s, a)

∣∣
≤
∑

h∈[H]

∑
(s,a)/∈Ih∪Īh

dP
′,π

h (s, a) ·
∣∣rθh(s, a)− r̂θh(s, a)

∣∣
︸ ︷︷ ︸

(I)

+
∑

h∈[H]

∑
(s,a)∈Ih∪Īh

dP
′,π

h (s, a) ·
∣∣rθ(s, a)− r̂θh(s, a)

∣∣
︸ ︷︷ ︸

(II)

,

(I.8)

where set Ih is defined in Eq.(F.5).

We further decompose the term (I) as follows:

(I) ≤
∑

h∈[H]

∑
(s,a)/∈Ih

dP
′,π

h (s, a) ·
∣∣rθh(s, a)− r̂θh(s, a)

∣∣
︸ ︷︷ ︸

(I.a)

+
∑

h∈[H]

∑
(s,a)/∈Īh

dP
′,π

h (s, a) ·
∣∣rθh(s, a)− r̂θh(s, a)

∣∣
︸ ︷︷ ︸

(I.b)

.

(I.9)

By the definition of transferability, there exists a policy π′ such that

dP
′,π

h(s, a) ≤ 2CtrandP,π
′

h (s, a),

for any (h, s, a) ∈ [H]× S ×A. For the term (I.a), we have

(I.a) =
∑

h∈[H]

∑
(s,a)/∈Ih∪Īh

dP
′,π

h (s, a) ·
∣∣rθh(s, a)− r̂θh(s, a)

∣∣ ≤ 2Ctran
∑

(s,a)/∈Ih∪Īh

dP,π
′

h (s, a) ·
∣∣rθh(s, a)− r̂θh(s, a)

∣∣
(I.10)

Similar to Eq.(F.9), on the event E , we have∑
h∈[H]

∑
(s,a)/∈Ih∪Īh

dP,π
′

h (s, a) ·
∣∣rθh(s, a)− r̂θh(s, a)

∣∣ ≤ ∑
h∈[H]

∑
(s,a)/∈Ih

dP,π
′

h (s, a) ·
∣∣rθh(s, a)− r̂θh(s, a)

∣∣
≲

ξH2SA

N
+

H2SAη

K
+

√
HSA

K
,

57

Under review as a conference paper at ICLR 2024

which allows us to bound the term (I.a) as follows:

(I.a) ≲
CtranξH2SA

N
+

CtranH2SAη

K
+ Ctran

√
HSA

K
. (I.11)

For the term (I.b), on the event E , we have

(I.b) =
∑

h∈[H]

∑
(s,a)/∈Īh

dP
′,π

h (s, a) ·
∣∣rθ(s, a)− r̂θ(s, a)

∣∣
=
∑

h∈[H]

∑
(s,a)/∈Īh

dP
′,π

h (s, a) ·

∣∣∣∣∣−Ah(s, a)
(
1
{
a ∈ supp

(
πE
h(·|s)

)}
− 1

{
a ∈ supp

(
π̂E
h(·|s)

)})
−
[(

Ph − P̂h

)
Vh+1

]
(s, a)(s, a)− bθh(s, a)

∣∣∣∣∣
≤
∑

h∈[H]

∑
(s,a)/∈Īh

dP
′,π

h (s, a) ·

{∣∣Ah(s, a) ·
(
1
{
a ∈ supp

(
π̂E
h(·|s)

)}
− ·1

{
a ∈ supp

(
πE
h(·|s)

)})∣∣
+
∣∣∣[(Ph − P̂h)Vh+1

]
(s, a)

∣∣∣+ bθh(s, a)

}
(by triangle inequality)

(i)
≲ H ·

∑
h∈[H]

∑
(s,a)/∈Īh

dP
′,π

h (s, a)

(ii)
≤ 2CtranH ·

∑
h∈[H]

∑
(s,a)/∈Īh

(
d̂P,π

′

h (s, a) + eπ
′

h (s, a) +
ξ

N

)
(iii)
≲ CtranH ·

∑
h∈[H]

∑
(s,a)/∈Īh

(
eπ
′

h (s, a) +
ξ

N

)

≲
CtranξH2SA

N
+ Ctran

√
HSA

K
, (I.12)

where (i) is by ∥Ah∥∞, ∥Vh+1∥∞, bθh(s, a) ≤ H , (ii) comes from Eq.(F.2) and the concentration
event E(ii), and (iii) follows from the definition of Īh.

Combining Eq.(I.11) and Eq.(I.12), we can conclude that

(I) ≲
CtranξH2SA

N
+

CtranH2SAη

K
+ Ctran

√
HSA

K
. (I.13)

For the term (II), following a similar approach as in Eq.(F.10), we have

(II) =
∑

h∈[H]

∑
(s,a)∈Ih∪Īh

dP
′,π

h (s, a) · bθh(s, a)

=
∑

h∈[H]

∑
(s,a)∈Ih∪Īh

dP
′,π

h (s, a) ·min

{√
logN (Θ; ϵ/H)ι

N̂ b
h(s, a) ∨ 1

[
V̂hVh+1

]
(s, a) +

H logN (Θ; ϵ/H)ι

N̂ b
h(s, a) ∨ 1

+
ϵ

H

(
1 +

√
logN (Θ; ϵ/H)ι

N̂ b
h(s, a) ∨ 1

)
, H

}
(i)
≤
∑

h∈[H]

∑
(s,a)∈Ih∪Īh

dP
′,π

h (s, a) ·

{
min

{√
logN (Θ; ϵ/H)ι

N̂ b
h(s, a) ∨ 1

[
V̂hVh+1

]
(s, a), H

}
+

H logN (Θ; ϵ/H)ι

N̂ b
h(s, a) ∨ 1

(I.14)

+
ϵ

H

(
1 +

√
logN (Θ; ϵ/H)ι

N̂ b
h(s, a) ∨ 1

)}

58

Under review as a conference paper at ICLR 2024

(ii)
≤
∑

h∈[H]

∑
(s,a)∈Ih∪Īh

dP
′,π

h (s, a) ·

{√√√√ logN (Θ; ϵ/H)ι
[
V̂hVh+1

]
(s, a) +H

N̂ b
h(s, a) ∨ 1 + 1/H

+
H logN (Θ; ϵ/H)ι

N̂ b
h(s, a) ∨ 1

+
ϵ

H

(
1 +

√
logN (Θ; ϵ/H)ι

N̂ b
h(s, a) ∨ 1

)}

(iii)
=
∑

h∈[H]

∑
(s,a)∈Ih∪Īh

dP
′,π

h (s, a) ·

√√√√√ logN (Θ; ϵ/H)ι
[
V̂hVh+1

]
(s, a) +H

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H︸ ︷︷ ︸

(II.a)

+
∑

h∈[H]

∑
(s,a)∈Ih∪Īh

dP
′,π

h (s, a) · H logN (Θ; ϵ/H)ι

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H︸ ︷︷ ︸

(II.b)

+
ϵ

H

∑
h∈[H]

∑
(s,a)∈Ih∪Īh

dP
′,π

h (s, a) ·

1 +

√√√√ logN (Θ; ϵ/H)ι

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H


︸ ︷︷ ︸

(II.c)

. (I.15)

For the term (II.a), by the Cauchy-Schwarz inequality, we have

(II.a) ≤
√
Ctran

∑
h∈[H]

∑
(s,a)∈Ih∪Īh

√
dP
′,π

h (s, a) · (logN (Θ; ϵ/H)ι[VhVh+1] (s, a) +H)

·

√√√√ dP,π
′

h (s, a)

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H

≲
√
Ctran

∑
h∈[H]

∑
(s,a)∈Ih∪Īh

√
dP
′,π

h (s, a) · (logN (Θ; ϵ/H)ι[VhVh+1] (s, a) +H)

·

√√√√2d̂P,π
′

h (s, a) + 2eπ
′

h (s, a) + ξ
2N

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H

≲
√
Ctran

∑
h∈[H]

∑
(s,a)∈Ih∪Īh

√
dP
′,π

h (s, a) · (logN (Θ; ϵ/H)ι[VhVh+1] (s, a) +H)

·

√√√√ d̂P,π
′

h (s, a)

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H

≤
√
Ctran

 ∑
h∈[H]

∑
(s,a)∈S×A

dP
′,π

h (s, a) · (logN (Θ; ϵ/H)ι[VhVh+1] (s, a) +H)


1/2

︸ ︷︷ ︸
(II.a.1)

×

 ∑
h∈[H]

∑
(s,a)∈S×A

d̂P,π
′

h (s, a)

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H


1/2

︸ ︷︷ ︸
(II.a.2)

.

Following similar approaches as in Eq.(F.12) and Eq.(F.13), we have

(II.a.1) ≲
√
H3 logN (Θ; ϵ/H)ι, (II.a.2) ≲

√
HSA

K
, (I.16)

59

Under review as a conference paper at ICLR 2024

which implies that

(II.a) ≲

√
CtranH4SA logN (Θ; ϵ/H)ι

K
. (I.17)

For the term (II.b), by Eq.(B.3), we have

(II.b) =
∑

h∈[H]

∑
(s,a)∈S×A

dP
′,π

h (s, a) · H logN (Θ; ϵ/H)ι

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H

=
Ctran

K
·
∑

h∈[H]

∑
(s,a)∈S×A

dP,π
′

h (s, a) · H logN (Θ; ϵ/H)ι

Eπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/KH

≲
Ctran

K
·
∑

h∈[H]

∑
(s,a)∈S×A

d̂P,π
′

h (s, a) · H logN (Θ; ϵ/H)ι

Eπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/KH

≲
CtranH2SA logN (Θ; ϵ/H)ι

K
. (I.18)

For the term (II.c), we have

(II.c) =
ϵ

H

∑
h∈[H]

∑
(s,a)∈Ih∪Īh

dP,πh (s, a) ·

1 +

√√√√ logN (Θ; ϵ/H)ι

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H


= ϵ+

√
Ctranϵ

H

∑
h∈[H]

∑
(s,a)∈Ih∪Īh

√
dP
′,π

h (s, a) ·

√√√√ dP,π
′

h (s, a) logN (Θ; ϵ/H)ι

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H

≲ ϵ+

√
Ctranϵ

H

∑
h∈[H]

∑
(s,a)∈Ih∪Īh

√
dP
′,π

h (s, a) ·

√√√√ d̂P,π
′

h (s, a) logN (Θ; ϵ/H)ι

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H

≤ ϵ+
ϵ

H

√∑
h∈[H]

∑
(s,a)∈Ih∪Īh

dP
′,π

h (s, a) ·

√√√√∑
h∈[H]

∑
(s,a)∈Ih

d̂P,π
′

h (s, a) logN (Θ; ϵ/H)ι

KEπ′∼µb

[
d̂π
′

h (s, a)
]
+ 1/H

≤ ϵ

(
1 +

√
CtranSA logN (Θ; ϵ/H)ι

HK

)
, (I.19)

where the second last line is by the Cauchy-Schwarz inequality and the last line is by Eq.(B.3).

Then combining Eq.(I.17) Eq.(I.18), and Eq.(I.19), we obtain the bound for the term (II)

(II) ≲ (II.a) + (II.b) + (II.c)

≲

√
CtranH4SA logN (Θ; ϵ/H)ι

K
+

CtranH2SA logN (Θ; ϵ/H)ι

K
+ ϵ(1 +

√
Ctran logN (Θ; ϵ/H)ι

HK
)

≲

√
CtranH4SA logN (Θ; ϵ/H)ι

K
+ ϵ, (I.20)

where the last line is from ϵ < 1.

Finally, combining Eq.(I.13) and Eq.(I.20), we get the final bound

Dall
Θ

(
R⋆, R̂

)
= sup

π,θ∈Θ
dπ
(
rθh, r̂

θ
h

)
≤ (I) + (II)

≲
CtranξH2SA

N
+

√
CtranH4SA logN (Θ; ϵ/H)ι

K
+

CtranH2SAη

K
+ Ctran

√
HSA

K
+ ϵ

Hence, we can guarantee Dall
Θ

(
R⋆, R̂

)
≤ 2ϵ, provided that

KH ≥ N ≥ Õ
(√

H9S7A7K
)
,

60

Under review as a conference paper at ICLR 2024

K ≥ Õ

(
CtranHSA

(
Ctran +H3 logN (Θ; ϵ/H)

)
ϵ2

+
CtranH2SA(η + logN (Θ; ϵ/H))

ϵ

)
Here poly log (H,S,A, 1/δ) are omitted.

61

	Introduction
	Related work

	Preliminaries
	Inverse Reinforcement Learning

	Performance metrics for IRL
	Metric for IRL
	Relationship with existing metrics
	Learning settings

	Inverse Reinforcement Learning in the Offline Setting
	Algorithm
	Theoretical guarantee

	IRL in the online setting
	Algorithm

	Transfer Learning
	Conclusion
	Additional related work
	 Useful algorithmic subroutines from prior works
	Algorithm: finding behavior policy pib
	Subroutine: computing exploration policy pi mathsfexplore,h
	Subroutine: computing final behavior policy pib

	Relationship with existing metrics
	Metrics between rewards
	Reward aggregation methods
	Disscussion of existing metric for online IRL
	Guarantee for performing RL algorithm with learned rewards
	Proofs for Section C

	Technical tools
	Proofs for Section 4
	Some lemmas
	Proofs of Theorem 4.2
	Proof of Corollary 4.3
	Framework for offline inverse reinforcement learning

	Proofs for Section 5
	Full description of Reward Learning with Exploration
	Proof of Theorem 5.1
	Proof of Theorem 5.1

	Lower bound in the online setting
	Lower bound of online IRL problems
	Hard instance construction
	Proof of Theorem G.2

	Lower bound in the offline setting
	Lower bound of offline IRL problems
	Hard instance construction
	Proof for Theorem H.2

	Transfer learning
	Transfer learning between IRL problems
	Transfer between two MDP\Rs
	Theoretical guarantee
	Proof of Theorem I.4
	Proof of Theorem I.5

