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Abstract

Lipschitz neural networks are well-known for pro-
viding certified robustness in deep learning. In
this paper, we present a novel, efficient Block Re-
flector Orthogonal (BRO) layer that enhances the
capability of orthogonal layers on constructing
more expressive Lipschitz neural architectures. In
addition, by theoretically analyzing the nature of
Lipschitz neural networks, we introduce a new
loss function that employs an annealing mecha-
nism to increase margin for most data points. This
enables Lipschitz models to provide better certi-
fied robustness. By employing our BRO layer and
loss function, we design BRONet — a simple yet
effective Lipschitz neural network that achieves
state-of-the-art certified robustness. Extensive
experiments and empirical analysis on CIFAR-
10/100, Tiny-ImageNet, and ImageNet validate
that our method outperforms existing baselines.
The implementation is available at|GitHub Link.

1. Introduction

Although deep learning has been widely adopted in various
fields (Wang et al.| 2022} [Brown et al., 2020), it is shown to
be vulnerable to adversarial attacks (Szegedy et al.,|[2014).
This kind of attack crafts an imperceptible perturbation on
images (Goodfellow et al.l 2014) or voices (Carlini & Wag/{
ner, [2018)) to make Al systems make incorrect predictions.
In light of this, many adversarial defense methods have been
proposed to improve the robustness, which can be catego-
rized into empirical defenses and certified defenses. Com-
mon empirical defenses include adversarial training (Madry
et al.l 2018} [Shafahi et al., [2019; Wang et al.| [2023)) and
preprocessing-based methods (Samangouei et al., 2018} Das
et al., [2018; |Lee & Kiml [2023)). Although often effective
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Figure 1. Visualization of model performance on CIFAR-10. The
circle size denotes model size.

in practice, these approaches cannot provide robustness
guarantees and may fail against more sophisticated attacks.
Certified defenses, unlike empirical ones, provide provable
robustness by ensuring no adversarial examples exist within
an ¢,-norm ball of radius € centered on the prediction point.

Certified defenses against adversarial attacks are broadly
categorized into probabilistic and deterministic (Li et al.|
2023)) methods. Randomized smoothing (Cohen et al.,|2019;
Lecuyer et al,|2019; Yang et al.| 2020) is a prominent prob-
abilistic approach, known for its scalability in providing
certified robustness. However, its reliance on extensive sam-
pling substantially increases computational overhead during
inference, limiting its practical deployment. Furthermore,
the certification provided is probabilistic in nature.

Conversely, deterministic methods, exemplified by inter-
val bound propagation (Ehlers| 2017 Gowal et al.l 2018}
Mueller et al.| [2023;|Shi et al.,2022)) and CROWN (Wang
et al., [2021; [Zhang et al., [2022), efficiently provide deter-
ministic certification. These methods aim to approximate
the lower bound of worst-case robust accuracy to ensure
deterministic robustness guarantees. Among various de-
terministic methods, neural networks with Lipschitz con-
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straints are able to compute the lower bound of worst-case
robust accuracy with a single forward pass, making them
the most time-efficient at inference time. They are known
as Lipschitz neural networks.

Lipschitz neural networks are designed to ensure that the
entire network remains Lipschitz-bounded. This constraint
limits the sensitivity of the outputs to input perturbations,
thus providing certifiable robustness by controlling changes
in the logits. A promising approach to constructing Lip-
schitz networks focuses on designing orthogonal layers,
which inherently satisfy the 1-Lipschitz constraint. Further-
more, these layers help mitigate the issue of vanishing gra-
dients due to their norm-preserving properties. Nonetheless,
existing methods for constructing orthogonal layers remain
computationally expensive, thus hindering their integration
into more sophisticated neural architectures.

In this work, we introduce the Block Reflector Orthogonal
(BRO) layer, which outperforms state-of-the-art orthogo-
nal layers in terms of computational efficiency as well as
robust and clean accuracy. We utilize it to develop various
Lipschitz neural networks, underscoring its utility across
architectures. Building upon the BRO layer, we introduce
BRONet, a new Lipschitz neural network exhibiting promis-
ing results.

Moreover, we delve into Lipschitz neural networks, analyz-
ing their inherent limited capability. Building on this analy-
sis, we introduce a novel loss function, the Logit Annealing
loss, which is empirically shown to be highly effective for
training Lipschitz neural networks. The certification results
of the proposed method outperform state-of-the-art methods
with reasonable number of parameters, as Figure [I|shows.

Our contributions are summarized as follows:

* We propose a novel BRO method to construct orthogo-
nal layers using low-rank parameterization. It is both
time and memory efficient, while also being stable
during training by eliminating the need for iterative
approximation algorithms.

* The proposed BRO Layer improves certified robustness
while reducing the resource demands of orthogonal
layers, thereby expanding their applicability to more
advanced architectures.

* We construct various Lipschitz networks using the
BRO method, including newly designed BRONet,
which achieves state-of-the-art certified robustness.

* Based on our theoretical analysis, we develop a novel
loss function, the Logit Annealing loss, which is ef-
fective for training Lipschitz neural networks via an
annealing mechanism.

» Through extensive experiments, we demonstrate the
effectiveness of our proposed method on the CIFAR-
10/100, Tiny-ImageNet, and ImageNet datasets.

2. Preliminaries
2.1. Certified Robustness with Lipschitz Networks

Consider a function f : R™ — R™. The function is said
to exhibit L-Lipschitz continuity under the ¢5-norm if there
exists a non-negative constant L such that:

I[f (1) = f(x2)]|

r1,x2€R™

;M

where ||-|| represents the £5 norm. This relationship indicates
that any variation in the network’s output, measured by the
norm, is limited to at most L times the corresponding varia-
tion in its input. This property effectively characterizes the
network’s stability and sensitivity to input changes. Specifi-
cally, under the ¢5-norm, the Lipschitz constant is equivalent
to the spectral norm of the function’s Jacobian matrix.

Assuming f(z) are the output logits of a neural network, and
t denotes the target label. We say f(x) is certifiably robust
with a certified radius ¢ if arg max; f(x + §); = t for all
perturbations {¢ : ||d]| < €}. Determining the certified radii
is crucial for certifiable robustness and presents a signifi-
cant challenge. However, in L-Lipschitz neural networks, €
can be easily calculated using ¢ = max(0, M ;(z)/v2L),
where M s(x) denotes the logit difference between the
ground-truth class and the runner-up class in the network
output. Thatis, M¢(z) = f(x); —maxgx f(x)r (Tsuzuku
et al.L 2018 L1 et al., 2019).

2.2. Lipschitz Constant Control & Orthogonality

Obtaining the exact Lipschitz constant for general neural
networks is known to be an NP-hard problem (Virmaux
& Scaman, 2018). However, there are efficient methods
available for computing it on a layer-by-layer basis. Once
the Lipschitz constant for each layer is determined, the
Lipschitz composition property allows for the calculation of
the overall Lipschitz constant for the entire neural network.
The Lipschitz composition property states that given two
functions f and g with Lipschitz constants Ly and L, their
composition h = g o f is also Lipschitz with a constant
Ly < Ly - Ly. We can use this property to upper-bound the
Lipschitz constant of a complex neural network f:

l

f=d¢rodi10...0¢1, Lip(f) < []Lip(¢:). (@

i=1

Thus, if the Lipschitz constant of each layer is properly
regulated, robust certification can be provided. A key rele-
vant property is orthogonality, characterized by the isometry
property ||Wz|| = ||z|| for a given operator W. Encour-
aging orthogonality is crucial for controlling the Lipschitz
constant while preserving model expressiveness (Anil et al.|
2019), as it avoids gradient vanishing. An illustrative exam-
ple is the replacement of common element-wise activations,
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such as ReLU, with MaxMin (Anil et al.,[2019; |Chernodub
& Nowickil, [2016)) in the Lipschitz network literature. While
both are 1-Lipschitz, MaxMin demonstrates superior empir-
ical performance for being gradient-norm preserving.

3. Related Work

Orthogonal Layers Orthogonality in neural networks is cru-
cial for various applications, including certified robustness
via Lipschitz-based methods, GAN stability (Miiller et al.,
2019), and training very deep networks with inherent gradi-
ent preservation (Xiao et al.,[2018). While some approaches
implicitly encourage orthogonality through regularization
or initialization (Qi1 et al.,[2020; X1ao et al., |2018)), explicit
methods for constructing orthogonal layers have garnered
significant attention, as evidenced by several focused studies
in this area. [Li et al.| (2019) proposed Block Convolution
Orthogonal Parameterization (BCOP), which utilizes an
iterative algorithm for orthogonalizing the linear transfor-
mation within a convolution. [Trockman & Kolter (2021)
introduced a method employing the Cayley transformation
W = (I-V)I+ V)"l where V is a skew-symmetric
matrix. Similarly, |Singla & Feizi (2021b)) developed the
Skew-Orthogonal Convolution (SOC), employing an expo-
nential convolution mechanism for feature extraction. Addi-
tionally, Xu et al.| (2022) proposed the Layer-wise Orthogo-
nal training (LOT), an analytical solution to the orthogonal
Procrustes problem (Schonemann, [1966)), formulated as
W = (VVT)=1/2V . This approach requires the Newton
method to approximate the internal matrix square root. [Yu
et al.| (2022) proposed the Explicitly Constructed Orthogo-
nal Convolution (ECO) to enforce all singular values of the
convolution layer’s Jacobian to be one.

Notably, SOC and LOT achieve state-of-the-art certi-
fied robustness for orthogonal layers. Most matrix re-
parameterization-based methods can be easily applied for
dense layers, such as Cayley, SOC, and LOT. A recently pro-
posed orthogonalization method for dense layers is Cholesky
(Hu et al., [2024)), which explicitly performs QR decomposi-
tion on the weight matrix via Cholesky decomposition.

Other 1-Lipschitz Layers A relaxation of isometry con-
straints, namely, ||Wz|| < ||z||, facilitates the development
of extensions to orthogonal layers, which are 1-Lipschitz
layers. |Prach & Lampert| (2022)) introduced the Almost Or-
thogonal Layer (AOL), which is a rescaling-based parameter-
ization method. Meanwhile, Meunier et al.| (2022)) proposed
the Convex Potential Layer (CPL), leveraging convex poten-
tial flows to construct 1-Lipschitz layers. Building on CPL,
Araujo et al.| (2023) presented SDP-based Lipschitz Lay-
ers (SLL), incorporating AOL constraints for norm control.
Most recently, [Wang & Manchester| (2023) introduced the
Sandwich layer, a direct parameterization that analytically
satisfies the semidefinite programming conditions outlined

by Fazlyab et al.|(2019).

Lipschitz Regularization While the aforementioned meth-
ods control Lipschitz constant by formulating constrained
layers with guaranteed Lipschitz bound, Lipschitz regular-
ization methods estimate the layer-wise Lipschitz constant
via power iteration (Farnia et al., 2019) and apply regulariza-
tion to control it. [Leino et al.|(2021)) employed a Lipschitz
regularization term to maximize the margin between the
ground truth and runner-up class in the loss function. Hu
et al.[(2023;2024) further proposed a new Lipschitz regular-
ization method Efficiently Margin Maximization (EMMA ),
which dynamically adjust all the non-ground-truth logits
before calculating the cross-entropy loss.

4. BRO: Block Reflector Orthogonal Layer

In this section, we introduce the BRO layer, designed to
provide certified robustness via low-rank orthogonal param-
eterization. First, we detail the fundamental properties of
our method. Next, we leverage the 2D-convolution theo-
rem to develop the BRO convolutional layer. Finally, we
conduct a comparative analysis of our BRO with existing
state-of-the-art orthogonal layers.

4.1. Low-rank Orthogonal Parameterization Scheme

The core premise of BRO revolves around a low-rank or-
thogonal parameterization, as introduced by the following
proposition. A detailed proof is provided in Appendix [A.T}

Proposition 1. Let V' € R™*™ be a matrix of rank n,
and, without loss of generality, assume m > n. Then the
parameterization W = I — 2V (VIV)=VT satisfies the
following properties:

1. W is orthogonal and symmetric, i.e., W' = W and
WTW = 1.

2. W is an n-rank perturbation of the identity matrix, i.e.,
it has n eigenvalues equal to —1 and m—n eigenvalues
equal to 1.

3. W degenerates to the negative identity matrix when V
is a full-rank square matrix.

This parameterization draws inspiration from the block re-
flector (Dietrich, (1976} |Schreiber & Parlett, |1988)), which
is widely used in parallel QR decomposition and is also
important in other contemporary matrix factorization tech-
niques. This approach enables the parameterization of an
orthogonal matrix derived from a low-rank unconstrained
matrix, thereby improving computational efficiency.

Building on the definitive property of the proposition above,
we initialize the parameter matrix V' as non-square to pre-
vent it from degenerating into a negative identity matrix.
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While the above discussion focuses on weight matrices for
dense layers, the same parameterization can also be applied
to construct orthogonal convolution operations, as both are
linear transformations. However, a significant difference
arises because the BRO formulation requires an inverse
convolution computation, which is difficult to solve in the
spatial domain. This leads us to address the issue in the
Fourier domain. Furthermore, it is essential to note that
directly orthogonalizing each convolution kernel does not
result in an orthogonal convolution (Achour et al.| 2022).

To introduce the BRO convolution, we begin by defining
the process given an unconstrained kernel V' € Rexnxkxk_
where each slicing V.. ; ; is defined as in Proposition [T}
Define FFT : R%*¢ — C**¢ as the 2D Fourier transform
operator and FFT~! : C**° — C*** as its inverse, where
s X s denotes the spatial dimensions, and the input will be
zero-padded to s X s if the original shape is smaller. The 2D
convolution theorem (Jain, |[1989) asserts that the circular
convolution of two matrices in the spatial domain corre-
sponds to their element-wise multiplication in the Fourier
domain. Extending this idea, Trockman & Kolter| (2021)
demonstrates that multi-channel 2D circular convolution in
the Fourier domain corresponds to performing a batch of
matrix-vector products. By orthogonalizing each of these
matrices, the convolution operation becomes orthogonal.
Leveraging this insight, we can perform orthogonal convo-
lution as follows.

Let X = FFT(X) and V = FFT(V), the convolu-
tion output Y is then computed as ¥V = FFT1(Y)
and Y. ;; = W’MX 4,j» Where W7:7i,j = I —
2V M(V* Vieiy) "1V, and i, j are the pixel indices.
Note that the FFT is performed on the spatial (pixel) dimen-
sions, while the orthogonal multiplication is applied on the

channel dimension.

Proposition 2. Let X = FFT(X) € C*%% and V =
FFT(V) € CeX"X5X5, the proposed BRO convolution Y =
FFT1(Y), whereY” =W...;X.i;andW..;;=1—
2V, i (Vi Viig) "1V, . is a real, orthogonal multi-
channel 2D czrcular convolution.

Importantly, the BRO convolution is a 2D circular convo-
lution that is orthogonal, as demonstrated by Proposition 2]
Furthermore, although the BRO convolution primarily in-
volves complex number computations in the Fourier domain,
the output Y remains real. The detailed proof of Proposi-
tion[2]is provided in Appendix [A.2]

Algorithm [T] details the proposed method, illustrating the
case where the input and output channels are equal to c.
Following |Xu et al.| (2022)), we zero pad the input and pa-
rameters to size s + 2k’, where 2k’ is the extra padding
to alleviate the circular convolution effect across edges. A
discussion on the implementation of zero-padding, along
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Figure 2. Comparison of runtime and memory usage among SOC,
LOT, and the proposed BRO.

with an observation of a minor norm drop resulting from
the removal of output padding, is provided in Appendix [A.4]
For layers where the input dimension differs from the output
dimension, we enforce the 1-Lipschitz constraint via semi-
orthogonal matrices. For details about the semi-orthogonal
layers, please refer to Appendix [A3]

4.2. Properties of BRO Layer

This section compares BRO to SOC and LOT, the state-of-
the-art orthogonal layers.

Iterative Approximation-Free Both LOT and SOC utilize
iterative algorithms for constructing orthogonal convolution
layers. Although these methods’ error bounds are theoret-
ically proven to converge to zero, empirical observations
suggest potential violations of the 1-Lipschitz constraint.
Prior work (Béthune et al., [2022) has noted that SOC’s
construction may result in non-1-Lipschitz layers due to ap-
proximation errors inherent in the iterative process involving
a finite number of terms in the Taylor expansion. Regarding
LOT, we observe numerical instability during training due
to the Newton method for orthogonal matrix computation.
Specifically, the Newton method breaks the orthogonality
when encountering ill-conditioned parameters, even with the
64-bit precision computation recommended by the authors.
An illustrative example is that using Kaiming initialization
(He et al.| 2015)) instead of identity initialization results in
a non-orthogonal layer. Detailed experiments are provided
in Appendix[D.7} In contrast, the proposed BRO constructs
orthogonal layers without iterative approximation, ensuring
both orthogonality and robustness certification validity.

Time and Memory Efficiency LOT’s internal Newton
method requires numerous steps to approximate the square
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Algorithm 1 BRO Convolution Layer

X = FFT(Xpad) c (Cc><(5+2k’)><(s+2k/)
V= FFT(vpad) c Qexnx(s+2k")x (s+2k")
foralli,j e {1,...,s+2k'} do

Yiiji= (T =2V (Vi Vi) Vi )X
end for }
Y :=FFT (V)

—_ =
S N AP AR AR R i ey

Return (Y. y._ j:—1).real

Input: Tensor X € Re***$ Kernel V € Re*"*kxXk withn < ¢, k' = |k/2].

Output: Tensor Y € Reut*wX% the orthogonal convolution applied to X parameterized by V.
XPd .= zero_pad(X, (K, k', k', k') € Rex(s+2K)x (s+2k)

VPl .= zero_pad(V, (0,0, s + 2k’ — k,s + 2k’ — k)) € REX X (512K7)x (s+2K")

> ¢ is channel size.

> Apply our parameterization.

> Extract the real part.

root of the kernel, significantly prolonging training time
and increasing memory usage. Conversely, the matrix op-
erations in BRO are less complex, leading to substantially
less training time and memory usage. Moreover, the low-
rank parametrization characteristic of BRO further alleviates
the demand for computational resources. When comparing
BRO to SOC, BRO has an advantage in terms of inference
time, as SOC requires multiple convolution operations to
compute the exponential convolution. Figure[2]shows the
runtime per epoch and the memory usage during training.
A detailed analysis and comparison of orthogonal layers,
including Cayley, are provided in Appendix

Non-universal Orthogonal Parameterization While a sin-
gle BRO layer is not a universal approximator for orthogonal
layers, as established in the second property of Proposition[]
we empirically demonstrate in Section [6.2] that the expres-
sive power of deep neural networks constructed using BRO
is competitive with that of LOT and SOC.

5. Logit Annealing Loss Function

Singla et al| (2022) posited that cross-entropy (CE) loss
is inadequate for training Lipschitz models, as it fails
to increase the margin. Thus, they integrated Certifi-
cate Regularization (CR) with the CE loss, formulated
as: Lcg — ymax(My(z),0), where My (z) = f(x); —
maxy2 f(2)g is the logit margin between the ground-truth
class ¢ and the runner-up class. y max(M ¢ (z), 0) is the CR
term and -y is a hyper-parameter. However, our investigation
identifies several critical issues associated with the CR term,
such as discontinuous loss gradient and gradient domination.
Refer to Appendix [C.3|for details.

Our insight reveals that Lipschitz neural networks inher-
ently possess limited model complexity, which impedes
empirical risk minimization. Here, we utilize Rademacher
complexity to justify that the empirical margin loss risk
(Bartlett et al.,[2017) is challenging to minimize with Lip-
schitz neural networks. Let H represent the hypothesis

set. The empirical Rademacher complexity of H over a set

S ={x1,22,...,2,} is given by:
1 n
Rs(H) =E, |sup — oih(x;)] , 3)
500 =5 [sp 3o

where o; are independent Rademacher variables uniformly
sampled from {—1,1}. Next, we use the Rademacher com-
plexity to demonstrate that a model with low capacity results
in a greater lower bound for margin loss risk.

Theorem 1. Given a neural network f and a set S of size
n, let £, denote the ramp loss (a special margin loss, see
Appendix [C) (Bartlett et al}, 2017). Let F represent the
hypothesis set of f. Define that:

Fri=A{(@,y) = LM(f(2),9): fEF) @)

o) o= ZaleMU ) 3) s

Assume that P is the prediction error probability. Then,
with probability 1 — 6, the empirical margin loss risk R (f)
is lower bounded by:

7?/7'(.]8) > Pe — 29%5(]:-,—) -3 1n(1/6) :

(6)

Furthermore, for the L-Lipschitz neural networks, we in-
troduce the following inequality to show that the model
complexity is upper-bounded by L.

Proposition 3. (Ledoux & Talagrand, [2013|) Let F be the
hypothesis set of the L-Lipschitz neural network f, and £ is
the ramp loss with Lipschitz constant 1/, for some T > 0.
Then, given a set S of size n, we have:

n
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Table 1. Comparison of the proposed method with previous works. The ¢ perturbation budget ¢ for certified accuracy is chosen following
the convention of previous works. T For fair comparison, no additional diffusion-generated synthetic datasets are used during training.

Certified Acc. (¢

Datasets Models #Param. (1’222[1 36 12 ;
255 255 255

Cayley Large (Trockman & Kolter|2021) 21IM 746 614 464 32.1

SOC-20 (Singla et al.|2022] 27T™M 763 62.6 487 36.0

LOT-20 (Xu et al..2022 18M 77.1 643 495 36.3

CPL XL (Meunier et al.|[2022] 236M 78.5 644 48,0 330

AOL Large (Prach & Lampert.[2022] 136M 71.6 640 564 49.0

CIFAR-10 SOC-20+CRC (Singla & Feizil2022) 40M 79.1 66.5 525 38.1
SLL X-Large (Aravjo et al.|2023] 236M 733 64.8 557 47.1

LiResNet! (Hu et al. 2024 83M 81.0 69.8 563 429

BRONet-M 37M 80.5 689 563 427

BRONet-L 68M 81.0 702 57.1 43.0

BRONet-M (+LA) 37™M 81.2 69.7 556 40.7

BRONet-L (+LA) 68M 81.6 70.6 572 425

Cayley Large (Trockman & Kolter|2021) 21M 433 292 188 11.0

SOC-20 (Singla et al.|2022] 27TM 478 348 237 158

LOT-20 (Xu et al..2022 18M 48.8 352 243 162

CPL XL (Meunier et al.[[2022] 236M 478 334 209 126

AOL Large (Prach & Lampert,[2022) 136M 437 337 263 20.7
SOC-20+CRC (singla & Feizil[2022) 40M 51.8 385 272 185

CIFAR-100 SLL X-Large (Araujo et al.|2023] 236M 478 367 283 222
Sandwich (Wang & Manchester/[2023) 26M 463 353 263 203

LiResNet! (Hu et al[2024] 83M 53.0 40.2 283 192

BRONet-M 37M 533 400 283 192

BRONet-L 68M 53.6 40.2 286 192

BRONEet-M (+LA) 37™M 54.1 40.1 285 19.6

BRONet-L (+LA) 68M 543 40.2 29.1 203

LiResNet! (Hu et at.|2024] 98M 473 353 251 169

ImageNet ~ pRrONet 86M 488 364 258 175
BRONeEet (+LA) 86M 493 37.6 279 19.6

This is also known as Ledoux-Talagrand contraction
(Ledoux & Talagrand, [2013). In Lipschitz neural networks,
the upper bound is typically lower than in standard net-
works due to the smaller Lipschitz constant L, consequently
limiting Rg(F;).

According to Theorem [I} the empirical margin loss risk
exhibits a greater lower bound if Rg(F;) is low. It is im-
portant to note that the risk of the CR term, i.e., CR loss
risk, is exactly the margin loss risk decreased by one unit
when 7 = 1/~. Thatis Ror(f) = R,(f) — 1. This indi-
cates that CR loss risk also exhibits a greater lower bound.
Thus, it is unlikely to minimize the CR term indefinitely if
the model exhibits limited Rademacher complexity. Note
that limited Rademacher complexity can result from a low
Lipschitz constant or a large sample set. This also implies
that we cannot limitlessly enlarge the margin in Lipschitz
networks, especially for large real-world datasets. Detailed
proofs can be found in Appendix [C]

The CR term encourages a large margin for every data point
simultaneously, which is unlikely since the risk has a great
lower bound. Due to the limited capacity of Lipschitz mod-
els, we must design a mechanism that enables models to
learn appropriate margins for most data points. Specifically,
when a data point exhibits a large margin, indicating further
optimizing it is less beneficial, its loss should be annealed
to allocate capacity for other data points. Based on this
idea, we design a logit annealing mechanism to modulate
the learning process, gradually reducing loss values of the
large-margin data points. Consequently, we propose a novel
loss function: the Logit Annealing (LA) loss. Let z = f(x)
represent the logits output by the neural network, and let y
be the one-hot encoding of the true label ¢t. We define the
LA loss as follows:

Lra(z,y) = —T(1 —p:)’ log (py),

where p = softmax(z}gy).

®
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Table 2. Improvements of LA and BRONet compared to LiResNet using diffusion data augmentation. The best results of each dataset are
marked in bold. Performance improvements and degradations relative to the baseline are marked in green and red, respectively.

Clean Certified Acc. (¢)

Datasets Methods Acc. 36 2 108

255 255 255

LiResNet 87.0 78.1 66.1 53.1
C(I_I:QDRI;/}(ZM) +LA 86.7 (-0.3) 78.1(+0.0) 67.0(+0.9) 54.2 (+1.1)
BRONet+LA 87.2(+0.2) 78.3(+0.2) 67.4(+1.3) 54.5(+1.4)

LiResNet 61.0 48.4 36.9 26.5
CI(E%RD&O?M) +LA 61.1 (+0.1) 48.9 (+0.5) 37.5(+0.6) 27.6(+1.1)
BRONet+LA  61.6 (+0.6) 49.1 (+0.7) 37.7 (+0.8) 27.2 (+0.7)

ImaceNet LiResNet 50.9 38.4 27.6 18.9
(+§];EDM2 M) +LA 51.0(+0.1) 394 (+1.0) 292 (+1.6) 20.6 (+1.7)
BRONet+LA 523 (+1.4) 40.7 (+2.3) 30.3(+2.7) 21.6 (+2.7)

The hyper-parameters temperature 7 and offset £ are
adapted from the loss function in Prach & Lampert| (2022])
for margin training. The term (1 — p;)?, referred to as
the annealing mechanism, draws inspiration from the Fo-
cal Loss (Lin et al., 2017). During training, the LA loss
initially promotes a moderate margin for each data point,
subsequently annealing the data points with large margins as
training progresses. Unlike the CR term, which encourages
aggressive margin maximization, our method employs a bal-
anced learning strategy that effectively utilizes the model’s
capacity, especially when it is limited. Consequently, the
LA loss allows Lipschitz models to learn an appropriate
margin for most data points. Appendix [C| provides more
details on the LA loss.

6. Experiments

In this section, we first evaluate the overall performance of
our proposed BRONet against the ¢y certified robustness
baselines. Next, to further demonstrate the effectiveness of
the BRO layer, we conduct fair and comprehensive evalua-
tions on multiple architectures for comparative analysis with
orthogonal and other Lipschitz layers in previous literature.
Lastly, we present the experimental results and analysis on
the LA loss. See Appendix [B]for implementation details.

6.1. Main Results

We compare BRONet to the current leading methods in
the literature. Figure 1| presents a visual comparison on
CIFAR-10. The circle size indicates the number of model
parameters. Furthermore, Table E] details the clean accuracy,
certified accuracy, as well as the total number of parame-
ters. For reference, we present the results of the proposed
BRONet both with and without the LA loss function. On
CIFAR-10 and CIFAR-100, our model achieves the best
clean and certified accuracy with the /s perturbation budget

¢ = 36/255. On the ImageNet dataset, our method achieves
state-of-the-art performance, highlighting its scalability. No-
tably, BRONets attain these results with a reasonable num-
ber of parameters. Additional results for the Tiny-ImageNet
experiments are provided in Appendix

6.2. Ablation Studies

Extra Diffusion Data Augmentation As demonstrated
in previous studies (Hu et al., 2024} [Wang et al.} [2023)), in-
corporating additional synthetic data generated by diffusion
models such as elucidating diffusion model (EDM) (Karras
et al., [2022) can enhance performance. We evaluate the
effectiveness of our method in this setting, using synthetic
datasets publicly released from |Hu et al.| (2024); Wang et al.
(2023)) for CIFAR-10 and CIFAR-100, which contain post-
filtered 4 million and 1 million images, respectively. For
ImageNet, we generate 2 million 512x512 images using
the script recommended by EDM2 with autoguidance (Kar{
ras et al., |2024bga)). Table E] presents the results, showing
that combining LA and BRO effectively leverages these
synthetic datasets to enhance performance.

Backbone Comparison As the improvements in the pre-
vious work by Hu et al.| (2024) primarily stem from us-
ing diffusion-generated synthetic datasets and architectural
changes, we conduct a fair and comprehensive comparison
of different Lipschitz convolutional layers using the default
LiResNet architecture (with Lipschitz-regularized convo-
lutional layers), along with LA and diffusion-based data
augmentation. The only modification is swapping out the
convolutional backbone layers. It is important to note that
for FFT-based orthogonal layers (excluding BRO), we must
reduce the number of backbone layers to stay within mem-
ory constraints. LOT has the fewest parameters due to its
costly parameterization. With half-rank parameterization
in BRO, the number of parameters for BRO, Cayley, and
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Table 3. Comparison of clean and certified accuracy using different Lipschitz convolutional backbones. The best results are marked in
bold. #Layers is the number of convolutional backbone layers, and #param. is the number of parameters in the constructed architecture.

Conv.

CIFAR-10 (+EDM)

CIFAR-100 (+EDM)

#Layers #Param.
Backbone Clean 28 T2 108 (Clean 28 T2 108
LOT 2 SOM 857 764 651 522 594 476 366 263
Cayley 6 68M 867 777 669 543 611 487 378 275
Cholesky 6 68M 854 76,6 657 533 594 474 36.8 26.9
SLL 12 83M 856 768 660 533 594 47.6 36.6 27.0
SOC 12 83M 86.6 782 67.0 54.1 60.9 489 37.6 27.8
Lip-reg 12 83M 86.7 78.1 67.0 542 61.1 489 375 27.6
BRO 12 68M 872 783 674 545 61.6 491 377 272

Table 4. Comparison of clean and certified accuracy with different orthogonal layers in LipConvNets (Depth-Width). Instances marked
with a dash (-) indicate out of memory during training. The best results with each model are marked with bold.

Model D-W  Layer CIFAR-I?O ' Tlny-Image7Net '
36 2 10 36 2 10

Clean 5o 555 355 Clean S5 555 55

SOC 47.5 347 240 159 38.0 26.5 17.7 113

(10-32) LOT 49.1 35,5 244 16.3 40.2 279 18.7 11.8

BRO 48.6 354 24.5 16.1 394 28.1 182 11.6

LipConvNet SOC 482 349 244 162 389 271 176 112
(+LA) (10-48) LOT 49.4 35.8 248 163 — — — —

BRO 49.4 36.2 249 16.7 40.0 28.1 189 123

SOC 48.5 35,5 244 163 39.3 273 17.6 11.2
(10-64) LOT 496 361 247 162 - - - -

BRO 49.7 36.7 25.2 16.8 40.7 284 19.2 125

Table 5. Ablation study on the components contributing to the
improvement on the ImageNet dataset.

Certified Acc. (¢)

LA Arch BRO (il‘c”’c‘“ % @ 108
255 255 255

X X X 473 353 251 169

VR X 478 366 267 187

V4 X 488 371 268 188

VA /493 376 279 196

Cholesky remain consistent, while SLL, SOC, and Lipschitz-
regularized retain the original number of parameters. The
results in Table [3]indicate that BRO is the optimal choice
compared to other layers in terms of overall performance.

LipConvNet Benchmark To further validate the effective-
ness of BRO, we evaluate it on LipConvNets, a standard
lightweight architecture widely used in the literature on
orthogonal layers. Table []illustrates the certified robust-
ness of SOC, LOT, and BRO layers. It is evident that the

LipConvNet constructed by BRO layers compares favor-
ably to the other orthogonal layers. Furthermore, due to
the nature of its low-rank parametrization property, BRO
layers require the fewest parameters and reasonable runtime.
Detailed comparisons are provided in Appendix

Improvement on ImageNet Compared to LiResNet on
ImageNet, we have made three key modifications: intro-
ducing the BRO convolutional layers, incorporating the LA
loss, and making an architectural adjustment—replacing
the 1-Lipschitz learnable downsampling layer with norm-
preserving ¢2-norm pooling. Table 5] presents the ablation
study on the components, demonstrating that the combina-
tion of all three components yields the best performance.

6.3. LA Loss Effectiveness

Table and[5]illustrates the performance improvements
achieved using the proposed LA loss. We also provide
extensive ablation experiments in Appendix [D.4]to validate
its effectiveness on LipConvNets. Our experiments show
that the LA loss promotes a balanced margin, especially for
models trained on more challenging datasets.
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Table 6. The statistics of certified radius distribution.

Loss Median Variance Skewness
CE 0.2577 0.0732 1.2114
CE+CR  0.2750 0.1000 1.4843
LA 0.2840 0.0797 1.0539
0.7
Training
0.6 1 — LA
— CE
3058 — CE+CR
o N
3 | ‘&Q\ Test
g 0.4 Ny ci LA
g 3y ---- CE
2 03 K ---- CE+CR
£
& 0.2
0.14
0.0 T T T T T T T
00 01 02 03 04 05 06 0.7 o038

Radius

Figure 3. Certified accuracy with respect to radius. The LA loss
helps learn appropriate margin.

To demonstrate that the LA loss enables learning an appro-
priate margin for most data points, we further investigate the
certified radius distribution. Following |Cohen et al.| (2019),
we plot the certified accuracy with respect to the radius on
CIFAR-100 to visualize the margin distribution in Figure 3]
The certified radius is proportional to the margin in Lips-
chitz models. Thus, the x-axis and y-axis can be seen as
margin and complementary cumulative distribution of data
points, respectively (Lecuyer et al.,[2019).

The results indicate that the number of data points with
appropriate margins increases, which is evident as the red
curve rises higher than the others at the radius between
[0.0,0.6]. Moreover, the clean accuracy, which corresponds
to certified accuracy at zero radius, is also observed to be
slightly higher. This suggests that the LA loss does not
compromise clean accuracy for robustness. To better charac-
terize the annealing mechanism, we analyze the distribution
of the certified radius across the data points, as shown in
Table[6] Compared to CR, the LA loss reduces both the pos-
itive skewness and variance of the distribution, indicating a
rightward shift in the peak and a decrease in the dispersion
of the radius. This suggests that LA loss helps mitigate the
issue of overfitting to certain data points and improves the
certified radius for most points. Additional experiments,
including ablation studies on BRO rank and the LA loss, are
presented in Appendix

7. Conclusion

In this paper, we introduce a novel BRO layer that fea-
tures low-rank parameterization and is free from iterative
approximations. As a result, it is both memory and time
efficient compared to existing orthogonal layers, making
it well-suited for integration into advanced Lipschitz ar-
chitectures. Furthermore, comprehensive experimental re-
sults have shown that BRO is one of the most promising
orthogonal convolutional layers for constructing expressive
Lipschitz networks. Next, we address the limited complex-
ity issue of Lipschitz neural networks and introduce the
new Logit Annealing loss function to help models learn
appropriate margins. Extensive experiments on CIFAR-10,
CIFAR-100, Tiny-ImageNet, and ImageNet validate the ef-
fectiveness of the proposed methods over existing baselines.
Moving forward, the principles and methodologies in this
paper could serve as a foundation for future research in
certifiably robust network design.

Acknowledgment

This work was supported in part by the National Science
and Technology Council (NSTC) under Grants NSTC 113-
2222-E-002-004-MY3, NSTC 113-2634-F-002-007, NSTC
113-2634-F-002-001-MBK, and NSTC 113-2923-E-002-
010-MY2, as well as by the Featured Area Research Center
Program within the Higher Education Sprout Project of the
Ministry of Education (Grant 1131.900903). In addition, we
thank the National Center for High-performance Computing
(NCHC) for providing computational and storage resources.
We also appreciate the constructive comments received from
anonymous reviewers, which substantially improved both
the clarity and depth of our presentation.

Impact Statement

This work aims to enhance the robustness and reliability
of deep neural networks, ultimately contributing to the de-
velopment of trustworthy Al systems. Consequently, it has
the potential for positive societal impact. However, we also
recognize two potential negative implications. The first con-
cern is adversarial misuse. While this method improves
the robustness and reliability of machine learning models,
there is a risk that it could be exploited for malicious pur-
poses. For example, more secure and robust models might
be weaponized in applications such as surveillance systems
or autonomous malicious agents. The second concern re-
lates to resource utilization. Although this method is more
memory-efficient than other approaches, the overall com-
putational and energy costs associated with large-scale de-
ployment still need to be considered, particularly in cloud
computing environments.



Enhancing Certified Robustness via Block Reflector Orthogonal Layers and Logit Annealing Loss

References

Achour, E. M., Malgouyres, F., and Mamalet, F. Existence,
stability and scalability of orthogonal convolutional neu-
ral networks. Journal of Machine Learning Research
(JMLR), 2022.

Anil, C., Lucas, J., and Grosse, R. Sorting out Lipschitz
function approximation. In International Conference on
Machine Learning (ICML), 2019.

Araujo, A., Havens, A. J., Delattre, B., Allauzen, A., and
Hu, B. A unified algebraic perspective on Lipschitz neu-
ral networks. In International Conference on Learning
Representations (ICLR), 2023.

Bartlett, P. L., Foster, D. J., and Telgarsky, M. J. Spectrally-
normalized margin bounds for neural networks. In

Advances in Neural Information Processing Systems
(NeurlIPS), 2017.

Béthune, L., Boissin, T., Serrurier, M., Mamalet, F.,
Friedrich, C., and Gonzalez Sanz, A. Pay attention to
your loss: understanding misconceptions about Lipschitz
neural networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.

In Advances in Neural Information Processing Systems
(NeurlPS), 2020.

Carlini, N. and Wagner, D. Audio adversarial examples:
Targeted attacks on speech-to-text. In IEEE security and
privacy workshops (SPW), 2018.

Chen, T., Zhang, Z., Liu, S., Chang, S., and Wang, Z. Ro-
bust overfitting may be mitigated by properly learned
smoothening. In International Conference on Learning
Representations (ICLR), 2021.

Chernodub, A. and Nowicki, D. Norm-preserving orthogo-
nal permutation linear unit activation functions (OPLU).
arXiv preprint arXiv:1604.02313, 2016.

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adversarial
robustness via randomized smoothing. In International
Conference on Machine Learning (ICML), 2019.

Croce, F. and Hein, M. Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free at-
tacks. In International Conference on Machine Learning
(ICML), 2020.

Das, N., Shanbhogue, M., Chen, S.-T., Hohman, F., Li,
S., Chen, L., Kounavis, M. E., and Chau, D. H. Shield:
Fast, practical defense and vaccination for deep learn-
ing using jpeg compression. In Proceedings of the 24th

10

ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD), 2018.

Dietrich, G. A new formulation of the hypermatrix
householder-QR decomposition. Computer Methods
in Applied Mechanics and Engineering, 9(3):273-280,
1976.

Dozat, T. Incorporating Nesterov momentum into Adam.
International Conference on Learning Representations
workshop (ICLR workshop), 2016.

Ehlers, R. Formal verification of piece-wise linear feed-
forward neural networks. In International Symposium
on Automated Technology for Verification and Analysis
(ATVA), 2017.

Engstrom, L., Ilyas, A., and Athalye, A. Evaluating and
understanding the robustness of adversarial logit pairing.
arXiv preprint arXiv:1807.10272, 2018.

Farnia, F., Zhang, J., and Tse, D. Generalizable adversar-
ial training via spectral normalization. In International
Conference on Learning Representations (ICLR), 2019.

Fazlyab, M., Robey, A., Hassani, H., Morari, M., and Pap-
pas, G. Efficient and accurate estimation of Lipschitz
constants for deep neural networks. In Advances in Neu-
ral Information Processing Systems (NeurIPS), 2019.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin,
C., Uesato, J., Arandjelovic, R., Mann, T., and Kohli,
P. On the effectiveness of interval bound propagation
for training verifiably robust models. arXiv preprint
arXiv:1810.12715, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV), 2015.

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang,
L., Chen, W, et al. Lora: Low-rank adaptation of large
language models. In International Conference on Learn-
ing Representations (ICLR), 2022.

Hu, K., Zou, A., Wang, Z., Leino, K., and Fredrikson, M.
Unlocking deterministic robustness certification on Im-
agenet. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

Hu, K., Leino, K., Wang, Z., and Fredrikson, M. A recipe
for improved certifiable robustness. In The Twelfth Inter-
national Conference on Learning Representations (ICLR),
2024.



Enhancing Certified Robustness via Block Reflector Orthogonal Layers and Logit Annealing Loss

Jain, A. K. Fundamentals of digital image processing.
Prentice-Hall, Inc., 1989.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
In Advances in Neural Information Processing Systems
(NeurlIPS), 2022.

Karras, T., Aittala, M., Kynkdinniemi, T., Lehtinen, J., Aila,
T., and Laine, S. Guiding a diffusion model with a bad
version of itself. In Advances in Neural Information
Processing Systems (NeurIPS), 2024a.

Karras, T., Aittala, M., Lehtinen, J., Hellsten, J., Aila, T.,
and Laine, S. Analyzing and improving the training
dynamics of diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024b.

Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., and
Jana, S. Certified robustness to adversarial examples with
differential privacy. In 2019 IEEE Symposium on Security
and Privacy (SP), 2019.

Ledoux, M. and Talagrand, M. Probability in Banach
Spaces: isoperimetry and processes. Springer Science &
Business Media, 2013.

Lee, M. and Kim, D. Robust evaluation of diffusion-based
adversarial purification. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV),
2023.

Leino, K., Wang, Z., and Fredrikson, M. Globally-robust
neural networks. In International Conference on Machine
Learning (ICML), 2021.

Li, L., Xie, T., and Li, B. Sok: Certified robustness for deep
neural networks. In 2023 IEEE symposium on security
and privacy (SP), 2023.

Li, Q., Haque, S., Anil, C., Lucas, J., Grosse, R. B., and
Jacobsen, J.-H. Preventing gradient attenuation in Lips-
chitz constrained convolutional networks. In Advances in
Neural Information Processing Systems (NeurlPS), 2019.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollar, P.
Focal loss for dense object detection. In Proceedings of
the IEEE International Conference on Computer Vision
(ICCV), 2017.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learn-
ing Representations (ICLR), 2018.

Mao, Y., Miiller, M., Fischer, M., and Vechev, M. Con-
necting certified and adversarial training. In Advances in
Neural Information Processing Systems (NeurIPS), 2023.

11

Meunier, L., Delattre, B. J., Araujo, A., and Allauzen, A.
A dynamical system perspective for Lipschitz neural net-
works. In International Conference on Machine Learning
(ICML), 2022.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Founda-
tions of machine learning. MIT press, 2018.

Mueller, M. N., Eckert, F., Fischer, M., and Vechev, M.
Certified training: Small boxes are all you need. In The
Eleventh International Conference on Learning Repre-
sentations (ICLR), 2023.

Miiller, J., Klein, R., and Weinmann, M. Orthogonal wasser-
stein gans. arXiv preprint arXiv:1911.13060, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information
Processing Systems (NeurlPS), 2019.

Prach, B. and Lampert, C. H. Almost-orthogonal layers for
efficient general-purpose Lipschitz networks. In Euro-
pean Conference on Computer Vision (ECCV), 2022.

Prach, B., Brau, F., Buttazzo, G., and Lampert, C. H. 1-
Lipschitz layers compared: Memory, speed, and certifi-
able robustness. arXiv preprint arXiv:2311.16833, 2023.

Qi, H., You, C., Wang, X., Ma, Y., and Malik, J. Deep
isometric learning for visual recognition. In International
Conference on Machine Learning (ICML), 2020.

Samangouei, P., Kabkab, M., and Chellappa, R. Defense-
gan: Protecting classifiers against adversarial attacks us-
ing generative models. In International Conference on
Learning Representations (ICLR), 2018.

Schonemann, P. H. A generalized solution of the orthogonal
procrustes problem. Psychometrika, 31(1):1-10, 1966.

Schreiber, R. and Parlett, B. Block reflectors: Theory and
computation. SIAM Journal on Numerical Analysis, 25
(1):189-205, 1988.

Shafahi, A., Najibi, M., Ghiasi, M. A., Xu, Z., Dickerson,
J., Studer, C., Davis, L. S., Taylor, G., and Goldstein,
T. Adversarial training for free! In Advances in Neural
Information Processing Systems (NeurlIPS), 2019.

Shi, Z., Wang, Y., Zhang, H., Kolter, J. Z., and Hsieh, C.-J.
Efficiently computing local Lipschitz constants of neural
networks via bound propagation. In Advances in Neural
Information Processing Systems (NeurIPS), 2022.

Singla, S. and Feizi, S. Fantastic four: Differentiable bounds
on singular values of convolution layers. In International
Conference on Learning Representations (ICLR), 2021a.



Enhancing Certified Robustness via Block Reflector Orthogonal Layers and Logit Annealing Loss

Singla, S. and Feizi, S. Skew orthogonal convolutions. In
International Conference on Machine Learning (ICML),
2021b.

Singla, S. and Feizi, S. Improved techniques for determin-
istic 12 robustness. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Singla, S., Singla, S., and Feizi, S. Improved deterministic
12 robustness on CIFAR-10 and CIFAR-100. In Interna-
tional Conference on Learning Representations (ICLR),
2022.

Szegedy, C., Zaremba, W., Sutskever, 1., Bruna, J., Erhan,
D., Goodfellow, 1., and Fergus, R. Intriguing proper-
ties of neural networks. In International Conference on
Learning Representations (ICLR), 2014.

Trockman, A. and Kolter, J. Z. Orthogonalizing convolu-
tional layers with the Cayley transform. In International
Conference on Learning Representations (ICLR), 2021.

Tsuzuku, Y., Sato, I., and Sugiyama, M. Lipschitz-margin
training: Scalable certification of perturbation invariance
for deep neural networks. In Advances in Neural Infor-
mation Processing Systems (NeurlPS), 2018.

Virmaux, A. and Scaman, K. Lipschitz regularity of
deep neural networks: analysis and efficient estimation.
In Advances in Neural Information Processing Systems
(NeurlIPS), 2018.

Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M.
Yolov7: Trainable bag-of-freebies sets new state-of-
the-art for real-time object detectors. arXiv preprint
arXiv:2207.02696, 2022.

Wang, R. and Manchester, I. Direct parameterization of
Lipschitz-bounded deep networks. In International Con-
ference on Machine Learning (ICML), 2023.

Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh,
C.-J., and Kolter, J. Z. Beta-crown: Efficient bound
propagation with per-neuron split constraints for neural
network robustness verification. In Advances in Neural
Information Processing Systems (NeurlIPS), 2021.

Wang, Z., Pang, T., Du, C., Lin, M., Liu, W., and Yan, S.
Better diffusion models further improve adversarial train-
ing. In International Conference on Machine Learning
(ICML), 2023.

Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S., and
Pennington, J. Dynamical isometry and a mean field
theory of cnns: How to train 10,000-layer vanilla convo-
lutional neural networks. In International Conference on
Machine Learning (ICML), 2018.

12

Xu, X., Li, L., and Li, B. Lot: Layer-wise orthogonal
training on improving 12 certified robustness. In Advances
in Neural Information Processing Systems (NeurlPS),
2022.

Yang, G., Duan, T., Hu, J. E., Salman, H., Razenshteyn,
I, and Li, J. Randomized smoothing of all shapes and
sizes. In International Conference on Machine Learning
(ICML), 2020.

Yu, T., Li, J., Cai, Y., and Li, P. Constructing orthogo-
nal convolutions in an explicit manner. In International
Conference on Learning Representations (ICLR), 2022.

Zhang, H., Wang, S., Xu, K., Li, L., Li, B., Jana, S.,
Hsieh, C.-J., and Kolter, J. Z. General cutting planes
for bound-propagation-based neural network verification.
In Advances in Neural Information Processing Systems
(NeurlIPS), 2022.

Zhang, M., Lucas, J., Ba, J., and Hinton, G. E. Lookahead
optimizer: k steps forward, 1 step back. In Advances in
Neural Information Processing Systems (NeurIPS), 2019.



Enhancing Certified Robustness via Block Reflector Orthogonal Layers and Logit Annealing Loss

Appendix

Table of Contents
|A° BRO Layer Analysis| 14
|A.1  Proof of Proposition|l| . . . . . . . . .. 14
IA.2° Proof of Proposition|2| . . . . . . . .. 15
|A.3  Implementation Details and Analysis of Semi-Orthogonal Layer| . . . . . ... .. ... .. ... ... 16
|A.4  'The Implementation and Effect of Zero-padding| . . . . . . . . .. ... ... ... .. ... ... ..., 17
1A.5  Complexity Comparison of Orthogonal Layers| . . . . . .. ... ... ... ... .. .. ... ... 17
[B~ Tmplementation Details| 20
IB.1  Computational Resources| . . . . . . . . . . . . . e 20

B.6 lable[2l Details|

ID Additional Experiments| 28
ID.1 Additional Tiny-ImageNet Results for Table 1) . . . . . . . ... .. .. ... .. . ... . 28
ID.2° Empirical Robustness|. . . . . . . . . .. 28
ID.3 BRO Rank-n Ablation Experiments| . . . . . ... ... ... .. ... ... ... .. 28
ID.4 LA Loss Ablation Experiments|. . . . . . . . . . . .. 29
ID.5 LA Loss Hyper-parameters Experiments| . . . . . . ... ... ... ... ... ... ... ....... 29
ID.6  LipConvNet Ablation Experiments|. . . . . . . ... ... ... ... ... ... .. .. ........ 30
ID.7Instability of LOT Parameterization| . . . . . . . . . . .. ... . .. 30

[E_Timitafions| 32

13



Enhancing Certified Robustness via Block Reflector Orthogonal Layers and Logit Annealing Loss

A. BRO Layer Analysis
A.1. Proof of Proposition

Proposition 1. Ler V' € R™*™ be a matrix of rank n, and, without loss of generality, assume m > n. Then the
parameterization W = I — 2V (VTV)=YVT satisfies the following properties:

1. W is orthogonal and symmetric, i.e., WT =W and WTW = I.

2. W is an n-rank perturbation of the identity matrix, i.e., it has n eigenvalues equal to —1 and m — n eigenvalues equal
to 1.

3. W degenerates to the negative identity matrix when V' is a full-rank square matrix.

Proof. Assuming V is as defined in Proposition[I} the symmetry of this parameterization is straightforward to verify. The
orthogonality of W, however, requires confirmation that the following condition is satisfied:

WWwT =1 -2vvTV)= v (1 - 2v(VTV)~tv T
= —2v(VITV)"lvT)y1 —2v(VvTV)~tvT)
=1 —4v(VTV)y" T pavvTvy-tvTyvvtv)y-tyT
=T —4av(vVTv)"WWT 1av(vTv)-tvT

=T ©
Next, define S = {v1,vs,--- ,v,} as the set of column vectors of V. Let ¢; denote the i-th standard basis vector in R".
Then, we have
Wu; = (I =2V(VIV)7 VT,

=v; = 2V(VITV) "1V Ty,

=v; = 2V(VTV) "L (VTVe)

=0 —2V(VIV)"L(VTV)e;

=wv; — 2Ve;

=V; — 2'UZ' = —;. (10)
For the vectors in the orthogonal complement of S, denoted by .S 1= {Vn+1,Unt2, "+ ,Um}, We have

Wu; = (I =2V(VIV) "'V, = ;. (an

The equality holds because, for all v; € S+, we have VT v; = 0.

Therefore, the eigenspace corresponding to eigenvalue —1 is spanned by S, while the eigenspace corresponding to eigenvalue
1 is spanned by S*.

Assume V is a full-rank square matrix, which implies that V' is invertible. Thus:
W=I1-2v(viv)~tvT
=1 -2vv-ivh)~tyT
=1-2]
=1 (12)

Thus, the proof is complete. O
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A.2. Proof of Proposition 2]

Before providing a rigorous mathematical proof, we first outline the intuitive rationale. To demonstrate that BRO convolution
is orthogonal, we show that each component in the convolution pipeline is orthogonal. This pipeline comprises three
orthogonal transformations:

1. Fourier Transform: Transforms the input from the spatial domain to the Fourier domain.
2. BRO Matrix Multiplications: Applies the Block Reflector Orthogonal (BRO) matrices in the Fourier domain.

3. Inverse Fourier Transform: Converts the output back to the spatial domain.

Consequently, the input undergoes a sequence of orthogonal operations, ensuring norm preservation. Importantly, an
essential part of the analysis is the application of the 2D convolution theorem, which establishes an equivalence between
convolution in the spatial domain and pointwise multiplication in the Fourier domain.

Proposition 2. Leth( = FFT(X) € C®**** and V= FFT(V) € CeX"**5, the proposed BRO convolution Y =
FFTl(Y), where K,i,j = VV:,:,i,jX:,i,j and W:,:ﬂ‘,j =1- 2‘/:7!,’i7j(‘/:i,i,j‘/:7:7i7j)_1‘/:?<:,i,j> is a real, orthogonal multi-
channel 2D circular convolution.

Proof. To establish the results of Proposition 2] we first present several supporting lemmas.

Lemma 1. (2D convolution theorem) Let X, W € R**% and F' € R*** be the DFT matrix. Then, X = FFT(X)=FXF,
i.e., the DFT is applied to the rows and columns of X. In addition, let the 2D circular convolution of X with W be
convy (X) € R**2. It follows that

WoX=FWF®FXF = Feonvy (X)F,

where © is the element-wise product.

Next, we introduce the multi-channels 2D circular convolution. Following [Trockman & Kolter| (2021)), we flatten the
four-dimension tensors into matrices to facilitate the analysis. Let an input image with ¢;, input channels represent
X € Re*$X5 it can be vectorized into X = [vecT (X1), ..., vecT (X, )]T € R%**. Similarly, the vectorized output is
Y = [vecT (Y1), ...,vecT (Y., )]' € Reu«5” Then, we have a 2D circular convolution operation with C € Rus”Xcns” gych
that ) = CX. Note that C has cout X ¢in blocks with size s2 x s2.

Lemma 2. (Trockman & Kolter, 2021, Corollary A.1.1) If C € R Couts” X ins” represents a 2D circular convolution with ci,
input channels and co.x output channels, then it can be block diagonalized as

]:

Cout

CF: =D, (13)

where Fo = Sc o2 (I. @ (F ® F)), S¢ 52 is a permutation matrix, I, is the identity matrix of order k, and D is block
diagonal with s? blocks of size cout X Cin. Note that & is the Kronecker product.
Lemma 3. Consider J € CP*? as a unitary matrix. Define V and V such that V.= JV.J*, where V. € RP*P and
V € CP*P. Let BRO(V) = I — 2V (V*V)~V* be our parameterization. Then,

BRO(V) = JBRO(V)J*. (14)

Proof. Assume J and V are as defined in Lemma[3] Then
J*BRO(V)J = J*(I =2V (VTV)~tvT)J
=T = 2(J* JVI)(JVVI) Y IV*T* )
=T = 2VJ)[(JV*VI)LIV™)
=1 -2V (V*V)"lv* ()
= BRO(V).
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The equality at (x) holds because
(VV) L= T JVV )T
O

We begin the proof under the assumption that the number of input channels equals the number of output channels, i.e.,
Cin = Cout = ¢. According to Lemma the stacked weight matrix C € Reous”xcns” can be diagonalized as follows:

C=F'DF,. (15)

where F and F, are unitary matrices, and D is a block diagonal matrix.

Note that since D is block diagonal, the BRO transformation of D can be expressed as:
BRO(D) = BRO(D;) @ BRO(Ds) @ - - - & BRO(D,z),

where @ denotes the direct sum. This is because each block Dy, for k = 1, ..., s? is independently transformed by the BRO
operation. Additionally, because the original weight matrix C is real, the BRO convolution BRO(C) remains real as well.

Applying Lemma [3|on Equation 5] we consider a real vectorized input X'. The output of the BRO convolution is given by:
Y =BRO(C)X = F:BRO(D).F.X. (16)

This ensures that ) is real. Consequently, Algorithm[I]is guaranteed to produce a real output when given a real input X

Finally, the orthogonality of the BRO convolution operation BRO(C) can be derived as follows. Since both F* and F, are
unitary matrices (Trockman & Kolter, 2021), and BRO(D) is unitary as well, the composition of these unitary operations
preserves orthogonality.

Thus, we have established that the BRO convolution operation, BRO(C), is both orthogonal and real, thereby completing the
proof of Proposition 2]

O

A.3. Implementation Details and Analysis of Semi-Orthogonal Layer

To derive the parameterization of semi-orthogonal matrices, we first construct an orthogonal matrix W and then truncate
it to the required dimensions. Specifically, for BRO convolution, let the input and output channel sizes be c¢j, and coy,
respectively. Define ¢ = max(cou, ¢in). For each index i and j, we parameterize V.., j € C*™ as W, . ; ; € C®*¢, which
is then truncated to WCW“:CM-J € Clouxtin,

In the following, we provide the detailed analysis about semi-orthogonal BRO layers, which can be categorized into two
types: dimension expanding layers and dimension reduction layers. To facilitate understanding, we begin with the dense
version of BRO (a single 2D matrix).

For a expanding layer constructed with W & Réouxdin wwhere di, < doy, it satisfies the condition WTW = [ d,,- Since the
condition is equivalent to ensure that the columns are orthonormal, the norm of a vector is preserved when projecting onto
its column space, which means |[Wz|| = ||z|| for every = € R, thus, ensures 1-Lipschitz property.

For a reduction layer constructed with W € R%u*dn where di, > doy, it satisfies the condition WW7T = T, do- Unlike
expanding layers, the columns of W in reduction layers cannot be orthonormal due to the dimensionality constraint
din > dow. Consequently, we have the following relationship for every x € R%, |[Wz|| < ||z||. The equality holds if x
lies entirely within the subspace spanned by the rows of W. In general, reduction layers do not preserve the norm of input
vectors. However, they remain 1-Lipschitz bounded, ensuring that the transformation does not amplify the input norm.

The same principles apply to BRO convolution. The primary difference between the dense and convolution versions of BRO
layers arises from the dimensions they are applied to. Therefore, the results discussed for BRO dense layers also hold for
BRO convolution layers. Figure ] visualizes BRO convolution under three different dimensional settings, illustrating the
behavior of channel-expanding and channel-reduction operations in convolutional contexts.
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Figure 4. Visualization of BRO convolution for different ¢i, and cou:.

A.4. The Implementation and Effect of Zero-padding

Following , we apply zero-padding on images X € R¢***?, creating Xp5q € R~ (s+2K") % (s+2K) " pefore
performing the 2D FFT. After applying FFT ™', we obtain Yoaa € R (s+2k")x(s+2K")  from which the padded pixels are
removed to restore the original dimensions of X, resulting in Y € R¢***#_ This approach leverages zero-padding to alleviate
the effect of circular convolution across edges, which empirically improves performance. Note that the orthogonalized
kernel will be a sparse s + 2k’ kernel with values propagated from the original % size kernel. Since circular convolution is
applied to the entire image, including the zero-padded regions of X4, these padded areas can acquire information from the
central spatial region. As norm preservation only holds for || X|| = || Xpad|| = ||¥pad||, removing pixels from Y,,q will cause
a slight norm drop. Importantly, it does not affect the validity of the certified results, as neither zero-padding nor the removal
of padded parts expands the norm or violates the 1-Lipschitz bound.

For the BRONet architecture on ImageNet, we retain the padded regions in the output. Empirically, we found this beneficial,
as it preserves more information from the feature map. We compensate for the resulting size increase by using a larger
down-sampling stride in the neck module. For other datasets, we remove the padded regions to keep the input and output
feature maps the same size. Further architectural implementation details are provided in Appendix B}

A.5. Complexity Comparison of Orthogonal Layers

In this section, we demonstrate the computational and memory advantages of the proposed method by analyzing its
complexity compared to prior work. We use conventional notation from [Prach et al.| (2023). We focus on algorithmic
complexity and required memory, particularly in terms of multiply-accumulate operations (MACs). The detailed complexity
comparison is presented in Table 8]

The analysis has two objectives: input transformation and parameter transformation. The computational complexity and
memory requirements of the forward pass during training are the sum of the respective MACs and memory needs. The
backward pass has the same complexity and memory requirements, increasing the overall complexity by a constant factor.
In addition to theoretical complexity, we report the practical time and memory usage for different orthogonal layers under
various settings in Figure 5| and Figure [f]
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Figure 5. Demonstration of the runtime and memory consumption under different settings with LipConvNet architecture. The notation s
denotes the input size, init denote the initial channel of the the entire model, and k denotes the kernel size. The batch sizes are fixed at 512
for all plots, and each value is the average over 10 iterations.
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Figure 6. Demonstration of the runtime and memory consumption under different settings with LipConvNet architecture. For each line,
we keep the input size s fixed while varying the initial channel. The batch sizes are fixed at 512 for all plots, and each value is the average
over 10 iterations.

In the following analysis, we consider only dimension-preserving layers, where the input and output channels are equal,
denoted by c. Define the input size as s X s X ¢, the batch size as b, the kernel size as k£ x k, the number of inner iterations
of a method as ¢, and the rank-control factor for BRO as k, as listed in Table m To simplify the analysis, we assume
¢ > log,(s). Under the PyTorch (Paszke et al.,[2019) framework, we can also assume that rescaling a tensor by a scalar and
adding two tensors do not require extra memory during back-propagation.

Standard Convolution In standard convolutional layers, the computational complexity of the input transformation is
C = bs%c?k? MACs, and the memory requirement for input and kernel are M = bs?c and P = c*k?, respectively.
Additionally, these layers do not require any computation for parameter transformation.

SOC For the SOC layer, ¢t convolution iterations are required. Thus, the input transformation requires computation
complexity and memory ¢ times that of standard convolution. For the parameter transformation, a kernel re-parameterization
is needed to ensure the Jacobian of the induced convolution is skew-symmetric. During training, the SOC layer applies
Fantastic Four (Singla & Feizi,2021a) technique to bound the spectral norm of the convolution, which incurs a cost of 2kt
The memory consumption remains the same as standard convolution.

LOT The LOT layer achieves orthogonal convolution via Fourier domain operations. Applying the Fast Fourier Transform
(FFT) to inputs and weights has complexities of O(bes? log(s?)) and O(c?s? log(s?)), respectively. Subsequently, s> matrix
orthogonalizations are required using the transformation V(VTV)’%. The Newton Method is employed to find the inverse
square root. Specifically, let Yo = VTV and Z, = I, then Y; is defined as

1
Yir = 3YiBI = ZY),  Zip = 5 81— Z.Y)) Zi. (17)

1
2
This iteration converges to (VI'V)~ 7, Executing this procedure involves computing 4s%t matrix multiplications, requiring
about 4s2c® MACs and 4s?c*t memory. The final steps consist of performing bs® matrix-vector products, requiring
$bs?c? MACs, as well as the inverse FFT. Given our assumption that ¢ > log(s?), the FFT operation is dominated by
other operations. Considering the memory consumption, LOT requires padding the kernel from a size of ¢ X ¢ X k x k to
¢ X ¢ x s X s, requiring bs?c?> memory. Additionally, we need to keep the outputs of the FFT and the matrix multiplications
in memory, requiring about 452t memory each.

BRO Our proposed BRO layer also achieves orthogonal convolution via Fourier domain operations. Therefore, the input
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Table 7. Notation used in this section.

Notation Description

batch size
kernel size
input/output channels
input size (resolution)
number of internal iterations
Rank-Control factor for BRO

P S S

Table 8. Computational complexity and memory requirements of different methods. We report multiply-accumulate operations (MACS)
as well as memory requirements for batch size b, input size s X s X ¢, kernel size k X k and number of inner iterations ¢ for SOC and LOT,
rank-control factor k € [0, 1] for BRO. We denote the complexity and memory requirement of standard convolution as C' = bs?c?k?,
M = bs?c, and P = ¢?k?, respectively.

Method Input Transformations Parameter Transformations

MACS O(-) Memory MACS O(-) Memory O()

Standard C M - P

SOC Ct Mt A2kt P
LOT bs?c? 3M 4s%c3t 452t
Cayley  bs%c? 2.5M s2c3 1.552c2
BRO bs2c? 2.5M s2ck 252¢?

transformation requires the same computational complexity as LOT. However, by leveraging the symmetry properties of
the Fourier transform of a real matrix, we reduce both the memory requirement and computational complexity by half.
During the orthogonalization process, only %sg are addressed. The low-rank parameterization results in a complexity
of approximately s?cx and memory usage of %32 c?. Additionally, we need to keep the outputs of the FFT, the matrix

inversion, and the two matrix multiplications in memory, requiring about %.920215 memory each.

Cayley Like BRO, the Cayley layer achieves orthogonal convolution in the Fourier domain and leverages real-matrix
symmetry to reduce the input-transformation memory. Thus, its input-transformation complexity and memory match those
of BRO. Its parameter-transformation, however, has complexity s%c® with memory usage of $s?c?. Additionally, we need
to keep the outputs of the FFT, the matrix inversion, and the single matrix multiplications in memory similarly demands
about $s?c?t each.

B. Implementation Details

In this section, we will detail our computational resources, the architectures of BRONet and LipConvNet, rank-n configura-
tion, hyper-parameters used in LA loss, and experimental settings.

B.1. Computational Resources

Most of the experiments are conducted on a computer with an Intel Xeon Gold 6226R processor and 192 GB of DRAM
memory. The GPU we used is the NVIDIA RTX A6000 (10,752 CUDA cores, 48 GB memory per card). For CIFAR-10
and CIFAR-100, we used a single A6000 card for training. For Tiny-ImageNet and diffusion data augmentation on
CIFAR-10/100, we utilized distributed data parallel (DDP) across two A6000 cards for joint training. For the two ImageNet
experiments in Table 1] they are conducted on an 8-GPU (NVIDIA H100) machine.

B.2. Architecture Details

The proposed BRO layer is illustrated in Figure[/] In this paper, we mainly use the BRO layer to construct two different
architectures: BRONet and LipConvNet. We will first explain the details of BRONet, followed by an explanation of
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W=I-2vWTy)"vT

Figure 7. The proposed Block Reflector Orthogonal (BRO) convolution kernel, which is an orthogonal matrix, employs Fourier transfor-
mation to simulate the convolution operation. This convolution is inherently orthogonal and thus 1-Lipschitz, providing guarantees for
adversarial robustness.

MaxMin LLN

32x32x3 = 16x16x64 - 8x8x128 - ... 2 1x1x1024

Figure 8. Following [Trockman & Kolter|(2021); Singla & Feizi| (2021b); | Xu et al.|(2022), we use the proposed orthogonal convolution
layer to construct the LipConvnet. This figure illustrates the LipConvnet-5, which cascades five BRO convolution layers. The activation
function used is the MaxMin function, and the final layer is the last layer normalization (LLN).

LipConvNet constructed using the BRO layer.

BRONet Architecture We design our architecture BRONet similar to SLL and LiResNet. It consists of a stem layer
for image-to-feature conversion, several convolutional backbone blocks of same channel width for feature extraction, a
neck block for down-sampling and converting feature maps into flattened vectors, and multiple dense blocks followed by a
spectral normalized layer (Singla et al.| [2022)). For non-linearity, MaxMin activation is used.

Compared to LiResNet with Lipschitz-regularized (Lip-reg) convolutional backbone blocks and SLL with SDP-based
1-Lipschitz layers, BRO orthogonal backbone blocks stabilize the gradient norm due to the property of orthogonal layers.
We keep the first few layers (the first stem layer for all datasets and six extra layers for ImageNet) in BRONet to be
Lipschitz-regularized since we empirically find it benefits the model training with a more flexible Lipschitz control in the
early layers.

Figure[9)illustrates the details of the BRONet architecture, which is comprised of several key components:

» Stem: This consists of an unconstrained convolutional layer that is Lipschitz-regularized during training. The width W
is the feature channel dimension, which is an adjustable parameter. For the ImageNet architecture, we extend the stem
layer with six unconstrained Lipschitz-regularized convolution layers of same channel width, which we empirically
found beneficial for feature extraction.

* Backbone: This segment consists of L BRO convolutional blocks with channel width W, each using k = 3 kernels
and constrained to be 1-Lipschitz. Before applying BRO parameterization, we apply a fixed identity residual re-
parameterization to the unconstrained parameter V: V « I 4 %V, where [ is the identity convolutional kernel and «
is a learned scalar. This implementation is adapted from LiResNet (Hu et al., | 2023;2024), which was designed as a
training trick for normalization-free networks. We also found it to be empirically effective in our setting.

* Neck: This consists of a convolutional down-sampling layer followed by a dense layer, which reduces the feature
dimension. For the convolutional layer, we follow LiResNet (Hu et al.,[2024)) to construct a 1-Lipschitz matrix with
dimension (cou, cin ¥ k?) and reshape it back to (cou, Cin, &, k). It is important to note that while the reshaped kernel
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Figure 9. Following the LiResNet architecture (Leino et al.|[2021} |Hu et al.| | 2023), we utilized the BRO layer to construct BRONet. The
parameters L, W, and D can be adjusted to control the model size.

differs from the orthogonal convolution described in BRO convolutional layer, it remains 1-Lipschitz bounded due to
being non-overlapping (stride = kernel size k) (Tsuzuku et al.,2018). For the ImageNet architecture, we replace the
learnable convolution layer with ¢5-norm patch pooling, which is a norm-preserving nonlinear pooling layer that we
found to work better on the ImageNet benchmark. Furthermore, as we do not remove the 2k’ padded regions for the
ImageNet zero-padding implementation (discussed in[A.4), the output feature map size for each BRO convolutional
layer increases. Consequently, we use a larger down-sampling stride to keep the feature map the same size before
flattened.

* Dense: D BRO or Cholesky-orthogonal (Hu et al.,2024) dense layers with width 2048 are appended to increase the
network’s depth and enhance the model capability. The identity re-parameterization that is used in the backbone is also
applied here with L replaced by D.

* Head: The architecture concludes with an LLN (Last Layer Normalization) layer, an affine layer that outputs the
prediction logits.

We can use the W, L, and D to control the model size.
LipConvNet Architecture

This architecture is utilized in orthogonal neural networks such as SOC and LOT. The fundamental architecture, LipConvNet,
consists of five orthogonal convolutional blocks, each serving as a down-sampling layer. The MaxMin or householder
(Singla et al.| 2022)) activation function is employed for activation, and the final layer is an affine layer such as LLN. Figure[§]
provides an illustration of LipConvNet. To increase the network depth, dimension-preserving orthogonal convolutional
blocks are added subsequent to each down-sampling block; thus, the depth remains a multiple of five.

We use the notation LipConvNet-depth-width to describe the configurations. For example, LipConvNet-10-32 indicates a
network with 10 convolutional layers and an initial channel width of 32, consisting of five downsampling semi-orthogonal
layers and five dimension-preserving orthogonal layers.
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B.3. Architecture and Rank-n Configuration

As mentioned in Section for BRO layers with dimension d,y = di, = m, we explicitly set the unconstrained parameter
V' to be of shape m x n with m > n to avoid the degenerate case. An ablation study on the effect of different choices of
rank-n is presented in Appendix [D.3]

BRONet

We set n = m/4 for the BRONet-M backbone and dense layers on CIFAR-10/100 and set n = m /8 for the BRONet on
Tiny-ImageNet. For all other BRONet experiments, we use n = m /2 for the BRO backbone and use Cholesky-orthogonal
dense layers. For CIFAR-10/100, BRONet is configured with L12W512D8, and L6W512D4 for Tiny-ImageNet. For the
ImageNet architecture, BRONet is configured with L14W588D8, with six Lipschitz-regularized layers and eight BRO
convolutional layers. Specific architecture details are presented in Appendix[B.2]

LipConvNet

For LipConvNet, we set n = m/8 for all experiments.

B.4. LA Hyper-parameters

Unless otherwise specified, the LA loss hyperparameters are set to 7' = 0.75, £ = 2, and 8 = 5.0. For LipConvNet
experiments, ¢ is set to 21/2. These hyperparameters were selected based on an ablation study conducted on LipConvNet.
Please see Appendix [D.5]for details.

B.5. Table [] Details

Mainly following (Hu et al., 2024)), we use NAdam (Dozat, 2016) and the LookAhead Wrapper (Zhang et al., 2019) with an
initial learning rate of 10~2, batch size of 256, and weight decay of 4 x 10~°. The learning rate follows a cosine decay
schedule with linear warm-up during the first 20 epochs, and the model is trained for a total of 800 epochs. We combine the
LA loss with the EMMA (Hu et al.,2023)) method to adjust non-ground-truth logit values for Lipschitz regularization on the
stem layer. The target budget for EMMA is set to e = 108/255 and offset for LA is set to £ = 2. For ImageNet experiments,
the batch size is set to 1024, with EMMA target budget ¢ = 72/255, and trained for a total of 400 epochs. Weight decay is
removed for the ImageNet setting as we empirically found it hurt model performance. To report the results of LiResNet (Hu
et al.,[2024)), we reproduce the results in the same setting without diffusion data augmentation for fair comparison. The
experimental results are the average of three runs. For other baselines, results are reported as found in the literature.

B.6. Table 2] Details

In this table, we utilize diffusion-synthetic datasets pubicly available from (Hu et al.l|2024; |Wang et al.| [2023)) for CIFAR-10
and CIFAR-100, which contain 4 million and 1 million images, respectively. Following (Hu et al.| [2024), we augment each
256 size minibatch with 1:3 real-to-synthetic ratio, resulting in a total batch size of 1024. We have removed weight decay, as
we observed it does not contribute positively to performance with diffusion-synthetic datasets. For the ImageNet dataset, we
generate 2 million images using the best setting recommended EDM?2 with autoguidance [Karras et al.|(2024bja), and use
batch size 512 augmented with 1:1 real-to-synthetic ratio, resulting in a total batch size of 1024. All other settings remain
consistent with those in Table/[Il

B.7. Table[3 Details

The settings are consistent with those in Table[2] where we use the default architecture of LiResNet (L12W512D8), LA loss,
and diffusion data augmentation. We replace the convolutional backbone for each Lipschitz layer.

B.8. Table [ Details

Following the training configuration of |Singla & Feizi| (2021b), we adopt the SGD optimizer with an initial learning rate of
0.1, which is reduced by a factor of 0.1 at the 50-th and 150-th epochs, over a total of 200 epochs. Weight decay is set to
3 x 1074, and a batch size of 512 is used for the training process. The architecture is initialized with initial channel sizes of
32, 48, and 64 for different rows in the table. The LA loss is adopted for training.
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C. Logit Annealing Loss Function

In this section, we delve into the details of the LA loss. Initially, we will prove Theoremm which illustrates the lower bound
of the empirical margin loss risk. Next, we will visualize the LA loss and its gradient values. Additionally, we will discuss
issues related to the CR term used in the SOC and LOT frameworks. Lastly, we will thoroughly explain the annealing
mechanism.

C.1. Proof of Theorem 1

Here, we explain Theorem [T} which demonstrates how model capacity constrains the optimization of margin loss. The
margin operation is defined as follows:

My = f(z) - r]giff(x)k. (18)

This operation is utilized to formulate margin loss, which is employed in various scenarios to enhance logit distance and
predictive confidence. The margin loss can be effectively formulated using the ramp loss (Bartlett et al.,[2017), which offers
an analytic perspective on margin loss risk. The ramp loss provides a linear transition between full penalty and no penalty
states. It is defined as follows:

0 if f(x); — maxg: f(a)r > T,

er,ramp(fv €, y) =41 if f(x)t — MaXp£t f(x)k <0,

1— f(m)"_maf’”“f(z)’“ otherwise.

We employ the margin operation and the ramp loss to define margin loss risk as follows:

Rr(f) = E(lrramp(M(f (2),9))), (19)
Re(f) = 3 g (MU (22), ), 0)

where R (f) denotes the corresponding empirical margin loss risk. According toMohri et al.|(2018), a risk bound exists for
this loss:

Lemma 4. (Mohri et al.} 2018, Theorem 3.3) Given a neural network f, let T denote the ramp loss. Let F represent the
function class of f, and let Rg(.) denote the Rademacher complexity. Assume that S is a sample of size n. Then, with
probability 1 — §, we have:

R In(1/6
Ro(f) < Ro (1) + 205 (Fr) + 3¢/ 200, @
Next, apply the following properties for the prediction error probability:
P. =Pr [arg max f(z); # y} = Pr[-M(f(z),y) = 0] (22)
= E1[M(f(z),y) < 0] (23)
< E(lrramp (M (f (2),))) (24)

where P, is the prediction error probability. Assuming that the P, is fixed but unknown, we can utilize Lemma [ and
equation [23]to prove Theorem [T}

Ro(f) 2 P~ 2s(F) - 3y M),

(26)

This suggests that the lower bound for the margin loss risk R, (f) may be influenced by the complexity of the model.
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Figure 10. Comparison of three loss functions. The x-axis is p:. This figure displays curves representing the behavior of the proposed LA
loss, contrasted with cross-entropy loss and the Certificate Regularization (CR) term. We observe the discontinuous gradient of the CR
term. Additionally, the gradient of the CR term tends to infinity as p; approaches one, leading to gradient domination and subsequently
hindering the optimization of other data points. In contrast, the proposed LA loss employs a different strategy, where the gradient value
anneals as nears one. This prevents overfitting and more effectively utilizes model capacity to enhance learning across all data points.

C.2. CR Loss Risk

Next, we illustrate and prove the relationship between margin loss risk and the CR loss risk. Let the empirical CR loss risk
be defined as follows:

Ren(f) = 3 =y max(M(f (), ),0). @)

Proposition 4. Let R¢ r(f) and 7A27( ) be the empirical CR loss risk and margin loss risk, respectively. Assume that
T =sup; My (z;) and v = 1/1. Then, Rcr(f) is R.(f) decreased by one unit:

Rer(f) =R-(f) ~ 1. (28)
Proof. (Proof for Proposition 4)) Consider two cases based on the value of M (z):

* When M(x) < 0: the CR loss is always zero and the ramp loss is always one. Thus, the distance between Rer(f)
and R (f) is one.

* When M (x) > 0: The distance between the ramp loss and CR loss is:

ey (M (20, 92)) + 7 max(MF (i), 0) = 1~ P84 paa)
= 14 (= M) (29)
Therefore, the empirical CR loss risk can be rewritten as:
Ron(f) = Re(f) =1~ (v = DMy, where (30)
My = Zme{ziw(.@i»o} M(@i). D
This equation simplifies to the one stated in Propositionif y=1/7. O
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Figure 11. CR Loss Landscape Analysis. This figure illustrates the loss landscape to investigate the effects of the CR term. Notably, the
CR term can suddenly become “activated” or “deactivated,” which is vividly depicted in the landscape transitions. These abrupt changes
contribute to unstable optimization during training, potentially affecting the convergence and reliability of the model. Understanding this
behavior is crucial for improving the training process of Lipschitz neural networks. Regarding the direction of loss landscape, we follow
the setting in|Engstrom et al.|(2018) and [Chen et al.|(2021). We visualize the loss landscape function z = Lor(x, w + widi + wads),
where d1 = sign(VwLcr), d2 ~ Rademacher(0.5), and w is the grid.

Conclusively, we demonstrate that the CR loss risk has a lower bound as follows:

In(1/9)

2n

When the complexity is limited, CR loss risk may exhibit a great lower bound. Thus, enlarging margins using the CR term is
less beneficial beyond a certain point.

Rer(f) > Pe — 2Ws(F,) — 3 -1 (32)

C.3. CR Issues

Recall that CE loss with CR term is formulated as: Lcg — v max(Mf(x),0), where My () = f(x); — maxgzs f()y is
the logit margin between the ground-truth class ¢ and the runner-up class. We compare LA loss, CE loss, and the CE+CR
loss with v = 0.5. Figure [I0]illustrates the loss values and their gradient values with respect to p;, where p; represents the
softmax result of the target logit. When using CR term as the regularization for training Lipschitz models, we summarize
the following issues:

(1). Discontinuous loss gradient: the gradient value of CR term at p; = 0.5 is discontinuous This discontinuity leads to
unstable optimization processes, as shown in Figure[I0} This indicates that, during training, the CR loss term may be
“activated” or “deactivated.” This phenomenon can be further explored through the loss landscape. Figure [TT|displays
the CR loss landscape for the CR term, where it can be seen that the CR term is activated suddenly. The transition is
notably sharp.

(2). Gradient domination: as p; approaches one, the gradient value escalates towards negative infinity. This would temper
the optimization of the other data points in the same batch.

(3). Imbalance issue: our observations indicate that the model tends to trade clean accuracy for increased margin, suggesting
a possible imbalance in performance metrics.
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Figure 12. Histogram of margin distribution. The left histogram represents margin distribution obtained from the training set, while the
right histogram shows margin distribution from the test set. The x-axis represents the margin values. These visualizations demonstrate
that the LA loss helps the model learn better margins.

Table 9. Additional results on Tiny-ImageNet. No additional diffusion-generated synthetic datasets are used during training.

Clean Certified Acc. (¢)

Datasets Models #Param. Acc. 36 72 108
255 255 255

SLL X-Large (Araujo et al.||2023) llB 321 232 168 120

Sandwich (Wang & Manchester}[2023) 39M 334 24.7 18.1 134

Tiny-ImageNet LiResNet! (Hu et al|/2024) 133M 409 262 157 89
BRONet 75M 40.5 269 17.1 10.1

BRONet (+LA) 75M 412 29.0 19.0 12.1

Therefore, instead of using the CR term to train Lipschitz neural networks, we design the LA loss to help Lipschitz models
learn better margin values.

C.4. Annealing Mechanism

We can observe the annealing mechanism in the right subplot of Figure[I0} The green curve is the gradient value of the LA
loss. We can observe that the gradient value is gradually annealed to zero as the p; value approaches one. This mechanism
limits the optimization of the large-margin data points. As mentioned previously, Lipschitz neural networks have limited
capacity, so we cannot maximize the margin indefinitely. Since further enlarging the margin for data points with sufficiently
large margin is less beneficial, we employ the annealing mechanism to allocate the limited capacity for the other data points.

In addition, we delve deeper into the annealing mechanism of the proposed LA loss function. As illustrated in Figure [T2] we
train three different models using three loss functions, and we plot the histogram of their margin distribution. The red curve
represents the proposed LA loss. Compared to CE loss, the proposed LA loss has more data points with margins between
0.4 and 0.8. This indicates that the annealing mechanism successfully improves the small-margin data points to appropriate
margin 0.4 and 0.8.

Additionally, as the left subplot in Figure[T2]illustrates, the margin exhibits an upper bound; no data points exceed a value of
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Table 10. The clean, certified, and empirical robust accuracy of BRONet-M on CIFAR-10, CIFAR-100, and Tiny-ImageNet.

Clean Certified / AutoAttack (¢)
Datasets Ace. 36 12 108
255 255 255
CIFAR-10 81.1 69.9/76.1 553/69.7 40.4/62.6
CIFAR-100 543 40.0/47.3 28.7/41.0 19.4/35.5

Tiny-ImageNet  41.0  29.2/36.3 19.7/31.7 12.3/27.5

2.0, even when a larger v is used in the CR term.

This observation coincides with our theoretical analysis, confirming that the Lipschitz models cannot learn large margins
due to its limited capacity.

Table 11. The clean accuracy, empirical accuracy against £, adversary, and certified accuracy on CIFAR-10.
Methods Clean (., =2/255 (£, = 8/255 Certified Acc.

STAPS 79.8 65.9 N/A 62.7 (boo = 2/255)
SABR 79.5 65.8 N/A 62.6 ({5, = 2/255)
IBP 48.9 N/A 354 35.3 (U, = 8/255)
TAPS 49.1 N/A 34.8 34.6 ({s = 8/255)
SABR 52.0 N/A 35.7 35.3 (U = 8/255)

70.6 ({2 = 36/255)
BRONet-L.  81.6 68.8 21.0 57.2 (¢ = 72/255)

42.5 (02 = 108/255)

D. Additional Experiments

In this section, we present additional experiments and ablation studies.

D.1. Additional Tiny-ImageNet Results for Table 1

We present additional results on the Tiny-ImageNet dataset in Table[9] The model configuration is described in Appendix[B.J]
and the training setting is consistent with CIFAR-10/100 in Table 1.

D.2. Empirical Robustness

In addition to certified robustness, we can validate the empirical robustness of the proposed method. This further supports our
robustness certificate. Theoretically, certified robust accuracy is the lower bound for the worst-case accuracy, while empirical
robust accuracy is the upper bound for the worst-case accuracy. Thus, empirical robust accuracy must be greater than certified
robust accuracy. We employ AutoAttack (Croce & Heinl [2020) to assess empirical robustness. The certified and empirical
robust accuracy for different attack budgets are illustrated in Table We observe that all empirical robust accuracy values
for each budget are indeed higher than their corresponding certified accuracy. This indicates that the certification is correct
under the AutoAttack, and that the proposed method achieves strong empirical robustness without any expensive adversarial
training examples. Furthermore, we also measure ¢, empirical robustness against £, AutoAttack on CIFAR-10. The results
are presented in Table and the baselines for ¢, certified defenses are from the literature (Mueller et al.l 2023; Mao et al.,
2023)). Although not designed for /., certified robustness, our method shows competitive performance on the benchmark.

D.3. BRO Rank-n Ablation Experiments

As mentioned earlier, we can control the rank of V' to construct the orthogonal weight matrix. In this paper, the matrix V' is
of low rank. Considering the internal term V (V7 V)~1VT in our method’s parameterization, the concept is similar to that of
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Table 12. We compare the clean accuracy, certified accuracy, and training time for different choices of n for the unconstrained parameter
V" on CIFAR-100 with BRONet L6W256D4 and L6W512D4. Time is calculated in minutes per training epoch.

L6W256D4 L6W512D4
n Clean 2% 72 108 Time Clean 25 .2 198 Time
m/8 51.6 392 283 195 0.66 52.8 40.2 28.6 20.3 1.57
m/4 52.8 395 279 19.7 0.73 54.0 40.2 283 19.3 1.92
m/2 534 390 273 185 094 54.1 39.7 277 186 2.82
3m/4 52.7 395 28.0 19.2 1.27 53.5 398 279 189 3.75

Table 13. The improvement of LA loss with LipConvNet-10-32 on different datasets.

36 72 108
Datasets Loss Clean 555 285 955

CE 775 621 448 29.2
LA 769 634 472 326

CE 48.5 341 226 144
LA 48.6 354 245 16.1

CE 380 263 17.0 103
LA 394 281 182 11.6

CIFAR-10

CIFAR-100

Tiny-ImageNet

LoRA (Hu et al., [2022). We further investigate the effect of different n values of V. For the unconstrained m x n parameter
V in the backbone and dense blocks of BRONet, we conduct experiments using different n values. The clean and certified
accuracy, as well as training time, on CIFAR-100 are presented in Table Different values of n result in slight variations
in performance, with n = m/2 yielding the best results. Therefore, we choose n = m/4 for all CIFAR-10/CIFAR-100
experiments on BRONet-M, and n = m /2 for BRONet-L and ImageNet. For Tiny-ImageNet, we set n = m/8 to mitigate
overfitting.

D.4. LA Loss Ablation Experiments

We verify the LA loss on LipConvNet constructed using BRO, LOT, or SOC. Table[I3]illustrates the improvement achieved
by replacing the CE+CR loss, which is initially recommended for training LipConvNet. The results suggest that using the LA
loss improves the performance of LipConvNet constructed with all orthogonal layers on both CIFAR-100 and Tiny-ImageNet.

We also compare LA to CE on LipConvNet. Table[T3]shows the results for LipConvNet constructed with BRO. Our results
show that the LA loss encourages a moderate margin without compromising clean accuracy. Notably, the LA loss is more
effective on larger-scale datasets, suggesting that the LA loss effectively addresses the challenge of models with limited
Rademacher complexity.

D.5. LA Loss Hyper-parameters Experiments

There are three tunable parameters in LA loss: temperature 7', offset £, and annealing factor 3. The first two parameters
control the trade-off between accuracy and robustness, while the last one determines the strength of the annealing mechanism.
For the temperature and offset, we slightly adjust the values used in |[Prach & Lampert| (2022) to find a better trade-off
position, given the differences between their network settings and ours. Specifically, we evaluated the temperature
T € {0.25,0.5,0,75,1.0}, the offset £ € {0.5,1.0,1.5,2.0,2.5,3.0}, and the annealing factor § € {1,3,5,7} with
LipConvNet-10-32 on CIFAR-100. Based on the evaluation, all other LA experiments are set with 7' = 0.75,£ = 2.0, and
B = 5.0. For further LipConvNet experiments, the offset is set to £ = 2+/2 due to an oversight in the implementation. As
we have found these hyper-parameters to work well, we did not further finetune them for each architecture and datasets to
save computational cost. One might consider further refine the hyper-parameters for better performance. Additionally, we
present the results of LA loss with different /3 values for LipConvNet-10 on CIFAR-100 in Table[T4]

29



Enhancing Certified Robustness via Block Reflector Orthogonal Layers and Logit Annealing Loss

Table 14. Experimental results for LipConvNet-10 on CIFAR-100 for different values of (3 in the LA loss.

36 72 108
255 255 255

1 48.63 3548 2436 17.19
3 48.57 35.68 2478 16.66
5 49.09 3558 2446 16.38
7 49.02 3572 2434 16.05

£ value Clean

Random Initialized Trained
—— Average Condition Number 103 —— Average Condition Number
1031 Max Condition Number Max Condition Number
---- Ideal Condition Number ---- ldeal Condition Number
5 204.2 0.3
£ 102 A .
S 1024
4
_5 27.0 269 269 269 269 269
= 4 6 1.9 118 11.8 11.8 11.8 11.8
S 101 10
2.4 2.3 2.3 2.3 2.3 2.3 1.8 1.8 1.8 1.8 1.8 1.8
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Number of Newton Iterations Number of Newton Iterations

Figure 13. Plots of condition number of parameterized matrix in Fourier domain. The left plot shows the condition number with randomly
initialized parameters, whereas the right plot shows the condition number with trained parameters.

D.6. LipConvNet Ablation Experiments

More detailed comparison stem from Table [ are provided in Table [I5] demonstrating the efficacy of LA loss across
different model architectures and orthogonal layers. Following the same configuration as in Table[d] we further investigate
the construction of LipConvNet by conducting experiments with varing initial channels and model depths, as detailed in
Table

D.7. Instability of LOT Parameterization

During the construction of the LOT layer, we empirically observed that replacing the identity initialization with the common
Kaiming initialization for dimension-preserving layers causes the Newton method to converge to a non-orthogonal matrix.
We check orthogonality by computing the condition number of the parameterized matrix of LOT in the Fourier domain. For
an orthogonal layer, the condition number should be close to one. However, even after five times the iterations suggested by
the authors, the result for LOT does not converge to one. Figure@]illustrates that, even with 50 iterations, the condition
number of LOT does not converge to one. The orange curve represents the case with Kaiming randomly initialized
parameters, while the blue curve curve corresponds to the case after a few training epochs. Both exhibit a significant gap
compared to the ideal case, indicating that LOT may produce a non-orthogonal layer.

30



Enhancing Certified Robustness via Block Reflector Orthogonal Layers and Logit Annealing Loss

Table 15. Comparison of clean and certified accuracy, training and inference time (seconds/epoch), and number of parameters with
different orthogonal layers in LipConvNet-10. Instances marked with a dash (-) indicate out of memory during training. In the Time
column, we show the training time, and the inference time is in brackets. Time is calculated in minutes per training epoch.

Init. CIFAR-100 Tiny-ImageNet

; Method
Width cthods 36 72 108 36 72 108
255 255 255 255 255 255
SOC+CR 481 343 235 156 192 374 262 173 112 1077
LA 475 347 240 159 (.3) 380 265 177 113 (11D

32 LOT+CR 488 348 236 158 527 387 268 174 113 2915
LA 491 355 244 163 ((1.4) 402 279 187 118 (7.3)

BRO+CR 484 347 236 154 173 385 271 17.8 117 986
LA 486 354 245 161 (09 394 281 182 116 (4.6)

SOC+CR 484 349 237 159 354 382 266 173 11.0 1993
LA 482 349 244 162 &7 389 271 176 112 (20.3)

48  LOT+CR 493 353 242 163 1430 - - - -
LA 494 358 248 163 (.0 - - - - )

BRO+CR 494 357 245 163 352 389 272 180 116 1969
LA 494 362 249 167 (1.1) 400 281 189 123 (4.8)

SOC+CR 484 348 241 160 53.1 386 269 173 11.0 305.1
LA 485 355 244 163 (124) 393 273 176 112 (32.5)

64 LOT+CR 494 354 244 163 301.8 - - - - )
LA 496 361 247 162 (5.8 - - - -

BRO+CR 497 356 245 164 644 396 279 182 119 3553
LA 497 367 252 168 (1.6) 407 284 192 125 (49)

Clean Time Clean Time

Table 16. The experiments conducted with varying initial widths and model depths using the CIFAR-100 and Tiny-ImageNet datasets.
The model employed is LipConvNet.

Init. CIFAR-100 Tiny-ImageNet
Depth Width 36 72 108 36 72 108
Clean 255 255 255 Clean 255 255 255
32 49.04 35.06 24.19 16.06 39.28 2747 1823 11.47
5 48 49.60 35.80 24.63 1620 40.12 27.79 1836 11.92

64 4997 36.21 2492 1645 40.82 28.26 18776 12.31

32 48.62 3536 2448 16.11 3937 28.06 18.16 11.58
10 48 49.39 36.19 24.86 16.68 3998 28.12 18.86 12.27
64 49.74 36.70 2524 16.80 40.66 28.36 19.24 12.48

32 48.59 3551 2442 1628 39.20 27.66 18.08 11.84
15 48 49.37 36.50 2493 16.81 39.87 2796 1849 12.11
64 4991 36.57 2526 16.81 4038 28.73 18.78 12.52

32 48.62 35.68 24.66 1657 3874 27.23 1775 11.67
20 48 49.26 36.09 2491 16.62 39.63 27.88 1849 12.07
64 49.60 36.47 2524 17.09 39.77 28.03 1853 12.17
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E. Limitations

While our proposed methods have demonstrated improvements across several metrics, the results for large perturbations,
such as e = 108/255, are less consistent. Additionally, the proposed LA loss requires extra hyperparameter tuning. In
our experiments, the parameters were chosen based on LipConvNets trained on CIFAR-100 without diffusion-synthetic
augmentation (Appendix [B.4), which may not fully align with different models and datasets. Furthermore, our methods are
specifically designed for /5 certified robustness, and certifying against attacks like £,,-norm introduces additional looseness.
Lastly, although BRO addresses some limitations of orthogonal layers, training certifiably robust models on large datasets
remains computationally expensive.
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