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Abstract

Using meteorological data, time series forecasts of disease outbreaks can better1

capture the true epidemiological profile of tropical diseases such as malaria. In this2

study, several methods of time series analysis are employed to study the disease3

patterns of malaria in the Indian state of Odisha. Weather information, including4

temperature and precipitation data, is incorporated alongside monthly case numbers5

in SARIMA and LSTM models. The viability of transferring the model trained on6

malaria in Odisha to dengue in Bangkok, Thailand, is also explored. The methods7

outlined in this paper can serve as the basis for forecasting mosquito-borne disease8

outbreaks in settings with a poor data-collection infrastructure.9

1 Introduction10

One of the primary concerns of epidemiology is the prediction of disease incidence. From a public11

health perspective, even approximate knowledge of the magnitude of future outbreaks can enable12

healthcare systems to more effectively combat them. This is particularly true for systems in developing13

countries, where the burden of disease and scarcity of resources are disproportionately high. As14

the scale of data recording increases on a global level, we are better equipped than ever to employ15

predictive modeling to forecast disease incidences in these regions.16

Climate change is expected to radically impact global disease patterns. Extreme weather and natural17

disasters all impact epidemic risk factors from vector distribution in tick-borne diseases to water18

contamination illnesses like cholera. Consequently, many epidemiological papers link infectious19

disease outbreaks with weather patterns. For example, climate factors such as temperature and20

precipitation are suggested to impact the spread of malaria and other seasonal, mosquito-borne21

diseases. [Thomson, 2005] Multiple studies have proven that machine learning algorithms that use22

meteorological data combined with past outbreak data can reliably predict future local outbreaks23

[Shaman, 2005] . Currently, researchers utilize neural networks as predictive models for seasonal24

epidemics to decrease the burden on healthcare systems as well as eliminate risk factors that impact25

outbreak severity. With the increased need to assess new epidemiological trends in light of climate26

change, these seasonal forecast models will inform public health systems as to how future weather27

patterns will influence disease outbreaks.28

In this work, we aim to identify optimal prediction models for malaria incidence in the Indian state29

of Odisha, which historically constitutes a large proportion of total cases in India. Among the 3630

states and union territories of India, Odisha ranks 32nd on the Human Development Index. Due to31

its geographic position, it is exposed to two wet seasons. This combination of socioeconomic and32

environmental factors renders Odisha highly vulnerable to malaria outbreaks, and explains in part its33

disproportionately large malaria burden. In developing our malaria incidence forecast models, we34



Figure 1: Map of Odisha and its districts

will investigate the effect of geospatial resolution at the district level on predictive accuracy, along35

with meteorological factors. Furthermore, we will explore the application of transfer learning to the36

problem of predicting mosquito borne outbreaks in other tropical regions.37

2 Data38

The malaria incidence data utilized in this paper comes from a study conducted by India’s Na-39

tional Vector Borne Disease Control Program in the state of Odisha over the years 2003 to 2013.40

[thi]Provided are the monthly incidences of malaria in the 30 districts of the state.[fou] Time series41

were extracted from this study and serve as the basis for this paper. The meteorological data utilized42

comes from the TerraClimate dataset provided by the University of Idaho, which combines data43

from several sources with a degree of climatically aided interpolation. [fif] The dataset contains44

information on temperature, precipitation, vapor pressure, solar radiation, and wind across the globe45

from 1958 to 2020. TerraClimate was accessed using the Google Earth Engine API. Using the46

latitudes and longitudes of the 30 districts of Odisha, monthly precipitation, minimum temperature,47

and maximum temperature were extracted for the years 2003 to 2013 and stored as time series.48

3 Methodology49

3.1 SARIMA50

SARIMA refers to the class of Autoregressive Integrated Moving Average Models (ARIMA) which51

are modified to account for seasonal variation in time series data. [Durbin and Koopman, 2012]52

ARIMA models are themselves derived from Autoregressive Moving Average Models (ARMA),53

and differ in that they are able to effectively characterize non-stationary data through integration.54

Non-stationary time series are those in which the probability distribution underlying the process55

changes over time. In the context of forecasting disease, non-stationarity presents itself through56

seasonality and an overall downward trend in cases over time, which can be attributed to public health57

interventions and socioeconomic shifts.58

ARIMA models are defined by a set of three parameters (p, d, q), representing the orders of autore-59

gression, differencing, and moving-average, respectively.60

A basic ARMA model has the following form: yt = µ+
∑p

i=1 ϕiyt−i +
∑q

i=1 θiωt−i +ωt The first61

summation represents the autoregressive portion of the model, where a linear combination of the62

previous p terms is used in determining the output. The second summation is a linear combination of63

the previous q white noise error terms associated with each element of the time series. ARIMA models64

deal with the issue of non-stationarity in the data by integration, the differencing of consecutive terms65

in the time series. This can be represented as y′t = yt − yt−1, and the differencing operation can be66

performed multiple times (as dictated by the order of difference d) in order to accommodate time67

varying trends.68
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Figure 2: Seasonal Malaria Cases Aggregated Across all Districts in Odisha, 2003-2013

SARIMA models possess the additional advantage of being able to incorporate seasonal trends into69

the model via the inclusion of three additional terms (P,D,Q), which capture macro-level seasonal70

behavior in the time series.71

3.2 SARIMA with Exogenous Regressors72

In the context of the SARIMA objective functions described above, the incorporation of independent73

variables can be accomplished via their inclusion as weighted inputs to the forecast equation.74

3.3 Note on VAR/VMA/VARMA75

Vector Autoregression (VAR), Vector Moving Average (VMA), and Vector Autoregression Moving76

Average (VARMA) are members of a class of models which capture the linear relationship between77

multiple variables (i.e. a vector) over time [Hyndman and Athanasopoulos]. In this context, the78

modelling process assumes a degree of correlation between all of the quantities being modeled. The79

general class of models (VARMAX) is defined as so:80

Yt =
∑p

i=0 ϕiYt−i +
∑b−1

i=0 BiXt−i +
∑q

i=0 θiEt−i + C + Et81

Where Yt is stationary endogenous variable, ϕi is the autoregressive component, Bi are the exogenous82

regressors, θi is the moving average component, C is the vector constant, and Et is the residual83

error. Past lags of all variables in the system impact the forecast of all endogenous variables. As this84

research is concerned with the relationship between multiple variables and incidence of malaria, and85

not vice versa, the usage of these models was deemed inappropriate. [Malki, 2020]Indeed, while86

there may be a relationship between meteorological factors and malaria incidence, the same cannot be87

said of the reverse. Instead, a means of modeling a seasonal time series while incorporating additional88

independent variables was required, for which reason an SARIMA model with exogenous variables89

was employed.90

3.4 LSTM91

Long Short-Term Memory (LSTM) architectures are a variant of Recurrent Neural Networks (RNN)92

with feedback connections. The core difference between RNNs and traditional feedforward neural93

networks is the fact that RNNs have loops, allowing previous information, or a memory, to persist.94

This looped nature makes these models particularly well-suited for applications dealing with time95

series data. However, the performance of vanilla RNNs degrades when trying to integrate long-term96

dependencies into the model as a result of the so-called vanishing gradient problem which causes a97

neural network to stop training partway through. Therefore, a plain RNN is not well-suited for the98

study being conducted here. LSTMs combat the vanishing gradient problem through the inclusion99

of long-term memory in the form of cell state. Within each hidden state, the LSTM can add and100

subtract information from the cell state using forget and input gates. In this way, information can be101
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propagated across much longer sequences than in a typical RNN. For our application, where forecasts102

must take not only the annual cycle of malaria incidence into account, but also the overall downward103

trend in cases across many years, LSTMs were deemed well suited.104

4 Methodology105

In selecting the parameters for the SARIMA model, the autocorrelation and moving average compo-106

nents were chosen on the basis of which minimized the mean absolute error. The integration parameter107

was selected using autocorrelation (ACF) and partial autocorrelation (PACF) functions in order to108

determine which order of differencing maximized the stationarity of the data. ACF determines the109

correlations of present values with previous ones, while PACF determines the correlations of residuals.110

In transforming our data to a stationary time series, the goal was to find the order of differencing that111

minimizes ACF and PACF. A grid search of the parameter space was conducted using Auto ARIMA112

from the Pmdarima library in order to determine which parameters produced the most optimal results113

under these criteria.114

In order to run our data through an LSTM, the data had to be reshaped into multidimensional arrays.115

Our inputs for xtrain were given an added third layer to establish proper dimensionality for an LSTM116

layer.117

5 Results118

5.1 SARIMA Baselines119

Prior to constructing the LSTM model, a baseline SARIMA model was constructed. First an SARIMA120

was used to forecast aggregated malaria cases across Odisha. The endogenous variable was raw121

malaria cases, and the optimized parameters were order(2,1,1) and seasonal order(1,0,1,12). 100122

iterations were ran with a random training set of 60 timepoints to forecast the next time step. Absolute123

error of the predicted and expected cases was calculated and averaged to evaluate the SARIMA’s124

performance. Since this paper is interested in the impact of climate factors on malaria case load, an125

experiment was ran to test how SARIMA accounts for weather using case prediction. For each district126

in Odisha, a vanilla SARIMA and an SARIMA with exogenous regressors (precipitation, minimum127

temperature, maximum temperature, and peak rainfall per year for that particular district) were ran to128

compare how climate factors impact the SARIMA performance. 70 iterations with a training set of129

60 time points used to forecast the malaria cases for the next time set were ran. Absolute error was130

once again calculated. See results folder in the code repository for list of hyperparameters, mean,131

standard deviation, and average absolute error for each model.132

Overall, the performance for both SARIMA models highly vary across districts. Interestingly, four133

out of the five southern coastal districts (Kalahandi, Kandhamal, Keonjhar, Gajapati, and Ganjam)134

have the lowest median absolute error. The data suggest SARIMA’s performance in each district is135

highly dependent on characteristics including geography and demographics.136

Ultimately, the inclusion of exogenous weather factors do not improve the performance of the137

SARIMA model. Despite multiple studies showing the relationship between climate and seasonal138

disease outbreaks, the model shows poorer performance with the inclusion of extra data. Because139

SARIMA can only account for linear exogenous regressors, it fails to detect the complex relationships140

between climate and cases.141

5.2 LSTM142

In order to better be able to integrate the exogenous regressors into the model, an LSTM was used143

and run through a dataframe that was an aggregate of cases and weather predictions over time for all144

districts. Prior to being used in the model, the data was normalized and reshaped to be compatible145

with the LSTM and reasonable to make predictions from. The LSTM contained only two LSTM146

layers with 50 epochs of training (each taking 3s to run), and thus it has a significantly faster runtime147
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Figure 3: SARIMA Absolute Error with and without exogenous Regressors in Odisha Districts

Table 1: SARIMA Absolute Error Summary of Results

Aggregated Over State Per Districts Per Districts + Regressors
Mean 9.94 24.29 26.64

Median 8.59 32.162 36.25
Standard Deviation 7.50 32.68 36.48

of under 3 minutes compared to ARIMA or VAR models. This model resulted in a mean absolute148

error of 2.146% in cases predicted.149

6 Transfer Learning Applications150

Transfer learning is known to be effective for prediction on small timeseries datasets that would151

otherwise be insufficient. It has well known medical applications where data is particularly scarce.152

Figure 4: LSTM Loss Function
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Due to limited funding and resources, many countries do not have access to detailed records on case153

numbers. This leads to smaller datasets that increase errors in forecasting. Because many tropical154

diseases, particularly those with mosquito vectors, follow similar seasonal trends, it’s plausible155

transfer learning can increase case prediction accuracy on smaller dataset inputs. For this, a dengue156

dataset surveying the caseloads in Bangkok, Thailand from the years 2003 through 2017 was obtained.157

Historical average temperature (°C), humidity, and precipitation (mm) were also included as features.158

To test this theory, the parameters from the LSTM trained on the Odisha dataset (2002-2013) were159

transferred to another LSTM used to predict a random two year subset of the Bangkok data. Since160

mosquito patterns vary depending on the climate, two experiments were performed: in one, parameters161

were transferred from an LSTM trained on a coastal Odisha district in a climate similar to that of162

Bangkok and in the other, parameters were transferred from an inland district [Polwiang, 2020].163

These experiments aim to test how applicable transfer learning is between climates.164

7 Discussion165

With our processing and modelling pipeline, models with low levels of error were produced in an166

attempt to predict the number of active disease cases in an area. Both statistical models and machine167

learning models were attempted, and ultimately the machine learning models yielded the lowest168

levels of error in predicting results, with mean absolute error of <5 % on two datasets. This difference169

that we can see is likely because the LSTM network we utilized can better take into account the170

cyclical nature of weather patterns and these mosquito-borne disease outbreaks by keeping a memory171

of previous time steps. While transfer learning for other disease prediction is a future application172

of these models, it was not possible due to a lack of available data in many places. The team was,173

however, able to run the same model on data from a different tropical region (Bangkok, Thailand)174

with another mosquito-borne disease (dengue fever) and this resulted in an even lower error in case175

count of 0.64 %. Thus, this and similar models perform well where data is available. In the future,176

using weather data with a pre-trained model may allow for transfer learning on other diseases in177

different regions, which could allow countries to better allocate medical resources by forecasting178

disease outbreaks. This could work well for other tropical mosquito-borne diseases such as yellow179

fever, zika virus, and west nile virus.180
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