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ABSTRACT

This work considers two distinct settings: imitation learning and goal-conditioned
reinforcement learning. In either case, effective solutions require the agent to
reliably reach a specified state (a goal), or set of states (a demonstration). Drawing
a connection between probabilistic long-term dynamics and the desired value
function, this work introduces an approach that utilizes recent advances in density
estimation to effectively learn to reach a given state. We develop a unified view
on the two settings and show that the approach can be applied to both. In goal-
conditioned reinforcement learning, we show it to circumvent the problem of
sparse rewards while addressing hindsight bias in stochastic domains. In imitation
learning, we show that the approach can learn from extremely sparse amounts of
expert data and achieves state-of-the-art results on a common benchmark.

1 INTRODUCTION

Effective imitation learning relies on information encoded in the demonstration states. In the past,
successful and sample-efficient approaches have attempted to match the distribution of demonstrated
states (Ziebart et al., 2008; Ho and Ermon, 2016; Schroecker et al., 2019), reach any state that is
part of the demonstrations (Wang et al., 2019; Reddy et al., 2019), or track a reference trajectory to
reproduce a specific sequence of states (Peng et al., 2018; Aytar et al., 2018; Pathak et al., 2018).
Attempting to reproduce demonstrated states directly allows the agent to exploit structure induced by
environment dynamics and to accurately reproduce expert behavior with only a very small number of
demonstrations. Commonly, this is framed as a measure to avoid covariate shift (Ross et al., 2011) but
the efficacy of such methods on even sub-sampled trajectories (e.g. Ho and Ermon, 2016) and their
ability to learn from observation alone (e.g. Torabi et al., 2018; Schroecker et al., 2019) show benefits
beyond the avoidance of accumulating errors. Despite significant progress in the field, reproducing a
set of demonstrated states efficiently, accurately and robustly remains an open field of research. To
address the problem, we may first ask the question of how to reach arbitrary states, a question that has
thus far been considered separately in the field of goal-conditioned reinforcement learning. In this
paper, we introduce a unified view to goal-conditioned reinforcement learning and imitation learning.
We will first address the question of how to reach single states in the former setting and then extend
this notion to an imitation learning approach and reproduce distributions of state-action pairs.

Despite significant achievements in the field (Schaul et al., 2015; Andrychowicz et al., 2017; Nair
et al., 2018; Sahni et al., 2019), learning to achieve arbitrary goals remains an extremely difficult
challenge. In the absence of a suitably shaped reward function, the signal given to the agent can
be as sparse as a constant reward if the goal is achieved and 0 otherwise. Hindsight Experience
Replay (HER) (Andrychowicz et al., 2017) constitutes an effective and popular heuristic to address
this problem; however, the formulation is ad-hoc and does not lend itself readily to the probabilistic
reasoning required in a distribution-matching imitation learning approach. Furthermore, HER can
be shown to suffer from bias in stochastic domains or when applied to some actor-critic algorithms
as we will discuss in Section 3.1. To address this challenge, we introduce Universal Value Density
Estimation (UVD). By considering an important subset of goal-conditioned value functions similar to
similar to Andrychowicz et al. (2017), namely those corresponding to reward functions that have an
optimal agent reach a specific state, we can observe that the value of a state conditioned on a goal is
equivalent to the likelihood of the agent reaching the goal from that state. We use normalizing flows
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(see Sec. 2.4) to estimate this likelihood from roll-outs and thereby obtain an estimate of the value
function. As we will show in Section 5.1, density estimation does not sample goals independently
at random and therefore provides a dense learning signal to the agent where temporal-difference
learning alone fails due to sparse rewards. This allows us to match the performance of HER in
deterministic domains while avoiding bias in stochastic domains and while providing the foundation
for our imitation learning approach. We will introduce this approach in Section 3.4 and show that
it performs as well as the state-of-the-art on the most common benchmark tasks while significantly
outperforming this baseline on a simple stochastic variation of the same domain (Sec. 5.1).

Returning to the imitation learning setting, we propose to extend UVD to match a distribution of
expert states and introduce Value Density Imitation Learning (VDI). Our goal is to design an imitation
learning algorithm that is able to learn from minimal amounts of expert data using self-supervised
environment interactions only. Like prior methods (see Sec. 2.3), VDI’s objective is to match the
expert’s state-action distribution. We achieve this by sampling expert states that the agent is currently
not likely to visit and using a goal-conditioned value-function to guide the agent towards those
states. We will show in Sec. 4 that this minimizes the KL divergence between the expert’s and
the agent’s state-action distributions and therefore provides an intuitive and principled imitation
learning approach. Note that unlike most prior method, expert demonstrations are used in VDI to
generate goals rather than to train an intermediate network such as a discriminator or reward function.
The value function and density estimate are trained using self-supervised roll-outs alone. This
makes intermediate networks much less prone to overfitting and we show in Sec. 5.2 that VDI uses
demonstrations significantly more efficiently than the current state-of-the-art in common benchmarks.

2 BACKGROUND

2.1 MARKOV DECISION PROCESSES

Here, we briefly lay out notation while referring the reader to Puterman (2014) for a detailed review.
Markov Decision Processes (MDPs) define a set of states S, a set of actions A, a distribution of
initial states d0(s), Markovian transition dynamics defining the probability (density) of transitioning
from state s to s′ when taking action a as p(s′|s, a), and a reward function r(s, a). In reinforcement
learning, we usually try to find a parametric stationary policy µθ : S→ A.1 An optimal policy maxi-
mizes the long-term discounted reward Jrγ (θ) = E [

∑∞
t=0 γ

tr(st, at)|s0 ∼ d0, µθ] given a discount
factor γ or, sometimes, the average reward Jr(θ) =

∫
dπθ (s)r(s, µθ(s))ds, a, where the stationary

state distribution dµ(s) and the stationary state-action distribution ρµ(s, a) are uniquely induced by
µ under mild ergodicity assumptions. A useful concept to this end is the value function V µ(s) =
E [
∑∞
t=0 γ

tr(st, at)|s0 = s, µ] or Q function Qµ(s, a) = E [
∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a, µ]
which can be used to estimate the policy gradient ∇θJγ(θ) (e.g. Sutton et al., 1999; Silver et al.,
2014). Finally, we define as pµ(s, a

t−→ s′) the probability of transitioning from state s to s′ after t
steps when taking action a in state s and following policy µ afterwards.

2.2 GOAL-CONDITIONED REINFORCEMENT LEARNING

Goal-conditioned Reinforcement Learning aims to teach an agent to solve multiple variations of
a task, identified by a goal vector g and the corresponding reward function rg(s, a). Solving
each variation requires the agent to learn a goal-conditioned policy, which we write as µgθ(s).
Here, we condition the reward and policy explicitly to emphasize that they can be conditioned
on different goals. The goal-conditioned value function (GCVF) in this setting is then given by
Qµ

g

rg (s, a) = E
[∑∞

t=0 γ
trg(st, at)|s0 = s, a0 = a, µg

]
.

To solve such tasks, Schaul et al. (2015) introduce the concept of a Universal Value Function
Approximator (UVFA), a learned model Qω(s, a; g) approximating Qµ

g

rg (s, a), i.e. all value functions
where the policy and reward are conditioned on the same goal. We extend this notion to models of
value-functions which use a goal-conditioned reward with a single fixed policy. To distinguish such
models visually, we write Q̃ω(s, a; g) to refer to models which approximate Qµrg (s, a) for a given µ.

1We write the policy as a deterministic function, but all findings hold for stochastic policies as well.
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Where Qω represents how good the agent is at achieving any goal if it tries to achieve it, Q̃ω models
how good a specific policy is, if the task were to achieve the given goal.

Schaul et al. (2015) show that UVFAs can be trained via temporal difference learning with randomly
sampled goals; however, if the reward function is sparse (a common case is an indicator function
that tells the agent whether a goal has been achieved), the agent rarely observes a non-zero reward.
Hindsight updates (HER) (Andrychowicz et al., 2017) are a straight-forward solution, changing
goals recorded in a replay memory based on what the agent has actually achieved in hindsight.
This approach is intuitive and can also be extended to work with visual observations (Nair et al.,
2018; Sahni et al., 2019); however, it does not yield correct results in stochastic domains. This has
previously been noted by Lanka and Wu (2018), who propose a heuristic method to address this issue,
but no principled method to use hindsight samples in a completely unbiased way has been proposed
to date. Temporal Difference Models (TDMs) (Pong et al., 2018; Nasiriany et al., 2019), a method
related to ours, use a squared error function as a terminal value and bootstrapping to back up this
value over a finite horizon. Our methods learns to model arbitrary terminal values and allows for
bootstrapping over an infinite horizon. TDMs are orthogonal to the concept of hindsight samples.

2.3 IMITATION LEARNING

Imitation learning (IL) teaches agents to act given demonstrated example behavior. While the
MDP formalism can still be used in this scenario, we no longer have a pre-defined reward function
specifying the objective. Instead, we are given a sequence of expert state-action pairs. The goal of
imitation learning is to learn a policy µθ that is equivalent to the expert’s policy µ∗ which generated
the demonstrated states and actions. This problem is underspecified and different formalizations
have been proposed to achieve this goal. The simplest solution to IL is known as Behavioral Cloning
(BC) (Pomerleau, 1989) and treats the problem as a supervised learning problem. Using demonstrated
states as sample inputs and demonstrated actions as target outputs, a policy can be trained easily
without requiring further knowledge of, or interaction with, the environment. While this approach can
work remarkably well, it is known to be suboptimal as a standard assumption of supervised learning
is violated: predictions made by the agents affect future inputs to the policy (Ross et al., 2011). By
learning about the environment dynamics and explicitly trying to reproduce future demonstrated
states, the agent is able to learn more robust policies from small amounts of demonstration data. A
common and effective formalism is to reason explicitly about matching the distribution of state-action
pairs that the agent will see to that of the expert. By learning from interaction with the environment
and employing sequential reasoning, approaches such as maximum entropy IRL (Ziebart et al., 2008),
adversarial IRL (Fu et al., 2018), GPRIL (Schroecker et al., 2019) or Generative Adversarial Imitation
Learning (GAIL) (Ho and Ermon, 2016) lead the agent to reproduce the expert’s observations as
well as the expert’s actions. Especially adversarial approaches (Ho and Ermon, 2016; Fu et al.,
2018; Kostrikov et al., 2019) have gained popularity in recent years and train a discriminator to
serve as a distance function between the agent’s and the expert’s state-action distribution. Here,
we instead propose to train a generative model to predict multiple time-steps ahead in order to
reproduce demonstration states. GPRIL (Schroecker et al., 2019) similarly utilizes a long-term
generative model for imitation learning; however, in contrast to VDI, it cannot easily be combined
with temporal-difference learning techniques and struggles with larger time-horizons and performs
badly on locomotion benchmark tasks. In Section 5.2, we show that VDI cannot only be applied in
such domains, but that it outperforms the current state-of-the-art on common benchmark tasks.

2.4 NORMALIZING FLOWS

Normalizing flows (van den Oord et al., 2017; Dinh et al., 2016) are capable of learning explicit
representations of complex, highly non-linear density functions. In this work, we utilize a simplified
version of RealNVP (Dinh et al., 2016) to represent value functions as density functions. A RealNVP
model consist of a chain of learned, invertible transformations which transform samples z ∈ RN

from one distribution pz to samples x ∈ RN from another distribution px. The transformations are
affine where half of the input features are scaled and shifted by parameters predicted based on the
other half which allows for tractable computation of the gradient. The model can therefore be trained
using a straight-forward maximum likelihood approach. While the original work defines a specific
autoregressive order to model images effectively, we use a simplified version of RealNVP in this
paper to model non-image data and pick the autoregressive order at random.
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3 UNIVERSAL VALUE DENSITY ESTIMATION

3.1 ADDRESSING HINDSIGHT BIAS

(a) (b)

Figure 1: Simple cliff-walk domain. The
agent starts in the bottom left, has to avoid
the cliff depicted in black and reach the state
in the bottom right. a) depicts the transition
probabilities of an optimal policy while b) de-
picts a sub-optimal policy learned using HER.

Before we introduce our approach to estimating
GCVFs corresponding to fixed or goal-conditioned
policies, written Q̃ω or Qω respectively, we will first
point out the issues that arise when using common
temporal-difference learning approaches. To effi-
ciently approximate a GCVF, we have to address
the challenge of learning from sparse rewards. Each
TD update requires us to sample a goal and if this is
done independently from the trajectory is unlikely to
be a goal that has been reached. Andrychowicz et al.
(2017) address this with a heuristic that oversamples
achieved goals. This allows the agent to learn from
failures and provides a way to speed up the training
of a UVFA; however, it is a heuristic approach and
can lead the agent to converge to non-optimal poli-
cies in stochastic domains. We illustrate this with a
gridworld-example in Figure 1: here, the agent has
to walk around a cliff to reach the goal in the bottom
right but may fall down the cliff due to environment noise affecting its movements. The optimal
policy is to take a safe path to avoid falling down the cliff by accident; however, using HER we only
learn about the true goal based on successful roll-outs and disregard episodes where the environment
noise led to failure, i.e. the agent never learns from transitions leading down the cliff, underestimates
their probability and therefore incorrectly chooses the shorter path.

Mathematically, this hindsight bias manifests itself as being equivalent to changing the environment
dynamics. We examine the effect of changing the goal-sampling distribution in a hindsight temporal
difference update rule. Using ω to refer to the parameters of the previous iteration, the temporal
difference update rule takes the form ω ← ω + α∆, with

∆ :=

∫
ρµ

g
θ (s, a)p(s′|s, a)p(g)∇ωQω(s, a; g)δds, a, s′, g

δ := rg(s, a) + γQω(s′, µgθ(s
′))−Qω(s, a).

(1)

Altering p(g) independently would be akin to using out-of-distribution samples in regression, can
be addressed with additional representational capacity and the effect is little different from using
using a replay buffer (Munos et al., 2016; Fujimoto et al., 2018); however, HER alters the distri-
bution of goals p(g) to be dependent on the observed transitions, i.e. transitions are sampled from
p(s′|s, a)p(g|s, a, s′). This factorization can alternatively be written as p(g|s, a)p(s′|s, a, g) which
makes it plain how HER is modifying the transition dynamics and therefore the MDP that the agent
is trying to solve. This is the source of hindsight bias in stochastic domains as observed in Figure 1.

3.2 VALUE DENSITY ESTIMATION

Knowing hindsight samples to be a good solution to recover a dense learning signal but to lead to an
inconsistent estimator when combined with temporal-difference learning, we now show that density
estimation can be used to estimate GCVFs using a sampling procedure similar to that of HER. We
consider the special case where the task is for the agent to reach a given goal state. This scenario is
common in goal-conditioned RL and also the one being addressed by Andrychowicz et al. (2017). In
discrete environments, we can define such tasks by a reward that is positive if the goal is achieved and
0 otherwise. We define: rg(s, a) := (1 − γ)1(h(s, a) = g), where h is a function that defines the
achieved goal for any given state-action pair. In slight abuse of notation2, we extend this definition to
continuous environments and write rg(s, a) = (1−γ)δh(s,a),g . We can now show that the Q-function
of such tasks forms a valid density function. Specifically, we notice that the Q function is equivalent

2Formally, the reward would have to be defined to be non-zero only in an ε-ball around h(s, a) and inversely
proportional to the volume of this ball. All results hold in the limit ε→ 0.
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to the discounted probability density over goals that the agent is likely to achieve when following its
policy, starting from the given state-action pair:

Qµrg (s, a) = E

[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a, µ

]

= (1− γ)
∑

γt
∫
pµ(s, a

t−→ s′)δh(s′,µ(s′)),gds
′ =: Fµγ (g|s, a)

(2)

It follows that we can learn an approximation of the goal-conditioned Q-function Qµrg (s, a) by
approximating the value density Fµγ (g|s, a). This can be done using modern density estimators
such as RealNVPs (see Section 2.4). To train the model, we gather training samples from a roll-out
s0, a0, s1, a1, . . . , collecting state-action pairs s = st, a = at at random time-steps t as well as future
achieved goals g = h(st+j , at+j); j ∼ Geom(1 − γ). Notice that the above derivation assumes a
fixed, i.e. not goal-conditioned policy. We relax this assumption in Section 3.4.

3.3 COMBINING ESTIMATORS

Learning a model of Fµθγ already provides a valid estimator of the Q-function; however, relying on
density estimation alone is insufficient in practice. As the discount factor approaches 1, estimating Q
purely based on density estimation would require state-action-goal triplets that are hundreds of time-
steps apart, leading to updates which suffer from extremely high variance. In practice, we therefore
wish to limit the time-horizon of the density estimator while relying on temporal difference (TD)
learning to backup values over long time horizons with low variance. Note that temporal-difference
learning alone is insufficient in this scenario as it may never observe a reward3. Here, we propose to
approximate the value by combining the value density estimator with temporal difference learning,
using the density estimate as a lower bound on the target value. If the goal is within the time-horizon
of the density estimator, the (scaled) density estimate approaches the true value and the bounded
temporal difference loss simply matches Q to this density estimate. If the goal is outside its time
horizon, the lower bound approaches 0 and we are using plain temporal difference learning to back
up the value. The lower-bounded temporal difference loss is given by

L(ω) :=
(
rg(s, a) + γQ− Q̃ω(s, a; g)

)2

, Q := max
(
Q̃ω(s, a; g), FΦ(g|s, a)

)
, (3)

where FΦ(g|s, a) is a learned estimate of the density defined in Eq. 2.

3.4 LEARNING GOAL-CONDITIONED POLICIES

In Section 2.2, we introduced notation to differentiate between learning a model Q̃, which uses a
goal-conditioned reward and a fixed policy and a model Q, where both quantities are conditioned on
the goal. While the previous section gives us the means to efficiently train Q̃, goal-conditioned RL
requires us to learn Q. Using a goal-conditioned policy in Eq. 2, we can write down a corresponding
equivalence to a predictive long-term generative model: Fµ

g

γ (g|s, a) := Qµ
g

rg (s, a). Here, Fµ
g

γ (g|s, a)
is the distribution of goals g that the agent will reach when it starts in state s, takes action a and then
tries to reach the goal g. As before, we can model this with a normalizing flow; however, in this case
the model has to be conditioned on the intended goal g and takes the form FΦ(g|s, a, g). Using this
density estimate, we can alter the temporal difference target in Eq. 3 to efficiently train a UVFA:

Q := max (Qω(s, a; g), FΦ(g|s, a, g)) (4)

This yields an iterative algorithm for goal-conditioned RL (Algorithm 1) that is efficient and avoids
hindsight bias. Implementation details are discussed in Appendix B.

4 VALUE DENSITY IMITATION LEARNING

We now turn our attention to the problem of sample-efficient imitation learning. We wish to train
the agent to imitate an expert’s policy using only a few demonstration samples from the expert.

3If the environment is continuous and stochastic and the reward is as defined above, the agent always observes
a reward of 0 on random samples.
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Algorithm 1 Universal Value Density Estimation
function UVD

for i← 0..#Iterations do
Fill replay buffer with experience
for s, a, g sampled from short replay buffer do

Sample t ∼ Geom (1− γ)
Sample achieved g t steps ahead of s
Update FΦ with −∇Φ logFΦ (g|s, a, g)

for s, a, s′, g sampled from long replay buffer do
F ← FΦ

(
g|s′, µgθ (s

′) , g
)

Q← max
(
F ,Qω

(
s′, µgθ (s

′)
))

Update Qω with ∇ω
(
rg(s, a) + γQ−Qω (s, a; g)

)2

Update µgθ with ∇aQω (s, a; g)
∣∣∣
a=µ

g
θ
(s)
∇θµgθ (s)

Algorithm 2 Value Density Imitation
function VDI

for i← 0..#Iterations do
Fill replay buffer with experience
for s, a sampled from short replay buffer do

Sample t ∼ Geom (1− γ)
Sample target states s t steps ahead of s
Update FΦ with −∇Φ logFΦ (s|s, a)
Update dΦ with −∇Φ log dΦ (s)

for s, a, s′ sampled from long replay buffer do
Sample s uniformly from expert data
Q← max

(
Fω (s|s, a) , γQ̃ω (s′, µθ (s

′))
)

Update Q̃ω with∇ω
(
Q− Q̃ω (s, a; s)

)2

for s, a from long replay buffer do
Sample s from expert data with p = 1

dΦ(s)

Update µθ with ∇aQ̃ω (s, a; s)
∣∣∣
a=µθ(s)

∇θµθ (s)

Different formulations exist to solve this problem (see Section 2.3), but the formulation which has
arguably been the most promising is to train the agent to explicitly match the expert’s state-action
distribution or occupancy measure (Ziebart et al., 2008; Ho and Ermon, 2016). Our next step
is therefore to extend our findings from the previous section to state-action or state distribution
matching. In the literature, this is commonly framed as a divergence minimization problem with
recent work investigating different measures (Ghasemipour et al., 2020; Ke et al., 2019); however,
this view is incomplete as the divergence measure has to be approximated and the quality of the
approximation can be significantly more impactful than the choice of measure. Similar to Schroecker
and Isbell (2017); Schroecker et al. (2019), we propose to estimate the gradient ∇θ log dµθ (s) from
self-supervised data (where we write s to refer to demonstrated states). With an estimate of this
gradient, we can maximize the likelihood of expert state-action pairs which gives a straight-forward
approach to minimizing the KL-divergence between the two occupancy distributions. Note that while
the gradient is evaluated at expert states, the derivative itself depends only on the agent’s behavior.
Unlike the discriminator in an adversarial approach, the quality of the approximation therefore does
not depend on the number available expert samples. Using the state-distribution gradient alone in a
maximum-likelihood algorithm disregards expert actions, but is optimal if the expert’s behavior can
be uniquely described using a reward-function that depends only on the current state. We will evaluate
state-distribution matching as imitation from observation in Section 5.2. To extend the approach
to unambiguous state-action distribution matching, we can combine it with the behavioral cloning
gradient as∇θ log ρπθ (s, a) = ∇θ log πθ(a|s)+∇θ log dπθ (s), where we assume a stochastic policy
πθ in place of a deterministic one. We found, however, that the behavioral cloning gradient can
dominate a noisy estimate of the state-distribution gradient and lead to overfitting. Instead, we propose
to augment the state to include the previous action that lead to the state. This approach attempts to
match the joint distribution of action and next state which implies the state-action-distribution based
on environment dynamics.

If applied to a single state, following the state-distribution gradient teaches the agent to go to that
state. It is thus no surprise that it can be shown to be equivalent to the policy gradient for the
right goal-conditioned reward function (also see Schroecker et al., 2019). Specifically, the state-
distribution gradient is equivalent to the weighted policy gradient in the average-reward setting (using
rs(s, a) = δs,s). We have:

∇θ log dµθ (s) =
∇θdµθ (s)
dµθ (s)

= ∇θ
∫
dµθ (s)δs,sds

dµθ (s)
=
∇θJr

s

(θ)

dµθ (s)
(5)

Intuitively, the policy gradient leads the agent toward a demonstration state s, while the weight
ensures that all demonstration states are visited with equal probability. This gives rise to Value
Density Imitation Learning: Using self-supervised roll-outs, the algorithm learns a goal-conditioned
Q-function as well as an unconditional density estimator dω(s) of the agent’s state-distribution. Next,
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Figure 2: Average and range of success rate across 3 seeds of TD3, UVD and HER on variations of
the Fetch manipulation domains. FetchPush and FetchSlide correspond to the original domains. Fetch-
Push (Sparse) shows the advantage of hindsight updates when the required precision is significantly
higher while FetchSlide + Noise shows the effect of hindsight bias in stochastic domains.

demonstration states are sampled with probability proportional to 1
dω(s) and used as goals when

estimating the policy-gradient (see Alg. 2 for details).

5 EXPERIMENTS

5.1 GOAL-CONDITIONED REINFORCEMENT LEARNING

We first evaluate UVD on a suite of simulated manipulation tasks involving a Fetch robot arm. This
suite has been developed by Andrychowicz et al. (2017) to show the strengths of hindsight experience
replay. Our goal here is twofold: 1. We show that UVD matches the performance of HER on the
unmodified deterministic tasks where HER does not suffer from hindsight bias. 2. We show that HER
converges to a sub-optimal policy on a stochastic variation of the task while UVD is still able to solve
the task efficiently. We compare all methods using the same hyper-parameters (see Appendix A).

The first domain in the suite, FetchPush, requires the robot arm to learn to push an object to any
given target location. The reward signal is sparse as the agent is given a non-zero reward only if
the object reaches the desired location. In Figure 2a, we can see that TD3 with HER and TD3 with
UVD perform similarly. Contrary to the original findings by Andrychowicz et al. (2017), we also find
unmodified TD3 to be able to solve the task accurately using roughly twice the amount of training
samples. This indicates that the area around the goal in which the object is considered to be at the
desired location is relatively large. If we apply a stricter criterion for the goal being reached by
reducing the size of the goal area by a factor of 100, we can see that hindsight samples are necessary
to learn from sparse rewards. In this variant, TD3 fails to learn a useful policy (see Figure 2c).

The second domain in the suite, FetchSlide, requires the robot to slide the object toward a desired
location that is out of reach of the robot arm. In Figure 2b, we can see UVD and HER learning to solve
the task quickly while TD3 without hindsight samples requires significantly more training samples.
Unlike in the case of FetchPush, TD3+UVD learns slightly faster in this domain than TD3+HER but
both are able to solve the task eventually. Both, FetchSlide and FetchPush, are deterministic domains
that play to the strengths of hindsight experience replay. In practice, however, manipulation with a
real robot arm is always noisy. In some cases, HER can overcome this noise despite suffering from
hindsight bias; however, this is not always the case. Here, we introduce a variation of the FetchSlide
domain which adds Gaussian noise to the actions of the agent. We scale this noise based on the
squared norm of the chosen actions 1

2e ||max(0, a − 0.5 · 1)||22. This scaling allows the agent to
adapt to the noise; however, doing so requires the agent to accurately assess the risks of its actions.
In Figure 2d, we can see that while HER initially learns quickly as in the deterministic domain, it
converges to a policy that is noticeably worse than the policy found by TD3+UVD. This shows the
effect of hindsight bias: in the presence of noise, the agent assumes the noise to be benign. UVD, on
the other hand, estimates the risk accurately and achieves a higher success rate than HER.

5.2 IMITATION LEARNING

We compare the demonstration-efficiency of Value Density Imitation with GAIL, on common
benchmark locomotion tasks (Brockman et al., 2016). We compare against GAIL as no method has
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Figure 3: Comparison of GAIL and VDI on variations of standard benchmark tasks. The x-axis
shows the number of demonstrated trajectories times state-action pairs per trajectory. VDI requires
fewer demonstrations compared to GAIL.

reported better demonstration-efficiency on these domains to date. Recently, the suite of locomotion
tasks has become the go-to benchmark for imitation learning (e.g. Ho and Ermon, 2016); however, we
find that the unmodified locomotion tasks, despite their popularity, are easily exploited in an imitation
learning context and are a bad measure of whether an algorithm imitates the expert or not. While it is
impressive that GAIL is able to solve Humanoid-v2 with less than a dozen of disjointed demonstrated
states, it is also clear that the agent is not learning to imitate the motion itself. The dominating source
of reward in these tasks comes from the velocity in a particular direction. This is problematic as
the velocity is fully observable as part of the state and, in the case of humanoid, may be encoded in
more than one of the features found in the state-vector. Even the simple average of the state-features
may be equivalent to a noisy version of the original reward signal. Moreover, as the reward is a
linear combination of state-features, we know that accurate distribution matching is not necessary and
matching feature expectations is sufficient (Abbeel and Ng, 2004; Ho and Ermon, 2016). To alleviate
this, we remove task-space velocities in x, y directions from the state-space. A second source of
bias can be found in the termination condition of the locomotion domains. Kostrikov et al. (2019)
point out that GAIL is biased toward longer trajectories and thus tries to avoid termination, which
in the case of locomotion means to avoid falling. While Kostrikov et al. adjust the algorithm itself
to avoid such bias, we instead propose to remove the termination condition and use an evaluation
which cannot be exploited by a biased method. We find that other methods such as DAC (Kostrikov
et al., 2019) may require re-tuning to solve these tasks but find that GAIL still performs well on the
modified tasks. This is unsurprising as GAIL has been applied to real-world applications (e.g. Wang
et al., 2017).

We focus on two locomotion tasks in particular: HalfCheetah-v2 and Humanoid-v2. HalfCheetah-v2
is comparatively easy to solve while providing a high skill ceiling. With the original threshold
for solving the task being set at a score of 4500, recent advances in reinforcement learning train
policies that achieve 3-4 times as high a score (Fujimoto et al., 2018; Haarnoja et al., 2018) (removing
velocity from the state reduces the top-speed achieved by the TD3-trained expert). Our second
domain of choice is Humanoid-v2, which is generally considered to be the most complex locomotion
task. Unlike in the HalfCheetah-v2 domain, learning to move without falling can be a significant
challenge for a learning agent. We furthermore find it sufficient to match state-distributions to
solve HalfCheetah-v2 and thus teach the agent from observation only when using VDI. In the case
Humanoid-v2, we find that demonstrated actions significantly aid exploration and thus include them.
The results can be seen in Figures 3a and 3b as well as in Appendix C. While both methods are able
to achieve near-expert performance on HalfCheetah-v2-NonExploitable using a single demonstrated
trajectory sub-sampled at the same rate as used by Ho and Ermon, we find VDI to be able to imitate
the expert if the trajectory is sub-sampled even further. On Humanoid-v2-NonExploitable, we find the
difference to be more drastic: while GAIL is able to learn locomotion behavior from a similar number
of trajectories as used in the original paper (but using more state-action pairs), the performance
drops off quickly if we reduce the number of trajectories further. VDI is able to learn from only a
single demonstration. Both methods are able to achieve great demonstration-efficiency by matching
the expert’s state-action distribution; however, GAIL does so by learning a distance function using
demonstrations as training samples. As the number of demonstrations shrinks, learning a good
discriminator to serve as a reward becomes more difficult. VDI side-steps this issue by learning a
goal-conditioned Q-function based on self-supervised roll-outs alone. The demonstrations are used to
condition the Q-function and don’t serve directly as training data for any network.
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A HYPERPARAMETERS

In Table 1, we list the hyper-parameters used for TD3, TD3+HER and TD3+UVD on the Fetch
experiments. When applicable, we largely use the same hyper-parameters for each algorithm. Two
important exceptions are the learning rate which is tuned individually for each algorithm (TD3+UVD
benefits reliably from higher learning rates whereas TD3 and TD3+HER does not always converge to
a good solution at higher learning rates) as well as the output activation of the Q-network. A tanh
activation is used to scale the value to the range of -50 to 50 in the case of TD3 and TD3+HER as
we found this to drastically improve performance. Since the density is not bounded from above, the
same activation cannot be used in the case of TD3+UVD.

In Table 2, we list the hyper-parameters used for VDI in the locomotion experiments. Parameters are
largely identical between environments; however, in some cases we trade off higher learning speed
for reduced accuracy on HalfCheetah. In the case of GAIL, we use the implementation found in
OpenAI baselines4, using 16 parallel processes (collecting 16 trajectories per iteration) and do not
modify the parameters.

Table 1: Common parameters in Fetch environments
General parameters
Environment steps per iteration 1
γ 0.98
Batch size 512
Replay memory size 1500000
Short replay memory size 50000
Sequence Truncation (Density estimation training) 4
Optimizer Adam
Policy
Hidden layers 400, 400
Hidden activation leaky relu
Output activation tanh
Exploration noise σ 0.1
Target action noise σ 0.0
Learning rate 2 · 10−4, 8 · 10−4 (TD3+UVD)
Q-network
Hidden layers 400, 400
Hidden activation leaky relu
Output activation 50 tanh, linear (TD3+UVD)
Learning rate 2 · 10−4, 8 · 10−4 (TD3+UVD)
RealNVP
Bijector hidden layers 300, 300
Hidden activation leaky relu
Output activation, scale tanh(log())
Output activation, translate linear
num bijectors 5 (slide), 6 (push)
Learning rate 2 · 10−4

4https://github.com/openai/baselines/tree/master/baselines/gail
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Table 2: VDI parameters in locomotion environments
Parameter HalfCheetah Humanoid
General parameters
Environment steps per iteration 10 10
γ 0.995 0.995
Batch size 256 256
Replay memory size 1500000 1500000
Short replay memory size 500000 500000
Sequence Truncation (Density estimation training) 4 4
Optimizer Adam Adam
Policy
Hidden layers 400, 300 400, 300
Hidden activation leaky relu leaky relu
Output activation tanh tanh
Exploration noise σ 0.3 (until iteration 25000), 0.1 (after) 0.1
Target action noise σ 0.0 0.0
Learning rate 3 · 10−4 3 · 10−4

Q-network
Hidden layers 400, 400 400, 400
Hidden activation leaky relu leaky relu
Output activation linear linear
Learning rate 3 · 10−4 1 · 10−4
RealNVP
Bijector hidden layers 400, 400 400, 400
Hidden activation leaky relu leaky relu
Output activation, scale tanh(log()) tanh(log())
Output activation, translate linear linear
num bijectors 5 5
Learning rate 1 · 10−4 2 · 10−5

L2-regularization 1 · 10−5 1 · 10−6

Spatial smoothing 0.1 0.1
Temporal smoothing 0. 0.98

B PRACTICAL CONSIDERATIONS

There are a number of implementations decisions that were made to improve the sample-efficiency
and stability of Value Density Estimation and its application to imitation learning. Here, we review
these decisions in more detail.

B.1 UNIVERSAL VALUE DENSITY ESTIMATION

Using an exploration policy: In most cases self-supervised roll-outs will require the agent to
explore. In our method, we combine a temporal difference update rule as is usually found in
deterministic policy gradients with density estimation. While the temporal-difference update rule
can handle off-policy data from an exploration policy, density-estimation is on-policy. In practice,
however, Fujimoto et al. (2018) add Gaussian noise to the target-Q function and report better results
by learning a smoothed Q-function that is akin to the on-policy Q-function with Gaussian exploration
noise. It thus stands to reason that we can omit off-policy correction in the density-estimator.

Truncating the time horizon: The training data for learning a long-term model can be fairly noisy.
While we can expect density estimation to be efficient over a horizon of just a few time-steps, the
variance increases dramatically as γ increases. This is the primary motivation for utilizing temporal-
difference learning in conjunction with universal value density estimation. To better facilitate stable
training, we truncate the time-horizon of the density-estimator to a fixed number of time-steps T .
The temporal-difference learning component is thus solely responsible for propagating the value
beyond this fixed horizon. The effect this has on the optimal policy is small: the Q-value will be
underestimated by ignoring visitations with time-to-recurrence greater than T . A greater time-horizon
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boosts the effect of hindsight samples and leads to a learning signal that is less sparse while a smaller
time-horizon reduces the variance of the estimator.

Using a replay buffer: Using a replay buffer is essential for sample-efficient training with model-
free reinforcement- and imitation-learning methods and improves the stability of deterministic policy
gradients. We find that this is true for training long-term generative models as well. While importance
sampling based off-policy correction for density estimation is possible, we find that it introduces
instabilities and is thus undesirable. Instead, we propose to use a separate, shorter replay-buffer for
density estimation to mitigate the undesirable effects of off-policy learning while retaining some of
the benefits.

Delayed density updates: Temporal-difference learning with non-linear function approximation
is notoriously unstable. To help stabilize it, a common (Mnih et al., 2015; Fujimoto et al., 2018)
trick is delay the update of the target network and allow the Q-function to perform multiple steps of
regression toward a fixed target. Since we use the long-term predictive model Fω to calculate the
temporal-difference regression target, we apply the same trick here. We maintain a target network
Fω which we set to be equal to the online density estimator Fω after a fixed number of iterations.
In Value Density Imitation, we use the same procedure to maintain a frozen target network of the
unconditional state density estimator dω .

Normalizing states: As our method depends on density estimation, the resulting values are heavily
affected by the scale of the features. We therefore normalize our data based on the range observed in
random roll-outs as well as, in the case of imitation learning, the range seen in the given demonstra-
tions.

B.2 VALUE DENSITY IMITATION

Averaging logits: While the dimensionality of the goal in goal-conditioned reinforcement learning
is typically small, Value Density Imitation requires us to use the entire state as a goal. This, however,
can be difficult if the number of features is large. If the state-features are independent, the density
suffers from the curse of dimensionality as it is multiplicative and the Q-values will be either
extremely large or extremely small. Even if the true density function does not exhibit this property,
Normalizing Flows predict the density as a product of N predicted logits and prediction errors are
therefore multiplicative. To combat this, we take the average of the predicted logits rather than the
sum, effectively taking the N − th square root of the Q-function. We find that this approximation
works well in practice and justify it further in appendix D.

Bounding weights on demonstrated states: In Value Density Imitation, we sub-sample demon-
strations states proportional to 1

dω(s) to ensure demonstration states to be visited with equal probability.
In this formulation, demonstration states that are especially difficult to reach may be over-sampled by
a large factor and destabilize the learning process. To counteract this, we put a bound on the weight of
each demonstration state: for each batch, the weights are normalized and an upper bound is applied.

Spatial and temporal smoothing: We apply two kinds of smoothing to the learned UVFA to
improve the stability of the learning algorithm. Spatial smoothing ensures that similar state-action
pairs have similar value and is achieved by adding Gaussian noise to training samples of the target
state when training the density estimator. Temporal smoothing ensures that the learned value does
not spike too suddenly. Instead of using Fγ(s) as a temporal difference regression target, we use
a mixture of the density estimation and the temporal-difference lower bound. Using a temporal
smoothing factor λ, the full temporal difference loss is then given by:

L(ω) :=
(
rg(s, a) + γQ− Q̃ω(s, a; g)

)2

,

Q :=λQ̃ω(s, a; g)+

(1− λ) max
(
Q̃ω(s, a; g), FΦ(g|s, a)

)
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C ADDITIONAL EXPERIMENT DETAILS
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Figure 4: Individual learning curves for each imitation learning experiment.

In Section 5.2, we describe imitation learning experiments on non-exploitable versions of the
commonly used HalfCheetah and Humanoid benchmark tasks. Figure 4 shows the individual learning
curves for both GAIL and VDI on each domain. Note, that the number of environment steps for GAIL
is an order of magnitude larger than on VDI and several times higher than what is necessary to solve
the unmodified, exploitable variant of these domains. Because it takes several days to collect this
amount of experience for each run, we terminate some runs early if it is clear they have converged and
if at least 75 or 150 million environment steps have been taken in each respective domain. While more
sample-efficient versions of GAIL have been proposed (Kostrikov et al., 2019) and work well on the
original formulation of the domains, we were unable to achieve good results on the corrected version
of the domains. It is likely that the large amount of regularization imposed on the discriminator
in Discriminator-Actor-Critic makes this formulation more likely to exploit the velocity given as
part of the observation space and that significant effort would have to be put in to find the right
hyper-parameters to apply this method on the non-exploitable domains.

D ESCAPING THE CURSE OF DIMENSIONALITY

In section 3, we introduced a method which uses the probability density predicted by a normalizing
flow as a Q function. We showed that this density Q function is a valid Q function with a corresponding
reward function that is sensible for many practical task. In this appendix, we consider the numerical
properties of the universal value density estimator and propose a slight variation that is easier to handle
numerically. To see the numerical challenge in using density estimators as value functions, we take
a look another look at a single bijector of a RealNVP; here, the bijector fω(z) = (sω(z), tω(z)) is
predicting an affine transformation of z ∼ pz(·) = N (0, I) to x ∼ px(·), i.e. xi = sω(z)izi+ tω(z)i.

The log-density of x is then given as px(x) = e

∑N
i=0 s

−1
ω (x)−

(
xi−t

−1
ω (x)i

s
−1
ω (x)i

)2

+log 1√
2π . It is readily

apparent that this value can easily explode, especially when used as a target Q value in the mean-
squared loss of a temporal difference update. To combat this, we propose to scale the logits with the
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dimensionality N , i.e. we use px(x) = e
1
N

∑N
i=0 s

−1
ω (x)−

(
xi−t

−1
ω (x)i

s
−1
ω (x)i

)2

+log 1√
2π . As this corresponds

to only a constant factor on logFγ , the gradient-based density estimation is not affected.

While the change is simple, average logits instead of taking the sum, we need to justify the approxi-
mation anywhere the value density and the Q-function are used: first, we show that J(θ)

1
N can be

used in place of J(θ) in both, goal-conditioned reinforcement learning and in imitation learning
without changing the optimal policy; second, we justify using Qµθrg (s, a)

1
N in place of Qµθrg (s, a)

when computing the policy gradient; and, finally, we show that we can justify the use of the N-th root
in the temporal difference learning update.

Using the scaled objective J(θ)
1
N : Here, we have to consider two cases. In the case of goal-

conditioned RL, we have to show that maxθ J(θ) = maxθ J(θ)
1
N . To this end, it is sufficient to note

that the reward function is strictly non-negative and thus (·)
1
N is a monotonous function. In the case

of imitation learning, we can immediately see that the change corresponds to a constant factor on the
state-distribution gradient:

1

N
∇θ log dµθ (s) =

∇θJrs(θ)
1
N

dµθ (s)
1
N

(6)

Estimating the policy gradient ∇θJ(θ)
1
N : The deterministic policy gradient theorem (Silver

et al., 2014) shows that maximizing the Q-value in states sampled from the agent’s discounted
on-policy state-distribution is equivalent to maximizing the reinforcement-learning objective. This is
immediately apparent if the representation of the policy is sufficiently expressive and agent is able to
take the action with maximum value in every state. Due to monotonicity of (·)

1
N , this is true when

using QΦ(s, a; g)
1
N as well. If the policy is not able to maximize the Q-function everywhere, the

deterministic policy gradient theorem shows that sampling from the discounted state-distribution
leads to the agent making the right trade-offs. Using Q(s, a; g)

1
N , however, leads to a different

trade-off. In practice, this is typically ignored: deterministic policy gradients used off-policy with a
replay-buffer are not guaranteed to make the right trade-off and even if they are used on-policy, the
discount-factor is typically ignored and the resulting estimate of the policy gradient is biased (Nota
and Thomas, 2019).

Qµg (s, a)
1
N as TD target: Finally, we need to show that we can use the N-th root in the computation

of the temporal difference learning target. To this end, we make use of the fact that the reward in
continuous environments can be assumed to be 0 when computing the temporal difference target. In
this case (rg(s, a) + γQµrg (s′, µ(s′)))

1
N becomes γ

1
NQµrg (s′, µ(s′))

1
N and increasing γ is sufficient

to compute a valid regression target for Qµrg (s, a)
1
N
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