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Abstract

Recent advances in multimodal foundational models have demonstrated marvelous
in-context learning capabilities for diverse vision-language tasks. However, existing
literature have mainly focused on few-shot learning tasks similar to their NLP
counterparts. It is unclear whether these foundation models can also address
classical vision challenges such as few-shot classification, which in some settings
(e.g., 5-way 5-shot) necessitates sophisticated reasoning over several dozens of
images – a challenging task for learning systems. In this work, we take a deep
dive to probe the potentials and limitations of existing multimodal models on
this problem. Our investigation reveals that while these models under careful
calibration can outperform dedicated visual models in complex narratable scenes,
they can falter with more abstract visual inputs. Moreover, we also investigate the
curriculum learning and find out it can mitigate the performance gap via smoothly
bridging verbal and nonverbal reasoning for vision language tasks.

1 Introduction

How humans rapidly adapt across different tasks with little supervision has long fascinated the
science community [1–3]. In many real-world situations, acquiring large datasets for training is either
impractical, infeasible, or cost prohibitive, thus making reliable predictions about unseen cases from
sparse exemplars a vital research direction for machine learning [4–7].

As humans, our ability to generalize well without extensive supervision is widely believed to come
from prior experiences, knowledge, and the ability to integrate information and think. For example,
when adults learned about the animal llama for the first time, it rarely takes more than a couple of
images to register the concept of this species for its resemblance to more common animals such
as sheep, camels, or horses1. This fast learning happens by (i) activating prior knowledge from
previously seen tasks (e.g., similar animals); and (ii) extracting useful information from the limited
exemplars for the new task. To enable robust generalizations, especially in situations of incomplete
information, (iii) reasoning kicks in: creating higher levels of abstraction to relate disparate pieces
of information, formulating/testing hypotheses, and making logical extrapolations.

These intuitions have all been mathematically formalized under various learning theories, such as
Bayesian methods [8], weakly supervised learning [9], causal machine learning [10], information
theoretic generalization bounds [11], etc. While different technical notations of knowledge, informa-
tion, and reasoning can provably improve few-shot generalization, for real-world problems there has
been a lack of generic learning frameworks to accommodate knowledge manipulation and complex
reasoning at scale. Consequently, domain knowledge driven or regularization based methods have
ruled few-shot learning leaderboards in practice [12].

1In fact, in some languages llama literally translates into sheep-camel, camel-horse, etc.
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In recent years, the rise of foundational models has initiated a paradigm shift in building general
purpose tools for machine learning [13]. Large language models (LLMs) such as ChaptGPT have
demonstrated human-like problem solving skills when strong reasoning and encyclopedic knowledge
are seamlessly integrated, and they are receptive to human instructions to collaboratively complete
more complex tasks. This has also ignited significant interests in transcending the domain boundaries
to synergize visual and language foundational models [14, 15] to build Large Multimodal Models
(LLM). Recent studies have shown the effectiveness & efficiency of interfacing different modalities
using light-weight adapters [16–19], and the impressive emerging generalization capabilities of these
fused models on both traditional and novel vision-language tasks, either with or without few-shot
task adaptation.

While existing LMMs perform strongly on certain dimensions (e.g., few-shot task following, caption-
ing, VQA, etc.), they are highly reliant on what the base LLMs have been heavily tuned on. This raises
an interesting question: to what extent does the broad knowledge and strong logic benefit classical
vision challenges? For example, the multi-way few-shot classification also necessitates advanced
cognitive function, and it solving this challenge entails several core competence dimensions not
adequately covered by popular multimodal benchmarks [20–22]: models need to compose reasoning
over a large number of images, possibly with complex visual scenes and subject to heavy confounding
(see Figure 1 for example, the same scene can be associated with multiple categories).

Figure 1: Multiple concepts often co-exist in
complex visual scenes, making 1-shot classifi-
cation an ill-posed problem. Thus, the system
must reason from multi-shot examples for ac-
curate concept binding.

In this work, we make the following contributions:
(i) ablating different few-shot classification strategies
for LMM; (ii) benchmarking on an extensive set of
datasets with varying difficulty; (iii) proposing auxil-
iary tasks that boost performance and interpretability.
Our findings show that with proper tuning, LMMs
can do exceptionally well on complex narratable vi-
sual inputs, and even beat state-of-art dedicated vi-
sion models; however, their effectiveness degrades
on more abstract visual inputs and struggle on subtle
differences that requires very sophisticated, verbose
descriptions. These observations reveal current gaps
for multimodal models: they have mostly learned
shallow object concept mappings during training and
heavily rely on verbal reasoning to perform inference.
To facilitate future research, we also release synthetic
data annotations used in this study.

2 Background and Problem Setup

Large Multimodal Models (LMM). In this work, we focus on the popular multimodal adapter
architecture, where models are comprised of three components: a base LLM to process instructions
and generate responses, a visual encoder to embed visual inputs, and an adapter to align visual
embeddings to LLM inputs. This modularized design is highly flexible and parameter efficient: one
can easily plug in different pre-trained foundational models, and only train the light-weight adapter
to achieve impressive performance on a variety of tasks. Specifically, we follow MiniGPT-4’s recipe
as our starting point [19]: LLaMA-based Vicuna model is used as our base LLM, and the vision
encoder is the pre-trained Q-former from BLIP-2 [18] along with its ViT backbone [23], and a simple
linear adaptation layer is used to connect the two. See Figure 2 for our model architecture. We expect
our conclusions to generalize well to other LMMs as MiniGPT-4’s architecture and training recipe is
simple and representative.

Vision-language alignment and instruction tuning. Similar to their language-only counterparts,
LMMs typically need to go through a two-stage training process to become useful. In the first
alignment stage, the models are supervised with diverse text-image pairs or interleaved multimodal
texts to establish the mapping between corresponding visual and language tokens. Massive amounts
of data are used in this phase to teach various visual concepts, and typically, they are noisy and not
directly tied to specific tasks. To teach LMM to understand human intents and accomplish regular
vision-language tasks, instruction fine-tuning coaches models with high-quality task data in the
second stage. Perhaps surprisingly, if the base LLM is already well tuned on diverse instructions,
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Figure 2: Our evaluation encompasses quantitative evaluation and online LVLM Arena. Plentiful
benchmarks are employed to comprehensively evaluate the six critical capabilities of the models in
the quantitative evaluation. In the LVLM Arena, an online platform, users can participate in an online
evaluation by chatting with two anonymous models and choosing their preferred model.

question answering (VQA) (including DocVQA[46], TextVQA[47], STVQA[48], OCR-VQA[49],
OKVQA[50], GQA[51], IconQA[52], Visual Spatial Reasoning (VSR)[53], and Visual Dialog
(Visdial)[54].), knowledge-grounded image description (KGID), and visual entailment. For KGID,
we use ScienceQA [55] and VizWiz [56]). For visual entailment task, we use SNLI-VE. These three
tasks are in VQA form. A capable LVLM should be able to understand the objects and scenes in an
image and can reason to generate answers that are semantically meaningful to the question asked.

Visual Commonsense. Visual commonsense refers to the general visual knowledge commonly shared
across the world, as opposed to the visual information specific to a single image. This evaluation tests
the model’s understanding of commonly shared human knowledge about generic visual concepts
using ImageNetVC [15] and visual commonsense reasoning (VCR) [57]. Specifically, ImageNetVC
is utilized for zero-shot visual commonsense evaluation, such as color and shape, while VCR covers
various scenes, such as spatial, casual, and mental commonsense.

Object Hallucination. LVLM suffers from the object hallucination problem, i.e., the generated
results are inconsistent with the target images in the descriptions [14]. Evaluating object hallucination
for different LVLMs help understand their respective weaknesses. To this end, we evaluate the object
hallucination problem of LVLMs on the MSCOCO dataset [18] under POPE pipeline [14].

Embodied Intelligence. Embodied intelligence aims to create agents, such as robots, which learn to
solve challenging tasks requiring environmental interaction. Recently, LLM and LVLM exhibited
exceptional effectiveness in guiding the agent to complete a series of tasks. In this evaluation,
we utilize high-level tasks in EmbodiedGPT [58] and employ Minecraft [59], VirtualHome [60],
Meta-World [61], and Franks Kitchen [61] as benchmarks.
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Figure 2: Our evaluation encompasses quantitative evaluation and online LVLM Arena. Plentiful
benchmarks are employed to comprehensively evaluate the six critical capabilities of the models in
the quantitative evaluation. In the LVLM Arena, an online platform, users can participate in an online
evaluation by chatting with two anonymous models and choosing their preferred model.

question answering (VQA) (including DocVQA[46], TextVQA[47], STVQA[48], OCR-VQA[49],
OKVQA[50], GQA[51], IconQA[52], Visual Spatial Reasoning (VSR)[53], and Visual Dialog
(Visdial)[54].), knowledge-grounded image description (KGID), and visual entailment. For KGID,
we use ScienceQA [55] and VizWiz [56]). For visual entailment task, we use SNLI-VE. These three
tasks are in VQA form. A capable LVLM should be able to understand the objects and scenes in an
image and can reason to generate answers that are semantically meaningful to the question asked.

Visual Commonsense. Visual commonsense refers to the general visual knowledge commonly shared
across the world, as opposed to the visual information specific to a single image. This evaluation tests
the model’s understanding of commonly shared human knowledge about generic visual concepts
using ImageNetVC [15] and visual commonsense reasoning (VCR) [57]. Specifically, ImageNetVC
is utilized for zero-shot visual commonsense evaluation, such as color and shape, while VCR covers
various scenes, such as spatial, casual, and mental commonsense.

Object Hallucination. LVLM suffers from the object hallucination problem, i.e., the generated
results are inconsistent with the target images in the descriptions [14]. Evaluating object hallucination
for different LVLMs help understand their respective weaknesses. To this end, we evaluate the object
hallucination problem of LVLMs on the MSCOCO dataset [18] under POPE pipeline [14].

Embodied Intelligence. Embodied intelligence aims to create agents, such as robots, which learn to
solve challenging tasks requiring environmental interaction. Recently, LLM and LVLM exhibited
exceptional effectiveness in guiding the agent to complete a series of tasks. In this evaluation,
we utilize high-level tasks in EmbodiedGPT [58] and employ Minecraft [59], VirtualHome [60],
Meta-World [61], and Franks Kitchen [61] as benchmarks.
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Figure 2: Model architecture of multimodal adapter.

then the second-stage learning can be highly efficient: models tuned with a few hundred examples
on simple generic tasks such as image captioning already capable of carrying out a wide range of
common visual-language tasks, and it only takes a few minutes on a single GPU. More extensive
tuning on a richer set of tasks typically yields further gains on quantifiable dimensions, as evaluated
by comprehensive benchmarks [21, 20].

Few-shot classification. In this work, we adopt the classical N -way K-shot setup for the few-shot
classification problem. Specifically, the models are trained and evaluated in an episodic fashion: each
episode e is composed of a support set Xe

supp = {(xnk, ynk)|n ∈ [1, N ], k ∈ [1,K]} and a query set
Xe

query = {(xl, yl)|l ∈ [1, L]}, where n indexes different classes. The goal is to make predictions on
the query labels using the K exemplars for each class within the episode. Compared to traditional
“static” classification where classes are fixed beforehand at training time, few-shot classification poses
challenges on capturing generalizable intra/inter-class patterns dynamically with only a handful of
examples. As such, the classes used in our evaluation are disjoint from the classes used in training,
i.e., Ctrain

⋂
Ctest = ∅. If powerful learners fail to come up with a good hypothesis, it easily overfits.

Importance of in-context few-shot classification for large visual systems. In open-world in-
teractive settings, new visual concepts or categories not present during training can emerge (e.g.,
personal items, pets, etc.), and the visual system needs to act on such unseen visual entities. Often in
such situations, the system may receive some limited directions, blending both language instruction
and a few visual examples. For complex visual scenes, the system also has to deal with additional
difficulties such as distracting backgrounds, visual occlusion, confounding elements, etc. Also, for
large visual systems, it is typically impractical to perform gradient-based task adaptations. Hence,
in-context few-shot classification becomes a critical capability, enabling the system to comprehend
and reason about these unfamiliar concepts to successfully complete the tasks. To the best of author(s)’
knowledge, this critical dimension has not been rigorously investigated in LMM literature.

3 Few-Shot Classification With LMM
Compared to existing few-shot methods, LMMs have several key advantages: (i) it can leverage the
enormous parametric knowledge; (ii) powerful reasoning of various kinds (e.g., logical, commonsense,
causal, counterfactual, inductive, abductive, etc.); (iii) flexibility to receive additional language
guidance such as instruction or corrective feedback. It is natural to hypothesize that these models
should also work reasonable well on the classic N -way K-shot classification:

• For simpler cases where all input images feature a salient object that has a common name,
models can directly invoke their zero-shot classification ability to classify;

• For harder cases where more complex visual scenes are involved, models should activate
higher level of cognitive features, first decompose the scene into more elementary com-
ponents, then apply reasoning to summarize the intra-class commonalities & inter-class
differences to derive decision rules.

Despite the above reasons for optimism, we also foresee a few risks that may prevent LMMs from
being performant in few-shot image classification:

• Hallucination: LMMs also suffer from hallucinations, and such errors can propagate
through the decision chain and lead to wrong conclusions;
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Figure 3: An example of reasoning augmented few-shot classification using LMM.

• Unstructured visual tokens: It is unclear how LLMs perceive and process visual inputs
that are presented as cluttered semantic embeddings, the standard reasoning process learned
from structured texts may break down in such scenarios;

• Mismatched correspondence: LMMs are generally tuned to optimize text-image corre-
spondence during training, while few-shot vision classification mainly assesses the under-
standing of image-image correspondence;

• Visual information overflow: At training time, LMMs typically see no more than a couple
of images in the input; while in the standard 5-way 5-shot setup for example, the models
need to reason over 5× 5 + 1 = 26 images, which is cognitively overwhelming.

With these doubts in mind, we ran a quick sanity test on the 5-way 5-shot miniImageNet classifica-
tion task using the OpenFlamingo model. Not surprisingly, the emerging few-shot task following
capability failed this classical challenge: we only observed a meager accuracy of 27.5%, slightly
better than random guessing.

Having established that emergence alone is inadequate for few-shot classification, we are interested
in exploring how additional supervised training can help. Below, we describe a series of carefully
designed experiments to study how to activate the models’ potentials on this task. Training details
and prompt templates used in these experiments can be found in the Appendix A.

Caption-guidance (two-step). Given most LMMs are pretrained on image captioning, we propose
a two-step captioning guided classification strategy as our baseline: in the first step, we generate a
descriptive caption for the query image; in the second step, we prompt the model with the support
image embeddings and the generated query caption to predict the query image label.

Reasoning-guidance (one-step). Our second strategy is motivated by chain-of-thought (CoT)
reasoning and the consideration to make the model’s decision more interpretable: in addition to the
label prediction, models also need to generate the reasoning for the decision (Figure 3). We adopt an
inductive setup to synthesize reasoning examples for training: sample 5 images from the query class,
caption them using LMM, then use a rewriter LLM to summarize captions’ commonalities as the
supporting argument. To improve reasoning quality, we both inject manually authored seed examples
to guide rewriter and apply ad-hoc rule-filtering. After experimenting with multiple candidates, we
pick Vicuna-7B v1.5 as our rewriter.

Non-verbal reasoning (one-step). “It’s easier to show than to tell.” While well-tuned LLMs
are proficient in verbal reasoning, many vision-language tasks also involve non-verbal reasoning
steps which are hard to put into words (e.g., abstract shapes, analogies and transformations that are
ineffable). Applying verbal reasoning as in the previous two strategies will trigger hallucinations and
harm accuracy. This motivates us to skip all intermediate textual steps (captions or reasoning) and
directly predict with image embeddings.

Selective focusing (auxiliary task). One key observation we made is that vision-adapted LLMs
suffer cognitive overloading when processing dense image inputs, and they easily confuse the contents
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Table 1: MiniImageNet 5-way 5-shot test classification accuracy (%).

Baselines Acc Baselines Acc Baselines Acc MM-LLM Acc

ProtoNet [24] 79.4 FRN [25] 82.8 PAL [26] 84.4 CAP 79.5
FEAT [27] 82.0 BML [28] 83.6 COSOC [29] 85.2 NVR 85.3

DeepEMD [30] 82.4 Meta-NVG [31] 83.8 CNL [32] 83.4 REASON+SF 89.3
MELR [33] 83.4 MetaQDA [34] 84.3 FewTURE [35] 86.4 NVR+SF 92.8

CAP: caption-guided; NVR: non-verbal reasoning; REASON: reasoning-guided; SF: selective focusing.
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Figure 4: Ablation on the effect of adding different portion of selective focusing tasks. A small
fraction of description teaches the model to better understand subtle difference between the images

from different images. This inspired us to augment the training with an auxiliary task we call selective
focusing, where the models are instructed to generate detailed description for one randomly selected
image from its inputs. Given the absence of such granular level annotations, we use synthetic dense
captions generated by the LMM as training data.

Curriculum training. Our initial results reveal substantial performance gaps on datasets with
unnarratable visual inputs or visually similar categories. We conjecture this is due to the sharp
transition from verbal to non-verbal reasoning traps the model in bad local optima. To remedy, we
adopt curriculum training for these more challenging settings, where we warm-start the model on
narratable classifying diverse narratable scenes (i.e., ImageNet).

4 Experiments

We used the following popular few-shot classification benchmarks in our experiments: miniImageNet
[6], tieredImageNet [36], CIFAR-FS [37], and Meta-Dataset [38]. Limited by space, we present only
the key results in the main text, and defer details of training & evaluation setups to the Appendix B.
Our code will be available from https://github.com/qingguo666/MMFSL.

Table 2: 5-way 5-shot accuracies (%)

tiredIN miniIN CIFAR-FS

ProtoNet [24] 84.01 79.46 -
FEAT [27] 84.79 82.05 -

MetaQDA [34] 89.56 84.28 88.79
FewTURE [35] 89.96 86.38 88.90

MM-LLM 91.83 92.8 92.5
cross-domain [Source] 97.17† 89.17

† miniIN might overlap with tiredIN.

We start by ablating different learning strategies on
the miniImageNet with 5-way 5-shot classification.
Table 1 summarizes the main results along with base-
line numbers from prior arts 2. Despite being a gen-
eral purpose tool, LMM performs strongly on the
few-shot classification task: without exploiting any
special architecture, feature engineering, or inductive
bias, they are able to match SOTA performance of
dedicated vision FSL models. Our close analyses on
the less performant caption-guided strategy revealed
errors are mostly due to hallucinated objects in the
caption or the target object not visually salient.

2We exclude works using visual encoder trained from full ImageNet data due to information leakage concerns.
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Table 3: 5-way 5-shot accuracies (%) and 95% confidence interval on Meta Dataset

Method Flower Airplane Fungi Birds Texture Omniglot

Train on ImageNet only
k-NN [38] 83.10±0.68 46.81±0.89 36.16±1.02 50.13±1.00 66.36±0.75 37.07±1.15

MatchingNet [38] 80.13±0.71 48.97±0.93 33.97±1.00 62.21±0.95 64.15±0.85 52.27±1.28
ProtoNet [40] 86.96±0.73 58.04±0.96 40.73±1.15 74.07±0.92 68.76±0.77 68.50±1.27

fo-MAML [38] 81.74±0.83 56.24±1.11 32.10±1.10 63.61±1.06 68.04±0.81 55.55±1.54
RelationNet [38] 68.76±0.83 40.73±0.83 30.55±1.04 49.51±1.05 52.97±0.69 45.35±1.36

BOHB [41] 87.34±0.59 54.12±0.90 41.38±1.12 70.69±0.90 68.34±0.76 67.57±1.21
TSA [42] 94.05±0.45 80.13±1.01 51.38±1.17 83.39±0.80 79.61±0.68 82.58±1.11

Train on MetaDataset
MatchingNet [38] 81.90±0.72 69.17±0.96 33.70±1.04 56.40±1.00 61.80±0.74 78.25±1.01

ProtoNet [38] 86.85±0.71 71.14±0.86 40.26±1.13 67.01±1.02 65.18±0.84 79.56±1.12
RelationNet [38] 76.08±0.76 69.71±0.83 32.56±1.08 54.14±0.99 56.56±0.73 86.57±0.79

fo-Proto-MAML [38] 88.72±0.67 75.23±0.76 41.99±1.17 69.88±1.02 68.25±0.81 82.69±0.97
CNAPs [43] 88.90±0.50 83.70±0.60 50.20±1.10 73.60±0.90 59.50±0.70 91.70±0.50

SUR-pnf [44] 90.00±0.60 79.70±0.80 49.80±1.10 75.90±0.90 72.50±0.70 90.00±0.60
URT [45] 88.20±0.60 85.80±0.60 63.50±1.00 76.30±0.80 71.80±0.70 94.40±0.40

FLUTE [46] 91.60±0.60 87.20±0.50 58.10±1.10 79.20±0.80 68.80±0.80 93.20±0.50
URL [47] 92.11±0.48 88.59±0.46 68.75±0.95 80.54±0.69 76.17±0.67 94.51±0.41
TSA [42] 92.18±0.52 89.33±0.44 67.40±0.99 81.42±0.74 76.74±0.72 94.96±0.38

LMM (starting from tiredImageNet trained checkpoint)
Direct transfer 69.6±1.11 27.6±2.31 30.5±1.71 64.8±1.34 59.3±2.16 34.2±1.42

Curriculum on each dataset 96.7±0.62 89.9±0.85 81.2±0.61 96.7 ±1.09 77.0±1.58 94.3±0.77
Curriculum on all datasets 97.3±0.30 91.6±0.50 83.2±1.80 96.9±0.58 78.2±0.09 91.9±1.40

While we saw the generated reasoning does generalize reasonably well for unseen inputs, contrary to
our original expectation, reasoning-guided learning is less accurate compared to their no reasoning
counterpart. The fact that text generation free strategies worked better indicates: (1) harmful
hallucination happens in the text decoding step; (2) the visual embeddings received by the model does
capture richer signals that can be conveyed in text. We note visual information overflow seems to be
the main blocker, as adding selective-focusing enables LMM to beat SOTA results by a large margin.

Figure 4 further ablates how different balancing ratio between classification and selective-focusing
impact final accuracy and convergence speed, a small fraction (10 ∼ 20%) of focusing can
be most beneficial. Based on the learnings from miniImageNet, we apply the best setting to
tieredImageNet and CIFAR-FS. Table 2 shows that the results are consistent with our observations
from the miniImageNet experiments, and the knowledge appears to transfer well across domains.

Next we move to more challenging settings where the models must discriminate between: (i)
categories that are visually similar (i.e., Flower, Airplane, Fungi, Birds); and (ii) categories
that are hard to describe (e.g., Omniglot, Texture). In Table 3, direct cross-domain transfer from
tiredImageNet trained model does not do well, which is consistent with our observation that
descriptions for images from these datasets are often too broad to make a discriminative call with high
confidence (see examples in the Appendix C). However, if we warm start from the tiredImageNet
checkpoint, they become highly competitive to the SOTA results only after a few epochs’ training.
We hypothesize this is because after being proficient in leveraging verbal reasoning to solve the
problems, it becomes easier to grasp non-verbal reasoning skills on top of that.

As a final remark, recent studies have warned potential catastrophic forgetting after the fine-tuning of
LMMs [39]. We therefore interacted with the few-shot optimized models and noticed models can
still perform other vision-language tasks, but less compelling than before.

5 Conclusion
We have demonstrated LMM provides a simple, effective, interpretable approach to address the
challenge of few-shot image classification. Our results showed model experienced hardships of visual
overloading and non-verbal reasoning, which can be mitigated via smoothing the learning curves
through introducing auxiliary tasks and adopting curriculum learning.

Limitations and future work. Limited by time and resources, this work narrowly focused on
improving one task performance without quantifying the potential regressions in other dimensions.
In future work, we will investigate how target improving essential functionalities such as few-shot
and compositional reasoning in the alignment-stage to holistically enhance end-task performance.
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A Prompt Templates

We present the prompt templates used in our experiments below. Note placeholders such as
<ImageHere>, <ImageDescriptionHere> , <Answer>, <ReasonHere> will be replaced with ac-
tual contents, and highlighted parts (e.g., Group <Answer>. ) will be used for the loss computation.

Caption generation:

###Human: <Img><ImageHere></Img> Describe this image in detail. ###Assistant:

Caption-guided classification.

###Human: You will be given a few different images. Image 1: <Img><ImageHere></Img>;
Image 2: <Img><ImageHere></Img>; Image 3: <Img><ImageHere></Img>; ... Image
24: <Img><ImageHere></Img>; Image 25: <Img><ImageHere></Img>. Images 1,2,3,4,5
belong to group 1, images 6,7,8,9,10 belong to group 2, images 11,12,13,14,15 belong to
group 3, images 16,17,18,19,20 belong to group 4, images 21,22,23,24,25 belong to group 5.
Please assign the following images into the above groups based on their similarity. Here is a
description of a new image: <ImageDescriptionHere> Can you identify which group does
this image belong to? ###Assistant: Group <Answer>.

Non-verbal classification.

###Human: You will be given a few different images. Image 1: <Img><ImageHere></Img>;
Image 2: <Img><ImageHere></Img>; Image 3: <Img><ImageHere></Img>; ... Image
24: <Img><ImageHere></Img>; Image 25: <Img><ImageHere></Img>. Images 1,2,3,4,5
belong to group 1, images 6,7,8,9,10 belong to group 2, images 11,12,13,14,15 belong to
group 3, images 16,17,18,19,20 belong to group 4, images 21,22,23,24,25 belong to group 5.
Please assign the following images into the above groups based on their similarity. Here is
a new image: <Img><ImageHere></Img>. Can you identify which group does this image
belong to? ###Assistant: Group <Answer>.

Reasoning-guided classification.
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###Human: You will be given a few different images. Image 1: <Img><ImageHere></Img>;
Image 2: <Img><ImageHere></Img>; Image 3: <Img><ImageHere></Img>; ... Image
24: <Img><ImageHere></Img>; Image 25: <Img><ImageHere></Img>. Images 1,2,3,4,5
belong to group 1, images 6,7,8,9,10 belong to group 2, images 11,12,13,14,15 belong to
group 3, images 16,17,18,19,20 belong to group 4, images 21,22,23,24,25 belong to group 5.
Please assign the following images into the above groups based on their similarity. Here is
a new image: <Img><ImageHere></Img>. Can you identify which group does this image
belong to? Group <Answer>. <ReasonHere>

Reasoning generation.

Remark. We have used Vicuna V1.5 as our rewriter model, which is using different prompt template
compared to the Vicuna V0 base model used by MiniGPT4. Specifically, speaker tags are

A chat between a curious user and an artificial intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the user’s questions. USER: We have a lot of images
coming from 50 different classes, where images from the same class share some distinctive
common features (each image belongs to only one class). Give a list of detailed description
of images from one of the class, you need to summarize the common features for these
descriptions in one or two sentence. This summary will be used to instruct data annotators to
classify new images to this class. A good example of the summary will be something like "this
is the domes/buildings class, the images consistently mention architectural structures, particu-
larly domes, and often provide details of intricate designs, decorations, and historical context."

Here are the image descriptions for you to summarize:
1 <ImageDescriptionHere>
2 <ImageDescriptionHere>
...
5 <ImageDescriptionHere> ASSISTANT:

Selective focusing.

###Human: You will be given a few different images. Image 1: <Img><ImageHere></Img>;
Image 2: <Img><ImageHere></Img>; Image 3: <Img><ImageHere></Img>; ... Image 24:
<Img><ImageHere></Img>; Image 25: <Img><ImageHere></Img>. Describe image <ID>
in detail. ###Assistant: <ImageDescriptionHere>

B Experiment Details

Platform. We use PyTorch in our experiments. All training jobs are done on one Nvidia A100-80G
GPU, and some of the evaluations are offloaded to Nvidia V100-32G GPU.

Base model. We have used MiniGPT4 for all our fine-tuning experiments. Specifically, we use the
original official release built on Vicuna V0, and pick the 7B model for quick experimentation. Since
MiniGPT4 only saw single pair of text-image data during training, we need to find a model trained
on interleaved image-text to baseline few-shot classification accuracy. Since canidate models like
FROZEN, Flamingo, KOSMOS are not publicly available, we tested the 9B version of OpenFlamingo
model [48] built on top of MPT.

Training. In our experiments, we freeze all parameters except for the linear adapter. Models are
trained for 30 epochs unless otherwise specified, with 3k iterations in each epoch. To avoid OOM
error, we restrict the batch size to 1 and use gradient accumulation to update weights every 16
iterations. Cosine learning rate scheduler is used, with 200 warmup steps from 10−6 to 3× 10−5,
then gradually anneal to 10−5 towards the end. A weight decay factor of 0.05 is also applied. Inputs
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are formatted using the templates from Appendix A, and only the Assistant response tokens are
used in the loss computation.

Evaluation. Given the limited computation resource we can use, different evaluation strategies
have been applied to each experiment. For the main ImagetNet and Cifar results (Table 1 &
2), we used 600 episodes to compute the accuracy. For the ablation on the task mixing ratio and
learning dynamics, we evaluated every three epochs and used 200 episodes for each checkpoint. Note
evaluating with 200 episodes has higher variance, so the numbers in Figure 4 is slightly different
from the numbers reported in previous tables (which used 600 episodes). But our observations are
reliable as we saw consistent trends across different experiments. Finally, for the Meta Dataset
experiments, we run a total of 1,800 episodes for each checkpoint. The additional episodes evaluated
helped us to derive a reliable estimate of the 95% confidence interval. For the curriculum with all
Meta Dataset, we trained 50 epochs.

C Examples Where Verbal Reasoning Struggle

Figure S1 gave a few examples of image descriptions generated for Omniglot characters. These
abstract hieroglyph characters are difficult to be described verbally, which explains the bad transfer
performance for the models trained on the more narratable ImageNet.

Original Minigpt4: The image shows a small black and white picture of a person in profile with their 
eyes closed. The person is standing in front of a white background with their head tilted to the left 
and their eyes closed. The image appears to be a simple line drawing of the person.

TieredImagenet trained: This is a simple black and white drawing of a cross. It has a simple design and 
is easy to recognize. The cross is made up of four intersecting lines, with two vertical lines on the top 
and two horizontal lines on the bottom. The cross is not very detailed, but it is still easy to recognize.

Ominiglot trained: The image shows an illustration of a horizontal line with a square in the middle. The 
line has a horizontal extension at one end and a vertical extension at the other end.

Original Minigpt4: This image appears tend. The triangle has one long side and two short sides, with 
the point facing downwards. It could be interpreted as a symbol for stability or balance, as it has a 
solid, structured form. The triangle could also be seen as a representation of the human body, with 
the long side representing the spine and the short sides representing the limbs. However, without 
more context, it is difficult to determine the exact meaning or significance of this image.o be a black 
and white depiction of a triangular shape with a small, pointed

TieredImagenet trained: The image shows a letter 'a' written in the Arabic script.

Ominiglot trained: The image shows a triangle made out of two lines. The lines are connected at their 
tips and have one point on top. The point is not visible in the image. The triangle could be used to 
represent a tent, a pyramid, or a point in space.

Figure S1: Image descriptions for Omniglot characters generated by different models.

D Related Works

To give readers a more comprehensive view of the fields, we briefly review related literature here.

Multimodal LLM. The unification of architectures and the growing availability of pre-trained
foundational models has catalyzed surging interests in general purpose large multimodal foundation
models. Substantial progress has been made in the past few years. Pioneering works such as
CLIP [49] leverage rich multimodal data for self-supervised representation learning, which lays
the foundation for various multimodal applications [23]. Note CLIP learning essentially optimizes
the mutual information between text and visual representations, and its learning efficiency can be
further enhanced via leveraging more advanced contrastive learning algorithms [50–52]. While
pioneering investigations on augmenting LLM with visual perception are very compute intensive
[16, 53, 17, 18], they demonstrated the potentials of leveraging visual augmented LLM as a general
purpose tooling for diverse visual language tasks (e.g., VQA, captioning, chat, creative writing,
etc.). GPT4 further showed how visual understanding can multiply powerful LLM to massively
boost productivity [15, 54]. Following that, the adoption of adapter architectures, the availability of
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powerful open LLMs and visual instruction tuning recipes [55–57] have made multimodal LLM more
accessible for academic studies and practical deployments [19, 58–65]. Relevant to our work are the
works of [66, 67], where chain-of-thought reasoning are applied for question answering in multimodal
settings. Note [16, 53, 17] also presented few-shot classification examples with multimodal LLM,
but those are simple proof-of-concept demonstrations; as demonstrated in our work, such emergent
capabilities break down in the face of complex scenes and dense visual inputs.

Few-shot learning. Quick and robust learning from limited examples has been a long standing
challenging for CV [5, 68]. It can be framed under meta-learning which broadly refers to techniques
that facilitate the learning of a new task in sample-scarce scenarios using prior knowledge from
previously seen tasks, such as learning to learn [69], domain adaptation [70], transfer learning [71],
causal machine learning [10], zero/few-shot learning [72], weakly supervised learning [9], etc. Here
we focus on methods that are developed in the deep learning era. Works such as MAML [7, 73–75],
MetaNet [76], and FewTURE [35] builds a meta-learned a base model during episodic training then
adapt to a task-specific model at inference time using gradient updates. Methods like MatchingNet
[6], ProtoNet [24], and FEAT [27] applied different notations of affinity metrics to align query
samples with support sets in the neural embedding spaces, while MetaOptNet [77] advocates the use
of hyperplanes to separate classes. Motivated by the success of transformers, attention based few
shot learners have also been proposed [78, 40]. Other interesting directions include using Info-Max
regularization [79] or causal representation learning [80, 81] to address the sample scarcity issue.

Adaptation. Inference time adaptation is important for improving low-shot learning performance
[12]. In the context of few-shot image classification, task adaptation can be considered as a procedure
to reduce cross-class similarities and highlight discriminative features for the given task. This is often
achieved by computing the class-prototypes [24], or applying (several) gradient updates to edit the
input weights [35] or model parameters [7]. Applying closed-form or iterative solvers can further
boost the efficiency and efficacy of the gradient-based adaptations [37, 77]. A major drawback with
the gradient-based adaptation is that error back-propagation is costly especially for large networks.

For LLMs, task adaptation can be achieved more flexibly via prompting [82, 72, 83]. By consuming
proper prompts (such as task examples, instructions, or combination of both), language models are
better conditioned for individual tasks, thus yielding substantial performance gains for zero/few-
shot applications [84]. This is more appealing operational wise as a single generalist model can
simultaneously serve many different tasks. Prior studies have shown vision-adapted LLMs also
exhibit emergent few-shot learning capability on diverse vision-language tasks [16, 53, 17].

15


	Introduction
	Background and Problem Setup
	Few-Shot Classification With LMM
	Experiments
	Conclusion
	Appendix
	 Appendix
	Prompt Templates
	Experiment Details
	Examples Where Verbal Reasoning Struggle
	Related Works


