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Abstract

State-of-the-art KBQA models assume answer-
ability of questions. Recent research has
shown that while these can be adapted to de-
tect unaswerability with suitable training and
thresholding, this comes at the expense of
accuracy for answerable questions. We pro-
pose a new model for KBQA named RetinaQA
that is robust against unaswerability. It uses
discrimination instead of generation to bet-
ter identify questions that do not have valid
logical forms. Additionally, it complements
KB-traversal based logical form retrieval with
sketch-filling based logical form construction.
This helps with questions that have valid logi-
cal forms but no data paths in the KB leading to
an answer. We demonstrate that RetinaQA sig-
nificantly outperforms adaptations of state-of-
the-art KBQA models across answerable and
unanswerable questions. Remarkably, it also
establishes a new state-of-the art for answer-
able KBQA by surpassing existing models.

1 Introduction

The problem of natural language question answer-
ing over knowledge bases (KBQA) has received a
lot of interest in recent years (Saxena et al., 2022;
Zhang et al., 2022; Mitra et al., 2022; Wang et al.,
2022; Das et al., 2022; Cao et al., 2022; Ye et al.,
2022; Chen et al., 2021; Das et al., 2021; Shu et al.,
2022; Gu et al., 2023), where natural language
questions are answered over a structured knowl-
edge base, most commonly via producing formal
queries or logical forms that are then executed over
the knowledge base to retrieve the answers. All
existing models for KBQA assume answerability
of questions over the given KB. However, this is
an unrealistic assumption, since user queries are
typically agnostic of the underlying KB, which are
typically incomplete. While specialized models for
handling unanswerability have been proposed for
other question answering tasks (Rajpurkar et al.,
2018; Choi et al., 2018; Reddy et al., 2019; Sulem

et al., 2022; Raina and Gales, 2022), there is no
such model for KBQA.

A recent study proposed a benchmark dataset
called GrailQAbility (Patidar et al., 2023), which
adapts the GrailQA dataset (Gu et al., 2021) to
incorporate different categories of unanswerable
questions, and proposes the task of detecting unan-
swerabilty while answering KB questions. This
work also demonstrated the challenges involved
in this task. The state-of-the-art KBQA models
naturally perform poorly for unanswerable ques-
tions. This performance improves with appropriate
adaptation for unaswerability, namely (a) training
by including unanswerable questions along with
answerable ones, and (b) thresholding to separate
the two question categories. However, both types
of adaptation significantly hurt performance for
answerable questions. Additionally, different state-
of-the-art models struggle with different categories
of unaswerability. Some struggle with questions
for which schema elements (i.e. relations or entity
types) are missing in the KB and which therefore
do not have valid logical forms. Others struggle
with questions for which data elements (i.e. entities
or facts) are missing in the KB and which there-
fore have logical forms that are valid but return
empty answers. This highlights the importance
of rethinking KBQA architectures that are robust
against different categories of unanswerability.

Based on our analysis of state-of-the-art KBQA
models, we develop a few key insights about
KBQA with unanswerability. First, good model
calibration is crucial for separating questions that
are answerable (having a valid logical form) and
those that are unanswerable due to missing schema
elements (not having a valid logical form). Sec-
ondly, while KB traversal-based retrieval is useful
for identifying candidate logical forms for answer-
able questions, this fails when relevant data ele-
ments are missing in the KB, but a valid logical
form exists. Detecting this type of unanswerability



requires traversal-free logical form construction.

Based on these insights, we propose a new
multi-staged RETrleve, geNerate and rAnk model
for KBQA which is robust against unanswerabil-
ity named RetinaQA. Based on our observation
that discriminative approaches are better calibrated
than generative ones, instead of generating logi-
cal forms, RetinaQA discriminates between can-
didate logical forms. This helps in better iden-
tification of questions with missing schema ele-
ments and therefore no valid logical forms. To
identify candidate logical forms, RetinaQA com-
plements KB-traversal based retrieval with sketch-
filling based construction, which generates KB-
independent sketches and then grounds these by
directly retrieving schema elements relevant for
the question. This enables identification of logi-
cal forms for questions with missing data elements
and therefore no connected path in the KB. Inter-
estingly, these architectural choices help for an-
swerable questions as well. Discriminative scoring
of syntactically and semantically valid candidates
leads to clearer separation between correct and in-
correct logical forms.

RetinaQA brings together and adapts ideas
from different KBQA architectures for robust
KBQA over answerable and unanswerable ques-
tions. While traversal based retrieval (Ye et al.,
2022; Chen et al., 2021; Shu et al., 2022) and
sketch-filling (Cao et al., 2022; Ravishankar et al.,
2022; Li et al., 2023) has been in use in KBQA for
in-domain and transfer settings respectively, this
is the first model that recognizes the simultaneous
need for both styles for handling unanswerability
and unifies these in a single architecture. Also,
while step-by-step discrimination has been recently
proposed for KBQA (Gu et al., 2023), this is the
first model that discriminates between fully formed
logical forms as the final stage.

Using experiments over GrailQAbility, we
demonstrate that RetinaQA significantly outper-
forms adaptations of multiple state-of-the-art
KBQA models that assume answerability, not only
across different categories of unanswerable ques-
tions, but also for answerable questions. We
also demonstrate the advantages of RetinaQA
for KBQA in general by outperforming existing
KBQA models to establish a new state-of-the-art
on the GrailQA dataset.

2 Related Work

The predominant approach for KBQA is to con-
struct logical forms based on the question which are
then executed to retrieve answers (Cao et al., 2022;
Ye et al., 2022; Chen et al., 2021; Das et al., 2021).
State-of-the-art models involve a KB traversal-
based retrieval stage, that retrieves k-hop data paths
from linked entities in the question (Ye et al., 2022;
Shu et al., 2022). Some models instead (Chen
et al., 2021) or additionally (Shu et al., 2022) re-
trieve schema elements (namely entity types and
relations) based on the question. These are used
to generate the target logical form. These archi-
tectures are completely dependent on KB-traversal
for creating input context for logical form genera-
tion. In contrast to this generative style, Pangu (Gu
et al., 2023) uses language models to incrementally
evaluate and discriminate between partial logical
forms. We are not aware of any approach that
performs one-shot discrimination on fully-formed
logical form candidates as the final stage.

In addition to iid settings, transfer (Cao et al.,
2022; Ravishankar et al., 2022) and few-shot (Li
et al., 2023) settings has also been studied for
KBQA. Here, test questions involve KB relations
and entity types unseen during training. These ap-
proaches use the notion of generalizable sketches
(also called drafts or skeletons) that capture the
syntax of the target language. Such sketches are
first generated and then filled in with KB-specific
arguments to construct complete programs, which
are then scored and ranked. Notably, these transfer
architectures do not involve any traversal based
component to retrieve logical forms.

Unanswerability and specialized models for de-
tecting unanswerable questions have been studied
for different question answering tasks (Rajpurkar
et al., 2018; Choi et al., 2018; Reddy et al., 2019;
Sulem et al., 2022; Raina and Gales, 2022). How-
ever, no specialized models have been proposed
for detecting unanswerable questions in KBQA.
All existing KBQA models assume that questions
have valid logical forms with non-empty answers.
Even in the transfer setting for KBQA (Cao et al.,
2022; Ravishankar et al., 2022), questions are still
assumed to be answerable in the target domain
though the logical forms may involve schema ele-
ments unseen during training. Recent work (Pati-
dar et al., 2023) has proposed the GrailQAbility
benchmark by modifying the popular GrailQA
dataset (Gu et al., 2021) to incorporate various cat-
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Figure 1: Model Architecture. Here L refers to the predicted logical form.

egories of unanswerable questions. This work also
demonstrates the shortcomings of loose adaptions
of existing KBQA models that assume answerabil-
ity for the detecting unanswerable questions.

3 Problem and Solution

We first briefly define the KBQA with unanswer-
ability task and then describe the architecture of
our proposed model RetinaQA.

3.1 KBQA with Unanswerability

A Knowledge Base GG consists of a schema S with
data D stored under it. The schema consists of
entity types 7' and binary relations R defined over
pairs of types. Together we refer to these as schema
elements. The data D consists of entities E as in-
stances of types 7, and facts F' C F x R x E.
Together, we refer to these as data elements. We
follow the definition of Patidar et al. (2023) for
defining the task of Knowledge Base Question An-
swering (KBQA) with unanswerability. A natural
language question ¢ is said to be answerable for
a KB G if it has a corresponding logical form !
which when executed over GG returns a non-empty
answer A. In contrast, a question ¢ is unanswerable
for G, if it either (a) does not have a correspond-
ing logical form that is valid for G, or (b) it has a
valid logical form [ for G, but which on executing
returns an empty answer. The first case indicates
that G is missing some schema element necessary
for capturing the semantics for g. The second case

indicates that the schema S is sufficient for ¢, but
G is missing some necessary data elements for an-
swering it. In the KBQA with unanswerability task,
given a question g, if it is answerable, the model
needs to output the corresponding logical form [
and the non-empty answer A entailed by it, and if
it is unanswerable, the model either needs to output
NK (meaning No Knowledge) for the logical form,
or a valid logical form ! with NA (meaning No
Answer) as the answer. While different formalisms
have been proposed for logical forms, we use s-
expressions (Gu et al., 2021). These have set-based
semantics and functions with arguments and return
values as sets.

3.2 The RetinaQA Model

At a high level, RetinaQA has two stages - logi-
cal form enumeration, followed by logical form
ranking. For logical form enumeration, RetinaQA
follows two complementary approaches and then
takes the union. The first is KB-traversal based
retrieval. Starting from linked entities in the ques-
tion, RetinaQA traverses KB paths and transforms
these to logical forms. The second is sketch-filling
based construction, which is critical when the KB
has missing data elements for the question. Here,
RetinaQA first generates logical form sketches
corresponding to the question, and then enumer-
ates semantically valid groundings for these by
retrieving relevant KB schema elements for filling
in the sketch arguments. Once candidate logical
forms are so identified, RetinaQA uses discrim-



inative scoring to rank these logical forms with
respect to the question. We next explain each of
these components in more detail.

Entity Linker: The pipeline starts with linking
mentioned entities in the question with KB entities
E. This is required for both logical form retrieval
and logical form construction. We use an off-the-
shelf entity linker (Ye et al., 2022) previously used
in the KBQA literature (Shu et al., 2022; Gu et al.,
2023). More details are in the Appendix. If the
mentioned entities are missing in the KB, the entity
linker returns an empty set.

Logical Form Retriever: As the first approach
to enumerating logical forms, RetinaQA uses KB
path traversal (Ye et al., 2022). RetinaQA traverses
2-hop paths starting from the linked entities and
transform these to logical forms in s-expression.
These logical forms are then scored according to
their similarity with the question and the top-10
logical forms are selected for the next stage. Fol-
lowing (Ye et al., 2022), we score a logical form [
and question q as:

s(l,q) = LINEAR(BERTCLS([l;¢])) (1)
and optimize a contrastive objective for ranking:

B exp(s(l*, q))
exp(s(I*,q)) + ZleL/\lﬂ* exp(s(l, q))

2)
where [* is the gold-standard logical form for ¢ and
L is the set of logical forms similar to [*. Note
than the transformation to logical forms from KB-
paths only covers certain operators (such as count),
but not some others (such as argmin, argmax), so
that this enumeration approach is not guaranteed to
cover all logical forms. Note also that this approach
will not retrieve the correct logical form when ¢
has a valid logical form, but no connected data path
leading to an answer.

[fret =

Logical Form Constructor: The second ap-
proach used by RetinaQA for logical form enu-
meration is sketch-filling. Drawing inspiration
from the transfer approaches for KBQA (Cao et al.,
2022; Ravishankar et al., 2022; Li et al., 2023),
RetinaQA uses logical form sketches, which cap-
ture KB-independent syntax of s-expressions with
functions, operators and literals, and replace KB-
specific elements, specifically entities, entity types
and relations, with arguments. RetinaQA first gen-
erates sketches using a sketch generator, then di-

rectly retrieves schema relevant elements as can-
didates for arguments using a schema retriever,
and finally fills in arguments for each candidate
sketch using the retrieved argument candidates in
all possible valid ways using a logical form inte-
grator. Since this style bypasses data-path based
KB-retrieval this can construct valid logical forms
when these exist, even when some relevant data
element for the question is missing in the KB.

Sketch Generator: The sketch generator takes
the question q as input and outputs a sketch s, opti-
mizing a cross-entropy-based objective:

n
Lsketch = - Z IOg(p(St‘S<tu Q))
t=1

Specifically, we fine-tune T5 (Raffel et al., 2020)
- a transformer-based Seq2Seq model. Constraint
decoding is performed during inference to ensure
the syntactic correctness of the generated sketch.

Schema Retriever: To retrieve candidate ar-
guments for generated sketches, we follow the
schema retriever pipeline of TIARA (Shu et al.,
2022). (Note that TIARA does not have a sketch
generator, but instead uses retrieved schema ele-
ments as input to a logical form generator.) It
works very similarly to the logical form retriever,
only working with schema elements instead of log-
ical forms. It uses the form of Eqn.1 to score a
schema element x and the question ¢, and uses a
loss similar to Eqn.2 for optimization. We train
two retriever models, one for relations and one for
types, and use the top-10 types and top-10 relations
as candidate arguments for each question.

Logical form Integrator: This component
grounds the generated candidate sketches using the
retrieved candidate arguments and also the linked
entities to construct complete logical form candi-
dates. Each candidate sketch is grounded using
every possible combination of arguments. A sym-
bolic checker is used to ensure type-level validity of
the grounded logical forms for the KB G. This also
avoids a combinatorial blow-up and restricts the
space of logical form candidates. This component
does not involve any trainable parameters.

Logical Form Discriminator: Here, RetinaQA
considers the union of logical form candidates from
the retriever and constructor components and fi-
nally scores and ranks these. A TS encoder-decoder
model is trained to compute scores. We follow
(Zhuang et al., 2022), question and logical form



with a separator are fed into the encoder and then
we use decoding probability over special token ! as
ranking score. It uses a contrastive learning based
optimisation objective similar to Eqn.2. We per-
form random negative sampling. Generally the set
of negative candidates is very small hence for most
of the questions negative samples cover entire nega-
tive candidate set. For a test question, the candidate
logical forms are ranked according to the predicted
discriminator scores. If the score of top-ranked
candidate is below a threshold (tuned on validation
set), it classified as unanswerable i.e. [ =NK. Oth-
erwise the top ranked candidate is predicted as the
logical form. This helps in identifying questions
for which valid logical forms do not exist due to
missing schema elements. Our experiments sug-
gest that this also helps in separating correct and
incorrect logical forms for answerable questions.

4 Experiments

We address the following research questions: (1)
How does RetinaQA compare against existing
KBQA approaches, in settings that have both an-
swerable and unanswerable questions, and also in
those that have only answerable questions? (2)
How does RetinaQA perform for different cate-
gories of unanswerable questions, i.e., those that
are unanswerable due to missing schema elements,
and those with missing data elements? (3) What
are the individual contributions of various model
components in RetinaQA towards its performance
in the above two questions?

4.1 Experimental Setup

Datasets: We experiment on two datasets,
GrailQA (Gu et al., 2021), and GrailQAbility (Pati-
dar et al., 2023). GrailQA is a popular KBQA
dataset, but it contains only answerable questions.
It has 64,331 questions and their associated logical
forms. The background KB is Freebase. It con-
tains questions at various levels of generalization:
iid (seen schema elements), compositional (unseen
combination of seen schema elements) and zero-
shot (unseen schema elements). The most complex
questions can have multiple operators and up to
4 relations. GrailQAbility is a recent dataset that
adapts GrailQA to additionally incorporate unan-
swerable questions. The unanswerable questions
are constructed by systematically dropping data

'We use < extra_id_6 > token of T5 for tuning ranking
score.

and schema elements such as facts, entities, rela-
tions and types from the GrailQA KB.

Evaluation Metrics: We primarily focus on evalu-
ating the logical form using the Exact Match (EM)
metric, which verifies whether the model-generated
logical form is same as the gold logical form (which
is NK for unanswerable questions with missing
schema element). We also evaluate the answers
using the F1 score, which compares the model gen-
erated answers with the gold answers. For unan-
swerable questions, similar to prior work (Patidar
et al., 2023), we report two F1 scores — the strict
score compares the list of answers based on the
given incomplete KB, and the lenient score accepts
an answer even if it is absent from the given KB,
but was present in the original GrailQA KB.

Baselines: We compare RetinaQA against ex-
isting state-of-the-art KBQA models, as per the
GrailQA leaderboard and code availability. These
are TIARA (Shu et al., 2022), RnG (Ye et al.,
2022), and Pangu (Gu et al., 2023). Of these, the
first two are shown to the best performing models
on GrailQAbility, and Pangu is a SOTA model for
GrailQA.? For fair comparison, all models use the
same entity linker (Ye et al., 2022) and T5-base as
base LLM. For GrailQAbility, we adapt all models
appropriately for answerability detection. Specifi-
cally, we perform thresholding (denoted as "+T")
on entity disambiguation and logical form gener-
ation to output NK. The thresholds are tuned on
the dev set. Additionally, we train the models us-
ing both answerable and unanswerable questions
(denoted as A+U training vs A training). Further
implementation details are in appendix.

4.2 Results on GrailQAbility

Table 1 reports aggregate performance on GrailQA-
bility. With A+U Training, RetinaQA+T outper-
forms all models overall and is about 9 pct points
ahead of the closest competitor (Pangu+T) in term
of EM. For unanswerable questions, RetinaQA
achieves a 16 pct points improvement, while be-
ing consistently better at answerable questions also.
Unsurprisingly, thresholding helps all models for
unanswerable questions and hurts slightly for an-
swerable ones. This drop is relatively small for
Pangu and RetinaQA, suggesting that they are bet-
ter calibrated due to their discriminative training.
Table 2 drills down on performance for different
categories of unanswerability. First, we observe

2https ://dki-lab.github.io/GrailQA/
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Train Model Overall Answerable Unanswerable

F1(L) FI(R) EM F1(L) FI(R) EM F1(L) FI(R) EM

RnG 67.8 65.6 51.6 78.1 78.1 74.2 46.9 40.1 5.7
RnG+T 67.6 65.8 57 71.4 71.3 68.5 59.9 54.5 33.6

Tiara 75.05 72.84 53.69 | 80.03 80 75.63 | 6495 58.31 9.2
A Tiara+ T 7326 71.62 5523 | 74.08 74.05 70.56 | 71.6 66.68 24.15
Pangu 63.09 60.06 54.55 | 78.72 78.7 74 314 2225 15.13
Pangu+ T 79.14 7789 66.53 | 75.52 7551 7237 | 86.48 82.7 54.68
RetinaQA 76.83 7524 64.54 | 81.22 81.2 7741 | 6793 63.16 38.45
RetinaQA+ T 83.3 82.18 73.76 | 81.19 81.17 75.01 | 87.59 84.22 71.2

RnG 80.5 79.4 68.2 75.9 75.9 72.6 89.7 86.4 594

RnG+T 77.8 77.1 67.8 70.9 70.8 68.1 92 89.8 67.2
Tiara 7829 7743 6629 | 71.33 7132 68.29 924 89.82 62.24
A+U Tiara + T 77.67 7694 6687 | 69.89 69.88 6698 | 93.43 9124 66.65
Pangu 63.59 6042 53.79 | 7945 7942 7349 | 3142 21.89 13.85
Pangu +T 7484 7277 66.14 | 79.44 7941 T71.62 | 65.52 5932 55.03
RetinaQA 7731 7571 6479 | 80.98 80.97 7695 | 69.87 65.04 40.14
RetinaQA+ T 83.3 82.69 7745 | 7791 7791 75.16 | 94.21 92.38 82.1
RetinaQA - LFR + T 7736 7637 6537 | 734 73.39 70.9 85.38 82.43 54.17
A+U | RetinaQA -LFI+ T 74.89 73.53 53.89 | 70.89 70.85 68.07 | 83.01 7895 25.13
RetinaQA - (SGUSR)+T | 64.68 62.58 5246 | 7299 7295 68.13 | 47.84 41.54 20.7

Table 1: Performance of different models on the GrailQAbility dataset: overall and for answerable and unanswerable
questions. A indicates training with answerable questions, A+U with answerable and unanswerable questions, +T

indicates thresholding.

Train Model Schema Element Missing Data Element Missing
Type Relation Mention Entity Other Entity Fact
FIR) EM FI(R) EM FI(R) EM | FI(R) EM FIR) EM
RnG+T 55.5 49.5 57.1 46.6 447 40.3 56 11.5 58.6 13.9
A Tiara+ T 66.27 21.7 7021 28.06 61.01 2343 | 6891 2297 6829 23.63
Pangu + T 8797 875 80.07 79.63 90.57 90.41 | 83.19 0 7648  1.07
RetinaQA+ T | 86.32 80.31 79.41 62.08 90.72 77.83 | 8571 68.07 84.68 71.14
RnG+T 934 86.8 89.7 85.5 92.1 89.6 87.1 30.8 86 325
A+U Tiara + T 91.63 83.84 909 7237 945 7138 | 91.6 5042 90.38 52.85
Pangu+T 90.8 90.68 78.66 7844 9041 90.25 | 11.76 0 1259  0.95
RetinaQA+ T | 94.22 9021 88.52 8191 9434 86.64 | 93.84 7591 943 76.13

Table 2: Performance of different models for the unanswerable questions in GrailQAbility, grouped by categories of
KB incompleteness. Note that missing mention entities result in invalid logical form, while other missing entities

lead to valid logical form with no answer.

that for the baselines, performance varies signifi-
cantly across different categories. Pangu is good
for missing schema elements but the worst for miss-
ing data elements. TIARA is the best baseline for
missing data elements but is not as good for missing
schema elements. The reasons for such behaviors
are described in appendix:A.2. We observe that
RetinaQA performs the best by large margins on
questions with missing data elements, and fairly
comparably with Pangu for missing schema ele-
ments, making it the overall model of choice across
different categories of unanswerability. We also
note that thresholding on RetinaQA results in min-
imal or no loss for questions with missing data
(which have valid logical forms), and in huge gains
for questions with missing schema elements.

Our ablations (Section 4.4) suggest that data
drop gains in RetinaQA are primarily due to its

enumeration-independent schema retriever. There
we further compare logical form generation (RnG,
TIARA) and logical form discrimination based ap-
proaches (Pangu, RetinaQA) on unanswerability
due to missing schema elements. We notice that
for RnG and TIARA the performance gain comes
mainly from A+U training rather than from thresh-
olding, leading to a drop in performance for answer-
able questions. However, for Pangu and RetinaQA,
thresholding makes a significant contribution to the
performance gain, leading to robust performance
for answerable questions.

As a testimony to its robustness, in the A Train-
ing setting, RetinaQA achieves comparable per-
formance for answerable and unanswerable ques-
tions, with a gap of only 4 pct points for EM. This
gap is 18 to 45 pct points for other models. Other
trends are very similar to the A+U setting. Addi-



tionally, we see that RetinaQA largely outperforms
existing models across different generalization set-
tings for answerable (Table 3) and unanswerable
questions (Table 5 in appendix). For answerable
questions, RetinaQA beats previous the best results
for IID and compositional generalization, but for
zero-shot generalization, RetinaQA has a compa-
rable or slightly worse performance than Pangu.
This is mainly because of the traversal dependence
trade-off, as we explain further in Section 4.4.

4.3 Results on GrailQA

Since RetinaQA performs the best for answerable
questions as well in GrailQAbility, in Table 4, we
report results on GrailQA, which is an answerable-
only benchmark. Since all questions are answer-
able, we apply Execution Guided Check (EGC) as
the final step for all models including RetinaQA.
With EGC, models output the highest-ranked logi-
cal form which when executed over the KB returns
a non-empty answer. We find that RetinaQA beats
previous state of the art by around 1.2 pct points
for F1 and 1.8 pct points for EM. Further analysis
of types of generalization across answerable ques-
tions (Table 4) shows very similar trends as for
answerable questions in GrailQAbility.

4.4 Ablation Study

Here we assess the contributions of the different
components in RetinaQA. First, we remove (one
at a time) the three key components: the logical
form integrator (LFI), the logical form retriever
(LFR), and the coupled sketch generator (SG) and
schema retriever (SR) combined. The last three
rows of Table 1 shows that at the aggregate level
all components contribute towards RetinaQA’s per-
formance on GrailQAbility to different extents for
answerable and unanswerable questions.

Next, we drill down into specific question cat-
egories. First, we study the recall of the correct
logical form within the candidate set for unanswer-
able questions with missing data elements. If we
remove SR and SG, the resulting RetinaQA ab-
lation only retrieves candidate logical forms via
traversal. We find that removing SR and SG re-
sults in a massive 65 pct point drop in recall. In
contrast, removing LF retriever does not hurt much
(see Table 10 in appendix). This agrees with our in-
tuition that when relevant data is missing, traversal
necessarily retrieves irrelevant logical forms.

Next, we study the impact of traversal-dependent
logical form retrieval on the recall of the right

logical form for answerable questions. Unsurpris-
ingly, removing LFR (and also SR+SG) results in
a substantial drop in recall (Table 11 in appendix).
Also, LFR has significantly impact for the zero-
shot generalization subset of answerable questions.
For question forms unseen during training, KB-
traversal is the only reliable approach for retrieving
logical forms.

Finally, we evaluate the impact of the logical
form integrator (LFI) and execution guided check-
ing (EGC) in reducing the space of logical form
candidates for the discriminator, by pruning out
invalid logical forms, in the answerable setting in
GrailQA. By switching off LFI and EGC separately,
we see about 4 pct points and 2 pct point perfor-
mance drops respectively. However, on switching
off both together, a 17 pct point drop is observed
(Table 9 in appendix). This suggests that these
components can compensate for each other, but at
least one of them is needed for good performance.

4.5 Error Analysis

We now briefly report a summary of error analy-
sis for RetinaQA on GrailQAbility. For this, we
use the A+U training with thresholding version
which is the most robust. All errors can be classi-
fied into three categories: (1) thresholding error,
where, due to thresholding, RetinaQA incorrectly
predicts "NK" for a question with a valid logical
form; (2) reranking error, where even though the
correct logical form is present in the pool of candi-
dates, the discriminator makes a mistake in scoring;
and, (3) recall error, where the correct logical form
is not in the set of candidates considered by the dis-
criminator due to errors in the earlier stages. This
may include errors in entity linking, logical form
retrieval or logical form construction (via sketch
generation and schema retrieval).

On the subset of answerable questions, threshold-
ing and reranking errors occur in around 37.67%,
and 30% of questions, respectively. The most fre-
quent error is however recall error (70%). Among
these, entity linking errors occur 80% of the time.
This clearly suggests that improving entity linker
can significantly improve the overall performance
of KBQA models. Unsurprisingly, the majority of
the errors of all categories occur for the zero-shot
generalization questions. Detailed statistics are in
Table 7 in appendix.

For unanswerable questions, we first look at
those with missing data elements. We find that



Train Model 1ID Compositional Zero-Shot
F1(L) F1(R) EM | F1I(L) FI1(R) EM | FI(L) FIR) EM
RnG 85.5 85.4 83.2 65.9 65.9 60.2 72.7 72.7 67.3
A Tiara 86.53 86.47 8452 | 72.02 7202 6493 | 7424 7424 676
Pangu 82 8197 79.09 | 71.63 71.63 6595 | 77.02 77.02 70.18
RetinaQA | 87.94 879 85.85 | 73.92 7392 6748 | 7484 7484 69.68
RnG 85.4 85.3 83.3 65.8 65.8 60.8 66.9 66.9 62.6
A+U Tiara 82.38 8236 80.57 | 65.16 65.16 59.84 | 585 585  54.65
Pangu 81.08 81.01 7685 | 7743 7743 69.52 | 78.01 78.01 70.42
RetinaQA 89 88.98 87.06 | 71.69 71.69 6555 | 73.59 7359 67.51

Table 3: Performance of different models for answerable questions in the GrailQAbility dataset, for IID, composi-
tional, and zero-shot test scenarios. Names have the same meanings as in Tab. 1.

Model Overall 11D Compositional Zero-Shot
Fl1 EM F1 EM F1 EM Fl1 EM
RnG 85.5 832 | 855 832 | 65.9 60.2 72.7 67.3
Tiara 819 753 91.2 884 | 748 66.4 80.7 73.3
Pangu 82.16 759 | 8638 81.73 | 76.12 68.82 | 82.82 76.29
RetinaQA | 83.33 77.84 | 91.22 88.58 | 77.49 70.48 | 82.32 76.2

Table 4: Performance of different models on GrailQA (validation set) (which has only answerable questions) for
[ID, compositional, and zero-shot test scenarios.Note that we beat previous SOTA on GrailQA.

the vast majority of errors (around 90%) are recall
errors, out of which about 72% are attributable to
the entity linker. This occurs when mentioned enti-
ties in the question are missing in the KB, but entity
linker outputs spurious entities. Thresholding er-
ror accounts for 45% of errors, while reranking
errors only occurs in 5% of questions. This sug-
gests that the discriminator is calibrated well for
relative ranking of logical forms, but still makes
many mistakes in assigning correct absolute scores
to logical forms. See Table 8 in appendix for more
details.

Finally, we look at the subset of unanswerable
questions with missing schema elements. Since for
these, the gold logical form is "NK", thresholding
error can be only source of error. This occurs only
14% of time, out of which 90% errors occur for
zero-shot generalisation. This indicates that model
is largely good in this setting, but makes some
mistakes in absolute scoring of logical forms with
schema elements not seen during training.

5 Conclusions

We have presented RetinaQA, the first specialized
model for KBQA that is robust for both answerable
and unanswerable questions. RetinaQA achieves
this robustness by unifying key aspects of KBQA
models used for answerable-only iid and trans-
fer settings so that candidate logical forms are ar-
rived at by KB-traversal based retrieval, as well as
traversal-independent generation via sketch-filling

that bridges over data gaps that break traversal.
RetinaQA also discriminates between fully formed
candidate logical forms at the final stage instead
of generating these. This enables it to better dif-
ferentiate between valid and invalid logical forms.
To demonstrate this robustness, we show that Reti-
naQA performs well for both answerable and unan-
swerable questions on the GrailQAbility dataset,
with and without unanswerability training. Unan-
swerability performance improves with threshold-
ing and unanswerability training, and it comes with
minimal drop in performance for answerable ques-
tions. Performance is stable across IID, zero-shot
and compositional splits for answerable questions,
as well as IID and zero-shot splits for unanswerable
questions. By comparing against state-of-the-art
KBQA models adapted for answerability, we show
that RetinaQA significantly outperforms these mod-
els for unanswerable questions while performing
almost at par for answerable ones. Remarkably,
RetinaQA also achieves a new state-of-the-art per-
formance on the answerable-only GrailQA dataset,
demonstrating the strengths of its architecture for
KBQA in general. Further we plan to make our
code-base 3 public for the community.

6 Limitations

A sketch, while free of references to the KB, still
specifies the length of the path to be traversed in

3https ://anonymous. 4open.science/r/
RETINAQA-122B/
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the KB. The subsequent grounding step is limited
by this and cannot adapt the path length after re-
trieving schema elements from the KB. RetinaQA
inherits this limitation from existing sketch gener-
ation approaches (Cao et al., 2022; Ravishankar
et al., 2022). We hope to improve this in future
work.

For unanswerable questions without valid logical
forms for the given KB, RetinaQA only outputs
I =NK. However, this does not explain the gap in
the schema, which, if bridged, would have make
this question answerable. The situation is similar
for unanswerable questions with valid logical forms
but missing data elements. This is also an important
area of future work.

7 Risks

Our work does not have any obvious risks.
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Train Model 11D Zero-Shot
F1(R) EM F1(R) EM
RnG 91.9 73.3 81.7 47.1
RnG+T 94.3 75.9 85.9 59.5
Tiara 93.76 7522 | 86.35 50.84
A+U Tiara+ T 95.1 7777 | 87.86 56.88
Pangu 21.4 12.17 | 22.32 1532
PAngu +T 62.04 5752 | 56.94 52.85
RetinaQA 64.59 3643 | 6544 434
RetinaQA+ T | 97.01 89.94 | 88.31 75.22

Table 5: Performance of different models for unanswer-
able IID and zero-shot test scenarios in GrailQAbility.
Names have the same meanings as in Tab. 1.

Train Model Full Z-Shot Partial Z-Shot
FI(R) EM | FI(R) EM
RnG 87.2 75.9 78 40
RnG+T 89.7 86.7 | 831 71
Tiara 90.15 68.97 | 80.25 4045
Aqy | Tara+T 90.64 78.82 | 82.64 54.14
Pangu 24.63  20.69 | 21.18 15.76
PAngu +T 89.66 89.66 | 79.94 79.46
RetinaQA 57.64 25.12 | 4347 1131
RetinaQA+ T | 88.67 77.83 | 80.89 70.54
Table 6: Performance of different models for partial

zero-shot and full-zero test scenarios in GrailQAbility.
Names have the same meanings as in Tab. 1.

A Appendix

Entity Linker: We use an off-the-shelf entity
linker (Ye et al., 2022) previously used in the
KBQA literature (Shu et al., 2022; Gu et al., 2023),
which uses a standard 3-staged pipeline - Men-
tion Detection, Candidate Generation, and Entity
Disambiguation. Mention Detector first identifies
span of text from question which corresponds to
name of an entity. For each mention a set of candi-
dates entities are generated using alias mapping of
FACCI1 (Gabrilovich et al., 2013). Final stage is a
neural disambiguator which rank candidates given
the question and context of entities.

A.1 Implementation Details

To perform experiments for GrailQAbility, we first
update the original Freebase KG using codebase®.
To test baselines for GrailQAbility, we use the ex-
isting codebases’ ¢ 7 and make changes in code
to adapt for answer-ability detection. All of the
baselines assumes answerability and employs Ex-
ecution Guide Check i.e. if a logical form returns

*https://github.
Shttps://github.
https://github.
papers/TIARA
"https://github.

com/dair-iitd/GrailQAbility
com/dki-lab/Pangu
com/microsoft/KC/tree/main/

com/salesforce/rng-kbga
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Components Overall | IID | Compositional | Zero-shot
#questions 6808 3386 981 2441
#errors 1691 445 347 899
thresholding_error 637 161 113 363
reranking_error 508 49 134 325
coverage_error 1183 396 213 574
entity_linking_error 949 343 136 470
schema_retriever_error 460 61 77 322
sketch_parser_error 420 43 154 22

Table 7: Component wise errors of RetinaQA+ T (A+U) for answerable questions

Components

#questions
#errors

thresholding_error
reranking_error
coverage_error
entity_linking_error
schema_retriever_error

Overall | IID | Zero-shot
1196 530 666
287 127 160
131 59 72

16 5 11
271 122 149
195 77 118
56 29 27
49 27 22

sketch_parser_error

Table 8: Component wise errors of RetinaQA+ T (A+U) for data element missing unanswerable questions

Model Overall 11D Compositional Zero-Shot

F1 EM Fl1 EM Fl1 EM F1 EM

RetinaQA’ 83.33  77.84 | 91.22 88.58 | 77.49 7048 | 82.32  76.2
RetinaQA’ - EGC 80.62 75.68 | 89.81 87.7 | 7478 68.1 | 79.03 73.58
RetinaQA’ - LFI 78.65  73.1 88.1  84.81 75 67.31 | 76.04 704
RetinaQA’ - LFR 71.8 6833 | 87.33 85.56 69 63.47 | 66.19 62.83
RetinaQA’ - (SGUSR) | 73.2  66.78 | 77.06 72.13 | 60.63 54.43 | 76.73 69.56
RetinaQA’ - LFI - EGC | 6329 59.99 | 79.84 77.84 | 59.33 54.03 | 57.73 54.68

Table 9: Ablation experiment on GrailQA dev set. EGC refers to Execution Guided Check and LFI refers to Logical

Form Integrator, RetinaQA’ = RetinaQA + EGC

Model Overall 1ID Zero-shot
RetinaQA 77.34 76.98 77.63
RetinaQA- LFR 77.17 76.79 77.48
RetinaQA- SP - SR 12.29 10 14.11

Table 10: Ablation experiment of Logical Form Coverage(%) on GrailQAbility test set. LFR refers to Logical Form
Retriever, SP refers to Sketch Parser and SR refers to Schema Retriever.

Model Overall | IID | Compositional | Zero-shot
RetinaQA 82.62 88.3 78.29 76.49
RetinaQA- LFR 7424 | 8591 67.38 60.79
RetinaQA- SP-SR | 71.94 | 74.22 65.24 71.49

Table 11: Ablation experiment of Logical Form Coverage(%) on GrailQAbility test set for Answerable questions.
LFR refers to Logical Form Retriever, SP refers to Sketch Parser and SR refers to Schema Retriever.

an empty answer upon execution then they select
next best logical form. We have removed this con-
straint while performing experiments for GrailQA-
bility. Also for A+U training we have made code
changes so that models can be trained to predict
logical form as N K unanswerable questions. We
implement our model using Pytorch (Paszke et al.,

2019) and Hugging Face®. All the experiments of
RetinaQA are performed using an NVIDIA A100
GPU with 80 GB RAM. Above mentioned con-
figurations are the maximum ones, since we have
different components and all do not require same
compute configurations. For Sketch Generation
we fine tune Seq2Seq t5-base model for 10 epochs

8https ://huggingface.co/

11


https://huggingface.co/

(fixed). We use learning rate of 3e-5 and batch size
of 8. We use beam search during decoding with
beamsize = 10. We also check syntactic correct-
ness while selecting top ranked sketch. Training
time for sketch parser is around 3 hours. LF Integra-
tor is a parameter free module and does not require
any training. Since, LF Integrator converts logical
forms into query-graphs and validates type-level
constraints, it is a costly operation. So we em-
ploy parallel processing(with cache) for this stage
i.e. we use 4-6 CPUs (each with 2 cores) to cre-
ate pool of valid logical forms. It takes around 5
hours to generate candidates for all train, dev and
test data. Finally we train Discriminator which
fine-tune t5-base Seq2Seq model. We train Dis-
criminator with learning rate le-4 and batch size 4
for 10 epochs. For discriminator training we use
AdmaW (Loshchilov and Hutter, 2019) optimizer
and linear scheduler with warm up ratio of 0.01.
We use 64 negative samples per question for con-
trastive training. Generally discriminator model
converges in 2 epochs of training so we use pa-
tience of 2 i.e. if best model does not change for
consequent 2 epochs then we assume model has
converged and will stop training. It takes around
7-8 hours to train a discriminator. Inference time
for discriminator is few minutes.

For A+U training components like Entity Linker,
Schema Retriever, LF Retriever are trained only
on question where logical form is known. While
training for questions with [ ="NK" is performed
only at last step.

All the results presented for single run (however
the reproducbility of results is already verified). We
also plan to release our code-base’ for the commu-
nity.

A.2 In Depth Trade-off Analysis

Sec 4.4 describes how individual components
strengthens performance for different types of an-
swerabilties and unanswerabilties. This section
discusses an important trade-off i.e. Traversal
dependent Retrieval Vs Traversal independent
Retrieval : Traversal based Retrieval methods per-
form step by step enumeration over KB to retrieve
next possible set of candidates(which is retrieval at
data level). While Traversal independent Retrieval
based method generate candidates based on seman-
tic similarity with the question(which is at schema

9ht’cps ://anonymous. 4open.science/r/
RETINAQA-122B
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level). So for Data Element Missing unanswerabil-
ity where data paths are missing, Traversal based
methods will never find correct path during enu-
meration and hence will not be able to reach to a
correct logical form. While Traversal independent
method can generate correct logical form. Hence
Traversal independent methods performs well for
data element missing.

At the same time the search space for Traversal
independent methods is much larger as it lacks KB
grounding information. So for zero-shot generali-
sation where schema elements are unseen Traversal
dependent tends to get confused between similar
schema elements.
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