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Abstract

Predictive uncertainties in classification tasks are
often a consequence of model inadequacy or in-
sufficient training data. In popular applications,
such as image processing, we are often required
to scrutinise these uncertainties by meaningfully
attributing them to input features. This helps to im-
prove interpretability assessments. However, there
exist few effective frameworks for this purpose.
Vanilla forms of popular methods for the provision
of saliency masks, such as SHAP or integrated
gradients, adapt poorly to target measures of uncer-
tainty. Thus, state-of-the-art tools instead proceed
by creating counterfactual or adversarial feature
vectors, and assign attributions by direct compar-
ison to original images. In this paper, we present
a novel framework that combines path integrals,
counterfactual explanations and generative mod-
els, in order to procure attributions that contain
few observable artefacts or noise. We evidence
that this outperforms existing alternatives through
quantitative evaluations with popular benchmark-
ing methods and data sets of varying complexity.

1 INTRODUCTION

Model uncertainties often manifest aspects of a system or
data generating process that are not exactly understood
[Hüllermeier and Waegeman, 2021], such as the influence
of model inadequacy or a lack of diverse and representat-
ive data used during training. The ability to quantify and
attribute such uncertainties to their sources can help scru-
tinize aspects in the functioning of a predictive model, and
facilitate interpretability or fairness assessments in import-
ant machine learning applications [Awasthi et al., 2021].
The process is especially relevant in Bayesian inferential
settings, which find applications in domains such as natural

language processing [Xiao and Wang, 2019], network ana-
lysis [Perez and Casale, 2021] or image processing [Kendall
and Gal, 2017], to name only a few.

Thus, there exists a growing interest in methods for un-
certainty estimation [e.g. Depeweg et al., 2018, Smith and
Gal, 2018, Van Amersfoort et al., 2020, Tuna et al., 2021]
for purposes such as procuring adversarial examples, act-
ive learning or out-of-distribution detection. Recent work
has proposed mechanisms for the attribution of predictive
uncertainties to input features, such as pixels in an image
[Van Looveren and Klaise, 2019, Antoran et al., 2021, Schut
et al., 2021], with the goal of complementing interpretability
tools disproportionately centred on explaining model scores,
and to improve transparency in deployments of predictive
models. These methods proceed by identifying counterfac-
tual (in-distribution) or adversarial (out-of-distribution) ex-
planations, i.e. small variations in the value of input features
which output new model scores with minimal uncertainty.
This has helped understand the strengths and weaknesses
of various models. However, the relative contribution of
individual pixels to poor model performance is up to hu-
man guesswork, or assigned by plain comparisons between
an image and its altered representation. We report that un-
certainty attributions derived following these approaches
perform poorly, when measured by popular quantitative
evaluations of image saliency maps.

In this paper, our goal is to similarly map uncertainties in
classification tasks to their origin in images, and to meas-
ure the relative contribution of each individual pixel. We
show that popular attribution methods based on segmenta-
tion [Ribeiro et al., 2016], resampling [Lundberg and Lee,
2017a] or path integrals [Sundararajan et al., 2017] are eas-
ily re-purposed for this purpose. However, we evidence that
naive applications of these approaches perform poorly. Thus,
we present a new framework through a novel combination
of path integrals, counterfactual explanations and generative
models. Our approach is to attribute uncertainties by travers-
ing a domain of integration defined in latent space, which
connects a counterfactual explanation with its original im-
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age. The integration is projected into the observable pixel
space through a generative model, and starts at a reference
point which bears no predictive uncertainty. Hence, com-
pleteness is satisfied and uncertainties are fully explained
and decomposed over pixels in an image.

We note that relying on generative models has recently
gained traction for interpretability and score attribution pur-
poses [Lang et al., 2021]. Through our method, we show
how to leverage these models in order to procure clustered
saliency maps, which reduce the observable noise in vanilla
approaches. Applied to uncertainty attribution tasks, the pro-
posed approach outperforms vanilla adaptations of popular
interpretability tools such as LIME [Ribeiro et al., 2016],
SHAP [Lundberg and Lee, 2017a] or integrated gradients
[Sundararajan et al., 2017], as well as blur and guided vari-
ants [Xu et al., 2020, Kapishnikov et al., 2021]. We further
combine these methods with Xrai [Kapishnikov et al., 2019],
a popular segmentation and attribution approach. The assess-
ment1 is carried out through both quantitative and qualitative
evaluations, using popular benchmarking methods and data
sets of varying complexity.

2 UNCERTAINTY ATTRIBUTIONS

Consider a classification task with a classifier f : Rn×W →
∆|C|−1 of a fixed architecture. The weights w ∈ W are
presumed to be fitted to some available train data set
D = {xi, ci}i=1,2,.... Thus, the function f(x) ≡ f(x,w)
maps feature vectors x ∈ Rn to an element in the standard
(|C| − 1)-simplex, which represents membership probab-
ilities across classes in a set C. In the following, we are
concerned with the entropy as a measure of predictive un-
certainty, i.e.

H(x) = −
∑
c∈C

fc(x) · log fc(x) (1)

where fc(x) represents the predicted probability of class-c
membership. In Bayesian settings, we often consider a pos-
terior distribution π(w|D) over weights in the model, and
the term (1) may further be decomposed into aleatoric and
epistemic components [Kendall and Gal, 2017]. These rep-
resent different types of uncertainties, including inadequate
data and inappropriate modelling choices. For simplicity in
the presentation, we defer those details to Section 1 in the
supplementary material.

Popular resampling or gradient-based methods can easily be
adapted in order to attribute measures of uncertainty such as
H(x) to input features in an image. This includes tools such
as LIME [Ribeiro et al., 2016], SHAP [Lundberg and Lee,
2017a] or integrated gradients (IG) [Sundararajan et al.,
2017]. In Figure 1, we show an example application of in-
tegrated gradients to dogs versus cats data (further examples

1Source code for reproducing these results can be found at
github.com/Featurespace/uncertainty-attribution.

Figure 1: Example uncertainty attributions using integrated
gradients. Classification task in dogs versus cats data. In
red, positive attributions which increase entropy; in purple,
negative attributions that decrease entropy.

are found in Section 3 in the supplementary material). In
the figure, the regions in red are identified as contributors
to predictive uncertainties. We readily comprehend why the
model struggles to predict any single class, by observing
that a leash and a human hand are problematic. To the best
of our knowledge, no research has yet explored the possibil-
ity of using these attribution methods to identify sources of
uncertainty. Nevertheless, quantitative evaluations presented
in Section 4 show that this approach offers generally poor
performance.

2.1 PATH INTEGRALS

For later reference, we illustrate the above uncertainty at-
tribution procedure with integrated gradients. In primitive
form, a path method explains a scalar output F (x) using
a fiducial image x0 as reference, which is presumably not
associated with any class observed in training data. The im-
portance attributed to pixel i for the purposes of explaining
the quantity F (x) is given by

attrδi (x) =
∫ 1

0

∂F (δ(α))

∂δi(α)

∂δi(α)

∂α
dα

where δ : [0, 1] → Rn represents a curve with endpoints
at δ(0) = x0 and δ(1) = x. Here,

∑
i attri(x) = F (x) −

F (x0) follows from the gradient theorem for line integrals,
s.t. the difference in output values decomposes over the
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sum of attributions. Commonly, F (x) = fc(x) represents
the classification score for a class c ∈ C s.t. attributions
capture elements in an image that are associated with this
class. In order to attribute uncertainties, we readily assign
F (x) = H(x), and thus combine scores across all classes
with aims to identify pixels that confuse the model.

Integrated Gradients. Here, δ is parametrised as a straight
path between a fiducial and the observed image, i.e. δ(α) =
x0 + α(x− x0), and the above simplifies to

IGi(x) = (xi − x0i )×
∫ 1

0

∂H(x0 + α(x− x0))

∂xi
dα,

which corresponds to entropy attributions in Figure 1 ( see
Section 1 in the supplementary material for its decomposi-
tion into aleatoric and epistemic attributions).

Integrated gradients offers an efficient approach to produce
attributions with differentiable models, as an alternative to
layer-wise relevance propagation [Montavon et al., 2019] or
DeepLift [Shrikumar et al., 2017], and there exist several
adaptations and extensions [Smilkov et al., 2017, Xu et al.,
2020, Kapishnikov et al., 2021]. However, attributions are
heavily influenced by differences in pixel values between x
and x0, and the fiducial choice defaults to a black (or white)
background. This fails to attribute importances to black (or
white) pixels and is considered problematic [Sundararajan
et al., 2017], leading to proposed blurred or black+white
alternatives [Lundberg and Lee, 2017b, Kapishnikov et al.,
2019]. Additionally, δ transitions the path x0 ⇝ x out-
of-distribution [Jha et al., 2020, Adebayo et al., 2020], i.e.
through intermediary images not representative of training
data, leading to noise and artefacts in attributions.

3 METHODOLOGY

We describe the proposed method for uncertainty attribu-
tions summarised in Algorithm 1. This combines path integ-
rals with a generative process to define a domain of integ-
ration. We use a counterfactual fiducial bearing no relation
to causal inference [Pearl, 2010], i.e. an alternative in distri-
bution image x0 similar to x according to a suitable metric,
s.t. f(x0) bears close to 0 predictive uncertainty.

We choose to leverage a variational auto-encoder (VAE)
as the generative model. As customary, this is composed
of a unit-Gaussian data-generating process of arbitrary
dimensionality m << n, along with an image decoder
ψ : Rm → Rn. Here, z|x ∼ N (ϕµ(x), ϕσ(x)) represents
the approximate posterior in latent space, with mean and
variance encoding functions ϕµ, ϕσ : Rn → Rm.

3.1 DOMAIN OF INTEGRATION

The domain of integration is defined as a curve across end-
points x0 ⇝ x. We select the fiducial as a decoded image

x0 = ψ(z0), where z0 is the solution to the constrained
optimization problem

argmin
z∈Rm

[
d(ψ(z),x) +

1

2m

∑
j

z2j

]
(2)

subject to ∥eĉ − f(ψ(z))∥ < ε

for an infinitesimal ϵ > 0. Here, ĉ = argmaxi fi(x) is the
predicted class by the classifier, and ei is the unit indicator
vector at index i. The metric d(·, ·) may be chosen to be the
cross-entropy or mean absolute difference over pixel values
in an image. The right-most term is the negative log-density
(up to proportionality) of z in a latent space of dimension-
ality m > 0; this restricts the search in-distribution and
ensures robustness to overparametrisation of the latent space
within our experiments.

Hence, we retrieve a counterfactual fiducial which (i) is
classified in the same class as x and (ii) bears close to
zero predictive uncertainty. In practice, we approximate (2)
through the penalty method, i.e. an unconstrained search
with a large penalty on

dX (eĉ, f(ψ(z))) = − log fĉ(ψ(z)),

i.e. the cross-entropy between the predicted class ĉ and
the membership vector f(ψ(z)) given a decoding ψ(z).
We proceed by gradient descent initialised at ϕµ(x), the
encoder’s mean.

Figure 2: Procedural sketch to generate a path of integration.
Here, fiducial z0 and reconstruction z points are optimized
in latent space by gradient descent, starting initially from
the encoding of x (dashed lines). A connecting straight path
(in blue) is projected to the data-manifold and augmented
with an interpolating component (in red).

Integration Path. We further leverage the decoder as a
generative process to parametrise a curve δψ : [0, 1]→ Rn,
by following the steps displayed in Figure 2, s.t. δψ(α) =
ψ(z0 + α(z − z0)) where

z = argmin
z∈Rm

[
d(ψ(z),x) +

1

2m

∑
j

z2j

]
is also optimised by gradient descent initialised at ϕµ(x).
This is an unconstrained optimisation problem analogue



Algorithm 1: Generative Uncertainty Attributions
input :Feature vector x, predictive distribution f(·) and distance metric d(·, ·).

VAE encoder ϕ(·) and decoder ψ(·), penalty λ >> 0 and learning rate ν > 0.
output :Attributions attrδψi (x), i = 1, . . . , n.
Initialise z0 = z = ϕµ(x);
Compute predicted class ĉ = argmaxi fi(x);
while L1 not converged do

L1 ← d(ψ(z0),x) +
1

2m

∑
j

z2j − λ log fĉ(ψ(z)) and z0 ← z0 − ν∇zL1

end
while L2 not converged do

L2 ← d(ψ(z),x) +
1

2m

∑
j

z2j and z ← z − ν∇zL2

end
Approximate attrδψi (x), i = 1, . . . , n in (3) along δψ,z0→z through trapezoidal integration.

to (2). Consequently, the path δψ offers trajectory between
a counterfactual δψ(0) = ψ(z0) = x0 and a reconstruc-
tion δψ(1) = ψ(z) of the image x. In order to correct for
mild reconstruction errors, we finally augment the domain
of integration through a vanilla straight path between the
end-points ψ(z) ⇝ x. We display a few examples of this
procedure on MNIST digits within Figure 3. Overall, the
difference in predictive entropy or model scores between a
reconstruction ψ(z) and its original counterpart x are not
observed to be significant within our experiments.

Figure 3: An example of in-distribution curves connecting
fiducial (left-most) and real (right-most) data points, on
MNIST digits data. Digits on the left bear no predictive
uncertainty in classification.

3.2 LINE INTEGRAL FOR ATTRIBUTIONS

For simplicity, we restrict the formulae to the in-distribution
component along the curve δψ : [0, 1] → Rn defined in
Subsection 3.1, and we ignore the straight path connecting
ψ(z)⇝ x. We require the total differential of the entropy
H(·) wrt z in latent space; however, we wish to retrieve
importances for features x in the original data manifold

within Rn. To this end, the attribution at index i = 1, . . . , n
is given by

attrδψi (x) =

m∑
j=1

(zj − z0j )
∫ 1

0

∂H(δψ(α))

∂δψ,i(α)

∂δψ,i(α)

∂zj
dα.

(3)

Intuitively, we compute the total derivative of H(·) wrt α in
the integration path, using the chain rule. We decompose the
calculation over indices in pixel space, and further undertake
summation over contributions in latent space. In Figure 4,
we show an example that compares attributions in (3) versus
vanilla integrated gradients. There, we find a CelebA image
[Liu et al., 2015] with tags for the presence of a smile,
arched eyebrows and no bags under the eyes.

3.3 PROPERTIES

Due to path independence and noting that H(x0) ≈ 0 by
definition, importances drawn from a trajectory δψ(·) as
parametrised in Subsection 3.1 will approximately account
for all of the uncertainty in a posterior predictive task, i.e.

H(x) ≈
∫ 1

0

∇H(δψ(α))dα =

n∑
i=1

attrδψi (x),

and this is commonly referred to as completeness. Addition-
ally, the reliance on path derivatives along with the rules of
composite functions ensure that both fundamental axioms of
sensitivity(b) (i.e. dummy property) along with implement-
ation invariance are inherited, and we refer the reader to
Friedman [2004], Sundararajan et al. [2017] for the tech-
nical details. Importantly, the attribution will be zero for any
index which does not influence the classifier.



Figure 4: Comparison of uncertainty attributions on a CelebA image. We compare attributions for three classifiers, which
measure the presence (or lack) of smiles (left), arched eyebrows (centre), and bags under eyes (right). Red pixels contribute
by increasing uncertainties, in green we find contributions towards decreasing uncertainties.

3.3.1 The Role of the Autoencoder

A VAE is arguably not the best generative model for re-
constructing sharp images with high fidelity. However, it is
stable during training and efficient in sampling, furthermore,
the encoder provides a mean to efficiently select starting
values ϕµ(x) during latent optimisation tasks [cf. Antoran
et al., 2021]. In Section 2 within the supplementary material
we offer a robustness assessment of our results to variations
in the autoencoder, and we report on negligible changes in
performance. We achieve consistency even in large over-
parametrised latent spaces, due to Gaussian priors in the
optimisation procedures in Subsection 3.1, which define the
integration path.

Alternative models can be used to define integration paths.
Generative adversarial networks have gained relevance as
a means to facilitate interpretability in classification tasks
[Lang et al., 2021], however, training can be unstable and
identifying counterfactual references is infeasible. This also
presents a problem with autoregressive models [Van den
Oord et al., 2016], which are further inefficient in sampling
and would pose long optimisation times in latent space.

3.3.2 Non-Generative Integration Paths

For simplicity, a counterfactual fiducial image x0 = ψ(z0)
as described in (2) can also be combined with a straight or
guided [Kapishnikov et al., 2021] integration path ψ(z0)⇝
x. In application to simple grey-scale images, this path is
unlikely to transverse out-of-distribution due to the prox-
imity between a fiducial and the original image x. In our
experiments, we test these variants and report that they fare
relatively well in explainability tasks with simple images;
however, their performance degrades on complex RGB pic-
tures involving facial features.

4 EXPERIMENTS

Uncertainty attributions are commonly facilitated through
generative and adversarial models, and can thus be compu-
tationally expensive to produce. Consequently, they have

traditionally only been evaluated on simple data sets [cf.
Antoran et al., 2021, Schut et al., 2021]. Here, we similarly
apply our proposed methodology to classification models
in the image repositories MNIST handwritten digits [LeCun
and Cortes, 2010] and fashion-MNIST [Xiao et al., 2017].
However, we also extend evaluation tasks to high resolution
facial images in CelebA [Liu et al., 2015].

We evaluate the performance both quantitatively and qualit-
atively, and we compare the results to path methods includ-
ing vanilla integrated gradients [Sundararajan et al., 2017],
as well as blur and guided variants [Xu et al., 2020, Kapish-
nikov et al., 2021]. We test these approaches with plain,
black+white (B+W) and counterfactual fiducials, and we
combine the saliency maps with Xrai [Kapishnikov et al.,
2019], a popular segmentation and attribution approach.
We also evaluate pure counterfactual approaches for uncer-
tainty attributions, which assign importances by directly
comparing pixel values between an image and its counter-
factual. For this, we include most recent CLUE attributions
[Antoran et al., 2021] in the assessment. For complete-
ness, we finally add adaptations of LIME [Ribeiro et al.,
2016] and kernelSHAP [Lundberg and Lee, 2017a]. Im-
plementation details are found in the supplementary Sec-
tion 4. Source code for reproducing results can be found at
github.com/Featurespace/uncertainty-attribution.

4.1 PERFORMANCE METRICS

In order to produce quantitative evaluations we resort to
smallest sufficient region methods popularised in recent lit-
erature [see Petsiuk et al., 2018, Kapishnikov et al., 2019,
Covert et al., 2020, Lundberg et al., 2020], which evalu-
ate the quality of saliency maps in the absence of ground
truths. These are suitable for our repeated assessments over
multiple methods and data sets, as they do not require for
specialised model retrains [cf. Hooker et al., 2019, Jethani
et al., 2021]. The methods proceed by revealing pixels from
a masked image, in order of importance as determined by
attribution values, and changes in classification scores, pre-
dictive entropy or image information content are monitored.
Alternatively, the process may be carried backwards by re-
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Figure 5: Normalised variation in predictive entropy (de-
creasing, blue) and image information content (increasing,
orange) as pixels most contributing to uncertainty are se-
quentially blurred. Classification task on digits (left), bags
under eyes (centre) and smiles (right). Information content
approximated by compressed file sizes.

moving or resampling pixels from the original image, and
we show an example of this process in Figure 5. We use blur-
ring as a masking mechanism [cf. Kapishnikov et al., 2019],
since other alternatives lead to masked images significantly
out of distribution, i.e. non representative of training data.
We evaluate two inclusion and removal metrics suitable to
measure changes in predictive uncertainty.

Inclusion Methods. We measure the entropy information
curve (EIC) in a manner analogue to performance inform-
ation curves (PICs) discussed in Kapishnikov et al. [2019,
2021]. For an image x with n pixels, we define a se-
quence {xi}i=0,...,n that transitions from a blurred refer-
ence x0 = xblurred towards xn = x, by revealing pixels in
order of contribution to decreasing the entropy. We evaluate

EICi =
1

|X |
∑
x∈X

H(xi)

H(xblurred)

across indexes in the transition xblurred
i=1,...,n−−−−−→ x, which

retrieves an average over images in each data set X (in the
presence of significant outliers, we report on median values).
The EIC measures the variation in overall predictive entropy
and can be computed on unlabelled data. It is assessed versus
the information content in the images as pixels are revealed
Kapishnikov et al. [2019, 2021], which can be approximated
by file sizes or the second order Shannon entropy.

Best Removal Methods. We measure uncertainty reduction
curves, i.e. the relative uncertainty that an attribution method
can remove from an image x. We use the inverse sequence
{xi}i=0,...,n, which transitions from x0 = x towards a
blurred image xn = xblurred. We evaluate

URCi =
1

|X |
∑
x∈X

maxr≤i

[
1− H(xr)

H(x)

]
,

i.e. the best percentage reduction in predictive uncertainty
that can be explained away by blurring up to i pixels, in
decreasing order of contribution to uncertainty.

4.2 QUANTITATIVE EVALUATION

In Table 1 we report on (i) the area over the entropy in-
formation curve and (ii) percentile points in the uncertainty
reduction curve, for the various attribution methods and
data sets analysed in this paper. We explore 5 classification
tasks, including the presence of smiles, arched eyebrows
and eye-bags in CelebA images. In all cases, high values
represent better estimated performance. The metrics are eval-
uated on images that were excluded during model training.
Attribution methods have been implemented with default
parameters, where available, and we offer details in the sup-
plementary Section 4. Blurring is performed with a Gaussian
kernel, and the standard deviation is tuned individually for
each classification task. We choose the minimum standard
deviation s.t. a model’s predictive uncertainty for the fully
blurred images is maximised. KernelSHAP evaluations are
offered only for data sets with small resolution images, due
to the computational complexity associated with undertak-
ing the recommended amount of image perturbations.

The results show that a generative method as presented in
this paper is better suited to explain variations in predictive
entropy, as well as explaining away sources of uncertainty.
Results suggest that improvements over the explored altern-
atives are of significance in classification tasks with high
resolution images concerning facial features. In applica-
tion to low resolution grey scale images, the results also
show that popular attribution approaches, such as integrated
gradients, guided integrated gradients or SHAP require a
counterfactual fiducial to perform well, which must still be
produced through a generative model. In these cases, good
performance is a consequence of low dissimilarity between
an image and its baseline (see Subsection 3.3.2), s.t. simple
integration paths remain in-distribution.



Table 1: Area over the entropy information curve and percentile points in uncertainty reduction curves, across attribution
methods and classification tasks. Metrics procured wrt approximated and normalised information content of images.

Method
Area over Entropy Information Curve Uncertainty Reduction Curve

Mnist Fashion Smiles Eyebrows Eyebags
Mnist Fashion Smiles Eyebrows Eyebags

1% 5% 1% 5% 5% 10% 5% 10% 5% 10%

Vanilla IG 0.998 0.759 0.354 0.155 0.143 0.469 0.508 0.109 0.196 0.076 0.085 0.097 0.104 0.117 0.131

+ (B+W) 0.999 0.901 0.584 0.422 0.361 0.379 0.631 0.083 0.217 0.149 0.185 0.209 0.233 0.146 0.195

+ Counterfactual 0.999 0.909 0.600 0.396 0.325 0.751 0.872 0.217 0.431 0.176 0.215 0.213 0.244 0.153 0.179

Blur IG 0.973 0.818 0.368 0.144 0.136 0.017 0.102 0.016 0.076 0.015 0.019 0.014 0.017 0.008 0.009

Guided IG 0.996 0.655 0.333 0.134 0.119 0.222 0.291 0.009 0.035 0.014 0.017 0.016 0.023 0.009 0.012

+ (B+W) 0.997 0.735 0.318 0.151 0.130 0.115 0.283 0.006 0.036 0.017 0.018 0.035 0.046 0.008 0.013

+ Counterfactual 0.999 0.879 0.360 0.277 0.206 0.715 0.833 0.168 0.326 0.056 0.063 0.137 0.152 0.062 0.081

Generative IG 0.999 0.920 0.737 0.429 0.433 0.747 0.866 0.201 0.386 0.318 0.389 0.243 0.278 0.173 0.233
LIME 0.993 0.630 0.231 0.088 0.140 0.000 0.021 0.001 0.011 0.011 0.015 0.009 0.016 0.009 0.019

SHAP 0.994 0.900 0.119 0.319 0.080 0.222

+ Counterfactual 0.985 0.839 0.515 0.683 0.165 0.302

CLUE 0.969 0.659 0.349 0.177 0.135 0.264 0.289 0.042 0.076 0.028 0.031 0.043 0.050 0.007 0.010

XRAI + IG 0.991 0.750 0.541 0.230 0.156 0.023 0.093 0.010 0.037 0.053 0.101 0.036 0.056 0.018 0.028

+ (B+W) 0.992 0.811 0.637 0.312 0.236 0.002 0.035 0.009 0.044 0.121 0.206 0.067 0.103 0.028 0.057

+ Counterfactual 0.952 0.648 0.267 0.235 0.243 0.248 0.425 0.057 0.148 0.098 0.144 0.134 0.227 0.102 0.183

XRAI + GIG 0.990 0.671 0.173 0.098 0.054 0.012 0.054 0.003 0.016 0.019 0.030 0.006 0.012 0.003 0.005

+ (B+W) 0.988 0.699 0.118 0.120 0.043 0.001 0.018 0.002 0.012 0.021 0.032 0.016 0.027 0.002 0.004

+ Counterfactual 0.960 0.622 0.094 0.222 0.115 0.202 0.391 0.028 0.087 0.012 0.013 0.082 0.107 0.010 0.019

XRAI + Gen IG 0.971 0.710 0.512 0.240 0.275 0.245 0.415 0.047 0.129 0.179 0.243 0.141 0.224 0.113 0.190

In all cases, segmentation-based interpretability methods
such as Xrai or LIME offer comparatively worse perform-
ance. This is due to the complexity associated with segment-
ation tasks in the data sets selected for this evaluation.

Blurring setting. Evaluations are notoriously dependent on
the standard deviation setting of the Gaussian kernel. High
standard deviation settings lead to blurred images that are
significantly out of distribution. This degrades the projected

Figure 6: Uncertainty reduction curves for best performing
attribution methods on bags under the eyes, CelebA data.
Left, blurring is set to the minimum feasible value. Right,
we assign an arbitrarily large standard deviation.

performance across all attribution methods, as observed in
the URC curves displayed in Figure 6, corresponding to the
classification model for bags under the eyes on CelebA data.
Thus, results in Table 1 represent best measured perform-
ances. Also, we note that attributions produced in combina-
tion with Xrai [Kapishnikov et al., 2019] remain consistent
across evaluations, a benefit from pre-processing and pixel
segmentation leading to highly clustered importances.

Autoencoder Settings. The performance of our proposed
method plateaus after a certain dimensionality is reached in
the latent space representation. Further increasing the com-
plexity of the autoencoder, or changing its training scheme,
leads to consistent results. This is a consequence of regu-
larisation terms imposed over optimisation tasks in (2). We
note that fiducial points and integration paths are forced to
lie in distribution, even within large and overparametrised
encoding spaces. A robustness assessment with performance
metrics can be found in Section 2 within the supplementary
material.

4.3 QUALITATIVE EVALUATION

In Figure 7 we find sample uncertainty attribution masks
associated with best performing methods, and we offer fur-
ther examples in Section 3 in the supplementary material.
In the figure, attribution masks for vanilla IG and guided



Figure 7: Sample uncertainty attribution masks for selected attribution methods. Masks correspond to digits (top), smiles
(mid) and bags under the eyes (bottom).

IG are presented with counterfactual fiducial baselines, in
order to avoid noisy saliency masks, such as previously ob-
served in Figure 4. Counterfactual baselines allow to isolate
small subsets of pixels that are associated with predictive
uncertainty, and producing them requires an autoencoder. In
combination with an integration path further defined by a
generative model, the attribution method we have presen-
ted produces clustered attributions which are de-correlated
from raw pixel-value differences between an image and its
counterfactual, unlike Clue importances. This offers increas-
ingly sparse and easily interpretable uncertainty attributions,
which is reportedly associated with better performance in
quantitative evaluations [cf. Kapishnikov et al., 2021]. Fi-
nally, segmentation based mechanisms do not perform well
in the data sets that we have explored, since they do not con-
tain varied objects and items that can be easily segregated.

5 DISCUSSION

In this paper, we have introduced a novel framework for
the attribution of predictive uncertainties in classification
models, which combines path methods, counterfactual ex-
planations and generative models. This is thus an additional
tool contributing to improved transparency and interpretab-
ility in deep learning applications.

We have further offered comprehensive benchmarks on the
multiple approaches for explaining predictive uncertainties,
as well as vanilla adaptations of popular score attribution
methods. For this purpose, we have leveraged standard fea-
ture removal and addition techniques. Our experimental
results show that a combination of counterfactual fiducials
along with straight or guided path integrals is sufficient
to attain best performance in simple classification tasks
with greyscale images. However, complex images benefit

from subtle definitions of integration paths that can only be
defined through a generative process as described in this
paper.

The method presented in this paper is applicable to classific-
ation models for data sets where we may feasibly synthesise
realistic images through a generative model. This currently
includes a variety of application domains, such as human
faces, postures, pets, handwriting, clothes, or landscapes
[Creswell et al., 2018]. Yet, the scope and ability of such
models to synthesise new types of figures is quickly increas-
ing. Also, we evidenced that we do not require a particularly
accurate generative process within our method, i.e. the un-
certainty attribution procedure we have presented yields
top performing results even in the presence of errors and
dissimilarities during image reconstructions.
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