
Under review as a conference paper at ICLR 2023

IEDR: A CONTEXT-AWARE INTRINSIC AND EXTRIN-
SIC DISENTANGLED RECOMMENDER SYSTEM

Anonymous authors
Paper under double-blind review

ABSTRACT

Intrinsic and extrinsic factors jointly affect users’ decisions in item selection (e.g.,
click, purchase). Intrinsic factors reveal users’ real interests and are invariant in
different contexts (e.g., time, weather), whereas extrinsic factors can change w.r.t.
different contexts. Analyzing these two factors is an essential yet challenging task
in recommender systems. However, in existing studies, factor analysis is either
largely neglected, or designed for a specific context (e.g., the time context in se-
quential recommendation), which limits the applicability of such models. In this
paper, we propose a generic model, IEDR, to learn intrinsic and extrinsic factors
from various contexts for recommendation. IEDR contains two key components:
a contrastive learning component, and a disentangling component. The two com-
ponents collaboratively enable our model to learn context-invariant intrinsic fac-
tors and context-based extrinsic factors from all available contexts. Experimental
results on real-world datasets demonstrate the effectiveness of our model in factor
learning and impart a significant improvement in recommendation accuracy over
the state-of-the-art methods.

1 INTRODUCTION

Recommender systems aim to predict the probability of a user selecting a given item (e.g., click,
purchase). This is a challenging prediction as each decision is jointly affected by multiple factors
(Ma et al., 2019). Psychological research has revealed that users’ decision making is mainly influ-
enced by two factors: intrinsic and extrinsic factors (Bénabou & Tirole, 2003; Vallerand, 1997). An
intrinsic factor is an internal motivation for inherent satisfaction, which is often stable for an individ-
ual. In contrast, an extrinsic factor is a contextual motivation triggered by the environment (external
stimulation), and it often varies among different contexts (e.g., weather, time) (Ryan & Deci, 2000).
For example, on a day with heavy rain, a user decides to take an Uber (a taxi calling app) to work.
In this case, the choice of Uber over other taxi calling apps is because the user is more comfortable
with this app’s user interface (intrinsic factor), while the choice of taking a ride to work is motivated
by the weather condition (extrinsic factor).

Although the importance of capturing these factors in recommender systems has been recognized,
their full potential has not been explored by the existing works. (1) Some studies neglect the intrinsic
and extrinsic factor disentangling, and the final prediction mainly relies on learning entangled repre-
sentations (Barkan & Koenigstein, 2016; Covington et al., 2016; Wu et al., 2019). With the intrinsic
and extrinsic factors entangled behind each decision, the real factors that derive the decision may be
incorrectly inferred, resulting in a suboptimal recommendation Wang et al. (2020). (2) Some studies
learn intrinsic and extrinsic factors, but just under a specific context. For example, some sequential
recommendation models leverage the time context (order sequence) to learn intrinsic and extrinsic
factors (they call them long- and short-term interests) (Hidasi et al., 2016; Yu et al., 2019b); some
point-of-interest recommendation models leverage the spatial context (geometric distance) to learn
the two factors (Li et al., 2017; Wu et al., 2020). In such models, the factor learning approaches
are domain-specific, so it would be difficult to generalize them to other contexts. Meanwhile, the
factors may be influenced by multiple contexts. Hence, focusing on a single context may result
in inferior factor learning. Therefore, it is still an open question of how to effectively incorporate
various context information for learning intrinsic and extrinsic factors in recommender systems.

1



Under review as a conference paper at ICLR 2023

Focusing on this question, we propose a generic recommendation framework that can learn intrin-
sic and extrinsic factors from various contexts. We first formally define context-agnostic intrin-
sic and extrinsic factors for recommendation tasks. Following these definitions, we propose an
Intrinsic-Extrinsic Disentangled Recommendation (IEDR) model, which contains two modules: a
recommendation prediction (RP) module, and a contrastive intrinsic-extrinsic disentangling (CIED)
module. For each user-item interaction, the PR module constructs all the contexts as a graph (con-
text graph), and the context representation is obtained via learning the graph. The same procedures
are done to obtain the user and item representations from their attributes (e.g., user gender, item cat-
egory), respectively. Then, the intrinsic and extrinsic factors are learned from these representations
for the user and the item perspectives. Meanwhile, the CIED module contains two components: a
contrastive learning component that learns a context-invariant intrinsic factor, and a disentangling
component that disentangles the intrinsic and extrinsic factors via mutual information minimization.
The two components jointly ensure IEDR to learn intrinsic and extrinsic factors.

In this paper, we made the following contributions:

• To better analyze the factors influencing users’ decisions, we formalize the context-agnostic intrin-
sic and extrinsic factors for recommender systems. Following these definitions, we propose IEDR
to learn disentangled intrinsic and extrinsic factors from various contexts for recommendation.

• IEDR comprises a context-invariant contrastive learning component, and a mutual information
minimization-based disentangling component to effectively disentangle the learned factors.

• Extensive experiments on real-world datasets show that (1) IEDR significantly outperforms the
state-of-the-art baselines when various contexts are available; (2) our proposed CIED module can
successfully learn intrinsic and extrinsic factors.

2 RELATED WORK

This section summarizes the current research progress on recommender systems and contrastive
learning related to our work.

Feature interaction modeling Many recommender systems leverage feature interactions to im-
prove prediction accuracy. One of the most common techniques is the factorization machine (FM)
(Rendle, 2010), which models feature interactions through dot product and achieves great success.
Recent studies extend FM with deep neural networks for more powerful feature interaction mod-
eling (Xiao et al., 2017; He & Chua, 2017; Yu et al., 2019a). The Wide & Deep model (WDL)
(Cheng et al., 2016) proposes a framework that combines shallow and deep modeling of features for
recommendation. Guo et al. (2017) combine FM and WDL by replacing the shallow part of WDL
with an FM model. Su et al. (2021) leverage the relation reasoning power of graph neural networks
for feature interaction modeling. However, these models do not incorporate context information for
better factor analysis, and we overcome this issue by leveraging this information to disentangle and
learn intrinsic and extrinsic factors for recommendation.

Factor disentanglement Intrinsic and extrinsic factors are considered as two basic factors for
individual decision making in psychological research (Ryan & Deci, 2000; Bénabou & Tirole, 2003;
Vallerand, 1997). Recent recommender systems have borrowed the idea of capturing these two
factors to achieve more accurate recommendation. For example, in sequential recommendation,
Hidasi et al. (2016) are the first to leverage the recurrent neural networks to capture users’ long-
and short-term (LS-term) interests from their interacted item sequences. Yu et al. (2019b) propose a
time-aware controller to capture the differences between LS-term interests for more accurate interest
learning. Zheng et al. (2022) further emphasize the disentanglement between the LS-term interests
at different time scales to differentiate the LS-term interests. In point-of-interest recommendation,
studies are leveraging spatial context to capture the intrinsic and extrinsic factors (Li et al., 2017;
Wu et al., 2020). However, all of the above studies focus on specific contexts. As a result, their
factor learning approaches are hard to apply to other recommendation domains, which may result
in a suboptimal solution if other contexts jointly influence these factors. Some studies learn users’
multiple factors without knowing the meaning of each factor (i.e., implicit factor). They first define
the number of factors (e.g., 4) to be learned, and then disentangle the representations of each pair
of factors (Ma et al., 2019; Wang et al., 2020). These models only ensure that the learned factor

2



Under review as a conference paper at ICLR 2023

representations are disentangled, but cannot guarantee whether they really refer to important factors.
Our IEDR model incorporates various contexts for explicit intrinsic and extrinsic factor learning.

Contrastive learning Contrastive learning has achieved great success in computer vision (Chen
et al., 2020; Chuang et al., 2020; Khosla et al., 2020; Tian et al., 2020; Chen & He, 2021) and
neural language processing (Oord et al., 2018; Yang et al., 2019; Gao et al., 2021; Gunel et al.,
2021). Recently, contrastive learning has attracted attention in recommender systems. Yao et al.
(2021) conduct contrastive learning on users and items respectively on a two-tower framework to
learn robust user and item representations. In addition, Wu et al. (2021) propose a contrastive learn-
ing framework on a user-item bipartite graph to capture robust high-degree relationships between
users and items. Lin et al. (2021) and Jiang et al. (2021) leverage contrastive learning to eliminate
popularity bias. We propose the method that learns intrinsic factor representations that are invariant
to context through a contrastive learning approach.

3 PROBLEM STATEMENT AND DEFINITIONS

Let U , V , and C denote the user set, item set, and context set, respectively. Each user u ∈ U consists
a set of user features u = {zu1 , zu2 , ..., zup } (e.g., user ID, gender). Similarly, each item v ∈ V is
represented by a set of item features v = {zv1 , zv2 , ..., zvq } (e.g., branch, color). A context c ∈ C is a
set of context features c = {zc1, zc2, ..., zcm}, denoting the context state when a user selects an item
(e.g., weather, daytime). Let D be a dataset containing N instances (i.e., data samples) of (u, v, c),
with an corresponding label y ∈ {1, 0} indicating whether or not the user u selects the item v under
the context c. The recommendation task can be formulated as predicting the selection probability
y′ = p(u, v, c). In our proposed IEDR model, the intrinsic factor oin and the extrinsic factor oex

are explicitly inferred for both users and items, and jointly leveraged to perform the prediction.

Next, we formally define intrinsic and extrinsic factors. We believe these two factors exist from both
users’ and items’ perspectives. This is reasonable since a user selecting an item not only relates
to the factors (motivations) of users, e.g., preferring a ride (intrinsic factor) over walking to work
on a rainy day (extrinsic factor), but also relates to the factors (attractiveness) of items, e.g., a Taxi
calling App with a comfortable user interface (intrinsic factor) and has a discount (extrinsic factor).
In the following, we define intrinsic and extrinsic factors from the users’ perspective only, as they
are similar from the items‘ perspective.
Definition 1. (Intrinsic Factor and Extrinsic Factor) Consider a user u and a set of contexts C;
an intrinsic factor of the user u is a factor that is invariant to the contexts in C, i.e., fin(u, c) =
fin(u, c

′), where fin is a function learning intrinsic factor representations, and c and c′ are two
arbitrary contexts in C. On the other hand, an extrinsic factor of the user u is a factor that changes
w.r.t. the context, i.e., there exist contexts c and c′ in C such that fex(u, c) ̸= fex(u, c

′), where fex
learns extrinsic factor representations.

4 INTRINSIC-EXTRINSIC DISENTANGLED RECOMMENDATION MODEL

The overview of our model is visualized in Figure 1. More specifically, our proposed IEDR model
consists of the following two modules, which will be detailed in the next subsections:

• A recommendation prediction (RP) module that takes a user and an item as input, and combines
them with a set of contexts, to generate intrinsic and extrinsic factor representations for both the
user and the item. The predicted probability y′ is then jointly learned from these representations.

• A contrastive intrinsic-extrinsic disentangled (CIED) module is applied to both the user and the
item sides to support the intrinsic and extrinsic factor learning. The module contains a context-
invariant contrastive learning component and a disentangling component, to ensure the learned
factors satisfy Definition 1.

4.1 THE RECOMMENDATION PREDICTION MODULE

The recommendation prediction (RP) module is a symmetric structure that generates user intrinsic
and extrinsic factor representations (ou

in,o
u
ex) from the user side, and generates item intrinsic and

3



Under review as a conference paper at ICLR 2023

RPCIED (user side) CIED (item side)

+𝑣𝑖 𝑐𝑖+𝑢𝑖 𝑐𝑖

𝑞𝑢
2

𝑓 𝑢
𝑖𝑒 𝑓 𝑣

𝑖𝑒

𝑜𝑢
𝑖𝑛

𝑜𝑢
𝑒𝑥 𝑜𝑣

𝑒𝑥 𝑜𝑣
𝑖𝑛


𝑢
𝐶𝐼𝐶𝐿


𝑢
𝑏𝑖-𝑎𝑝𝑝𝑟


𝑢
𝐷𝑖𝑠


𝑣
𝐶𝐼𝐶𝐿


𝑣
𝑏𝑖-𝑎𝑝𝑝𝑟


𝑣
𝐷𝑖𝑠

𝑦
′

𝑖

Contrastive Learning

Disentanglement

Contrastive Learning

Disentanglement

+𝑣𝑖 𝑐𝑗

+𝑣ℓ 𝑐𝑖

𝑦𝑖
𝑅𝑃

+𝑢𝑖 𝑐𝑗

+𝑢ℓ 𝑐𝑖

𝑞𝑢
1

𝑞𝑢
2

𝑞𝑢
2

𝑞𝑢
1

𝑞𝑢
1

𝑞𝑣
1

𝑞𝑣
1

𝑞𝑣
1

𝑞𝑣
2

𝑞𝑣
2

𝑞𝑣
2

𝑢𝑖 𝑐𝑖 𝑣𝑖

User Side Item Side
Figure 1: An Overview of IEDR. It is a symmetric structure on the user side and the item side. The middle
part (the black arrows) represents the recommendation prediction (RP) module (Section 4.1). It generates the
intrinsic and extrinsic factor representations (oin and oex) for producing the recommendation prediction y′.
The side parts are two contrastive intrinsic-extrinsic disentanglement (CIED) modules. Each CIED includes a
context-invariant contrastive learning component (the red arrows, Section 4.2.1), and a disentangling compo-
nent (the blue arrows, Section 4.2.2) to ensure the success of the factor learning. The losses generated through
these modules (LRP ,LCICL,Lbi-appr,LDis) will be optimized as a two-step multi-task training (Section 4.3).

extrinsic factor representations (ov
in,o

v
ex) from the item side. On the user side, we first generate a

user representation and a context representation based on user features and context features, respec-
tively. Here we use the SIGN model (Su et al., 2021) to generate the representations. SIGN has been
proven effective in user/item/context representation learning through modeling feature interactions
via graph neural networks. Appendix A.1 provides a detailed description of SIGN. More formally,
let fu(u) : Rp×d → Rd be the function for SIGN-based feature modeling. fu(u) first maps each
user feature zui ∈ u into a d-dimensional feature embedding zu

i . Then, it models these feature
embeddings to output the user representation u. Similarly, SIGN learns context representation c
through fc. Next, a factor generation function fuie(u, c) : R2×d → R2×d (e.g., a neural network)
takes the user representation and the context representation as input, and simultaneously generates
a user intrinsic representation ou

in and a user extrinsic representations ou
ex. Here, the output is a 2d-

dimensional vector, with the first d-dimensional terms as ou
in and the rest as ou

ex. On the item side, a
similar module structure is adopted. We use a different SIGN-based function for the item represen-
tation learning v = fv(v), while using the same context representation as that on the user side. A
factor generating function fvie(v, c) is applied to obtain the item intrinsic factor representation ov

in
and extrinsic factor representation ov

ex.

Finally, we jointly learn the prediction y′ = fpred(o
u
in,o

u
ex,o

v
in,o

v
ex). We linearly combine

the intrinsic and extrinsic representations and use the dot product as the prediction function:
fpred(o

u
in,o

u
ex,o

v
in,o

v
ex) = (ou

in + ou
ex)
⊤(ov

in + ov
ex). A cross-entropy loss function is adopted

to minimize the prediction error: LRP(u, v, c) := −y log(y′) + (1− y) log(1− y′).

4.2 THE CONTRASTIVE INTRINSIC-EXTRINSIC DISENTANGLING MODULE

While the RP module can generate factor representations, solely using this module cannot correctly
distinguish intrinsic representations from extrinsic ones. To address this, we propose a contrastive
intrinsic-extrinsic disentangled (CIED) module and apply it to both the user and the item sides. In the
following, we only describe the CIED on the user side, as the module on the item side has the same
structure. CIED consists of a context-invariant contrastive learning component and a disentangling
component. The contrastive learning component learns intrinsic representations that are invariant in
different contexts, while the disentangling component leverages a mutual information minimization
task to disentangle the intrinsic and extrinsic representations. In the following, we describe these
two components in detail.

4.2.1 THE CONTEXT-INVARIANT CONTRASTIVE LEARNING COMPONENT

We propose a context-invariant contrastive learning component to learn the intrinsic representations.
More specifically, we maximize the agreement between the intrinsic representation pairs generated
from the same user under different contexts (positive pairs), and minimize the agreement between the

4



Under review as a conference paper at ICLR 2023

intrinsic representation pairs generated from the same context with different users (negative pairs) at
the same time. More formally, we represent the intrinsic representations with the subscript (ou

in)ij
if it is generated through user ui (from i-th data sample) and context cj (from j-th data sample), i.e.,
(ou

in)ij = fuie(ui, cj). For the i-th data sample (ui, vi, ci) ∈ D, we calculate the objective function
based on InfoNCE (Oord et al., 2018):

Lu
CICL(ui, ci) := − log

exp (sim((ou
in)ii, (o

u
in)ij)/τ)∑

uℓ∈U exp (sim((ou
in)ii, (o

u
in)ℓi)/τ)

, (1)

where cj is an arbitrary context, sim(·) is the cosine similarity, and τ is a temperature value.

Implementation. To optimize Equation (1), we need to generate cj (ci ̸= cj). We adopt a simple
method to perform random sampling from the contexts within the same batch. Also, inspired by
(Gao et al., 2021), where a vector with a large dropout rate can be considered as a new vector, we
propose a dropout-based method to generate new context representations (e.g., with the dropout
rate larger than 50%). In practice, we integrate the two methods to generate different contexts cj
for each ci (we empirically show in Appendix G.4 that the integrated generating method results in
better prediction accuracies than either methods). Meanwhile, we need to iterate over all the users
to generate (ou

in)ℓi (the intrinsic representations generated from an arbitrary user uℓ and context ci),
which is prohibitive when the users’ number is large. Here, we randomly sample L users from the
same batch to generate the negative intrinsic representations (ou

in)ℓi, where ℓ = 1, 2, · · · , L. We use
the categorical cross-entropy to optimize Equation (1) following (Oord et al., 2018).

4.2.2 THE DISENTANGLING COMPONENT

We then perform an intrinsic-extrinsic factor disentangling via minimizing the mutual information
between the ou

in and ou
ex generated from fuie(u, c). Inspired by vCLUB (Cheng et al., 2020), we

minimize their mutual information by estimating a vCLUB-based upper bound. However, the asym-
metric property of the original vCLUB may lead to a less robust and inferior intrinsic-extrinsic disen-
tangling (further discussions on this drawback of vCLUB can be found in Appendix D). Therefore,
we propose a simple yet effective bidirectional extension of vCLUB for symmetry, which is more
robust and achieves better disentanglement. In the bidirectional vCLUB, two variational distribu-
tions (e.g., approximated via neural networks) qu1 (o

u
ex|ou

in;θ
u
1 ) and qu2 (o

u
in|ou

ex;θ
u
2 ) are proposed

with parameters θu
1 and θu

2 , to predict the two types of factors, respectively. Then a bidirectional
vCLUB-based mutual information upper bound can be obtained as:1

Ibi-vCLUB(o
u
in;o

u
ex) :=

1

2

(
Ep(ou

in,ou
ex)[log q

u
1 (o

u
ex|ou

in)]− Ep(ou
in)p(ou

ex)[log q
u
1 (o

u
ex|ou

in)]

+ Ep(ou
in,ou

ex)[log q
u
2 (o

u
in|ou

ex)]− Ep(ou
ex)p(ou

in)[log q
u
2 (o

u
in|ou

ex)]
)
.

(2)

Through minimizing the bidirectional upper bound Ibi-vCLUB(o
u
in;o

u
ex) as above, we minimize the

mutual information between ou
in and ou

ex. Experimental results in Section 5.2.2 show that vCLUB
is more robust and achieves better factor learning.

Implementation. The optimization of the disentangling component is conducted in two steps iter-
atively. In the first step, we estimate the upper bound by training θu

1 and θu
2 to minimize the loss

function Lu
bi-appr(ui, ci) := − 1

2

(
log qu1

(
(ou

ex)ii|(ou
in)ii

)
+ log qu2

(
(ou

in)ii|(ou
ex)ii

))
. Following

(Cheng et al., 2020), we use the mean squared error to optimize qu1 and qu2 . In the second step, we
freeze θu

1 and θu
2 , and minimize the mutual information of ou

in and ou
ex by training other parameters

to minimize the upper bound Lu
Dis(ui, ci) = Ibi-vCLUB

(
(ou

in)ii; (o
u
ex)ii

)
.

4.3 A MULTI-TASK TRAINING

We perform a two-step multi-task training to minimize the empirical risk of IEDR. The two steps
run alternatively until convergence. Appendix H provides the pseudo-code of the training procedure.
In the first step, we freeze all the parameters except for θu

1 ,θ
u
2 ,θ

v
1 , and θv

2 , where θv
1 ,θ

v
2 are the

parameters of qv1(o
v
ex|ov

in;θ
v
1) and qv2(o

v
in|ov

ex;θ
v
2) in the disentangling component on the item side.

1Ibi-vCLUB(o
u
in;o

u
ex) is the average of two vCLUB-based upper bounds of different directions. Therefore, it

is obvious that Ibi-vCLUB(o
u
in;o

u
ex) is still an upper bound of I(ou

in;o
u
ex).

5



Under review as a conference paper at ICLR 2023

We then minimizeR(θu
1 ,θ

u
2 ,θ

v
1 ,θ

v
2) =

1
N

∑N
i=1

(
Lu
bi-appr(ui, ci)+Lv

bi-appr(vi, ci)
)
. In the second

step, we freeze θu
1 ,θ

u
2 ,θ

v
1 , and θv

2 , and minimize the following function:

argminR(ω) =
1

N

N∑
i=1

(
LRP(ui, vi, ci)+λ1

(
Lu

CICL(ci, ui)+Lv
CICL(ci, vi)

)
+λ2

(
Lu

Dis(ui, ci)+Lv
Dis(vi, ci)

))
, (3)

where Lv
bi-appr, Lv

CICL, and Lv
Dis are the losses on the item side, λ1 and λ2 are the weight factors,

and ω are all the trainable parameters except for θu
1 ,θ

u
2 ,θ

v
1 , and θv

2 .

4.4 THEORETICAL ANALYSIS: CONTEXT-INVARIANT CONTRASTIVE LEARNING IN
INFORMATION THEORY

In this section, we reason the context-invariant contrastive learning from the perspective of informa-
tion theory. As formally defined in Theorem 1, optimizing Equation (1) is equivalent to maximizing
the mutual information between the intrinsic representations and user representations, and simul-
taneously minimizing the mutual information between the intrinsic representations and the context
representations. The theorem on the item side can be derived in the same fashion. The proof of this
equivalence can be found in Appendix B.

Theorem 1 (Equivalence of contrastive loss Lu
CICL). Optimizing the contrastive loss is equivalent to

solving:

argmin

N∑
i=1

Lu
CICL(ui, ci) = argmax

(
I(ou

in,u)− I(ou
in, c)

)
. (4)

5 EXPERIMENTS

We conduct extensive experiments to demonstrate the effectiveness of our model. In this section, we
focus on 1) the recommendation performance of IEDR compared to the state-of-the-art methods; 2)
the effectiveness of each component in IEDR; and 3) the ability to disentangle intrinsic and extrinsic
factors of IEDR. We discuss the datasets, baselines, implementations, and parameter settings in
detail in Appendix F.

5.1 OVERALL PERFORMANCE

We evaluate the recommendation performance of our model, by comparing it with various baselines
in two scenarios. In the first scenario, we learn intrinsic and extrinsic factors from various contexts.
In the second scenario, we learn the factors from a specific (time) context and compare with sequen-
tial recommendation baselines that also learn intrinsic and extrinsic factors (i.e., long and short term
interests). We use three common evaluation metrics for recommender systems: AUC, NDCG@k,
and HR@k with k being 5 and 10.

5.1.1 FACTOR LEARNING FROM VARIOUS CONTEXTS

We run our model and feature interaction-based baselines on the datasets that contain various con-
texts: the Frappe dataset (Baltrunas et al., 2015) for app recommendation, and the Yelp dataset (Wu
et al., 2022) for restaurant recommendation. As our baselines, we use feature interaction-based ap-
proaches (Xiao et al., 2017; He & Chua, 2017; Song et al., 2019; Guo et al., 2017; Cheng et al.,
2016; Wang et al., 2021; Yu et al., 2019a; Su et al., 2021) that capture these contexts but neglect the
factor learning. We also compare with implicit factor disentanglement methods DisRec (Ma et al.,
2019) and DGCF (Wang et al., 2020). The performance results are reported in Table 1. Each result is
the average of 10 times run. For each metric, the best results are in bold, and the best baseline results
are underlined. The rows Improv (standing for Improvements) and p-value show the improvement
and statistical significance (via the Wilcoxon signed-rank test (Wilcoxon, 1992)) of IEDR over the
best baseline results, respectively.

From Table 1, we observe that our model significantly outperforms all baselines under all evalua-
tion metrics, and the p-values are all less than the 5% threshold, indicating the significance of the
improvements. IEDR outperforms feature interaction-based baselines because IEDR captures the

6



Under review as a conference paper at ICLR 2023

Table 1: Comparing the prediction performance (in percentage) with the baselines. The Improv and
p-value rows show the relative improvements and the statistical significance of IEDR over the best
performed baselines, respectively. N@k refers to NDCG@k and H@k refers to HR@k.

Frappe Yelp

AUC N@5 N@10 H@5 H@10 AUC N@5 N@10 H@5 H@10

AFM 93.18 63.52 67.44 77.84 84.71 91.96 42.79 47.17 58.69 72.21
NFM 95.86 68.30 70.73 83.00 90.40 93.32 45.99 50.33 61.90 75.27
AutoInt 95.83 69.45 71.41 84.04 90.10 93.82 46.61 50.80 63.72 76.55
DeepFM 96.09 69.20 71.28 82.70 89.50 93.26 44.20 48.50 60.26 73.55
WDL 95.96 68.02 70.33 81.70 88.90 93.41 45.47 49.71 61.90 74.89
DCNv2 95.25 68.15 70.34 82.15 89.91 93.66 43.41 48.26 60.97 74.88
IFM 95.32 66.91 69.13 80.90 87.60 93.83 46.74 50.86 63.04 75.69
SIGN 95.92 69.38 71.49 83.91 90.37 93.67 46.80 50.94 63.68 76.41
DisRec 85.51 56.81 60.07 67.42 76.29 84.01 34.82 37.90 48.29 63.17
DGCF 86.13 58.40 61.44 69.05 77.53 85.29 36.35 39.06 50.05 64.62

IEDR 96.34 72.40 74.11 85.94 91.25 94.22 48.68 53.05 65.23 78.29

Improv 0.26% 4.24% 3.66% 2.26% 0.94% 0.42% 4.01% 4.14% 2.38% 2.28%
p-value 3.72% 0.25% 0.25% 0.25% 0.83% 2.34% 0.25% 0.25% 0.25% 0.25%

intrinsic and extrinsic factors, while these baselines neglect the factor learning. Meanwhile, the im-
plicit factor disentanglement methods (DisRec and DGCF) also perform inferior to our model. One
reason is that implicit factor disentanglement is not the best way to infer these factors. In Section
5.2, we empirically verify that replacing the disentanglement module in IEDR with an implicit ap-
proach (as in DisRec and DGCF) leads to a decrease in recommendation accuracy. Another reason
is that the factor disentanglement of DisRec and DGCF are purely based on user-item interactions,
and do not consider context information. This may lead to critical information loss for recommen-
dation. Our model explores context information to learn disentangled intrinsic and extrinsic factors
for recommendation, and hence achieves better prediction accuracy.

5.1.2 FACTOR LEARNING FROM SPECIFIC CONTEXT

Table 2: Comparing the performance of IEDR and
the baselines on time context-specific scenario.

Movies CDs

AUC N@10 AUC N@10

GRU4Rec 77.11 25.18 78.86 19.41
SLI-Rec 78.69 26.85 79.37 20.27
CLSR 80.02 26.98 80.42 21.07

IEDR 80.14 26.68 80.34 20.95

We then evaluate IEDR on two Amazon datasets
(Movies and CDs) (McAuley et al., 2015) that
contain only the time context. IEDR takes the
(bucketed) time context as features to learn in-
trinsic and extrinsic factors. We compare with
the state-of-the-art sequential recommendation
baselines (Hidasi et al., 2016; Yu et al., 2019b;
Zheng et al., 2022) that learn LS-term interests
from the item sequences ordered by the time.
The experimental results are reported in Table
2, where our model achieves competitive accu-
racy compared to the baselines. This proves the
ability of our model to achieve state-of-the-art recommendation accuracy in the context-specific
scenario, even compared with the models designed for the context. Moreover, our IEDR is more
versatile and can be applied to various contexts.

5.2 EFFECTIVENESS OF OUR MODEL’S COMPONENTS

This section evaluates the components in IEDR in detail. We demonstrate the results in NDCG@10
due to the space limit. Other metrics show similar trends.

5.2.1 ABLATION STUDY OF CONTRASTIVE INTRINSIC-EXTRINSIC DISENTANGLING
MODULE

The contrastive intrinsic-extrinsic disentangling (CIED) module contains a context-invariant con-
trastive learning component and a disentangling component. In this section, we conduct an ablation
study to show the impact of these components. We run our model in three variations: 1) without the

7



Under review as a conference paper at ICLR 2023

IEDR noDis noCL noCIED

70

72

74

Components

Frappe

IEDR noDis noCL noCIED

51

52

53

Components

Yelp

(a)

vCLUB BiDis
70

72

74

Disentangling method

Frappe

vCLUB BiDis
50

51

52

53

Disentangling method

Yelp

(b)
Figure 2: (a) Ablation studies with different component(s) removed. (b) The performance and variance statis-
tics of vCLUB and BiDis. The vertical axis is NDCG@10.

contrastive learning component (noCL); 2) without the disentangling component (noDis); 3) with-
out the contrastive learning and disentangling components (noCIED), i.e., the CIED module is not
applied. Figure 2a compares our IEDR model with these three variants. The inferior performance
of noCIED compared with our full model IEDR demonstrates the importance of learning intrinsic
and extrinsic factors for accurate recommendation prediction. noCL can be regarded as performing
implicit factor learning. The inferior performance of noCL indicates that explicit intrinsic and ex-
trinsic factor learning is superior to implicit factor learning methods (as in the factor disentangling
baselines) in inferring the real reason for users’ decisions. noDis learns intrinsic factors but does
not guarantee the extrinsic factor learning. Therefore, it also obtains worse results than CIED. Em-
ploying both components achieves better performance than learning with only one. This is because
either component cannot individually learn intrinsic and extrinsic factors successfully, highlighting
the importance of learning the two factors for an accurate recommendation.

5.2.2 DISENTANGLING COMPONENT EVALUATION

We propose a bidirectional vCLUB-based disentangling method (BiDis) that disentangles the intrin-
sic and extrinsic factors. In this section, we compare our BiDis method with the original vCLUB
method (vCLUB). From Figure 2b, we observe that our BiDis achieves a better performance than
vCLUB, and its variance is much smaller than vCLUB. This indicates that BiDis generates more
robust predictions, which is consistent with our analysis in Section 4.2.2. In addition, we visualize
the intrinsic and extrinsic representations learned by the two disentanglement methods with t-SNE
in Appendix G.7, and observe that using BiDis results in a better intrinsic-extrinsic disentanglement.
This is the reason why BiDis delivers a better performance than vCLUB.

5.3 DISENTANGLEMENT VERIFICATION

This section verifies the intrinsic and extrinsic factor disentangling ability of IEDR, including a
visualization of the learned intrinsic and extrinsic representations and a case study to show the
differences of these factors in users’ decision-making.

5.3.1 VISUALIZATION OF INTRINSIC AND EXTRINSIC REPRESENTATIONS

In Figure 3, we visualize intrinsic and extrinsic factor representations learned from our model. We
see that when the model is equipped with the CIED module (IEDR), the factors are well disentan-
gled. However, when we do not use the CIED module (noCIED), the intrinsic and extrinsic factor
representations are mixed together. This indicates that these factors cannot be well learned and dis-
entangled without our CIED module. We provide more visualizations and analysis for our model
with different component combinations in Appendix G.7.

5.3.2 CASE STUDY

We conducted a case study to analyze the differences between the learned intrinsic and extrinsic
factors. We randomly choose a user from the Frappe dataset and generate the intrinsic matching
scores (the dot product of the user’s intrinsic representation and the items’ (apps) intrinsic repre-
sentations) in two different contexts (Weekday and Weekend). The same for the extrinsic matching
scores. We sort the matching scores for the intrinsic and extrinsic factors, respectively, and list the

8



Under review as a conference paper at ICLR 2023

(a) User IEDR. (b) Item IEDR. (c) User noCIED. (d) Item noCIED.

Figure 3: Visualization of the learned intrinsic and extrinsic representations with t-SNE for the Frappe
dataset. The blue dots are the intrinsic representations, and the red dots are the extrinsic representations.

0 20 40 60 80 100

Items
20
30
40
50
60
70
80
90

Sc
or

e

Intrinsic Weekend
Intrinsic Weekday
Extrinsic Weekend
Extrinsic Weekday

Figure 4: A user’s top 100 intrin-
sic and extrinsic scores in different
contexts (Weekend vs. Weekday).

Table 3: Items (in category) of the highest intrinsic and extrinsic scores for
different users in Weekday.

User1 User2

Rank Intrinsic Extrinsic Intrinsic Extrinsic

1 Photography Tool Cards&Casino Communication
2 Sports Communication Productivity Tool
3 Health&Fitness Media&Video Cards&Casino News&Magazines
4 Tools Personalization Sports Games Tool
5 Health&Fitness Communication Brain&Puzzle Communication
6 Personalization Casual Communication News&Magazines
7 Personalization Music&Audio Tools Personalization
8 Communication News&Magazines Sports Media&Video
9 Personalization Communication Arcade&Action Tool
10 Health&Fitness Travel&Local Tools Communication

top 100 items. The results are demonstrated in Figure 4. Note that the top 100 items for intrinsic
and extrinsic factors are different. According to Figure 4, from weekday to weekend, the extrinsic
scores vary a lot, while the intrinsic scores remain invariant. These observations demonstrate that,
in different contexts, the user has different intrinsic factors, as well as consistent intrinsic factors.

Then, we illustrate how intrinsic and extrinsic factors may have different impacts on users’ choices.
Table 3 lists the categories of the items with the 10 highest intrinsic/extrinsic scores for two users,
respectively. we observe that users have individual intrinsic interests that show their real hobbits in
personal time, e.g., User1 prefers sports and fitness apps while User2 prefers gaming apps. On the
other hand, extrinsic factors give a higher rank to the items based on the contexts (Workday), e.g.,
Tool (Google Search) and Communication (Gmail) rank highest in User1’s extrinsic scores.

Remark. In addition to the above experiments, we further evaluate our model by 1) running our
model on other context/feature modeling methods (Appendix G.1), 2) comparing the proposed
model with a naive baseline in learning intrinsic factor representations (Appendix G.3), and 3) study-
ing how the hyperparameter settings influence the performance (Appendix G.6).

6 CONCLUSION

Capturing accurate intrinsic and extrinsic factors from contexts is an essential research topic in
recommender systems. Focusing on the problem of existing studies that either neglect the fac-
tor learning, or learn the factors from only one specific context, we propose the intrinsic-extrinsic
disentangled recommendation (IEDR) model. This generic model effectively learns intrinsic and
extrinsic factors from various contexts for a more accurate recommendation. IEDR comprises a
context-invariant contrastive learning component, and a mutual information minimization-based dis-
entangling component to ensure the success of the factor learning. Extensive experiments prove our
model’s ability to learn intrinsic and extrinsic factors and leverage the learned factors for more ac-
curate recommendation prediction. Following this work, we may discover other types of factors that
can be considered besides the intrinsic and extrinsic ones, and learn more fine-grained intrinsic and
extrinsic factors (e.g., multiple intrinsic factors).

9



Under review as a conference paper at ICLR 2023

REFERENCES

Linas Baltrunas, Karen Church, Alexandros Karatzoglou, and Nuria Oliver. Frappe: Under-
standing the usage and perception of mobile app recommendations in-the-wild. arXiv preprint
arXiv:1505.03014, 2015.

Oren Barkan and Noam Koenigstein. Item2vec: Neural item embedding for collaborative filtering.
In MLSP, pp. 1–6, 2016.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and Devon Hjelm. Mutual information neural estimation. In ICML, pp. 531–540, 2018.

Roland Bénabou and Jean Tirole. Intrinsic and extrinsic motivation. The Review of Economic
Studies, pp. 489–520, 2003.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In ICML, pp. 1597–1607, 2020.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In CVPR, pp.
15750–15758, 2021.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,
Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide & deep learning for recom-
mender systems. In Recsys, pp. 7–10, 2016.

Pengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang Liu, Zhe Gan, and Lawrence Carin. Club: A
contrastive log-ratio upper bound of mutual information. In ICML, pp. 1779–1788. PMLR, 2020.

Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Stefanie Jegelka. De-
biased contrastive learning. In NeurIPS, pp. 8765–8775, 2020.

Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommendations.
In RecSys, pp. 191–198, 2016.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. In EMNLP, pp. 6894–6910, 2021.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Veselin Stoyanov. Supervised contrastive learning for
pre-trained language model fine-tuning. In ICLR, pp. 1–13, 2021.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
machine based neural network for ctr prediction. In IJCAI, pp. 1725–1731, 2017.

Xiangnan He and Tat-Seng Chua. Neural factorization machines for sparse predictive analytics. In
SIGIR, pp. 355–364, 2017.

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based rec-
ommendations with recurrent neural networks. In ICLR, pp. 1–10, 2016.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. In ICLR, pp. 1–14, 2019.

Wei Jiang, Fangquan Lin, Jihai Zhang, Cheng Yang, Hanwei Zhang, and Ziqiang Cui. Dynamic
sequential recommendation: Decoupling user intent from temporal context. In ICDMW, pp. 18–
26, 2021.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. In NeurIPS, pp. 1–13,
2020.

Huayu Li, Yong Ge, Defu Lian, and Hao Liu. Learning user’s intrinsic and extrinsic interests for
point-of-interest recommendation: A unified approach. In IJCAI, pp. 2117–2123, 2017.

10



Under review as a conference paper at ICLR 2023

Fangquan Lin, Wei Jiang, Jihai Zhang, and Cheng Yang. Dynamic popularity-aware contrastive
learning for recommendation. In ACML, pp. 964–968, 2021.

Jianxin Ma, Chang Zhou, Peng Cui, Hongxia Yang, and Wenwu Zhu. Learning disentangled repre-
sentations for recommendation. In NeurIPS, pp. 5712–5723, 2019.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based rec-
ommendations on styles and substitutes. In SIGIR, pp. 43–52, 2015.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Steffen Rendle. Factorization machines. In ICDM, pp. 995–1000, 2010.

Richard M Ryan and Edward L Deci. Intrinsic and extrinsic motivations: Classic definitions and
new directions. Contemporary Educational Psychology, pp. 54–67, 2000.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang.
Autoint: Automatic feature interaction learning via self-attentive neural networks. In CIKM, pp.
1161–1170, 2019.

Daria Sorokina, Rich Caruana, Mirek Riedewald, and Daniel Fink. Detecting statistical interactions
with additive groves of trees. In ICML, pp. 1000–1007, 2008.

Yixin Su, Rui Zhang, Sarah Erfani, and Zhenghua Xu. Detecting beneficial feature interactions for
recommender systems. In AAAI, pp. 4357–4365, 2021.

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
makes for good views for contrastive learning? In NeurIPS, pp. 6827–6839, 2020.

Michael Tsang, Hanpeng Liu, Sanjay Purushotham, Pavankumar Murali, and Yan Liu. Neural in-
teraction transparency (nit): Disentangling learned interactions for improved interpretability. In
NeurIPS, pp. 5804–5813, 2018.

Robert J Vallerand. Toward a hierarchical model of intrinsic and extrinsic motivation. Advances in
Experimental Social Psychology, pp. 271–360, 1997.

Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi. Dcn
v2: Improved deep & cross network and practical lessons for web-scale learning to rank systems.
In WWW, pp. 1785–1797, 2021.

Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua. Disentangled
graph collaborative filtering. In SIGIR, pp. 1001–1010, 2020.

Frank Wilcoxon. Individual comparisons by ranking methods. Breakthroughs in Statistics, pp.
196–202, 1992.

Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and Xing Xie. Self-
supervised graph learning for recommendation. In SIGIR, pp. 726–735, 2021.

Jiancan Wu, Xiangnan He, Xiang Wang, Qifan Wang, Weijian Chen, Jianxun Lian, and Xing Xie.
Graph convolution machine for context-aware recommender system. Frontiers of Computer Sci-
ence, pp. 1–12, 2022.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based recom-
mendation with graph neural networks. In AAAI, pp. 346–353, 2019.

Yuxia Wu, Ke Li, Guoshuai Zhao, and QIAN Xueming. Personalized long-and short-term preference
learning for next poi recommendation. IEEE Transactions on Knowledge and Data Engineering,
2020.

Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua. Attentional factor-
ization machines: Learning the weight of feature interactions via attention networks. In IJCAI,
pp. 3119–3125, 2017.

11



Under review as a conference paper at ICLR 2023

Zonghan Yang, Yong Cheng, Yang Liu, and Maosong Sun. Reducing word omission errors in neural
machine translation: A contrastive learning approach. In ACL, pp. 6191–6196, 2019.

Tiansheng Yao, Xinyang Yi, Derek Zhiyuan Cheng, Felix Yu, Ting Chen, Aditya Menon, Lichan
Hong, Ed H Chi, Steve Tjoa, Jieqi Kang, et al. Self-supervised learning for large-scale item
recommendations. In CIKM, pp. 4321–4330, 2021.

Yantao Yu, Zhen Wang, and Bo Yuan. An input-aware factorization machine for sparse prediction.
In IJCAI, pp. 1466–1472, 2019a.

Zeping Yu, Jianxun Lian, Ahmad Mahmoody, Gongshen Liu, and Xing Xie. Adaptive user modeling
with long and short-term preferences for personalized recommendation. In IJCAI, pp. 4213–4219,
2019b.

Yu Zheng, Chen Gao, Jianxin Chang, Yanan Niu, Yang Song, Depeng Jin, and Yong Li. Disentan-
gling long and short-term interests for recommendation. In WWW, pp. 2256–2267, 2022.

12



Under review as a conference paper at ICLR 2023

A PRELIMINARY

A.1 STATISTICAL INTERACTION GRAPH NETWORK (SIGN)

The statistical interaction graph network (SIGN) (Su et al., 2021) explicitly models feature in-
teractions through a graph neural network. IEDR, learns a user representation u (as well as a
context representation, and an item representation) using the SIGN-based model fu(u), where
u = {zu1 , zu2 , ..., zup }, fu regards the user u as a user graph G(V, E). In this representtation, V = u
is the node set that each feature zui is a node, and E is the edge set containing all the combina-
tions of pairwise feature interactions, with each feature interaction ⟨zui , zuj ⟩ being an edge linking
to corresponding nodes. Accordingly, the user representation learning becomes a graph learning
problem.

In SIGN, first, each feature zui is mapped into a feature embedding zu
i ∈ Rd of d dimensions as the

node embedding. The embeddings are first randomly initialized and are updated through training.
Then, SIGN learns the user graph using the function fu:

fu(G) = ϕ({ψ({eijh(zu
i ,z

u
j )}j∈V)})i∈V , (5)

where ϕ and ψ are aggregation functions (e.g., element-wise mean), h(·) : R2×d → Rd is an MLP
that models each feature interaction, eij ∈ {0, 1} is the edge indicator (since we use all pairwise
feature interactions, eij = 1 for all edges).

fu outputs the modeled user representation u ∈ Rd of d dimensions.

A.2 VARIATIONAL CONTRASTIVE LOG-RATIO UPPER BOUND (VCLUB) OF MUTUAL
INFORMATION

Suppose we aim to learn an intrinsic representation ou
in and an extrinsic representation ou

ex, where
their mutual information is minimized. In the vCLUB method (Cheng et al., 2020), a variational
distribution qu1 (o

u
ex|ou

in;θ
u
1 ) of parameter θu

1 (e.g., an MLP) is proposed to predict the extrinsic
factor given the intrinsic factor. Then, the vCLUB-based mutual information upper bound can be
derived as:

IvCLUB(o
u
in;o

u
ex) := Ep(ou

in,ou
ex)[log q

u
1 (o

u
ex|ou

in)]− Ep(ou
in)p(ou

ex)[log q
u
1 (o

u
ex|ou

in)], (6)

where p(ou
in,o

u
ex) is the joint distribution and p(ou

in)p(o
u
ex) are is the marginal distribution.

vCLUB performs mutual information estimation and minimization in two steps iteratively. In the
first step, to ensure Equation (6) holds as the upper bound, θu

1 is trained to make the log-likelihood
function Lappr(u, c) :=

1
N

∑N
i=1 log q

u
1 ((o

u
ex)i|(ou

in)i) maximized (Theorem 3.2 of (Cheng et al.,
2020)). In the second step, θu

1 is frozen, and other parameters (e.g., the parameters to generate ou
in

and ou
ex) are trained to minimize IvCLUB(o

u
in;o

u
ex) so that the mutual information is minimized.

B PROOF OF THEOREM 1

Proof. Since the mutual information is not explicitly intractable, we approximate the right side of
Equation (4) with a lower bound (i.e., MINE (Belghazi et al., 2018)) and an upper bound (i.e., CLUB
(Cheng et al., 2020)) of mutual information, respectively. More formally,

I(ou
in,u) ≥ IMINE(o

u
in,u) := Ep(ou

in,u) [log p(o
u
in,u)]− logEp(ou

in)p(u) [p(o
u
in,u)] ; (7)

I(ou
in, c) ≤ ICLUB(o

u
in, c) := Ep(ou

in,c)
[log p(ou

in|c)]− Ep(ou
in)p(c)

[log p(ou
in|c)] . (8)

With the approximated terms above, proving Equation. (4) turns to verify:

argmin

N∑
i=1

LCICL(ui, ci) = argmax
(
IMINE(o

u
in,u)− ICLUB(o

u
in, c)

)
. (9)

By minimizing LCICL, we aim to make (ou
in)ii similar to (ou

in)ij . This procedure can be interpreted
in probability as: increasing the probability of fuie(ui, cj) to predict (ou

in)ii. Therefore, maximiz-
ing the exp(sim((ou

in)ii, (o
u
in)ij)/τ) in Equation (1) is equivalent to maximizing p((ou

in)ii|ui, cj)

13



Under review as a conference paper at ICLR 2023

(exp(·) is monotone increasing so that does not influence the conclusion). Similarly, minimizing
exp(sim((ou

in)ii, (o
u
in)ℓi)/τ) is equivalent to minimizing p((ou

in)ii|uℓ, ci). Therefore, we have

−
N∑
i=1

LCICL(ui, ci)

=

N∑
i=1

log
exp(sim((ou

in)ii, (o
u
in)ij)/τ)∑

uℓ∈U exp(sim((ou
in)ii, (o

u
in)ℓi)/τ)

=

N∑
i=1

log[exp(sim((ou
in)ii, (o

u
in)ij)/τ)]−

N∑
i=1

log[
∑
uℓ∈U

exp(sim((ou
in)ii, (o

u
in)ℓi)/τ)]

=

N∑
i=1

log[p((ou
in)ii|ui, cj)]−

N∑
i=1

log[
∑
uℓ∈U

p((ou
in)ii|uℓ, ci)].

Equation (1) only samples one context cj for each data point. However, during the training, all
contexts in C are expected to be sampled. If we count all contexts, we have

N∑
i=1

log[p((ou
in)ii|ui, cj)]−

N∑
i=1

log[
∑
uℓ∈U

p((ou
in)ii|uℓ, ci)]

=

N∑
i=1

∑
cj∈C

log[p((ou
in)ii|ui, cj)]−

N∑
i=1

log[
∑
uℓ∈U

p((ou
in)ii|uℓ, ci)]

=Ep(ou
in,u)p(c)[log p(o

u
in|u, c)]− Ep(ou

in,c) logEp(u)[p(o
u
in|u, c)]

(10)

Equation (10) is the probability form of the objective function of the context-invariant counteractive
learning component (Equation (1)). Equation (10) maximizes the likelihood p(ou

in|u, c) given the
joint distribution of users and intrinsic factors, with the marginal distribution of contexts. Mean-
while, it minimizes the likelihood p(ou

in|u, c) given the joint distribution of contexts and intrinsic
factors, with the marginal distribution of user.2

From Equation (10), we further have:

Ep(ou
in,u)p(c)[log p(o

u
in|u, c)]− Ep(ou

in,c) logEp(u)[p(o
u
in|u, c)]

(a)
=Ep(ou

in,u)p(c)[log p(o
u
in|u, c)]− Ep(ou

in,c)p(u)[log p(o
u
in|u, c)]

=Ep(ou
in,u)p(c)[log p(o

u
in|u, c)]− Ep(ou

in,c)p(u)[log p(o
u
in|u, c)] +

(
Ep(u)[log p(u)]− Ep(u)[log p(u)]

)
=Ep(ou

in,u)p(c)[log p(o
u
in|u, c)p(u)]− Ep(ou

in,c)p(u)[log p(o
u
in|u, c)]− Ep(u)[log p(u)]

=Ep(ou
in,u)p(c)[log p(o

u
in,u|c)]− Ep(ou

in,c)p(u)[log p(o
u
in|u, c)]− Ep(u)[log p(u)]

=Ep(ou
in,u)p(c)[log p(o

u
in,u|c)]− Ep(ou

in,c)p(u)[log p(o
u
in|u, c)]− Ep(u)[log p(u)]

+
(
Ep(ou

in)p(u)p(c)[log p(o
u
in|u, c)]− Ep(ou

in)p(u)p(c)[log p(o
u
in|u, c)]

)
=Ep(ou

in,u)p(c)[log p(o
u
in,u|c)]− Ep(ou

in)p(u)p(c)[log p(o
u
in|u, c)]− Ep(u)[log p(u)]

− Ep(ou
in,c)p(u)[log p(o

u
in|u, c)] + Ep(ou

in)p(u)p(c)[log p(o
u
in|u, c)]

=Ep(ou
in,u)p(c)[log p(o

u
in,u|c)]− Ep(ou

in)p(u)p(c)[log p(o
u
in,u|c)]

−
(
Ep(ou

in,c)p(u)[log p(o
u
in|u, c)]− Ep(ou

in)p(u)p(c)[log p(o
u
in|u, c)]

)
=Ep(c)

(
Ep(ou

in,u)[log p(o
u
in,u|c)]− Ep(ou

in)p(u)[log p(o
u
in,u|c)]

)
− Ep(u)

(
Ep(ou

in,c)[log p(o
u
in|u, c)]− Ep(ou

in)p(c)[log p(o
u
in|u, c)]

)
.

(11)

2Note that only if fu
ie(u, c) is a many-to-one (or one-to-one) mapping then Equation (10) and Equation (1)

will be equivalent. Otherwise, given a sample pair (u, c), fu
ie(u, c) may have different ou

in outputs (i.e., one-
to-many). In this situation, the first term of Equation (10) cannot guarantee that the same user with different
context will have the same intrinsic factor (i.e., they may have various intrinsic factor representations while still
meet the objective of the first term of Equation (10)). We use an MLP as fu

ie(u, c), which is a many-to-one
mapping function. Therefore, we can ensure the equivalence between Equation (10) and Equation (1).

14



Under review as a conference paper at ICLR 2023

(a): In the second term, pushing the log inside the expectation dose not change the minimizer.

Comparing Equation (7) and the first term of Equation (11), they both act like classifiers whose
objectives maximize the expected log-ratio of the joint distribution over the product of marginal dis-
tributions (Hjelm et al., 2019). Therefore, maximizing this term in Equation (11) will have the same
effect to maximizing Equation (7). We can interpret the first term of Equation (11) as maximizing
the mutual information between users and the corresponding intrinsic factor, conditioned on a given
context. Similarly, maximizing the negative of the second term of Equation (11) will have the same
effect of minimizing Equation (8), which can be interpreted as minimizing the mutual information
between contexts and the corresponding intrinsic factors, conditioned on a given users.

Therefore, we can conclude that:

argmin
∑

(ui,vi,ci)∈D

LCICL(ui, ci) = argmax IMINE(o
u
in,u)− ICLUB(o

u
in, c) .

C PREVENTING THE TRIVIAL SOLUTION OF CIED

The two components in the CIED module, the contrastive learning component and the disentangling
component, jointly ensure the success of the intrinsic and extrinsic factor representation learning.
However, CIED may fall into a trivial solution: fuie(u, c) maps u to ou

in without considering c,
and maps c to ou

ex without considering u. Although this trivial solution minimizes LCICL(u, c) and
LDis(u, c), ou

in (resp. ou
ex) is not the intrinsic (resp. extrinsic) factor, but just a mapping of the user

information (resp. context information). We prove that this trivial solution can be avoided by setting
fuie(u, c) as a non-linear function, leading u and c statistically interacted.

Statistical Interaction We start with introducing the statistical interaction (or non-additive inter-
action), which ensures a joint influence of several variables on an output variable is not additive
(Tsang et al., 2018). Based on Sorokina et al. (2008), F (X) shows statistical interaction between
variables xi and xj if ∀f\i, f\j , F (X) cannot be expressed as:

F (X) ̸= f\i(x1, . . . , xi−1, xi+1, . . . , xn) + f\j(x1, . . . , xj−1, xj+1, . . . , xn). (12)

More generally, if using vi ∈ Rd to describe the i-th variable with a d-dimension vector (Rendle,
2010; Su et al., 2021), e.g., variable embedding, each variable can be described in a vector form
ui = xivi. Then, we define the pairwise statistical interaction in vector form by changing the
Equation (12) into:

F (X) ̸= f\i(u1, . . . ,ui−1,ui+1, . . . ,un) + f\j(u1, . . . ,uj−1,uj+1, . . . ,un). (13)

Preventing the Trivial Solution Based on the definition of statistical interaction, we can express
the trivial solution as that fuie(u, c) learns no statistical interaction between u and c:

fuie(u, c) = λ1f1(u) + λ2f2(c), (14)

where f1 outputs ou
in, f2 outputs ou

ex, and λ are weight scalars.

To prevent the trivial solution, we need to ensure that function fuie(u, c) cannot be modeled in the
form of Equation (14). Therefore, if u and c are modeled as a statistical interaction in fuie(u, c), the
trivial solution can be prevented. Since fuie(u, c) only takes u and c as inputs, we just need fuie to
be a non-additive model. That is, fuie(u, c) should contain a third term f3(u, c):

fuie(u, c) = λ1f1(u) + λ2f2(c) + λ3f3(u, c), (15)

where f3 is a non-additive model and λ3 ̸= 0.

Therefore, in the optimized situation, ou
in = λ1f1(u) learns part of the information from users that

do not interact with context information. ou
ex = λ2f2(c)+λ3f3(u, c) learns the context information

(f2(c)) and the information that changes given different contexts (f3(u, c)).

In Appendix G.2, we empirically analyze how the trivial solution will influence the prediction per-
formance.

15



Under review as a conference paper at ICLR 2023

𝑞𝑢
1

(fixed)𝑜𝑢
𝑖𝑛 𝑜𝑢

𝑒𝑥

Training 
Direction

Training 
Direction

Figure 5: An illustrative example demonstrating the potential problem of asymmetric learning in vCLUB. The
blue circles are intrinsic representations, and the red circles are extrinsic representations. The dotted arrows are
the directions that vCLUB will push ou

in and ou
ex to move toward in their space.

D POTENTIAL PROBLEMS OF THE ASYMMETRIC VCLUB METHOD

The vCLUB-based mutual information minimization method proposed in (Cheng et al., 2020) is
an asymmetric method. Appendix A.2 gives an introduction about how vCLUB method performs
mutual information minimization. In this section we explain the possible reason that vCLUB is less
robust and perform worse than our proposed bidirectional vCLUB method (BiDis).

If we directly apply vCLUB to our disentangling component, the parameter θu
1 of a variational

distribution qu1 (o
u
ex|ou

in;θ
u
1 ) will be trained to approach the vCLUB-based upper bound in Equation

(6) (Step 1). Then, θu
1 is frozen, and ou

ex,o
u
in are trained to minimize I(ou

in;o
u
ex) via minimizing

the upper bound IvCLUB(o
u
in;o

u
ex) (Step 2). However, this way of minimizing mutual information

may result in an unexpected outcome: the mutual information may be minimized via making ou
in

contain as less information as possible. To better illustrate the possible outcome, we design qu1 as a
linear function and is well trained in Step 1 to ensure Equation (6) is an upper bound of I(ou

in;o
u
ex).

Figure 5 shows how the unexpected result may occur. In Step 2, ou
ex,o

u
in will be trained to minimize

Equation (6). To achieve this goal, it ensures qu1 cannot predict ou
ex given the corresponding ou

in
from the joint distribution (the first term of Equation (6)), and at the same time ensures the output of
qu1 is similar to the other ou

ex’s from the marginal distribution (the second term of Equation (6)).

From ou
in perspective (blue circles), the goal can be achieved by pushing the ou

in to move from its
original position (optimizing the first term of Equation (6)), and move towards the mean of the other
ou
in’s (optimizing the second term of Equation (6)). From ou

ex perspective (red circles), the goal can
be achieved by pushing the ou

ex away from its original position (optimizing the first term of Equation
(6)) and the the mean of the other ou

ex’s (optimizing the second term of Equation (6)).

This clusters all the ou
in’s together, making ou

in’s contain less information, while all the ou
ex’s try

to split away from each other, making ou
ex’s contain more information. The mutual information

minimization procedure is like “transfering” the information from ou
in’s to ou

ex’s, which is not what
we expect. BiDis, however, is a symmetric disentangling method on ou

in’s and ou
ex’s so that will not

result in this issue. This may be the reason that vCLUB performs worse and less robust than our
proposed symmetrical disentangling component.

E TIME COMPLEXITY ANALYSIS

Briefly speaking, the time complexity of the whole model is comparable to feature interaction-based
recommender systems (e.g., AutoInt, SIGN). The overhead of the alternative optimizing procedure
for the disentanglement component is marginal in the whole optimizing procedure.

The most time-consuming computations are the feature interaction learning to get user, item, and
context representations, which need to conduct interaction modeling on every pair of feature inter-
actions. This procedure has also been done on other feature interaction-based models, therefore, the
time complexity of the proposed module is comparable with those methods.

Our model takes additional computations on the context-invariant contrastive learning (CICL) com-
ponent and the disentangling component:

16



Under review as a conference paper at ICLR 2023

For the CICL component, we do not need to perform the feature interaction modeling again, but
reuse the generated user/item/context representations, which saves the majority of the overhead. We
only need to perform fie (L+1) times, where L is the number of negative samples. Since fie is a
one-hidden layer (with 128 hidden units) MLP, the overhead is marginal.

For the disentangling component, we also reuse the generated user/item/context representations. As
we discussed in the paper, we use a two-step learning policy to train our model. Regarding to the
reviewer’s main concern, the first step in the two-step learning actually takes very little overhead.
This is because this step only tries to optimize the parameters of the functions q1 and q2 (Eq.2),
which are two MLPs with one hidden layer. For each data sample, we only run q1 and q2 one time
using Oin and Oex.

In summary, since all of the computations above do not need to perform feature interaction modeling
(the most time-consuming procedure in all feature interaction-based models), the small imposed
overhead is acceptable considering the effectiveness of our model in capturing accurate intrinsic and
extrinsic factors.

F EXPERIMENTAL SETTING

Datasets We evaluate our models in two scenarios with various contexts: a mobile app recom-
mendation and a restaurant recommendation. In the mobile app recommendation, we use the Frappe
(Baltrunas et al., 2015) dataset that records mobile app usage logs. Each data sample logs users’ app
usage in a certain context (e.g., weather, time, location). In addition, some relevant properties of
the apps are also captured (e.g., category, developer). In the restaurant recommendation, we use the
Yelp dataset (Wu et al., 2022). It records users’ reviews on local restaurants. Due to the fact that a
user usually goes to restaurants in the same city, geographic isolation appears in the dataset. There-
fore, we select the records in New York City. We regard each record as a data sample that the user
has been to the restaurant. We leverage the user/item features and context features (e.g., day of the
week) to predict whether a user will go to a given restaurant in a specific context. We also evaluate
our model in two Amazon datasets (Movies and CDs) (McAuley et al., 2015) that have been used in
sequential recommendation tasks (Yu et al., 2019b). The datasets contain user-item interactions with
timestamps. For the sequential recommendation, we use the same IEDR model structure as that for
the Frappe and Yelp datasets, but modify the data input to fit our model. More specifically, we do not
directly learn behavior sequences, but consider each behavior as a data sample with time context in-
formation. That is, we consider the bucketed timestamp of each user behavior as a time context (we
consider one month as a categorized time context). Therefore, behaviors in the same time interval
have the same time context, indicating that these behaviors share some similar short-term (extrinsic)
interests (e.g., item popularity).

For each dataset, only users that have more than 5 records (Frappe and Yelp) and more than 20
records (Movies and CDs) are chosen. We choose the last record of each user for testing, and the
second last record of each user for validation. The rest of the records are used for training. Each
of these data sample is considered as a positive sample (y = 1). In addition, for each positive data
sample in the training set, we randomly choose 2 items (but keep the user and contexts) as negative
samples (y = 0), meaning the user did not select the 2 items in that context. For each test/validation
data sample, we randomly choose 99 items as negative samples to ensure a more robust evaluation.
The statistics of the datasets are shown in Table 4.

Table 4: Dataset statistics. “Count” refers to the number of users/items, “Features” represent the
number of different features (for User and Item, the number of features excludes the user/item ids).

Datasets Data Samples User Item Context

Train Valid Test Count Features Count Features Features

Frappe 282,426 69,500 69,500 695 0 4,082 2,892 318
Yelp 518,208 633,600 633,600 6,336 24 12,902 66 13,034

Movies 2,305,362 39,663 1,322,100 13,221 0 49,189 161 193
CDs 879,030 16,392 546,400 5,464 0 16,184 209 195

17



Under review as a conference paper at ICLR 2023

Baseline methods IEDR models the feature interactions of users, items, and contexts. Therefore,
we compare our model with competitive feature interaction-based recommendation methods. The
methods include attentional factorization machine (AFM) (Xiao et al., 2017), neural factorization
machine (NFM) (He & Chua, 2017), self-attention-based feature interaction model (AutoInt) (Song
et al., 2019), deep factorization machine (DeepFM) (Guo et al., 2017), wide & deep model (WDL)
(Cheng et al., 2016), improved deep & cross network (DCNv2) (Wang et al., 2021), and input-aware
factorization machine (IFM) (Yu et al., 2019a). We implement these methods using the DeepCTR
package. The statistical interaction graph neural network (SIGN) (Su et al., 2021) is applied based
on the released code. The above methods model all the factors in a unified representation with-
out considering the factors that affect users’ decisions. Meanwhile, we compare IEDR with the
methods that learn implicit factors. They are disentangled variational auto-encoder for recommen-
dation (DisRec) (Ma et al., 2019) and disentangled graph collaborative filtering (DGCF) (Wang
et al., 2020). We implement these methods based on their released code. Note that since DisRec and
DGCF models do not consider any feature, their task is to simply predict whether a user will select
an item. IERD and other baseline models, however, consider the user-item interactions in specific
contexts (a user’s decision to select an item may be different in different contexts). For DisRec
and DGCF, to prevent the test data samples from appearing in the training set, we remove the data
samples from the training set that appear in the test set (with different contexts in other models).
For a fair comparison, we set the factor number to 4 for DisRec and DGCF. For sequential recom-
mendation baselines, we compare our model with the models that consider LS-term interests. They
are session-based recommender system with recurrent neural networks (GRU4Rec) (Hidasi et al.,
2016), Short-term and Long-term preference Integrated Recommender system (SLI-Rec) (Yu et al.,
2019b), and Contrastive learning framework of Long and Short-term interests for Recommendation
(CLSR) (Zheng et al., 2022). We use the same MLP structure for feature interaction modeling and
the same embedding size for features as our IEDR model.

Implementation details In IEDR, all the MLPs have the same hidden structure: one hidden layer
of 128 dimensions and a ReLU activation after that. The input and output sizes of MLPs varies based
on their needs. We set the embedding dimension to 32 for all the features. fie is an MLP that outputs
a 64-dimension vector, with the first 32 dimensions are the intrinsic factor representation and the
last 32 dimensions are the extrinsic factor representation. For the second (dropout-based) negative
context generating method in the context-invariant contrastive learning component, the dropout rate
is set to 0.5. The number of negative pairs for contrastive learning is 40 for each data sample (note
that the actual negative pairs will be doubled since both (ou

in)ii and (ou
in)ij will generate 40 negative

pairs). The temperature τ is set to 0.5. In the disentangling component, q1 and q2 are MLPs that
output vectors that have the same dimension of intrinsic/extrinsic factor representations. The number
of negative samples of the bidirectional vCLUB-based method is 5 for each direction. We set λ1 to
0.1 for the Frappe dataset and 0.01 for the Yelp dataset, and set λ2 to 0.1 for both datasets. The λ1
and λ2 are both 0.01 for the Movies and the CDs datasets. We run all the experiments on a machine
equipped with a CPU: Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz, and a GPU: Nvidia Tesla
v100 GPU.

The model structure of IEDR and its variations used in the experiments are detailed in Table 5 and
Table 6. Note that the component structures of variations are the same as the IEDR if not specified.

G ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide further experimental results that are not included in the main paper.

G.1 OTHER FEATURE MODELING METHODS

In the RP module, although we use a SIGN-based method (Su et al., 2021) to learn user, item, and
context features, the module can use any feature modeling method. Here, we use other methods to
evaluate whether our model still performs well. Specifically, we run our model with the other three
variations using different feature modeling methods: 1) averaging feature embeddings (MEAN); 2)
adding an MLP on top of the averaged feature embedding (MLP); and 3) modeling and aggregating
feature interactions through a Bi-interaction layer proposed in (He & Chua, 2017) (BI). The results
are shown in Figure 6. We report the results of each variation with and without the CIED module.

18



Under review as a conference paper at ICLR 2023

Table 5: Implementation details of different variations on the recommendation prediction module.
“-” represent the operation is the same as our original IEDR setting.

Variation Recommendation Prediction Module
feature model† fie

‡

IEDR ϕ(ψ({MLP (zu
i ⊙ zu

j )}j∈u))i∈u → u MLP (u ◦ c) → [ou
in,o

u
ex]

AVG ψ(zu
i )i∈u → u -

MLP MLP (ψ(zu
i )i∈u) → u -

BI ψ(zu
i ⊙ zu

j )i,j∈u → u -

Linear - W [u, c] → [ou
in,o

u
ex]

Nonlinear - σ(W [u, c]) → [ou
in,o

u
ex]

IEDRsp - MLP1(u) → ou
in,MLP2(u ◦ c) → ou

ex

†Here we use user representation learning as an example. The item and context learning have the same
structure. ϕ, ψ are both element-wise averaging functions and ⊙ is the element-wise product.

‡Here we use user factor learning as an example. ◦ is a flexible operation to combine two vector, i.e.,
◦ is element-wise product for the Frappe dataset, and element-wise summation for the Yelp dataset. [·, ·] is
the concatenation operation. W is a linear transformation matrix, σ is a ReLU activation.

Table 6: Implementation details of different variations of the contrastive intrinsic-extrinsic disentan-
glement module. “-” represents the operation is the same as our original IEDR setting. × represents
the variation does not contain the component.

Variation Contrastive Intrinsic-Extrinsic Disentanglement Module
Contrastive Learning Component∗ Disentangling Component

IEDR positive sample: fu
ie(ui, cj) → (ou

in)ij ,
negative sample: fu

ie(uℓ, ci) → (ou
in)ℓi,

fu
ie(uℓ, cj) → (ou

in)ℓj .
cj = randChoice(NegGen1,NegGen2)

MLPθ1(o
u
in) → (ou

ex)
′ (qu1 )

MLPθ2(o
u
ex) → (ou

in)
′ (qu2 )

noDis - ×
noCL × -
noCIED × ×
NegGen1 cj is generated from NegGen1 -
NegGen2 cj is generated from NegGen2 -
NegGen1&2 - -

vCLUB - MLPθ1(o
u
in) → (ou

ex)
′ (qu1 )

BiDis - -

IEDRsp positive sample:
dropout((ou

in)i) → (ou
in)

p,
negative sample:

dropout((ou
in)ℓ) → (ou

in)
n.

-

∗For IEDRsp, the positive samples (ou
in)

p are generated through a dropout of the intrinsic representation of
the user, and the negative samples (ou

in)
p are generated through a dropout of intrinsic representations of random

users.

From this figure, we can see that when equipped with the CIED module, all feature modeling meth-
ods perform better than those without the module. It shows that our proposed CIED module can
learn intrinsic and extrinsic factors for more accurate recommendation when different feature mod-
eling methods are applied. Meanwhile, we can see that the feature modeling methods can impact
the performance. MEAN is just a linear aggregation of features, resulting in the worst performance.
Both MLP and BI have better feature modeling ability and hence have better performance than
MEAN. The SIGN-based feature modeling (SIGN) is the state-of-the-art feature interaction model-
ing method and performs the best.

19



Under review as a conference paper at ICLR 2023

SIGN AVG MLP BI

66

68

70

72

74

Feature method

Frappe

w CIED

w/o CIED

SIGN AVG MLP BI

50

52

54

Feature method

Yelp

w CIED

w/o CIED

Figure 6: Model performance when equipped with different feature modeling methods.

Intrinsic Extrinsic

U
se

r
C

on
te

xt

Linear

Intrinsic Extrinsic
U

se
r

C
on

te
xt

Nonlinear

Figure 7: Visualization of fie weights for the
Linear and Nonlinear models.

64 66 68 70
Linear

Nonlinear

Frappe

47 48 49 50
Linear

Nonlinear

Yelp

Figure 8: Comparing the performance of the Linear
and Nonlinear models on different datasets.

G.2 FALLING INTO TRIVIAL SOLUTIONS

As discussed in Section C, our model may fall into a trivial solution if fuie(u, c) is a linear mapping
method. To evaluate how the trivial solution influences our model in learning the factors, we run
our model with fie being linear. Specifically, we concatenate u and c and feed them into an MLP
without a hidden layer or activation (a linear mapping), making it easy to fall into the trivial solution.
We call this variation Linear. Then, we avoid this by simply adding a nonlinear activation function
(ReLU) activation after the linear mapping. We call this variation Nonlinear. Figure 7 shows the
weight values of fie of the two variations. The color shows the weights mapping from user/context
representations to intrinsic/extrinsic representations. The darker the color, the larger the weight
(more information of user/context is mapped into intrinsic/extrinsic representations). The figure
shows that in the Linear variation, user information is largely mapped into intrinsic representation
(user-intrinsic block) but not extrinsic representation (user-extrinsic block). Context information is
largely mapped into extrinsic representation (context-extrinsic block) but not intrinsic representa-
tion (context-intrinsic block). This means that the Linear variation falls into the trivial solution. On
the contrary, in the Nonlinear variation, user information is mapped into extrinsic representation
(user-extrinsic block), showing that the extrinsic representation contains both user and context in-
formation. Figure 8 shows the performance of the two variations. We can see that Linear model
performs worse than Nonlinear model. It proves that learning intrinsic and extrinsic factors results
in a better performance than simply mapping user and context information into two representations,
respectively (the trivial solution).

G.3 COMPARING THE IMPACT OF DIFFERENT CONTRASTIVE LEARNING VARIATIONS

To learn the intrinsic factor, we propose a context-invariant contrastive learning method. However,
directly generating intrinsic factor representations through only user information seems to be a more
direct way, i.e., ou

in = fuie(u). We argue that the intrinsic representations learned this way could not
guarantee that the representations are intrinsic factors. This is because the information in the learned
intrinsic factor representations can vary with different contexts, since these factors have never been
modeled w.r.t. the contexts.

In this section, we empirically show that this approach to learning intrinsic factors is inferior to
our context-invariant contrastive learning method in producing accurate recommendations. To do
so, we design a variation (IEDRsp) by splitting the intrinsic-extrinsic factor generation into two
functions: ou

in = fuin(u), and ou
ex = fuex(u, c). Both fin and fex have the same structure as

fie, with the output dimension being a half to ensure the consistency of the factor representation

20



Under review as a conference paper at ICLR 2023

Table 7: Comparing the performance of IEDRsp with
different dropout rates (for NegGen2).

Frappe Yelp

IEDRsp, p=0.1 70.68 52.03
IEDRsp, p=0.5 68.25 51.49
IEDRsp, p=0.1, noDis 70.56 52.02
IEDRsp, p=0.1, noCL 70.31 51.62
IEDRsp, p=0.1, noCIED 70.16 51.10

IEDR 74.11 53.05

Table 8: Comparing the performance
of IEDR using different negative con-
text generating methods (for the con-
trastive learning component).

Frappe Yelp

NegGen1 73.01 52.49
NegGen2 71.50 51.82
NegGen1&2 74.11 53.05

dimension. The contrastive learning component does not consider context information but uses a
standard InfoNCE-based contrastive learning for learning robust user/item representations following
(Yao et al., 2021). Table 7 illustrates the results of IEDRsp compared to our model with IEDRsp

using different dropout rates (p = 0.1 and p = 0.5) in the contrastive learning component, and
different component combinations (noDis, noCL, noCIED). We can see that our model outperforms
the variation in recommendation accuracy. It proves that IEDRsp cannot ensure a successful intrinsic
factor learning and hence incur a worse recommendation accuracy. Unlike IEDR, IEDRsp gains
better performance with a lower dropout rate. This is because, in IEDRsp, the dropout generates
views representing the same user instead of different users, which is consistent with the conclusion
in (Gao et al., 2021).

G.4 DIFFERENT NEGATIVE CONTEXT GENERATION METHODS

We propose two negative context generating methods in the contrastive learning component: 1)
sample other contexts; 2) use a large dropout rate on the original context. We evaluate the two
methods in this section. Table 8 shows the results of our model when using only NegGens1, only
NegGens2, and NegGen1&2. We can see that NegGen1 results in a better performance than us-
ing NegGen2. This is because NegGen1 uses true context representations, which are consistent
with what may appear in the test samples. Meanwhile, we see that NegGen1&2 results in the best
performance. This is because NegGen2 provides more unseen (randomly generated) context repre-
sentations, which strengthens the generalization ability of our model. Next, we evaluate NegGen2
with different dropout rates in Figure 9. The best performance can be achieved when the dropout
rates range from 0.5 to 0.7. This is consistent with our claim in Section 4.2.1. The reason is that
a small dropout rate (e.g., 0.1) pushes the generated context representation too close to the origi-
nal one; hence it cannot be considered a different context. However, a relatively large dropout rate
(e.g., 0.9) loses too much information; hence, it is no longer a valid context representation. In addi-
tion, for NegGen1&2 of all the dropout rates, the results consistently outperform those that only use
NegGen2.

G.5 EMPIRICAL ANALYSIS OF TIME COMPLEXITY

We summarize the overall time consumption of IEDR and several feature interaction-based baseline
models in Table 9. The results are recorded by running the models for one batch (batch size 1024) on
the Frappe dataset on a machine with CPU:12th Gen Intel(R) Core(TM) i9-12900K, RAM: 32GB,
GPU: NVIDIA GeForce RTX 3090.

We can see that our model’s overall time consumption is slightly higher than other baselines. Next,
we summarize the time cost of critical procedures in IEDR in Table 10. The first four rows are model
forwarding procedures, and the last two rows are model (alternative) optimizing procedures.

Table 10 shows the feature interaction modeling procedure takes most of the time, which is consis-
tent with our analysis above. Both CICL and disentangling forward procedures (row 2-4) do not pose
much overhead since they reuse the feature interaction modeling results. Optimization (step1) is the
alternative training step that updates the parameters of the models disentangling component (q1 and
q2). The alternative optimizing procedure produces little overhead (2.21 ms), which is negligible in
the whole procedure.

21



Under review as a conference paper at ICLR 2023

Table 9: The overall time consumption of
different models in one batch training.

Model Time (ms)

DCNv2 34.40
AutoInt 37.53
SIGN 40.41
IEDR 44.61

Table 10: The time consumption of critical procedures in IEDR in
one batch training.

Procedure Time (ms)

Graph Learning (Feature Interaction Modeling) 14.16
CICL 8.05

Disentangling (step 1) 0.16
Disentangling (step 2) 1.93
Optimization (step 1) 2.21
Optimization (step 2) 8.52

0.1 0.3 0.5 0.7 0.9

70

75

80

85

Dropout Rate

Frappe

NegGen2
NegGen1&2

0.1 0.3 0.5 0.7 0.9
50

52

54

56

Dropout Rate

Yelp

NegGen2
NegGen1&2

Figure 9: The performance of different dropout rates
for the method 2 (NegGen2).

8 32 64 128 256
66

68

70

72

74

Embedding dimension

Frappe

8 32 64 128 256

50

52

Embedding dimension

Yelp

Figure 10: Hyperparameter study: different embed-
ding dimensions d.

G.6 EFFECTIVENESS OF MODEL HYPER PARAMETERS

We evaluate our model with different hyperparameter settings, including embedding dimensions,
number of negative samples, and loss weight values. Below, we summaries our observations.

G.6.1 EMBEDDING DIMENSION

We run our model with different feature embedding dimensions. We show the results of running our
model using different embeddings in Figure 10. Choosing the embedding dimension is a trade off
between the expression ability and efficiency. From the figure, we can see that larger dimensions
result in better prediction accuracy. However, the improvement is not significant when the dimension
is larger than 32. A larger dimension may even reduce the performance due to the overfitting problem
(e.g., dimension 256 for the Frappe dataset).

G.6.2 THE NUMBER OF NEGATIVE SAMPLE AND LOSS WEIGHT

The contrastive learning and disentangling components are both contrastive-based methods that re-
quire negative sampling. This section evaluates how the number of negative samples influences
performance. We also compare the influence of different loss weights of the two components. We
run our model with different negative sample numbers and loss weights for the two components,
respectively. From Figure 11, we can see that a large loss weight, or a large number of negative
samples does not necessarily result in a better performance. There is the best combination of the
loss weight and the number of negative samples for both components. A large or small loss weight
may make the multi-task training unbalanced, harming the final performance. For the number of
negative samples, a small number will make the training insufficient, while a large number may
cause an overfitting problem.

G.7 MORE VISUALIZATIONS OF INTRINSIC AND EXTRINSIC REPRESENTATIONS

This section provides complete intrinsic and extrinsic representation visualizations in three varia-
tions: 1) the contrastive learning component is removed (noCL); 2) the disentangling component
is removed (noDis); and 3) the asymmetric disentanglement method (vCLUB) is used. Figure 12
compares these results. We include our main observations below:

• The intrinsic and extrinsic factors are perfectly disentangled with our CIED module (IEDR).

22



Under review as a conference paper at ICLR 2023

0.001 0.01 0.1 1 10

1

1

10

40

80

160

N
eg

at
iv

e 
Sa

m
pl

es

66.73 68.16 71.98 66.42 58.91

68.31 69.76 73.59 67.02 59.42

69.58 70.1 74.11 69.42 60.71

68.49 69.29 73.97 68.29 60.35

68.03 68.89 73.92 68.07 61.05

0.001 0.01 0.1 1 10

2

1

5

10

40

80

71.81 72.55 73.35 72.23 67.56

71.2 72.85 74.11 72.06 67.28

70.08 72.54 73.43 72.19 67.82

72.19 72.85 73.96 72.87 67.76

71.94 73.49 73.71 72.46 67.99 60

65

70

Figure 11: The performance of different numbers of negative samples and the loss weights in the risk min-
imization function for the contrastive learning component (left) and the disentangling component (right), re-
spectively.

• Without the disentangling component (noDis), the intrinsic and extrinsic disentangling procedure
may not succeed. This is because there is no restriction on extrinsic representations. Therefore,
the extrinsic representations can contain any information, including the information of the intrinsic
factor.

• noCL has worse disentangling performance than IEDR, either. This is because the factors disen-
tangled in noCL are implicit. The implicit factors only ensure the disentanglement between the
factors of the same data sample, but not between the factors of other data samples. For example,
some context information may be stored in the intrinsic representation in data sample 1 but be
stored in the extrinsic representation in data sample 2.

• noCIED performs worst among all variations, which is reasonable since it does not distinguish the
intrinsic and extrinsic representations.

• vCLUB performs disentanglement, but is not very stable in some situations. This is consistent
with our analysis in Section 4.2.2.

H ALGORITHM

This section provides the training process of our IEDR model in Algorithm 1. In each epoch, we
use the batch stochastic gradient descent method.

23



Under review as a conference paper at ICLR 2023

Algorithm 1 Batch stochastic gradient descent training of IEDR.
1: Input: D = {(ui, vi, ci)}i=1:N with the corresponding true label yi for each data sample.
2: Hyperparameters: B: batch size; L: negative sample number for the context-invariant con-

trastive learning component; Ldis: negative sample number for the disentangling component.
3: Parameters: θu

1 ,θ
u
2 ,θ

v
1 ,θ

v
2 : parameters for qu1 , q

u
2 , q

v
2 , q

v
2 , respectively; ω: parameters of IEDR

except for θu
1 ,θ

u
2 ,θ

v
1 ,θ

v
2 .

4: function CONTRASTIVELEARNING USER({(ui, ci)}i=1:B)
5: for i = 1, ..., B do
6: (ou

in)ii ← fuie(ui, ci)
7: ContextGen← RandomChoice(NegGen1, NegGen2)
8: cj ← ContextGen(ci)
9: (ou

in)ij ← fuie(ui, cj) ▷ Generate positive samples.
10: for ℓ = 1, ..., L do ▷ Generate negative samples.
11: uℓ1 ← randomChoice({ui}i=1:B), (ou

in)ℓ1i = fuie(uℓ1 , ci)
12: uℓ2 ← randomChoice({ui}i=1:B), (ou

in)ℓ2j = fuie(uℓ2 , cj)
13: end for
14: LCICL(ui, ci)← Equation (4) based on the above positive and negative samples
15: end for
16: return average({LCICL(ui, ci)}i=1:B)
17: end function
18: function CONTRASTIVELEARNING ITEM({(vi, ci)}i=1:B)
19: Symmetric to CONTRASTIVELEARNING USER.
20: end function
21: function DISENTANGLEMENT USER({(ui, ci)}i=1:B)
22: for i = 1, ..., B do
23: (ou

in)ii, (o
u
ex)ii ← fuie(ui, ci)

24: (ou
ex)

pred
ii ← qθ1((o

u
in)ii), (o

u
in)

pred
ii ← qθ2((o

u
ex)ii) ▷ Generate positive samples.

25: a→pos ←MSE((ou
ex)ii, (o

u
ex)

pred
ii ), a←pos ←MSE((ou

in)ii, (o
u
in)

pred
ii )

26: a→neg ← 0, a←neg ← 0
27: for j = 1, ..., Ldis do ▷ Generate negative samples.
28: (ou

in)r, (o
u
ex)r ← randomChoice

(
{
(
(ou

in)ii, (o
u
ex)ii

)
}i=1:B

)
29: (ou

ex)
pred
r = qθ1((o

u
in)r), (o

u
in)

pred
r = qθ2((o

u
ex)r)

30: a→neg ← a→neg +MSE((ou
ex)ii, (o

u
ex)

pred
r )

31: a←neg ← a←neg +MSE((ou
in)ii, (o

u
in)

pred
r )

32: end for
33: (Lbi-appr)i ← 1

2 (a
→
pos + a←pos)

34: (LDis)i ← 1
2 (

a→neg+a←neg

Ndis
− (a→pos + a←pos))

35: end for
36: return average({(Lbi-appr)i}i=1:B), average({(LDis)i}i=1:B)
37: end function
38: function DISENTANGLEMENT ITEM({(vi, ci)}i=1:B)
39: Symmetric to DISENTANGLEMENT USER.
40: end function
41:

24



Under review as a conference paper at ICLR 2023

Algorithm 1 Batch stochastic gradient descent training of IEDR (continued).
42: shuffle({(ui, vi, ci)}i=1:N )
43: for each batch {(ui, vi, ci)}i=1:B do
44: for i = 1, ..., B do ▷ Line 45-47 are the recommendation prediction module.
45: ui ← fu(ui),vi ← fv(vi), ci ← fc(ci)
46: (ou

in)ii, (o
u
ex)ii ← fuie(ui, ci), (ov

in)ii, (o
v
ex)ii ← fvie(vi, ci)

47: y′i ← fpred((o
u
in)ii, (o

u
ex)ii, (o

v
in)ii, (o

v
ex)ii)

48: (LRP )i ← CrossEntropy(y′i, yi)
49: end for
50: LRP ← average({LRP )i}i=1:B

51: Lu
CICL ← CONTRASTIVELEARNING USER({(ui, ci)}i=1:B)

52: Lv
CICL ← CONTRASTIVELEARNING ITEM({(vi, ci)}i=1:B)

53: Lu
bi-appr,Lu

Dis ← DISENTANGLEMENT USER({(ui, ci)}i=1:B)

54: Lv
bi-appr,Lv

Dis ← DISENTANGLEMENT ITEM({(vi, ci)}i=1:B)

55: Freeze ω, update θu
1 ,θ

u
2 ,θ

v
1 ,θ

v
2 through minimizingR(θu

1 ,θ
u
2 ,θ

v
1 ,θ

v
2) ▷ Step 1

56: Freeze θu
1 ,θ

u
2 ,θ

v
1 ,θ

v
2 , update ω through minimizingR(ω) ▷ Step 2

57: end for

25



Under review as a conference paper at ICLR 2023

Frappe all vis

User Item

Frappe IEDR

User Item

User Item

Frappe noCL

User Item

Frappe noCIED

User Item

Frappe vCLUB

User Item

Yelp IEDR

User Item

Yelp noDis

User Item

Yelp noCL

User Item

Yelp noCIED

User Item

Yelp vCLUB

Frappe noDis

Figure 12: The complete intrinsic-extrinsic disentanglement visualizations in t-SNE. The blue dots are intrin-
sic representations, and the red dots are extrinsic representations.

26


	Introduction
	Related Work
	Problem Statement and Definitions
	Intrinsic-Extrinsic Disentangled Recommendation Model
	The Recommendation Prediction Module
	The Contrastive Intrinsic-Extrinsic Disentangling Module
	The Context-Invariant Contrastive Learning Component
	The Disentangling Component

	A Multi-task Training
	Theoretical Analysis: Context-invariant Contrastive Learning in Information Theory

	Experiments
	Overall Performance
	Factor Learning from Various Contexts
	Factor Learning from Specific Context

	Effectiveness of Our Model's Components
	Ablation Study of Contrastive Intrinsic-Extrinsic Disentangling Module
	Disentangling Component Evaluation

	Disentanglement Verification
	Visualization of Intrinsic and Extrinsic Representations
	Case Study


	Conclusion
	Preliminary
	Statistical Interaction Graph Network (SIGN)
	Variational Contrastive Log-ratio Upper Bound (vCLUB) of Mutual Information

	Proof of Theorem 1
	Preventing the Trivial Solution of CIED
	Potential Problems of the Asymmetric vCLUB Method
	Time Complexity Analysis
	Experimental Setting
	Additional Experimental Results
	Other Feature Modeling Methods
	Falling Into Trivial Solutions
	Comparing the Impact of Different Contrastive Learning Variations
	Different Negative Context Generation Methods
	Empirical Analysis of Time Complexity
	Effectiveness of Model Hyper parameters
	Embedding Dimension
	The Number of Negative sample and Loss Weight

	More Visualizations of Intrinsic and Extrinsic Representations

	Algorithm

