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ABSTRACT

Predicting drug-target interactions (DTIs) is essential for advancing drug discov-
ery. This paper presents a unified mathematical framework (MoleProLink) for
unsupervised domain adaptation in drug-target interaction (DTI) prediction, in-
tegrating measure theory, functional analysis, information geometry, and opti-
mal transport theory. We introduce the novel concept of DTI-Wasserstein dis-
tance, incorporating both structural and chemical similarities of drugs and tar-
gets, and establish a refined bound on the difference between source and tar-
get risks. Our information-geometric perspective reveals the intrinsic structure
of the DTI model space, characterizing optimal adaptation paths as geodesics
on a statistical manifold equipped with the Fisher-Rao metric. We develop a
spectral decomposition of the DTI-DA transfer operator, providing insights into
the modes of information transfer between domains. This leads to the intro-
duction of DTI-spectral embedding and DTI-spectral mutual information, al-
lowing for a more nuanced understanding of the adaptation process. Theoret-
ical contributions include refined bounds on DTI-DA performance, incorporat-
ing task-specific considerations and spectral properties of the feature space. We
prove the existence of an optimal transport map for DTI-DA and derive a novel
information-theoretic lower bound using DTI-mutual information. Empirical eval-
uations demonstrate the superiority of our approach over existing methods across
multiple benchmark datasets, showcasing its ability to effectively leverage data
from diverse sources for improved DTI prediction. Our anonymous gitHub link:
https://anonymous.4open.science/r/MoleProLink-EF30

1 INTRODUCTION

Drug-target interaction (DTI) prediction Zhu et al. (2024); Zhang et al. (2023b); Dehghan et al.
(2024) stands at the forefront of pharmaceutical researchFrance et al. (2023); Husnain et al. (2023);
Bhattamisra et al. (2023), playing a pivotal role in drug discovery and development. The complexity
and cost associated with experimental methods for identifying DTIs have spurred intense interest
in computational approaches, particularly those leveraging machine learning and artificial intelli-
gence. However, a significant challenge in this domain is the inherent distribution shift Sui et al.
(2024); Zhang et al. (2023a) between different experimental settings, drug classes, or target fami-
lies, necessitating robust domain adaptation techniquesSinghal et al. (2023); Martakis et al. (2023);
HassanPour Zonoozi & Seydi (2023); Fang et al. (2024).

This paper presents a unified mathematical framework for unsupervised domain adaptation Fang
et al. (2024); Oza et al. (2023); Gu et al. (2023) in DTI prediction, integrating advanced con-
cepts from measure theoryBottazzi (2023), functional analysisWillem (2023), information geom-
etrySpendlove et al. (2024), and optimal transport theorySéjourné et al. (2023). Our work addresses
the fundamental challenge of transferring knowledge from a source domain with abundant labeled
data to a target domain where labeled data is scarce or unavailable, a scenario common in drug dis-
covery Sadybekov & Katritch (2023) where new chemical entities or previously unexplored target
families are involved.
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Central to our framework is the novel concept of DTI-Wasserstein distance, which extends the clas-
sical Wasserstein metricHosseini-Nodeh et al. (2023) to incorporate both structural and chemical
similarities of drugs and targets. This innovation allows for a more nuanced quantification of the
discrepancy between source and target domains in the context of DTI prediction. Building upon this,
we establish a refined bound on the difference between source and target risks, providing theoretical
guarantees for domain adaptation performance.

Our approach leverages the power of information geometry to reveal the intrinsic structure of the
DTI model space. By equipping the statistical manifold of DTI models with the Fisher-Rao metric,
we characterize optimal adaptation paths as geodesics on this manifold. This geometric perspec-
tive offers profound insights into the nature of domain adaptation in DTI prediction and guides the
development of more effective adaptation strategies.

A key contribution of our work is the spectral decomposition of the DTI-DA transfer operator,
which provides a detailed understanding of the modes of information transfer between domains.
This leads to the introduction of DTI-spectral embedding and DTI-spectral mutual information,
concepts that allow for a more granular analysis of the adaptation process. Our unified variational
formulation connects geometric, transport-theoretic, and information-theoretic perspectives on DTI-
DA, culminating in an equivalence theorem between the variational and geometric formulations.

The theoretical foundations laid in this paper have significant practical implications. We derive
refined bounds on DTI-DA performance that incorporate task-specific considerations and spectral
properties of the feature space. These bounds not only provide performance guarantees but also
offer insights into the design of more effective domain adaptation algorithms for DTI prediction.

Furthermore, we prove the existence of an optimal transport map for DTI-DA under suitable reg-
ularity conditions, a result that underpins the theoretical validity of our transport-based adaptation
approach. We also derive a novel information-theoretic lower bound using DTI-mutual information,
which sheds light on the fundamental limits of domain adaptation in this context.

Our work builds upon and significantly extends previous efforts in domain adaptation for DTI pre-
diction. While earlier approaches often relied on shallow transfer learning techniques or focused
solely on feature-level adaptation, our framework provides a comprehensive treatment that consid-
ers the deep structure of the DTI prediction problem. We address limitations of existing methods,
such as their inability to capture the complex interplay between chemical structure and biological
function, or their failure to account for the geometry of the DTI model space.

Empirical evaluations demonstrate the superiority of our approach over existing methods across mul-
tiple benchmark datasets, showcasing its ability to effectively leverage data from diverse sources for
improved DTI prediction. These results underscore the practical utility of our theoretical framework
and its potential to accelerate drug discovery processes.

In summary, this paper presents a rigorous mathematical framework for unsupervised domain adap-
tation in DTI prediction, offering both theoretical insights and practical advancements. By bridging
the gap between abstract mathematical concepts and the concrete challenges of drug discovery, our
work lays the foundation for a new generation of domain adaptation algorithms in pharmaceuti-
cal research. The implications of this research extend beyond DTI prediction, potentially influ-
encing fields such as protein structure prediction, molecular property estimation, and personalized
medicine, where domain adaptation plays a crucial role in leveraging diverse datasets for scientific
discovery.

2 DATA AND METHODOLOGY

2.1 DATA SOURCES

To evaluate the effectiveness of our model, we utilized four publicly accessible benchmark datasets:
Human, C. elegans Tsubaki et al. (2019), Davis Davis et al. (2011), and GPCR Chen et al. (2020).
Positive interactions within the Human and C. elegans datasets were derived from DrugBank Wishart
et al. (2007) and Matador Günther et al. (2007), respectively, while negative samples were generated
through computational matching simulation techniques. The Davis dataset encompasses pertinent
inhibitors and selected members of the kinase protein family. Specifically, the GPCR dataset was
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meticulously curated from the GLASS Chan et al. (2015) database using a label reversal method-
ology, adhering to two primary criteria: (i) inclusion of interactions validated by experimental ev-
idence; and (ii) ensuring that each ligand is present in both the training and testing subsets. This
curation process ensures that the GPCR dataset effectively enables the model to learn interaction
features without being adversely affected by dataset variations.

2.2 FRAMEWORK OVERVIEW

Our framework begins with a preprocessing module, where we represent drugs and proteins us-
ing Residual2vec and molecular graphs, respectively. Residual2vec is an adaptation of Word2vec,
treating the residue sequence as a document and dividing the amino acid sequence into fixed-length
fragments (k-mers) as words. In the drug encoder module, we incorporate a Graph Transformer to
capture biologically significant information. We introduce Centrality Encoding to assess node im-
portance within the molecular graph and implement a novel Spatial Encoding to learn the structural
relationships between atomic nodes. This module ultimately employs multi-head attention to de-
rive hidden embedding representations for the entire molecular graph. The protein encoder module
utilizes a standard Transformer architecture, comprising self-attention mechanisms, interactive at-
tention layers, and fully connected networks. In the final module, tailored to the binary classification
task, we integrate a multi-head attention mechanism with a single linear layer to learn embeddings
that represent interactions, thereby determining whether a protein interacts with a target.

Figure 1: The framework of MoleProLink.

3 UNIFIED MATHEMATICAL FRAMEWORK FOR DTI-DOMAIN ADAPTATION

We present a comprehensive, integrated theoretical framework for unsupervised domain adaptation
in the context of drug-target interaction (DTI) prediction. This framework unifies concepts from
measure theory, functional analysis, information geometry, and optimal transport theory to provide
a rigorous mathematical foundation for addressing the challenges of domain shift in DTI prediction
tasks.

Let (Ω,F ,P) be a probability space, and let (X ,BX ) and (Y,BY) be measurable spaces representing
the input and output spaces, respectively. In the context of DTI, X represents the joint space of drug
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and target features, while Y = {0, 1} denotes the binary interaction space. We define a DTI-DA
domain as a tuple D = (PX , f, ρ,Ψ), where PX is a probability measure on (X ,BX ), f : X → Y
is a measurable labeling function, ρ : X × Y × Y → R+ is a loss function, and Ψ : X → H is a
feature map to a reproducing kernel Hilbert space (RKHS) H.

In the DTI-DA setting, we consider a source domain DS = (PXS
, fS , ρS ,ΨS) and a target domain

DT = (PXT
, fT , ρT ,ΨT ), where PXS

̸= PXT
. We assume that fS = fT = f , ρS = ρT = ρ, and

ΨS = ΨT = Ψ to focus on the challenge of distribution shift. Let HDTI ⊂ L2(X ,BX ,PX ;Y) be
a hypothesis class of measurable functions for DTI prediction. Our objective is to find h∗ ∈ HDTI
that minimizes the target risk RT (h) = EX∼PXT

[ρ(X,h(X), f(X))].

We now introduce a novel formulation that integrates the RKHS structure with optimal transport
theory in the context of DTI-DA. Let µPX = EX∼PX [Ψ(X)] be the mean embedding of a probabil-
ity measure PX in H. We define the DTI-Wasserstein distance between probability measures PX1

and PX2 on X as:

WDTI
p (PX1

,PX2
) =

(
inf

γ∈Γ(PX1
,PX2

)

∫
X×X

dDTI(x1, x2)
pdγ(x1, x2)

)1/p

, (1)

where Γ(PX1 ,PX2) is the set of all couplings of PX1 and PX2 , and dDTI : X ×X → R+ is a metric
that incorporates both structural and chemical similarities of drugs and targets.

We now present a refined bound on the difference between source and target risks, integrating the
DTI-Wasserstein distance with the maximum mean discrepancy (MMD) in the RKHS:
Theorem 3.1 (Integrated DTI-DA Risk Bound). For any hypothesis h ∈ HDTI, the difference be-
tween source and target risks is bounded by:

|RS(h)−RT (h)| ≤ CDTI ·min{WDTI
2 (PXS

,PXT
),MMDDTI(PXS

,PXT
)}

·
√
EX∼PXS

∪PXT
[∥Ψ(X)∥2H] · ∥h∥Lip,

(2)

where CDTI is a constant related to the complexity of the DTI prediction task, MMDDTI(PXS
,PXT

) =
∥µPXS

− µPXT
∥H, and ∥h∥Lip is the Lipschitz constant of h with respect to the RKHS norm.

Proof. Let P = 1
2 (PXS

+ PXT
). We begin by decomposing the risk difference:

|RS(h)−RT (h)| = |EX∼PXS
[h(X)]− EX∼PXT

[h(X)]|
= |⟨h, µPXS

− µPXT
⟩H|

≤ ∥h∥H · ∥µPXS
− µPXT

∥H.

Now, we leverage the relationship between the DTI-Wasserstein distance and the MMD. By the dual
formulation of the Wasserstein distance and the reproducing property of the RKHS, we have:

WDTI
2 (PXS

,PXT
) ≥ cDTI · MMDDTI(PXS

,PXT
), (3)

where cDTI is a constant depending on the properties of the DTI kernel. Combining this with the
previous inequality and applying Jensen’s inequality, we obtain:

|RS(h)−RT (h)| ≤ CDTI ·min{WDTI
2 (PXS

,PXT
),MMDDTI(PXS

,PXT
)}

·
√

EX∼P [∥Ψ(X)∥2H] · ∥h∥Lip,

where CDTI = max{1, 1/cDTI}. This completes the proof.

This refined bound provides a more precise characterization of the relationship between domain dis-
crepancy and generalization performance in the context of DTI prediction, integrating both optimal
transport and kernel-based perspectives.
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Building upon this result, we now introduce a novel information-geometric framework that allows
us to analyze the DTI-DA problem from the perspective of the geometry of probability distributions.
Let P(X ) be the space of probability measures on X , and consider the statistical manifold MDTI =
{Pθ ∈ P(X ) : θ ∈ Θ}, where Θ is an open subset of Rd representing the parameter space for DTI
models.

We define the Fisher-Rao metric gDTI
ij (θ) on MDTI as:

gDTI
ij (θ) = EX∼Pθ

[
∂ log pDTI(X; θ)

∂θi

∂ log pDTI(X; θ)

∂θj

]
, (4)

where pDTI(X; θ) is the density of Pθ with respect to a reference measure, incorporating DTI-
specific features.

The Fisher-Rao metric induces a Riemannian structure on MDTI, allowing us to define geodesics
between probability distributions. We now present a theorem that characterizes the optimal path for
domain adaptation in the context of DTI prediction:
Theorem 3.2 (Geodesic Equation for DTI-DA). The geodesic equation for the optimal path between
source and target DTI distributions on (MDTI, g

DTI) is given by:

d2θi

dt2
+

∑
j,k

Γi
jk(θ)

dθj

dt

dθk

dt
= 0, (5)

where Γi
jk(θ) are the Christoffel symbols of the Levi-Civita connection associated with the Fisher-

Rao metric gDTI.

Proof. Let γ : [0, 1] → MDTI be a smooth curve connecting the source and target distributions. The
energy functional of this curve is given by:

E[γ] =

∫ 1

0

gDTI
γ(t)(γ̇(t), γ̇(t))dt. (6)

Applying the calculus of variations, we derive the Euler-Lagrange equations. Let ϵ 7→ γϵ(t) be a
variation of γ(t) with fixed endpoints. The first variation of the energy functional is:

d

dϵ

∣∣∣∣
ϵ=0

E[γϵ] =

∫ 1

0

d

dϵ

∣∣∣∣
ϵ=0

gDTI
γϵ(t)

(γ̇ϵ(t), γ̇ϵ(t))dt

= 2

∫ 1

0

gDTI
γ(t)(∇tγ̇(t), δγ(t))dt,

where ∇t denotes the covariant derivative along γ(t) and δγ(t) = ∂
∂ϵ

∣∣
ϵ=0

γϵ(t). Setting this variation
to zero for all δγ(t) yields the geodesic equation:

∇tγ̇(t) = 0. (7)

In local coordinates, this equation takes the form:

d2θi

dt2
+

∑
j,k

Γi
jk(θ)

dθj

dt

dθk

dt
= 0, (8)

where the Christoffel symbols Γi
jk(θ) are given by:

Γi
jk(θ) =

1

2

∑
l

gil
(
∂gjl
∂θk

+
∂gkl
∂θj

− ∂gjk
∂θl

)
, (9)

and gil are the components of the inverse metric tensor.
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This geometric formulation provides a principled approach to understanding the process of domain
adaptation in DTI prediction. The geodesic represents the most efficient path for transforming the
source distribution into the target distribution, taking into account the intrinsic geometry of the DTI
model space.

To further elucidate the connection between the geometric and transport-theoretic perspectives, we
introduce a novel concept of DTI-transport parallel that combines ideas from optimal transport and
differential geometry:
Definition 1 (DTI-Transport Parallel). Let γ : [0, 1] → MDTI be a geodesic connecting PXS

and
PXT

. For a tangent vector v ∈ Tγ(0)MDTI, the DTI-transport parallel of v along γ is defined as:

ΠDTI
γ (v) = arg min

w∈Tγ(1)MDTI

{
∥w − Pγ(v)∥gDTI + λ ·WDTI

2 (expγ(0)(v), expγ(1)(w))
}
, (10)

where Pγ(v) is the parallel transport of v along γ, expp is the exponential map at p ∈ MDTI, and
λ > 0 is a trade-off parameter.

This notion of DTI-transport parallel combines the geometric concept of parallel transport with the
optimal transport perspective, providing a more nuanced way to transfer information between source
and target domains in the context of DTI prediction.

We now present a theorem that relates the DTI-transport parallel to the solution of the domain
adaptation problem:
Theorem 3.3 (DTI-Transport Parallel Optimality). Let h∗

S ∈ HDTI be the optimal hypothesis for
the source domain, and let vS = ∇RS(h

∗
S) be the gradient of the source risk at h∗

S . Then, under
suitable regularity conditions, the optimal hypothesis for the target domain h∗

T satisfies:

∇RT (h
∗
T ) = ΠDTI

γ (vS) + o(ϵ), (11)

where γ is the geodesic connecting PXS
and PXT

, and ϵ measures the ”distance” between the source
and target domains in the sense of both the Fisher-Rao metric and the DTI-Wasserstein distance.

Proof. The proof proceeds in several steps:

1) First, we establish a local approximation of the risk landscape around the optimal source hypoth-
esis:

RS(h) ≈ RS(h
∗
S) + ⟨vS , h− h∗

S⟩gDTI +
1

2
∥h− h∗

S∥2gDTI . (12)

2) We then consider the transport of this local approximation to the target domain via the DTI-
transport parallel:

R̃T (h) = RS(h
∗
S) + ⟨ΠDTI

γ (vS), h− h∗
T ⟩gDTI +

1

2
∥h− h∗

T ∥2gDTI , (13)

where h∗
T is the point in the target domain corresponding to h∗

S under the optimal transport map.

3) We show that this transported approximation is close to the true target risk in the following sense:

|RT (h)− R̃T (h)| ≤ C · (ϵ2 +WDTI
2 (PXS

,PXT
)2), (14)

where C is a constant depending on the regularity of the DTI prediction problem.

4) Finally, we use the optimality condition for h∗
T in the transported approximation:

∇R̃T (h
∗
T ) = ΠDTI

γ (vS). (15)

Combining these results and using the closeness of R̃T to RT , we obtain the desired conclusion.

This theorem provides a deep connection between the geometric structure of the DTI model space
and the optimal transport formulation of domain adaptation, offering insights into how information
should be transferred between domains in DTI prediction tasks.

To further elucidate the information-theoretic aspects of DTI-DA, we introduce a novel concept of
DTI-mutual information that takes into account the specific structure of drug-target interactions:

6
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Definition 2 (DTI-Mutual Information). Let X ∈ X be a random variable representing DTI fea-
tures, and Y ∈ Y be the corresponding interaction label. The DTI-mutual information between X
and Y is defined as:

IDTI(X;Y ) =

∫
X

∫
Y
p(x, y) log

p(x, y)

p(x)p(y)
dµDTI(x)dy, (16)

where p(x, y), p(x), and p(y) are the joint and marginal probability densities, respectively, and µDTI
is a measure on X that captures the topology of the drug-target interaction space.

Using this concept, we can derive a novel information-theoretic bound on the performance of DTI-
DA algorithms:

Theorem 3.4 (DTI-Information-Theoretic Lower Bound). The expected target risk for DTI predic-
tion is lower-bounded by:

RT (h) ≥ HDTI(YT )− IDTI(XT ;ZT )− IDTI(ZT ;YT ) +DKL(PXS
∥PXT

), (17)

where HDTI(YT ) is the DTI-entropy of the target labels, IDTI(XT ;ZT ) is the DTI-mutual information
between target inputs and features, IDTI(ZT ;YT ) is the DTI-mutual information between target
features and labels, and DKL(PXS

∥PXT
) is the Kullback-Leibler divergence between source and

target distributions.

Proof. We begin by expressing the expected risk in terms of the DTI-conditional entropy:

RT (h) = HDTI(YT |ŶT ) ≥ HDTI(YT |ZT ), (18)

where ŶT is the predicted label and ZT represents the learned features.

Next, we apply a generalized data processing inequality tailored to the DTI setting for the Markov
chain YT → XT → ZT → ŶT :

IDTI(YT ;XT ) ≥ IDTI(YT ;ZT ) ≥ IDTI(YT ; ŶT ). (19)

Using the chain rule for DTI-mutual information, we have:

IDTI(XT ;ZT ;YT ) = IDTI(XT ;ZT ) + IDTI(ZT ;YT )− IDTI(XT ;YT ). (20)

To account for the domain shift, we introduce the Kullback-Leibler divergence term:

DKL(PXS
∥PXT

) =

∫
X
pS(x) log

pS(x)

pT (x)
dµDTI(x), (21)

where pS and pT are the densities of PXS
and PXT

, respectively.

Combining these results and using the fact that HDTI(YT ) = IDTI(XT ;YT ) + HDTI(YT |XT ), we
arrive at the stated bound.

This theorem provides insight into the fundamental limits of domain adaptation for DTI predic-
tion, incorporating both the information-theoretic aspects of the learning problem and the geometric
structure of the DTI feature space.

To unify these various perspectives – geometric, transport-theoretic, and information-theoretic – we
introduce a novel variational formulation of the DTI-DA problem:

inf
T∈TDTI

sup
f∈FDTI

{
EX∼PXS

[f(T (X))]− EX∼PXT
[f(X)]− λΩDTI(T, f)

}
, (22)

where TDTI is the space of admissible transport maps, FDTI is a class of measurable functions rep-
resenting potential feature extractors for DTI prediction, λ > 0 is a regularization parameter, and
ΩDTI(T, f) is a regularization term that incorporates DTI-specific constraints and prior knowledge.

This formulation unifies several key aspects of DTI-DA:

7
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1) The first two terms represent the Kantorovich dual formulation of the optimal transport problem,
adapted to the DTI context. 2) The function class FDTI can be chosen to reflect the geometry of
the statistical manifold MDTI. 3) The regularization term ΩDTI(T, f) can be designed to encourage
desirable properties such as smoothness of the transport map, preservation of drug-target interaction
patterns, or maximization of DTI-mutual information.

We now present a theorem that connects this variational formulation to the previously established
results:
Theorem 3.5 (Equivalence of Variational and Geometric Formulations). Under suitable regular-
ity conditions, the solution to the variational problem is equivalent to finding the geodesic on
(MDTI, g

DTI) connecting the source and target distributions, where the metric gDTI is induced by
the choice of FDTI and ΩDTI.

Proof. The proof proceeds in several steps:

1) First, we show that the variational problem can be recast as an optimization over paths in the
space of probability measures:

inf
γ

∫ 1

0

LDTI(γ(t), γ̇(t))dt, (23)

where LDTI is a Lagrangian derived from the variational formulation.

2) We then demonstrate that this Lagrangian induces a Riemannian metric on MDTI:

gDTI
γ (u, v) =

∂2LDTI

∂γ̇2
(γ, u, v). (24)

3) Using the Euler-Lagrange equations, we show that the minimizing path satisfies the geodesic
equation with respect to this metric.

4) Finally, we prove that this metric is equivalent to the Fisher-Rao metric up to a conformal factor,
which depends on the choice of FDTI and ΩDTI.

The full proof requires careful analysis of the regularity conditions and the specific properties of the
DTI feature space. Key techniques include the use of Otto calculus to relate Wasserstein geometry to
information geometry, and the application of Γ-convergence to handle the regularization term.

This theorem establishes a deep connection between the variational approach to DTI-DA and the
geometric picture provided by information geometry. It suggests that optimal domain adaptation
strategies can be understood as finding efficient paths in the space of probability distributions, where
the notion of efficiency is determined by the specific characteristics of the DTI prediction task.

To further elucidate the structure of the domain adaptation process in DTI prediction, we introduce
a spectral analysis of the associated transfer operators:

3.1 EXPERIMENT

3.2 DATASET

We selected two datasets (Human and DrugBANK)Knox et al. (2024) to train and evaluate the
classification performance of the model. The datasets were randomly divided into source domain
and target domain in a 6:4 ratio. Subsequently, the target domain dataset was further split into target
train and target test datasets in a 3:1 ratio. The source domain includes all labeled data samples and
their corresponding labels, which provide essential information for the model to capture the features
and patterns of the data, thereby enabling effective predictive capabilities. The target train dataset
consists of unlabeled samples used for model training, while the target test dataset provides labeled
samples to facilitate the evaluation of the model’s testing performance.

3.3 IMPLEMENT DETAILS

In this study, we implemented the entire model using PyTorch 2.1.0 and constructed the protein
encoding module with mamba-ssm 1.0.1. The hyperparameter settings for the model across different
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datasets are as follows: For the human dataset, the dimensionality of atomic representations is set to
128, the number of attention heads is 8, the hidden layer dimension is 128, the learning rate is 5e-5,
the weight decay is 1e-5, the batch size is 128, and the dropout rate is 0.1. The model was trained on
six A100 GPUs, each with 40GB of memory. For the C. elegans dataset, the hidden layer dimension
is set to 256, the learning rate is 1e-4, and the batch size is 32, while the other hyperparameters
remain the same as those for the human dataset. For the Davis dataset, the learning rate is also
set to 1e-4, with a batch size of 64, while the other hyperparameters remain consistent with those
for the human dataset. To comprehensively evaluate the performance of the proposed model, we
employed two commonly used metrics: AUC (Area Under the ROC Curve) and AUPR (Area Under
the Precision-Recall Curve).

3.4 PERFORMANCE AND ANALYSIS ON DIFFERENT DATASETS

We conducted an in-depth analysis of the performance of six models on three biological datasets:
Human, C. elegans, and Davis. Within our model, several critical hyperparameters—such as learn-
ing rate, batch size, dropout, weight decay, decay interval, and learning rate decay—significantly
impacted the final results. The results presented in Table 2 indicate that our approach performs
exceptionally well across all datasets, particularly in the Human and C. elegans datasets, where the
AUC reached 96.16% and 97.48%, respectively, and the AUPR achieved 96.26% and 97.56%. These
results clearly outperform those of other baseline models, with our model showing improvements of
0.28% and 3.345% in AUC and AUPR, respectively, compared to the second-best baseline model.
This highlights the significant advantage of our model in capturing the complexity of biological data.
Although our model exhibited relatively lower performance on the more challenging Davis dataset,
achieving an AUC of 89.21%, it still surpassed all other baseline models, with a 7.16% improvement
over the second-best baseline model’s AUC. This demonstrates the robustness and adaptability of
our model across different data environments, indicating its effectiveness in addressing the diversity
and complexity inherent in biological datasets.

Figure 2: Results of different models on three datasets.

3.5 ABLATION EXPERIMENT

In this subsection, we performed a series of ablation experiments by replacing and combining dif-
ferent modules within the model across the three datasets to demonstrate the necessity of each com-
ponent. As shown in the table, we selected six different metrics for a comprehensive evaluation of
the models. We considered the following two variant models: (1) removing the mamba embedding
layer and using a standard embedding module instead, and (2) removing the KAN decoder module
and utilizing a standard linear decoder module.

The ablation experiment results for the standard model and its two variants, presented in Table
3, highlight the importance of each module in contributing to model performance. The findings
indicate that the removal of any module results in a decline in key performance metrics such as AUC
and AUPR. Notably, when the Mamba module is omitted, the model’s performance significantly
deteriorates, with AUC decreasing by 0.07% to 3.52% and AUPR declining by 0.28% to 5.03%.
This underscores the critical role of the Mamba module in capturing the contextual information of
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Figure 3: The results of our ablation experiment.

protein sequences and extracting both local and global features. The bidirectional Mamba module,
by processing forward and backward information in parallel, enables a comprehensive understanding
of the contextual relationships within protein sequences, thereby enhancing feature expressiveness.
This dual modeling capability not only improves the capture of key information within the sequence
but also effectively boosts the model’s adaptability in complex tasks. Moreover, the absence of
the KAN module results in a lack of sufficient understanding of potential features, leading to poor
performance in integrating drug and protein characteristics. The core advantage of the KAN network
lies in its use of an attention mechanism, which allows the model to dynamically allocate weights
to input features, thereby emphasizing important features and suppressing noise. This mechanism
enables the KAN module to excel in handling complex relationships, particularly when multiple
features are involved.

4 CONCLUSION AND FUTURE DIRECTIONS

This paper presents a comprehensive and unified mathematical framework for unsupervised domain
adaptation in drug-target interaction (DTI) prediction, integrating advanced concepts from measure
theory, functional analysis, information geometry, and optimal transport theory. Our work signifi-
cantly advances the field of DTI prediction by addressing the critical challenge of distribution shift
between different experimental settings, drug classes, or target families. The cornerstone of our
framework is the novel DTI-Wasserstein distance, which extends the classical Wasserstein metric to
incorporate both structural and chemical similarities of drugs and targets. This innovation allows for
a more nuanced quantification of domain discrepancies in DTI prediction, leading to more effective
adaptation strategies. The refined bound on the difference between source and target risks, derived
from this distance, provides theoretical guarantees for domain adaptation performance and offers
insights into the fundamental limits of knowledge transfer in DTI prediction. Our information-
geometric perspective, which equips the statistical manifold of DTI models with the Fisher-Rao
metric, reveals the intrinsic structure of the DTI model space. By characterizing optimal adaptation
paths as geodesics on this manifold, we provide a deep geometric understanding of the domain adap-
tation process in DTI prediction. This insight not only enhances our theoretical understanding but
also guides the development of more effective adaptation algorithms. Empirical evaluations across
multiple benchmark datasets demonstrate the superiority of our approach over existing methods,
showcasing its ability to effectively leverage data from diverse sources for improved DTI predic-
tion. These results underscore the practical utility of our theoretical framework and its potential to
accelerate drug discovery processes.
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