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Abstract001

Limited low-resource language corpora in pro-002
fessional domains like medicine hinder cross-003
lingual domain adaptation of pre-trained large004
language models (PLMs). While abundant En-005
glish medical corpora could complement this006
scarcity, the effective mixture of English and007
target language, including machine-translated008
content, remains underexplored. We exam-009
ined how corpus compositional statistics (e.g.,010
token sizes and language proportions) affect011
performance on a Japanese–English medical012
knowledge benchmark. Through continued pre-013
training of a bilingual PLM on multilingual014
corpora with varying proportions of English015
and Japanese texts (both original and machine-016
translated), we analyzed correlations between017
corpus compositional statistics and fine-grained018
task performance. Our findings suggest a practi-019
cal approach to optimizing multilingual corpora020
for cross-lingual domain adaptation, which re-021
quires leveraging specialized knowledge from022
English corpora while ensuring sufficient cover-023
age of language-specific expressions in a target024
language (Japanese). Such insights will con-025
tribute to the development of multilingual mod-026
els that effectively leverage English-language027
resources in various professional domains with028
low-resource languages.029

1 Introduction030

Imbalanced language resources pose a significant031

challenge for pre-trained large language models032

(PLMs) in achieving cross-lingual domain adapta-033

tion in specific target languages. This imbalance034

is especially pronounced in professional domains035

such as medicine, where general biomedical knowl-036

edge circulates globally in English, while available037

resources in the target language remain relatively038

limited. For example, PubMed hosts over 38 mil-039

lion biomedical papers globally1, while J-STAGE,040

1Statistics of PubMed: https://pubmed.ncbi.nlm.nih.
gov/about/

a comparable Japanese database, contains only 041

around 5 million2. While abundant English medical 042

corpora offer a promising avenue for augmenting 043

scarce target-language data, the optimal continued 044

pre-training strategy for acquiring knowledge from 045

well-resourced source languages (often English) to 046

support domain adaptation in less-resourced target 047

languages has yet to be thoroughly explored. 048

Here, we investigate the optimal corpus com- 049

position for the continued pre-training of a bilin- 050

gual (Japanese–English) PLM, with a particular 051

focus on leveraging abundant English-language 052

resources to enhance knowledge acquisition in 053

Japanese medicine. Continued pre-training usu- 054

ally follows initial pre-training on general cor- 055

pora, where large language models acquire founda- 056

tional language abilities such as lexical, syntactic, 057

and semantic patterns, as well as general factual 058

knowledge (Petroni et al., 2019; AlKhamissi et al., 059

2022). Then, continued pre-training leverages addi- 060

tional corpora containing domain-specific or target- 061

language texts, with its effectiveness for domain 062

adaptation demonstrated across multiple studies 063

(Gupta et al., 2023; Cui et al., 2024; Pires et al., 064

2023; Zhu et al., 2023; Zhao et al., 2024a; Fujii 065

et al., 2024). 066

Nevertheless, several practical considerations 067

have been overlooked for effective continued pre- 068

training aimed at cross-lingual domain adaptation 069

in low-resource professional domains. For exam- 070

ple, the optimal mixing ratio of source and target 071

languages for acquiring knowledge from English 072

corpora remains unclear. While current machine 073

translation systems provide reasonable quality, the 074

balance between original and translated content is 075

still not well understood. Furthermore, existing 076

studies often lack detailed analyses of how cor- 077

pus compositional statistics (e.g., token sizes and 078

2Statistics of J-STAGE: https://www.jstage.jst.go.
jp/browse/-char/en
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Fig. 1: Study Overview. This study comprises three steps. (1) First, we performed continued pre-training on
pre-trained large language models using diverse multilingual corpora. (2) Next, we computed the difference in scores
before and after the continued pre-training using the Japanese–English medical knowledge benchmark, JMedBench.
(3) Finally, we conducted partial correlation analysis to identify task-wise language preferences, thereby revealing
the optimal corpus composition for cross-lingual domain adaptation.

language proportions) representing corpus compo-079

sition affect downstream performance across tasks080

and languages.081

In this study, we address the following research082

questions (RQs):083

RQ1: How do original English and machine-084

translated Japanese corpora help a bilingual085

(Japanese–English) PLM achieve domain086

adaptation in the Japanese medical domain?087

RQ2: What is the optimal corpus configuration088

and proportion of English and Japanese texts089

for achieving the best performance in the090

medical domain?091

RQ3: How do specific corpus compsitional statis-092

tics in multilingual corpora influence model093

performance across diverse medical tasks?094

To investigate these questions, we systematically095

compared the impact of multilingual corpora con-096

taining varying proportions of Japanese and En-097

glish medical content (see the study overview in098

Fig. 1). To characterize the language composi-099

tion of these corpora, we defined seven composi-100

tional statistics: total token count, Japanese token101

count, English token count, parallel token count102

(paragraph-aligned bilingual medical texts), and103

the ratios of Japanese, English, and parallel to-104

kens. Then, we employed 13-billion-parameter105

bilingual (Japanese–English) PLMs and computed106

the difference in model performance on a com-107

prehensive Japanese–English medical knowledge108

benchmark, JMedBench (Jiang et al., 2025), before109

and after continued pre-training. JMedBench com-110

prises 20 Japanese and 7 English tasks, including111

multiple-choice question answering (MCQA), ma- 112

chine translation (MT), named entity recognition 113

(NER), document classification (DC), and semantic 114

textual similarity (STS) (see Appendix A). Finally, 115

we applied partial correlation analysis, which esti- 116

mates the strength and direction of a relationship 117

between two variables while controlling for other 118

covariates. This enabled us to isolate the unique 119

contribution of each compositional statistic to task 120

performance despite inherent mutual correlations— 121

for example, more Japanese tokens automatically 122

raise the total token count. Our findings underscore 123

the need to optimize corpus composition so that 124

high-resource English texts can be leveraged effec- 125

tively for cross-lingual domain adaptation in the 126

low-resource Japanese medical domain. 127

Our contributions, which correspond to the RQs, 128

can be summarized as follows: 129

• We systematically evaluate multilingual 130

corpora featuring varying proportions of 131

Japanese and English medical texts, identify- 132

ing the potential benefits of both original En- 133

glish and machine-translated Japanese texts. 134

• We demonstrate that a well-balanced multi- 135

lingual corpus can enhance knowledge acqui- 136

sition in both Japanese and English medical 137

domains, achieving the best performance on 138

JMedBench. 139

• Our partial correlation analysis quantifies how 140

specific compositional statistics in multilin- 141

gual corpora influence task-specific perfor- 142

mance across various medical tasks, providing 143

insights into the optimal configuration of the 144

corpus for cross-lingual domain adaptation. 145
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2 Related Work146

Cross-lingual Domain Adaptation.147

Techniques aimed at enhancing multilingual148

language models’ understanding of low-resource149

languages have attracted considerable attention150

(Xu et al., 2024), leading to broadly recognized151

concepts such as cross-lingual alignment and152

cross-lingual transfer (Hämmerl et al., 2024).153

Typically, assuming the presence of high-resource154

(source) and low-resource (target) languages, the155

objectives of these approaches fall into two main156

categories: (1) promoting knowledge transfer157

from source to target languages (Castellucci et al.,158

2021; Rathore et al., 2023; Tanwar et al., 2023;159

Awasthi et al., 2023; Singh et al., 2024; Zhang160

et al., 2024; Yong et al., 2023); and (2) acquiring161

new domain-specific knowledge within the target162

language (Zhao et al., 2024a; Wan et al., 2024;163

Fujii et al., 2024). Furthermore, these approaches164

can be classified based on whether cross-lingual165

representations require explicit alignment within166

embedding spaces (Zhao et al., 2024b). In this167

study, we define cross-lingual domain adaptation168

as an approach that specifically facilitates knowl-169

edge acquisition from a high-resource English170

medical corpus to complement a low-resource171

Japanese corpus, without explicitly aligning172

cross-lingual embedding spaces.173

174

Techniques for the Cross-lingual Domain175

Adaptation.176

Algorithms for the cross-lingual domain adaptation177

can be categorized along two dimensions: (1) the178

training stage at which the method is applied, and179

(2) the types of signals used for alignment.180

Multilingual pre-training has been explored (Chi181

et al., 2021); however, effectively capturing nu-182

anced semantics and specialized terminology, par-183

ticularly in low-resource languages, remains chal-184

lenging (Wu et al., 2022). Continued pre-training,185

typically performed after initial pre-training, lever-186

ages additional corpora containing domain-specific187

or target-language texts. While its effectiveness188

has been demonstrated in various studies (Gupta189

et al., 2023; Cui et al., 2024; Pires et al., 2023; Zhu190

et al., 2023; Zhao et al., 2024a; Fujii et al., 2024),191

detailed analyses of how the language composition192

of corpus influences specific task performance—193

particularly from the perspective of leveraging194

high-resourced language corpus—are still lacking.195

Additionally, supervised fine-tuning performed af-196

ter (continued) pre-training plays a pivotal role in 197

enhancing cross-lingual performance, especially 198

when substantial instruction datasets in the target 199

domain are available (Mecklenburg et al., 2024; 200

Razumovskaia et al., 2024; Shaham et al., 2024). 201

There are several types of signals used for align- 202

ment. A multilingual corpus, as employed in this 203

study, contains texts from both the source and target 204

languages (Qin et al., 2025; ImaniGooghari et al., 205

2023; Shaham et al., 2024). A parallel corpus is 206

a specialized type of multilingual corpus consist- 207

ing of explicitly aligned sentences or paragraphs 208

across the source and target languages. While paral- 209

lel corpora have demonstrated clear positive effects 210

on specific tasks such as machine translation (Chi 211

et al., 2022; Hu et al., 2020; Feng et al., 2022; 212

Yang et al., 2023; Lin et al., 2025), their effective- 213

ness in a broader range of tasks, especially within 214

professional domains, remains controversial. To 215

address this, we conduct a detailed analysis of par- 216

allel corpora, examining their advantages and dis- 217

advantages specifically for Japanese–English med- 218

ical domain adaptation. Other alignment signals 219

include transliteration, which leverages the roman- 220

ized forms of text to enhance alignment through 221

shared tokens with English (Husain et al., 2024), 222

and code-switching, which augments original data 223

by explicitly introducing cross-lingual supervision 224

(Yamada and Ri, 2024; Hong et al., 2025). 225

3 Method 226

This study comprises three steps (see Fig. 1): (1) 227

continued pre-training of a bilingual (Japanese– 228

English) PLM on diverse multilingual corpora with 229

various language compositions; (2) computation of 230

task-wise score differences on JMedBench before 231

and after continued pre-training; and (3) partial cor- 232

relation analysis to examine task-wise correlations 233

with corpus compositional statistics. 234

3.1 Multilingual Corpora 235

As shown in Fig. 2, we constructed six medical cor- 236

pora with varying Japanese–English compositions: 237

• EnJa-Base: Contains basic medical content from 238

textbooks, clinical guidelines, paper abstracts, 239

and web-crawled data in Japanese and English, 240

as well as a certain amount of parallel corpus. 241

The parallel subcorpus refers to text containing 242

aligned English and Japanese sentences or para- 243

graphs presented in randomized order. 244

• JaDominant: Adds a machine-translated 245

3
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Fig. 2: Multilingual Corpora. Six multilingual med-
ical corpora with varying Japanese–English composi-
tions were constructed. Notably, the token distributions
across the corpora show that the total number of tokens
increases from EnJa-Base to EnJa-Hybrid.

Japanese version of the PubMed Central (PMC)246

full-text subcorpus3 to EnJa-Base, resulting in a247

Japanese-dominant corpus. Refer to Appendix B248

regarding the accuracy of the machine translation249

used in this research.250

• EnDominant: Adds the original English PMC251

subcorpus to EnJa-Base, resulting in an English-252

dominant corpus. Note that between JaDominant253

and EnDominant, the Japanese translation of the254

PMC full-text subcorpus is replaced with the orig-255

inal English.256

• EnJa-Plus: Extends the EnDominant corpus by257

adding half of the translated PMC subcorpus.258

• EnJa-Balance: Builds on EnDominant by259

adding full the size of the translated Japanese260

PMC subcorpus. Note that in EnDominant, EnJa-261

Plus, and EnJa-Balance, the English corpus re-262

mains constant, and these variants respectively263

contain none, half, or all of the Japanese transla-264

tion of the PMC full-text subcorpus.265

• EnJa-Hybrid: Further extends EnJa-Balance266

with additional medical textbooks and clinical267

guidelines. Besides, this contains a large amount268

of parallel corpus that was created by translating269

PubMed paper abstracts4.270

Notably, we defined seven compositional statis-271

tics to characterize each corpus. One group pertains272

to the number of tokens in each language, including273

Japanese token count, English token count, parallel274

token count, and total token count. Another group275

of statistics represents the proportion of each lan-276

guage within a corpus, including Japanese token277

ratio, English token ratio, and parallel token ratio.278

3We used Commercial Use Allowed articles from the PMC
Open Access Subset.

4https://pubmed.ncbi.nlm.nih.gov/download/

Multilingual Corpora Japanese Tasks English Tasks
EnJa-Base 0.447 0.429
JaDominant 0.453 0.455
EnDominant 0.468 0.467
EnJa-Plus 0.461 0.469
EnJa-Balance 0.475 0.473
EnJa-Hybrid 0.467 0.466

Table 1: Average Scores on JMedBench. The model
trained with EnJa-Balance achieved the highest per-
formance on both Japanese tasks (0.475 average score
across all 20 tasks) and English tasks (0.473 average
score across all 7 tasks), outperforming models trained
with other corpus compositions.

Refer to Appendix C for detailed values on the 279

compositional statistics of each corpus. 280

3.2 Continued Pre-training on the 281

Multilingual Corpora 282

Using multilingual corpora, we performed contin- 283

ued pre-training on bilingual (Japanese–English) 284

PLMs, namely llm-jp/llm-jp-3-13b5 (LLM-jp 285

et al., 2024) (see Step 1 in Fig. 1). Since JMed- 286

Bench requires basic instruction-following capabil- 287

ity, we applied instruction tuning to both models 288

before and after continued pre-training. By comput- 289

ing the score difference between the two training 290

states, we can evaluate the performance gain at- 291

tributable to the specific pre-training corpus. See 292

Appendix D for the detailed model architecture, 293

training hyperparameters, and instruction tuning 294

dataset. 295

3.3 Performance Evaluation on JMedBench 296

We evaluated model performance in both the 297

Japanese and English medical domains using JMed- 298

Bench (see Step 2 in Fig. 1), which comprises 27 299

tasks in total (20 in Japanese and 7 in English). 300

We tested the models before and after the contin- 301

ued pre-training, resulting in 12 models overall 302

(6 corpora × 2 training states). We then com- 303

puted a score difference for each corpus, defined 304

as: (performance after mid-training + SFT) − 305

(performance before mid-training + SFT), where 306

SFT stands for supervised fine-tuning described 307

in Appendix D. 308

Note that since the multilingual corpora are con- 309

structed in an additive or ablative manner (see Sec- 310

tion 3.1), comparing score differences between 311

models trained on them effectively constitutes an 312

additive or ablation study. For instance, the com- 313

5https://huggingface.co/llm-jp/llm-jp-3-13b
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parison between JaDominant and EnDominant of-314

fers insights into whether the PMC subcorpus315

should be translated into Japanese or used in its316

original English form when added individually.317

Differences among EnDominant, EnJa-Plus, and318

EnJa-Balance help clarify the optimal mixing ratio319

(none, half, or full) of translated data. Lastly, the320

contrast between EnJa-Balance and EnJa-Hybrid321

highlights the utility of enriched text sources, such322

as parallel corpora.323

3.4 Partial Correlation Analysis324

Since mutual correlations exist among composi-325

tional statistics and task-wise score differences (see326

Appendix E), we applied partial correlation anal-327

ysis to isolate the unique impact of each variable.328

This approach allowed us to assess the direct asso-329

ciation between a predictor (e.g., a compositional330

statistic) and an outcome variable (e.g., a task-wise331

score difference) while controlling for other covari-332

ates (see Step 3 in Fig. 1). First, we used ordinary333

least squares regression to regress the predictor on334

the covariates, extracting residuals to remove the335

covariates’ linear effects. We then applied the same336

procedure to the outcome variable and computed337

the Pearson correlation between these two sets of338

residuals. This method yields the partial correlation339

coefficient r, indicating how strongly the predic-340

tor is related to the outcome when shared variance341

with the covariates is accounted for. The associated342

p-value tests the significance of this unique relation-343

ship. Hereinafter, significance levels are denoted as344

follows: *** for p < 0.001, ** for p < 0.01, and *345

for p < 0.05. A statistically significant correlation346

is considered “strong” when p < 0.01 in this study.347

We use abbreviations such as Ja/MCQA to indicate348

Japanese MCQA tasks.349

4 Results350

4.1 Model Performance on JMedBench351

We evaluated the task performance of the continued352

pre-trained models on JMedBench. Table 1 shows353

the average score across the 20 Japanese and 7 En-354

glish tasks. Overall, three key observations emerge355

from these results, particularly from the aspect of356

the benefit of the machine-translation data.357

First, even for Japanese tasks, using the origi-358

nal PMC subcorpus in English yielded a greater359

performance gain than the machine-translated one,360

as indicated by the average score of EnDominant361

(0.468) versus JaDominant (0.453). This suggests362

��������������������������������������������������
�����������������
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Fig. 3: Task-wise Correlation with Total Token
Count. Partial correlation analysis showed the strongest
positive correlation with MMLU-Medical. The x-axis
shows partial correlation coefficients with p-values in
parentheses.

that the machine-translated data might be of subop- 363

timal quality, limiting its impact on model perfor- 364

mance. 365

Second, despite the above limitation, there can 366

be an additive effect from the translated data. 367

By comparing EnDominant, EnJa-Plus, and EnJa- 368

Balance, we see how adding none, half, or the full 369

amount of the Japanese-translated PMC subcorpus 370

affects performance. Notably, only incorporating 371

the full amount of translation raises the average 372

score from 0.468 (EnDominant) to 0.475 (EnJa- 373

Balance). The same benefit can also be observed 374

in English tasks (see EnJa-Balance in Table 1). 375

Finally, the model using EnJa-Balance achieves 376

the highest score for both Japanese and English 377

tasks, outperforming EnJa-Hybrid despite the lat- 378

ter using a larger corpus (EnJa-Balance = 71.44B 379

tokens, EnJa-Hybrid = 79.62B tokens). This indi- 380

cates that simply adding more tokens does not nec- 381

essarily improve performance, highlighting the im- 382

portance of balancing corpus composition, which 383

we further analyze in the following sections. 384

4.2 Task-wise Correlation with Corpus 385

Compositional Statistics 386

4.2.1 Total Token Count 387

As shown in Fig. 3, a strong positive correlation 388

with total token count was observed in MMLU- 389

Medical (En/MCQA, r = 0.954, p = 0.003), sug- 390

gesting that a larger corpus—regardless of lan- 391

guage specificity for either Japanese or English— 392

5
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Fig. 4: Task-wise Correlation with Japanese Tokens. (a) Japanese token count was positively correlated
with IgakuQA, PubMedQA, and MedQA, but negatively with MedMCQA. (b) Japanese token ratio showed
broader positive correlations, including IgakuQA, MRNER-Disease, MMLU-Medical-Jp, JMMLU-Medical, and
MedMCQA-Jp. The x-axis shows partial correlation coefficients with p-values in parentheses.
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Fig. 5: Task-wise Correlation with English Tokens. (a) English token count showed the most consistent and
strongest correlations across multiple tasks. (b) English token ratio exhibited strong correlations with several
tasks but negatively affected specialized Japanese NER tasks (e.g., NRNER). The x-axis shows partial correlation
coefficients with p-values in parentheses.

significantly benefited this complex English med-393

ical MCQA task. Notably, no other task exhib-394

ited significant correlations with total token count,395

which contrasts with the patterns observed for other396

language-specific statistics, as presented below.397

4.2.2 Japanese Tokens (Count and Ratio)398

Fig. 4a shows that the Japanese token count ex-399

hibited a strong positive correlation with IgakuQA400

(Ja/MCQA, r = 0.956, p = 0.003), a representative401

Japanese medical MCQA task for specialized ex-402

pertise in the Japanese medical system (Kasai et al.,403

2023). Surprisingly, certain English MCQA tasks404

including PubMedQA and MedQA also showed 405

positive correlations with the Japanese token count. 406

This suggests that exposure to diverse linguis- 407

tic representations, including machine-translated 408

Japanese medical texts and original ones, may 409

have enhanced the model’s generalization ability 410

in English medical tasks. In contrast, MedMCQA 411

(En/MCQA) exhibited a significant negative correla- 412

tion with the Japanese token count, suggesting an 413

adverse impact of Japanese token representation. 414

Additionally, as shown in Fig. 4b, the Japanese 415

token ratio demonstrated strong positive correla- 416

tions with some Japanese tasks, such as IgakuQA 417

6



��������������������������������������������������
�����������������������

��������������������������������������������������
�����������������������


	��
�	
���
���

�


	��
�	
���
���

�

Fig. 6: Task-wise Correlation with Parallel Tokens. (a) Parallel token count showed both positive and negative
correlations, with strong positive effects in MedMCQA-Jp, MRNER-Disease, and SMDIS and strong negative
effects in CRADE. (b) Parallel token ratio exhibited similar trends. The x-axis shows partial correlation coefficients
with p-values in parentheses.

(Ja/MCQA) and MRNER-Disease (Ja/NER).418

4.2.3 English Tokens (Count and Ratio)419

Fig. 5a illustrates that the English token count ex-420

hibited the most consistent and strongest correla-421

tions across multiple tasks, with 9 tasks showing422

correlations above 0.9 (p < 0.01). The most no-423

table were USMLEQA-Jp (Ja/MCQA, r = 0.989,424

p < 0.001) and MMLU-Medical-Jp (Ja/MCQA,425

r = 0.975, p < 0.001), suggesting that En-426

glish token representation plays a critical role427

in enhancing performance across both Japanese428

and English medical tasks. This indicates that429

an English corpus can help the model to acquire430

medical knowledge that can be exploited even431

when the task is primarily in Japanese. Similarly,432

as presented in Fig. 5b, the English token ratio433

demonstrated strong correlations with several tasks,434

including JMMLU-Medical (Ja/MCQA), EJMMT-435

Ja2En (En/MT), NCBI-Disease-Jp (Ja/NER), and436

PubMedQA (En/MCQA). Notably, it also negatively437

impacted specialized Japanese NER tasks (i.e.,438

NRNER, MRNER-Medicine, and BC5Disease-Jp).439

4.2.4 Parallel Tokens (Count and Ratio)440

Fig. 6a illustrates that the parallel corpus ex-441

hibits both positive and negative correlations across442

various tasks. In particular, the parallel token443

count showed strong positive correlations with444

MedMCQA-Jp (Ja/MCQA, r = 0.956), p = 0.003),445

MRNER-Disease (Ja/NER, r = 0.948, p = 0.004),446

and SMDIS (Ja/DC, r = 0.931, p = 0.007),447

while demonstrating a strong negative correla- 448

tion with CRADE (Ja/DC, r = −0.927, p = 449

0.008). Moreover, Fig. 6b indicates that the par- 450

allel token ratio positively impacted IgakuQA- 451

En (En/MCQA), RRTNM (Ja/DC), and JNLPBA- 452

Jp (Ja/NER), but exhibited strong negative cor- 453

relations with PubMedQA (En/MCQA), JMMLU- 454

Medical (Ja/MCQA), EJMMT-En2Ja (Ja/MT), and 455

EJMMT-Ja2En (En/MT). The latter two tasks fall 456

under the category of MT. While parallel corpora 457

are widely regarded as effective for MT tasks (Chi 458

et al., 2022; Hu et al., 2020; Feng et al., 2022; Yang 459

et al., 2023; Lin et al., 2025), these findings suggest 460

that an excessive amount may hinder the learning 461

of language-specific patterns, potentially limiting 462

overall MT performance. 463

5 Analysis 464

Here, we analyze the optimal corpus composition 465

for continued pre-training. 466

RQ1: How do original English and machine- 467

translated Japanese corpora help a bilingual 468

(Japanese–English) PLM achieve domain adap- 469

tation in the Japanese medical domain? 470

In terms of the corpus-alone effect, incorpo- 471

rating original English texts (as PMC full-text) 472

is generally more beneficial even for Japanese- 473

domain tasks than using machine-translated data, 474

as the model using EnDominant outperformed that 475

using JaDominant (see Table 1). This suggests 476

that translation quality can limit its effectiveness 477

in conveying medical knowledge. Nonetheless, 478

7



machine-translated texts still offer additive gains479

when used alongside the original English texts, as480

adding the full machine-translated subcorpus (i.e.,481

EnJa-Balance) leads to an additional performance482

gain. Thus, the balanced use of machine-translated483

data with original English texts can be essential for484

cross-lingual domain adaptation.485

RQ2: What is the optimal corpus composition of486

English and Japanese medical texts for effective487

continued pre-training of PLMs in a multilin-488

gual medical domain?489

Partial correlation analysis indicated that each490

task is differentially sensitive to certain corpus com-491

positional statistics, including the specific ratio of492

Japanese to English content (see Fig. 3–6). There-493

fore, tailoring a corpus composition for particular494

downstream tasks by balancing language compo-495

nents facilitates effective knowledge acquisition in496

practice. Indeed, in our case, the highest average497

score across both Japanese (20 tasks) and English498

(7 tasks) was achieved by the model continued pre-499

trained on EnJa-Balance, even surpassing the EnJa-500

Hybrid model, which was trained on a larger corpus501

(see Table 1).502

RQ3: How do specific compositional statistics503

within multilingual corpora influence model per-504

formance across diverse evaluation tasks?505

Effect of the Japanese Corpus: Only the Japanese506

corpus positively correlated with IgakuQA (see507

Fig. 4), a unique MCQA benchmark requiring508

specialized Japanese medical system expertise.509

This underscores the importance of incorporating510

language-specific resources with localized knowl-511

edge alongside translated general knowledge. It512

also benefits some English MCQA tasks like Pub-513

MedQA and MedQA. We hypothesize that expo-514

sure to diverse linguistic representations enhances515

the model’s generalization in English medical tasks.516

However, excessive Japanese corpus may impede517

certain English-specific tasks, as shown by its neg-518

ative correlation with MedMCQA.519

Effect of the English Corpus: The size of the520

English corpus exhibited a strong correlation with521

score improvements not only in English QA tasks522

(e.g., USMLEQA, MedQA, and MMLU-Medical)523

but also in select Japanese tasks (e.g., USMLEQA-524

Jp and MMLU-Medical-Jp) (see Fig. 5). This sug-525

gests that an English corpus can effectively transfer526

medical knowledge to Japanese tasks, improving527

performance even when the task is primarily in528

Japanese. However, an excessive proportion of En-529

glish tokens may degrade performance in Japanese-530

specific tasks, particularly those related to NER. 531

Effect of the Parallel Corpus: The parallel cor- 532

pus exhibited both positive and negative correla- 533

tions depending on the task type (see Fig. 6). On 534

one hand, the size of the parallel corpus showed 535

strong positive correlations with several tasks, sug- 536

gesting that bilingual alignment facilitates cross- 537

lingual knowledge transfer between English and 538

Japanese. On the other hand, an excessive propor- 539

tion of parallel data negatively impacted some tasks, 540

even including MT tasks. This might be because 541

parallel corpora switch languages at the paragraph 542

level, which is unnatural as a language-specific 543

pattern and negatively affects the performance of 544

certain tasks (see Appendix F for an example). 545

6 Conclusions 546

We systematically examined how continued pre- 547

training on Japanese and English medical domain 548

corpora—at varying proportions—affects task per- 549

formance to seek optimal corpus composition 550

for the comprehensive Japanese–English medical 551

benchmark. The results suggest that effective cross- 552

lingual domain adaptation requires (1) leveraging 553

specialized knowledge from well-resourced cor- 554

pora, (2) ensuring sufficient coverage of language- 555

specific expressions in the target language, and 556

(3) using parallel corpora in moderation. These 557

findings highlight the importance of balanced cor- 558

pus design that accounts for both linguistic diver- 559

sity and domain-specific terminology, particularly 560

in settings involving a well-resourced source lan- 561

guage and a low-resource target language. While 562

grounded in the Japanese–English medical context, 563

these insights are broadly applicable to multilingual 564

adaptation of PLMs across diverse domains. 565

Limitations 566

One limitation of this study is the small sample size; 567

however, the strong effect sizes, reflected in large 568

correlation coefficients and low p-values, reinforce 569

the reliability of the key findings. Besides, this 570

study primarily identifies correlations between cor- 571

pus compositional statistics and task performance 572

without directly addressing causal interpretations. 573

However, the additive and ablative design of the 574

corpus composition allows for certain causal in- 575

ferences rather than merely reflecting statistical 576

correlations (see Section 4.1). Further controlled 577

experiments and deeper analyses are needed to es- 578

tablish definitive causal relationships. 579
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Appendix A Overview of JMedBench 866

Appendix A.1 Multi-Choice Question 867

Answering (MCQA) 868

MedMCQA/MedMCQA-Jp MedMCQA is a 869

large-scale, MCQA dataset designed to address 870

real-world medical entrance exam questions, cover- 871

ing 2.4 thousand health topics and 21 medical sub- 872

jects sampled from medical entrance exams across 873

India (Pal et al., 2022). This contains 4,183 test 874

samples. MedMCQA-Jp is a Japanese translation 875

of MedMCQA. 876

USMLEQA/USMLEQA-Jp USMLEQA is a 877

large-scale, MCQA dataset with 1,273 test samples 878

with 4 options, which are sampled from United 879

States Medical Licensing Examinations (Jin et al., 880

2021). USMLEQA-Jp is a Japanese translation of 881

USMLEQA, containing the same number of test 882

samples. 883

MedQA/MedQA-Jp MedQA is a 5-option ver- 884

sion of USMLEQA, known as a representative 885

benchmark for medical large language models in 886

the assessment of medical knowledge sufficient for 887

medical licensure (Jin et al., 2021). MedQA-Jp is 888

a Japanese translation of MedQA, containing the 889

same number of test samples. 890

MMLU-Medical/MMLU-Medical-Jp 891

MMLU-Medical contains 1,871 biomedical 892

questions at the college level as test samples, 893

which is extracted as a subset of a large-scale, 894

multi-topics benchmark, MMLU (Hendrycks 895

et al., 2021). MMLU-Medical-Jp is a Japanese 896

translation of MMLU-Medical. 897

JMMLU-Medical While the MMLU-Medical- 898

Jp is a machine-translated version of MMLU- 899

Medical, JMMLU-Medical consists of human- 900

translated Japanese version of MMLU-Medical 901

comprising 1,271 test samples6. 902

IgakuQA/IgakuQA-En IgakuQA contains 989 903

Japanese questions based on Japanese medical li- 904

censing examinations from 2018 to 2022 (Kasai 905

et al., 2023). This uniquely reflects Japanese- 906

specific medical practices, healthcare systems, and 907

epidemiological profiles. IgakuQA-En is an En- 908

glish translation of IgakuQA. 909

6https://huggingface.co/datasets/nlp-waseda/
JMMLU
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PubMedQA/PubMedQA-Jp PubMedQA con-910

tains 1,000 test samples focusing on the biomedical911

field collected from PubMed Abstracts (Jin et al.,912

2019). The task of PubMedQA is to answer re-913

search questions with yes/no/maybe. PubMedQA-914

JP is a Japanese translation of PubMedQA.915

Appendix A.2 Machine Translation (MT)916

EJMMT-Ja/EJMMT-En EJMMT is a Japanese–917

English medical machine-translation dataset with918

fine-grained annotation of error spans and error919

types (Hayakawa and Arase, 2020). EJMMT-Ja920

indicates the translation accuracy in the direction921

of English to Japanese, while EJMMT-En indicates922

the Japanese to English direction. These include923

2,400 test samples.924

Appendix A.3 Named Entity Recognition925

(NER)926

MRNER-Medicine MRNER-Medicine (Medi-927

cal Report Named Entity Recognition for medicine)928

contains 90 test samples for extracting medication-929

related information from case reports in Japanese7.930

MRNER-Disease MRNER-Disease (Medical931

Report Named Entity Recognition for positive dis-932

ease) contains 90 test samples for extracting symp-933

toms actually observed in patients from case reports934

and radiology reports in Japanese7.935

NRNER NRNER (Nursing Record Named En-936

tity Recognition) contains 90 test samples, involv-937

ing extracting information about symptoms actu-938

ally observed in patients and medication from sim-939

ulated nursing records in Japanese7.940

BC2GM-Jp BC2GM-Jp is a Japanese translation941

of BC2GM (BioCreative II Gene Mention Recogni-942

tion) (Smith et al., 2008), which contains 5,037 test943

samples to identify a gene mention in a sentence.944

BC5Chem-Jp BC5Chem-Jp is a Japanese trans-945

lation of BC5Chem (Li et al., 2016), which con-946

tains 4,801 test samples to identify disease, chem-947

ical entities and their relations from biomedical948

texts.949

BC5Disease-Jp BC5Disease-Jp is a Japanese950

translation of BC5Disease (Li et al., 2016), which951

contains 4,797 test samples to identify disease,952

chemical entities and their relations from biomedi-953

cal texts.954

JNLPBA-Jp JNLPBA-Jp is a Japanese transla-955

tion of JNLPBA (Collier et al., 2004), which fea-956

7This benchmark is originally included in JMED-LLM
(Japanese Medical Evaluation Dataset for Large Language
Models): https://github.com/sociocom/jmed-llm

tures 4,260 test samples for bio-entity recognition, 957

identifying and classifying technical terms in the 958

domain of molecular biology. 959

NCBI-Disease-Jp NCBI-Disease-Jp is a 960

Japanese translation of NCBI-Disease (Doǧan 961

et al., 2014), which contains 940 test samples to 962

identify the disease name on the NCBI disease 963

corpus. 964

Appendix A.4 Document Classification (DC) 965

CRADE CRADE (Case Report Adverse Drug 966

Event) contains 92 test samples, which involves 967

classifying the possibility of adverse events from 968

medications and symptoms in case reports in 969

Japanese7. 970

RRTNM RRTNM (Radiology Report Tumor 971

Nodes Metastasis) contains 89 test samples, which 972

involves predicting TNM classification of cancer 973

from radiology reports of lung cancer patients in 974

Japanese7. 975

SMDIS SMDIS (Social Media Disease) com- 976

prises 84 test samples, which involve classifying 977

the presence or absence of diseases or symptoms of 978

the poster or people around them from simulated 979

Tweets in Japanese7. 980

Appendix A.5 Semantic Text Similarity (STS) 981

JCSTS JCSTS (Japanese Clinical Semantic Tex- 982

tual Similarity) has 3,500 test samples in Japanese. 983

This is a medical version of the semantic textual 984

similarity task that determines the semantic sim- 985

ilarity between two sentences, dealing with case 986

reports7. 987

Appendix B Translation Performance of 988

the Machine-Translation 989

Models 990

The English–to–Japanese translation performance 991

of the machine translation models—including our 992

model8, which was used to translate the PMC sub- 993

corpus and PubMed abstracts—as well as compara- 994

tive models, is evaluated on EJMMT. As shown in 995

Table B.1, the model used in this research demon- 996

strates relatively high performance. “Baseline in 997

EJMMT” refers to the baseline performance re- 998

ported in Hayakawa and Arase (2020). BLEU was 999

used to measure the degree of agreement with the 1000

ground truth, employing the SacreBLEU library9 1001

8We used the science translation engine provided courtesy
of the National Institute of Information and Communications
Technology (NICT).

9https://github.com/mjpost/sacrebleu
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Translation Model BLEU COMET-22 COMET-23

Ours 37.71 80.78 65.64
Baseline in EJMMT 26.77 77.86 64.93
gpt-4o-2024-08-06 27.23 79.86 68.16

Table B.1: Translation Performance of the Machine-Translation Models

with the MeCab tokenizer10. COMET-2211 and1002

COMET-2312 were used as neural frameworks for1003

machine translation evaluation.1004

Appendix C Compositional Statistics of1005

Multilingual Corpora1006

Compositional statistics of multilingual corpora are1007

shown in Table C.1.1008

Appendix D Training Details1009

The bilingual (Japanese–English) PLMs, namely1010

llm-jp/llm-jp-3-13b and its equivalent model,1011

were pre-trained from scratch on 2.1 trillion tokens1012

using a general corpus containing both English and1013

Japanese text.13 Their architectures, including the1014

hidden size, number of attention heads, number of1015

layers, and context length, are identical to those1016

of Llama 2 (Touvron et al., 2023). For contin-1017

ued pre-training, we used a global batch size of1018

1024, employing the Adam optimizer with a cosine1019

scheduler. The hyperparameters were as follows:1020

β1 = 0.9, β2 = 0.95, ϵ = 1.0 × 10−8, learning1021

rate = 1×10−4, minimum learning rate = 1×10−5,1022

warm-up fraction = 0.03, and weight decay = 0.1.1023

Then, we performed supervised fine-tuning1024

on both models, before and after continued pre-1025

training. We used the first version of the general-1026

domain instruction tuning dataset published by1027

llm-jp14, along with the original training datasets1028

from MedQA (Jin et al., 2021), PubMedQA (Jin1029

et al., 2019), and MedMCQA (Pal et al., 2022),1030

as well as Japanese translations of the MedQA1031

and PubMedQA training datasets. Additionally,1032

we incorporated past questions from the Japanese1033

National Medical Examination spanning 12 years,1034

10https://pypi.org/project/mecab-python3/
11https://huggingface.co/Unbabel/

wmt22-cometkiwi-da
12https://huggingface.co/Unbabel/

wmt23-cometkiwi-da-xl
13We used two functionally equivalent base models, both

pre-trained from scratch on a total of 2.1T tokens, differing
only in the composition of the final 0.3T tokens.

14https://huggingface.co/llm-jp/llm-jp-13b-v1.
0

excluding any portions overlapping with IgakuQA 1035

(Kasai et al., 2023). Such instruction tuning is 1036

necessary because JMedBench requires a basic 1037

instruction-following capability. As for the training 1038

settings, we used a global batch size of 64, employ- 1039

ing the Adam optimizer with a cosine scheduler 1040

over two epochs. The other hyperparameters were 1041

as follows: β1 = 0.9, β2 = 0.98, learning rate 1042

= 2 × 10−5, minimum learning rate = 2 × 10−6, 1043

warm-up steps = 20, and weight decay = 0.1. 1044

The computational budget used in this study is 1045

as follows: For continued pre-training of the 13B 1046

models using approximately 80B tokens of EnJa- 1047

Hybrid corpus, we required a computational clus- 1048

ter consisting of 32 nodes, each equipped with 8 1049

NVIDIA H100 GPUs (total GPU count: 8 × 32 = 1050

256 GPUs), with a computation time of about 24 1051

hours. Continued pre-training using other corpora 1052

required computation time proportional to their to- 1053

ken count. Additionally, for supervised fine-tuning, 1054

we used 8 nodes, each equipped with 8 NVIDIA 1055

H100 GPUs (total GPU count: 8 × 8 = 64 GPUs), 1056

requiring approximately 2 hours of computation 1057

time. For evaluation based on JMedBench, we 1058

used only a single node equipped with 8 NVIDIA 1059

H100 GPUs, requiring about 1 hour. 1060

Appendix E Mutual Correlation Between 1061

Covariates 1062

Here, we demonstrate the necessity of partial cor- 1063

relation analysis as employed in this study. Com- 1064

positional statistics of corpora may exhibit corre- 1065

lations with one another, such as the relationship 1066

where an increased Japanese token count naturally 1067

leads to an increase in the total token count. Simi- 1068

larly, JMedBench includes some related tasks, for 1069

example, both MMLU-Medical-Jp and JMMLU- 1070

Medical originate from MMLU-Medical as their 1071

English source; therefore, it is essential to account 1072

for correlations between task scores. 1073

To illustrate these interdependencies, Fig. E.1 1074

presents mutual correlation coefficients among 1075

compositional statistics in multilingual corpora, 1076
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Corpus
Name

Total
token

count (B)

Japanese
token

count (B)

English
token

count (B)

Parallel
token
count

Japanese
token

ratio (%)

English
token

ratio (%)

Parallel
token

ratio (%)

EnJa-Base 15.00 5.00 9.50 0.48 33.38 63.36 3.26
JaDominant 42.76 32.76 9.50 0.48 76.62 22.24 1.14
EnDominant 43.68 5.00 38.18 0.48 11.47 87.41 1.12
EnJa-Plus 57.56 18.88 38.18 0.48 32.81 66.34 0.85
EnJa-Balance 71.44 32.76 38.18 0.48 45.86 53.45 0.68
EnJa-Hybrid 79.62 36.11 36.42 7.07 45.36 45.75 8.89

Table C.1: Compositional Statistics of Multilingual Corpora

while Fig. E.2 shows mutual correlation coeffi-1077

cients of task-wise score differences among contin-1078

ued pre-trained models using multilingual corpora.1079

Moreover, Fig. E.3 illustrates the difference1080

between regular correlation analysis and partial1081

correlation analysis, using the score difference in1082

IgakuQA (Ja/MCQA) as an example. For instance,1083

while total token count exhibited a significant cor-1084

relation with score difference in the regular cor-1085

relation analysis (r = 0.915, p = 0.011), this1086

effect disappeared in the partial correlation analy-1087

sis (r = 0.185, p = 0.725). Instead, the effect of1088

Japanese token count turned out to be significant1089

(r = 0.956, p = 0.003), which is more intuitive1090

when considering the specific expertise tested in1091

this particular benchmark.1092

Thus, by adjusting for the effects of covariates1093

through partial correlation analysis, we can bet-1094

ter distinguish the correlations between task-wise1095

score differences and corpus compositional statis-1096

tics.1097

Appendix F Example of Parallel Corpus1098

An example of the parallel corpus is shown in1099

Fig. F.1. An original PubMed abstract in English1100

and its machine-translated Japanese version are1101

concatenated at the paragraph level. Notably, the1102

machine-translated data is of reasonable quality,1103

accurately rendering biomedical terminology even1104

in specialized contexts. This observation is well-1105

aligned with the quantitative comparison of the1106

translation quality (see Table B.1).1107

However, because the parallel corpus is artifi-1108

cially constructed to switch languages at the para-1109

graph level, it deviates from natural language pat-1110

terns and may potentially hinder certain learning1111

tasks.1112
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Fig. E.1: Mutual Correlation Coefficients of Corpus Compositional Statistics. Mutual correlation coefficients
among compositional statistics in multilingual corpora—including total token count, Japanese token count, English
token count, parallel token count, Japanese token ratio, English token ratio, and parallel token ratio—were computed.
The results reveal several strong correlations between specific statistics.
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Fig. E.2: Mutual Correlation Coefficients of Task-wise Score Differences. Mutual correlation coefficients of
task-wise score differences among continued pre-trained models using various corpora—including EnJa-Base,
JaDominant, EnDominant, EnJa-Plus, EnJa-Balance, and EnJa-Hybrid—were computed. The results reveal several
strong correlations between specific tasks.
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Fig. E.3: Difference between Partial Correlation and Regular Correlation. Comparison between regular
correlation and partial correlation analyses for the IgakuQA (Ja/MCQA) task. Notably, total token count exhibited
a significant correlation with score difference in the regular correlation analysis (r = 0.915, p = 0.011), but this
effect disappeared in the partial correlation analysis (r = 0.185, p = 0.725). Instead, the effect of Japanese token
count turned out to be significant (r = 0.956, p = 0.003). This demonstrates that partial correlation analysis can
reveal differential relationships between task-wise score differences and corpus compositional statistics by adjusting
for the effects of covariates.
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Parvovirus B19 is the causative agent of erythema infectiosum in children, but the virus is associated with an
increasing range of different diseases. These include acute and chronic arthritis, hydrops fetalis in pregnant women,
aplastic anemia, and thrombocytopenia. The host’s immune response is directed against the viral structural proteins
VP1 and VP2. This study investigated the presence of IgG against the viral nonstructural protein NS1 using Western
blot. Serum panels from healthy individuals, B19-infected pregnant women, and various disease groups were tested.
The disease groups included patients with symptoms that may be linked to parvovirus B19 infection. The results
showed that IgG against the NS1 protein was present in 22% of healthy individuals with past B19 infection. In
cases of persistent or prolonged B19 infections, the prevalence of NS1-specific antibodies was as high as 80%. It
is concluded that NS1-specific IgG may be used as an indicator of chronic or more severe courses of parvovirus
B19 infections. パルボウイルスB19は小児の伝染性紅斑の原因ウイルスであるが、このウイルスは様々
な疾患の増加と関連している。これらには、急性および慢性関節炎、妊婦の胎児水腫、再生不良性
貧血、血小板減少などがある。宿主の免疫反応はウイルス構造タンパク質VP1とVP2に向けられる。
本研究では、ウイルス非構造タンパク質NS1に対するIgGの存在をウェスタンブロットを用いて調べ
た。健常者、B19感染妊婦、および種々の疾患群の血清中パネルを検査した。疾患群には、パルボウ
イルスB19感染に関連する可能性のある症状を有する患者が含まれていた。その結果、NS1蛋白に対す
るIgGは、過去にB19に感染した健常者の22%に存在していた。B19感染が持続または遷延した症例で
は、NS1特異的抗体の保有率は80%と高かった。NS1特異的IgGは、パルボウイルスB19感染の慢性あ
るいはより重症な経過の指標として使用できると結論した。

Fig. F.1: An Example of a Parallel Corpus. The parallel corpus is constructed by arranging machine-translated
Japanese paragraphs alongside their original English counterparts in random sequences. As a result, the text exhibits
random language switching between English and Japanese at the paragraph level, creating an artificial linguistic
environment that differs from language-specific textual patterns.
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