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ABSTRACT

Gaussian process (GP) bandits provide a powerful framework for performing
blackbox optimization of unknown functions. The characteristics of the unknown
function depend heavily on the assumed GP prior. Most work in the literature
assume that this prior is known but in practice this seldom holds. Instead, practi-
tioners often rely on maximum likelihood estimation to select the hyperparameters
of the prior - which lacks theoretical guarantees. In this work, we propose two
algorithms for joint prior selection and regret minimization in GP bandits based
on GP Thompson sampling (GP-TS): Prior-Elimination GP-TS (PE-GP-TS) and
HyperPrior GP-TS (HP-GP-TS). We theoretically analyze the algorithms and es-
tablish upper bounds for the regret of HP-GP-TS. In addition, we demonstrate the
effectiveness of our algorithms compared to the alternatives through experiments
with synthetic and real-world data.

1 INTRODUCTION

In Gaussian process bandits, we consider a variant of the multi-armed bandit problem where the arms
are correlated and their expected reward is sampled from a Gaussian process (GP). The flexibility
of GPs have made GP bandits applicable in a wide range of areas that need to optimize blackbox
functions with noisy estimates, including machine learning hyperparameter tuning (Turner et al.,
2021), drug discovery (Hernández-Lobato et al., 2017; Pyzer-Knapp, 2018), online advertising (Nuara
et al., 2018), portfolio optimization (Gonzalvez et al., 2019) and energy-efficient navigation (Sandberg
et al., 2025). Most of the theoretical results in the literature assume that the GP prior is known but this
is seldom the case in practical applications. Even with expert domain knowledge, selecting the exact
prior to use can be a difficult task. Most practitioners tend to utilize maximum likelihood estimation
(MLE) to identify suitable prior parameters. However, in a sequential decision making problem MLE
is not guaranteed to recover the correct parameters.

In the literature, Wang & de Freitas (2014); Berkenkamp et al. (2019); Ziomek et al. (2024) provided
algorithms with theoretical guarantees when the kernel lengthscale is unknown. More recently,
Ziomek et al. (2025) introduced an elimination-based algorithm with theoretical guarantees for an
arbitrary set of discrete priors. Their algorithm, Prior-Elimination GP-UCB (PE-GP-UCB), selects
the arm and prior which provide the most optimistic upper confidence bound (UCB). If a prior
generates too many incorrect predictions, then it may be eliminated. The previous work has focused
on optimistic UCB methods which are known to over-explore.

In this work, we investigate the use of Thompson sampling for solving GP-bandit problems with
unknown priors and we propose two algorithms. The first algorithm, Prior-Elimination GP-TS
(PE-GP-TS), is an extension of PE-GP-UCB that replaces the doubly optimistic selection rule with
posterior sampling and one less layer of optimism. We analyze the regret of PE-GP-TS. For the terms
we can bound, we obtain a regret bound for PE-GP-TS of order O(

√
T log T |P |γ̂T ) where T is the

horizon, |P | is the number of priors and γ̂T is the worst-case maximum information gain, which
matches that of PE-GP-UCB. The second algorithm, HyperPrior GP-TS (HP-GP-TS), uses bi-level
posterior sampling to efficiently explore the priors and arms. An UCB-based analysis of HP-GP-TS
yields a regret bound of order O(

√
T log T γ̄T ) (where γ̄T is the average maximum information

gain) plus a term that corresponds to the cost of learning the optimal prior. An information-theoretic
analysis yields a regret bound of order O(

√
T |X | log |X |) where |X | is the number of arms.
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We evaluate our methods on three sets of synthetic experiments and three experiments with real-world
data. Across the experiments, our Thompson sampling based methods outperform PE-GP-UCB.
Additionally, we find that the regret of HP-GP-TS does not increase with |P | in our experiments.
Finally, we analyze the priors selected by the algorithms and observe that HP-GP-TS selects the
correct prior more often than the other algorithms.

The contributions of this work can be summarized as:

• We propose two novel algorithms for GP-bandits with unknown prior: PE- and HP-GP-TS.
• We theoretically analyze the regret of HP-GP-TS using a UCB framework and an

information-theoretic framework which provides a regret bound of order O(
√
T |X | log |X |).

Additionally, we analyze the regret of PE-GP-TS.
• We experimentally evaluate our algorithms on both synthetic and real-world data, demon-

strating that they achieve superior performance and that the regret of HP-GP-TS does not
increase with |P |.

2 BACKGROUND AND PROBLEM STATEMENT

Problem statement We consider a sequential decision making problem where an agent repeatedly
selects among a set of arms and receives a random reward whose mean depends on the selected arm
and is unknown to the agent. The goal of the agent is to maximize the cumulative sum of rewards
over a finite time horizon. We assume that the distribution of the means, the prior, is sampled from a
set of priors, the hyperprior. An effective agent must distinguish which prior the means are sampled
from to ensure it explores efficiently.

Now, let us formally state the problem. Let X ⊆ [0, r]d ⊂ Rd denote the finite set of arms
and P a finite set of priors with associated prior mean and kernel functions µ1,p : X 7→ R and
k1,p : X × X 7→ R, ∀p ∈ P . Let p∗ ∈ P denote the true prior and assume the expected reward
function f : X 7→ R ∼ GP(µ1,p∗ , k1,p∗) is a sample from a Gaussian process with prior p∗. Both
the function f and the true prior p∗ are considered unknown. We will consider two settings: In the
frequentist selection setting, the prior p∗ ∈ P is picked arbitrarily. In the Bayesian selection setting,
the prior is sampled from a hyperprior p∗ ∼ P(P ). To simplify notation, let P1 denote the hyperprior.

Let T denote the horizon. For time step t = 1, 2, . . . , T , the agent selects an arm xt ∈ X and
observes the reward yt = f(xt) + ϵt where {ϵt}Tt=1 are i.i.d. zero-mean Gaussian noise with
variance σ2. The goal of the agent is to select a sequence of arms {xt}Tt=1 that minimizes the
regret R(T ) =

∑
t∈[T ] f(x

∗)− f(xt) where [T ] = {1, . . . , T} and x∗ = argmaxx∈X f(x). In the
Bayesian selection setting, we evaluate the agent based on the Bayesian regret BR(T ) = E [R(T )]
where the expectation is taken over the prior p∗, the expected reward function f , the noise {ϵt}Tt=1
and the (potentially) stochastic selection of arms.

Gaussian processes A Gaussian process f(x) ∼ GP(µ, k) is a collection of random variables
such that for any subset {x1, . . . , xn} ⊂ X , the vector [f(x1), . . . , f(xn)] ∈ Rn has a multivariate
Gaussian distribution. The probabilistic nature of GPs make them very useful for defining and solving
bandit problems where the arms are correlated. Given the history Ht = {(xi, yi)}t−1

i=1 , the posterior
mean and kernel functions of a Gaussian process GP(µ, k) are given by

µt(x) = µ(x) + k⊤ (K+ σ2I
)−1

(y − µ), (1)

kt(x, x̃) = k(x, x̃)− k⊤ (K+ σ2I
)−1

k̃. (2)

Above, k, k̃ ∈ Rt−1 are vectors such that (k)i = k(xi, x) and (k̃)i = k(xi, x̃). Additionally,
y,µ ∈ Rt−1 are also vectors such that (y)i = yi and (µ)i = µ(xi). The gram matrix is denoted by
K ∈ Rt−1×t−1 where (K)i,j = k(xi, xj). Let µt,p and kt,p denote the posterior mean and kernel
for a Gaussian process with prior p ∈ P at time t and let σ2

t,p(x) = kt,p(x, x) denote the posterior
variance at time t. The kernel k determines important characteristics of the functions f , see Section B
for more details and examples.

Information gain The maximal information gain (MIG) is a measure of reduction in uncertainty of
f after observing the most informative data points up to a specified size. The MIG commonly occurs
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in regret bounds for GP bandit algorithms (Srinivas et al., 2012; Vakili et al., 2021) and its growth
rate is strongly determined by the prior kernel of the GP. Hence, we will define the MIG for any fixed
GP prior p ∈ P . Let yA denote noisy observations of f at the locations A ⊂ X . Then, the MIG
given prior p ∈ P , γT,p, is defined as

γT,p := sup
A⊂X ,|A|≤T

Ip(yA; f), (3)

where Ip(yA; f) = H(yA|p) − H(yA|f, p) is the mutual information between yA and f given
p, and H(·) denotes the entropy. To aid our analysis later, we also define the worst-case MIG as
γ̂T := maxp∈P γT,p and the average MIG as γ̄T := Ep∼P1

[γT,p]. For the RBF and Matérn kernels,
γT,p = O(logd+1(T )) and γT,p = O(T

d
2ν+d log

2ν
2ν+d (T )) (Srinivas et al., 2012; Vakili et al., 2021).

Previous work Plenty of previous work have proposed fully Bayesian approaches that integrate the
acquisition function over the hyperposterior (Osborne et al., 2009; Benassi et al., 2011; Snoek et al.,
2012; Hernández-Lobato et al., 2014; Wang & Jegelka, 2017; De Ath et al., 2021; Hvarfner et al.,
2023). In contrast, HP-GP-TS optimizes a single hyperposterior sample instead of expected values
over the hyperposterior.

Wang & de Freitas (2014) first derived regret bounds for GP bandits with unknown lengthscale for
the Expected Improvement algorithm (Močkus, 1975). However, the proposed algorithm requires a
lower bound on the lengthscale and the regret bound depends on the worst-case MIG. Later work
by Berkenkamp et al. (2019) introduced Adaptive GP-UCB (A-GP-UCB) that continually lowers
the lengthscale parameter. Given a sufficiently small lengthscale, the function f lies within the
reproducing kernel Hilbert space (RKHS) and the regular GP-UCB theory can be applied. However,
A-GP-UCB lacks a stopping mechanism and will overexplore as the lengthscale continues to shrink.
Recent work by Ziomek et al. (2025) introduced Prior-Elimination GP-UCB (PE-GP-UCB) for time-
varying GP-bandits with unknown prior. Unlike the work before, the regret bound of PE-GP-UCB
holds for arbitrary types of hyperparameters in the GP prior. PE-GP-UCB is doubly optimistic and
selects the prior and arm with the highest upper confidence bound. PE-GP-UCB tracks the cumulative
prediction error made by the selected priors and eliminates priors that exceed a threshold level.

Other works have introduced regret balancing algorithms that maintain a set of base learning algo-
rithms and balance their selection frequency to achieve close to optimal regret (Abbasi-Yadkori et al.,
2020; Pacchiano et al., 2020). Ziomek et al. (2024) built on this idea and introduced length-scale
balancing GP-UCB which can adaptively explore smaller lengthscales but can return to longer ones,
unlike A-GP-UCB.

The aforementioned works are based on UCB, EI, PI or regret balancing. However, another line of
work has studied Thompson sampling in standard and linear bandits with unknown prior distribution
(Kveton et al., 2021; Basu et al., 2021; Hong et al., 2022; Li et al., 2024). In their setting (meta or
hierarchical bandits), the agent plays multiple bandit instances, either simultaneously or sequentially.
The unknown means are sampled from the same (unknown) prior and by gathering knowledge across
instances, the agent can solve later instances more efficiently once it has identified the prior. We
emphasize that these methods have been studied only for standard stochastic and linear bandits, not
for GP bandits.

3 ALGORITHMS

As discussed by Russo & Van Roy (2014), TS can offer advantages over UCB algorithms for problems
where constructing tight confidence bounds is difficult. In addition, Thompson sampling is often
observed to perform better than UCB in practice (Chapelle & Li, 2011; Wen et al., 2015; Kandasamy
et al., 2018; Åkerblom et al., 2023b;a). Motivated by this, we present two algorithms for efficient
prior selection based on TS.

3.1 PRIOR-ELIMINATION WITH THOMPSON SAMPLING

Our first algorithm is an extension of PE-GP-UCB (Ziomek et al., 2025) to be employed with
Thompson sampling - instead of UCB. The key difference is that instead of maximizing the upper
confidence bound Ut(x, p) = µt,p(x) +

√
βtσt,p(x) over X ×Pt−1, we instead sample f̃t,p from the
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GP1 remains

GP1 eliminated

Query point

GP1

GP2

TS1

TS2

(a)

Pt(·) = 34%

Pt(·) = 65%

Pt(·) = 1%

Select prior pt ∼ Pt

Sample f̃t, select xt

and observe yt

Pt+1(·) < 1%

Pt+1(·) > 99%

Pt+1(·) < 1%

Update hyperposterior

(b)

Figure 1: a) Elimination procedure of PE-GP-TS. The solid lines correspond to posterior means
and the shaded regions are confidence intervals. The figure has been adapted from Ziomek et al.
(2025). The dashed lines are samples from the posteriors. b) Overview of HP-GP-TS. The orange
star corresponds to yt.

posterior GP(µt,p, kt,p) for all priors p ∈ Pt−1 where Pt−1 is the set of active priors. Then, we select
the arm and prior xt, pt such that xt, pt = argmaxx,p∈X×Pt−1

f̃t,p(x). Whilst PE-GP-UCB has two
layers of optimism, the upper confidence bound and joint maximization of x and p, PE-GP-TS has
only a single layer of optimism - which should alleviate potential overexploration issues.

Algorithm 1 Prior Elimination GP-TS (PE-GP-
TS)

input Horizon T , prior functions {µ1,p, k1,p}p∈P ,
confidence parameters {βt}Tt=1 and {ξt}Tt=1.

1: P1 = P , S0,p = ∅ ∀p ∈ P
2: for t = 1, 2 . . . , T do
3: Sample f̃t,p ∼ GP(µt,p, kt,p) ∀p ∈ Pt

4: Set xt, pt = argmaxx,p∈X×Pt−1
f̃t,p(x)

5: St,pt
= St−1,pt

∪ {t} and St,p = St−1,p

for p ∈ P \ {pt}
6: Observe yt = f(xt) + ϵt
7: Set ηt = yt − µt,pt(xt)

8: Set Vt =
√
ξt|St,pt | +∑

i∈St,pt

√
βiσi,pt

(xi)

9: if
∣∣∣∑i∈St,pt

ηi

∣∣∣ > Vt then
10: Pt+1 = Pt \ {pt}
11: else
12: Pt+1 = Pt

The elimination procedure of PE-GP-TS is illus-
trated in Fig. 1. Samples f̃t,p are drawn from the
active prior p ∈ Pt−1. Then, the unknown func-
tion f is queried at the selected arm xt. If the
observed value differs too much from the predic-
tion made by the selected prior, then the selected
prior is eliminated. Otherwise, it remains active.

The PE-GP-TS algorithm is presented in Algo-
rithm 1. Similar to PE-GP-UCB, the set St,p

is used to store the time steps where prior p
was selected up to and including time t. When
prior pt is selected, the prediction error ηt =
yt − µt,pt(xt) between the observed and pre-
dicted value made by the prior pt is computed.
If the sum of prediction errors made by the prior
pt exceeds the threshold value Vt, then pt is
eliminated from the active priors Pt, see line 9.
Note that at time step t, only the selected prior
pt can be eliminated. As such, if a prior is very
pessimistic it may never be selected and there-
fore will never be eliminated. Thus, the final set
of active priors PT should be viewed as non-eliminated priors rather than necessarily being reasonable
priors.

3.2 HYPERPRIOR THOMPSON SAMPLING Algorithm 2 HyperPrior GP-TS (HP-GP-TS)

input Horizon T , prior functions {µ1,p, k1,p}p∈P ,
hyperprior P1.

1: for t = 1, 2 . . . , T do
2: Sample pt ∼ Pt

3: Sample f̃t ∼ GP(µt,pt , kt,pt)

4: Set xt = argmaxx f̃t
5: Observe yt = f(xt) + ϵt
6: Set Pt+1(p) ∝ P(yt|xt, {xi, yi}t−1

i=1, p) ·Pt(p)
▷ Update hyperposterior

In our first algorithm, we removed one layer
of optimism. In our second algorithm, we
adopt a fully Bayesian algorithm by using a
hyperposterior sampling scheme where both
the prior and the mean function are sampled
from their respective posteriors. By shed-
ding the optimism over the selected prior pt,
HP-GP-TS should be able avoid costly ex-
ploration by selecting likely priors instead of
optimistic ones.

4
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The algorithm is visualized in Fig. 1 and presented with more details in Algorithm 2. In the first step,
the current prior pt is sampled from the hyperposterior Pt−1. Then, a single sample f̃t is taken from
the selected posterior GP(µt,pt , kt,pt) and is used to select the current arm: xt = argmaxx∈X f̃t(x).
After observing yt, the hyperposterior is updated by computing the likelihood of yt under the different
priors. Note that since the set of priors P is finite, computing the posterior is tractable albeit
computationally costly with a complexity of O(t3|P |). The likelihood P(yt|xt, {xi, yi}t−1

i=1, p) =
N (yt;µt,p(xt), σ

2
t,p(xt) + σ2) is simply the Gaussian likelihood of the posterior at xt with added

Gaussian noise with variance σ2.

4 REGRET ANALYSIS

In this section, we analyze the regret for the proposed algorithms. Recall from the problem statement
that we consider two slightly different settings for the two algorithms. Specifically, for PE-GP-TS we
assume the unknown prior p∗ is selected arbitrarily from P whilst for HP-GP-TS we assume that the
unknown prior p∗ is selected from a known hyperprior distribution P1.

4.1 ANALYSIS OF PE-GP-TS

Ziomek et al. (2025) structured the proof of the regret bound of PE-GP-UCB into 4 larger steps; First,
showing that p∗ is never eliminated with high probability. Second, establishing a bound on the simple
regret. Third, bounding the cumulative regret. Finally, the cumulative bound is re-expressed in terms
of the worst-case MIG. For PE-GP-TS, we establish a new bound on the simple regret and then adapt
the steps of Ziomek et al. to accommodate the new simple regret bound.

To bound the simple regret, we require two concentration inequalities to hold for both the posteriors
and the posterior samples which we present in the following lemma.

Lemma 4.1. If f(x) ∼ GP(µ1,p∗ , k1,p∗) and βt = 2 log
(

|X ||P |π2t2

3δ

)
. Then, with probability at

least 1− δ, the following holds for all t, x, p ∈ [T ]×X × P :

|f(x)− µt,p∗(x)| ≤
√

βtσt,p∗(x), (4)

|f̃t,p(x)− µt,p(x)| ≤
√

βtσt,p(x). (5)

All proofs can be found in Section A. Lemma 4.1 is based on Lemma 5.1 of Srinivas et al. (2012) but
adapted to TS by specifying that it holds for any sequence of x1, . . . , xT , as discussed by Russo &
Van Roy (2014). Additionally, we add Eq. (5) which can be shown through the same steps and an
additional union bound over P . Next, we state our bound for the simple regret of PE-GP-TS.

Lemma 4.2. If the event of Lemma 4.1 holds, then the following holds for the simple regret of
PE-GP-TS for all t ∈ [T ]:

f(x∗)− f(xt) ≤ 2
√
βtσt,p∗(x∗) +

√
βtσt,pt

(xt)− ηt + ϵt. (6)

Compared to the simple regret bound for PE-GP-UCB, we obtain the additional term 2
√
βtσt,p∗(x∗)

which leads to the following regret bound:

Theorem 4.3. Let Bp∗ = β1 + supx∈X |µ1,p∗(x)| and C = 2/ log(1 + σ−2). If p∗ ∈ P and
f ∼ GP(µ1,p∗ , k1,p∗), then PE-GP-TS with confidence parameters βt = 2 log(2|X ||P |π2t2/3δ)
and ξt = 2σ2 log(|P |π2t2/3δ), satisfies the following regret bound with probability at least 1− δ:

R(T ) ≤ 2|P |Bp∗ + 2
√

ξT |P |T + 2
√
CTβT γ̂T |P |+ 2

√
CTβT

∑
t∈[T ]

σ2
t,p∗(x∗) (7)

The bound of the first three terms is of order O(
√
TβT γ̂T ) w.r.t. T which matches that of PE-GP-

UCB. To our knowledge, the best lower bound for standard GP bandits in the Bayesian setting, where
f is sampled from a GP, is Ω(

√
T ) for d = 1 (Scarlett, 2018). This would suggest that our bound is

tight up to a factor O(
√
βT γ̂T ).

5
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4.2 ANALYSIS OF HP-GP-TS

We analyze the regret of HP-GP-TS in two ways: using the UCB-based framework of Russo &
Van Roy (2014) and the information-theoretic framework of Russo & Van Roy (2016). First, note
that HP-GP-TS inherits the probability matching property of GP-TS that xt|Ht

d
= x∗|Ht where d

=

denotes equal in distribution. In addition, pt|Ht
d
= p∗|Ht since pt is sampled from the posterior

distribution of p∗. In the UCB-based framework, we decompose the regret into three terms:

E[f(x∗)− f(xt)] = E
[
f(x∗)− Ut,p∗(x∗)︸ ︷︷ ︸

(1)

+Ut,p∗(x∗)− Ut,p∗(xt)︸ ︷︷ ︸
(2)

+Ut,p∗(xt)− f(xt)︸ ︷︷ ︸
(3)

]
(8)

where Ut,p(x) = µt,p(x) +
√
βtσt,p(x). Summing over t ∈ [T ], the first term can be bounded

by a constant whilst the third term is bounded by
√
CTβT γ̄T . Together, these two terms match

the Bayesian regret bound for GP-TS with known prior. For the second term, one can utilize that
p∗, xt|Ht

d
= pt, x

∗|Ht to re-express it as E[Ut,p∗(x∗)− Ut,pt(x
∗)]. Hence, the second term can be

seen as the cost of learning the true prior. Intuitively, if the priors are similar then the upper-confidence
bounds of the true and selected prior will not differ significantly. Similarly, if the priors are sufficiently
distinguishable, one would expect Pt(p

∗) to increase quickly from a few samples. In the following
lemma, we demonstrate the latter for |P | = 2 with shared kernel functions.
Lemma 4.4. If |P | = 2 and the two priors share the same kernel function (kp = k ∀p ∈ P ), then for
any fixed sequence of arms x1:t = {xi}ti=1 the posterior probability of the true prior p∗ satisfies

Ey

[
Pt+1(p)

∣∣p∗ = p, x1:t

]
≥ 1+P0(p)e

∥Σ− 1
2 µ∥2

Φ
(
− 3

2
∥Σ− 1

2µ∥
)
− 1

P0(p)
Φ
(
− ∥Σ− 1

2µ∥
2

)
(9)

where µ ∈ Rt such that (µ)i = µp∗(xi)− µp̃(xi) for p̃ ̸= p∗ and (Σ)i,j = k(xi, xj).

From Lemma 4.4, we note that Pt(p
∗) increases the most when ∥Σ− 1

2µ∥ is maximized, which
corresponds to selecting arms with low correlation and large difference in prior mean (relative to the
variance). Hence, Pt(p

∗) increases quickly at first when HP-GP-TS explores but levels out when the
algorithm starts exploiting. Next, we state the Bayesian regret bound for HP-GP-TS.

Theorem 4.5. If p∗ ∼ P1, f ∼ GP(µ1,p∗ , k1,p∗) and βt = 2 log(|X |t2/
√
2π), then the Bayesian

regret of HP-GP-TS is bounded by

BR(T ) ≤ π2/6 +
∑
t∈[T ]

E [Ut,p∗(x∗)− Ut,pt
(x∗)] +

√
CTβT γ̄T . (10)

Unlike PE-GP-TS and PE-GP-UCB, the regret bound of the third term for HP-GP-TS depends on
the average MIG

√
γ̄T rather than the worst case

√
|P |γ̂T which can impact the theoretical regret

significantly if the complexity of the priors differ and the prior is weighted towards simple priors.
This is reasonable since the elimination methods assume arbitrary selection of p∗ as opposed to
sampling from a hyperprior. If the hyperprior is deterministic then the regret bound for HP-GP-TS
matches that of GP-TS up to a factor O(

√
log T ) (Takeno et al., 2024) and γ̄T would be equal to the

worst case γ̂T . Again, using the lower bound of Scarlett (2018), our upper bound would be tight up
to a factor of O(

√
βT γ̄T ).

The information-theoretic framework of Russo & Van Roy (2016) can be applied generally if the
probability matching property is satisfied and the rewards are subgaussian (Vashishtha & Maillard,
2025).
Theorem 4.6. If p∗ ∼ P1, f ∼ GP(µ1,p∗ , k1,p∗), the Bayesian regret of HP-GP-TS is bounded by

BR(T ) ≤
√
2|X | log(|X |)(σ2

0 + σ2)T . (11)

The proof of Theorem 4.6 follows the proof in section D.2 of Russo & Van Roy (2016) with
subgaussian noise. For completeness, we provide a proof using the GP-bandit notation in Algorithm 2.
The information-theoretic regret bound is O(

√
T ) which improves upon the O(

√
TβT γ̄T ) obtained

previously and would match the lower bound of Scarlett (2018) in terms of T . However, we also
obtain a O(

√
|X | log |X |) dependency.
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|P |−1

on the other |P | − 1 choices.

5 EXPERIMENTS

Synthetic experiments We consider three synthetic setups with different choices of priors in P . For
the first setup, the priors have one of the following kernels: i) RBF kernel, ii) the rational quadratic
kernel with α = 0.5, iii) Matérn kernel with ν = 5/2, iv) Matérn kernel with ν = 3/2, v) periodic
kernel with period ρ = 5, vi) linear kernel with v = 0.052. All kernels use a lengthscale of 1.0 and
are scaled s.t. k(x, x̃) ≤ 1. In addition, the mean function for all priors is zero everywhere. For the
second setup, the priors use the RBF kernel with lengthscales 4, 2, 1 or 1/2. For the third setup,
the total dimensions d = 16 but each prior pi assumes f(x) depends on ds = 4 subdimensions:
[i, i + 1, i + 2, i + 3] for i ∈ [5]. Dimensions larger than 5 are wrapped around 1, i.e. ((j − 1)
mod 5) + 1, such that the priors are equally difficult to distinguish and optimize. All priors use the
RBF kernel with lengthscale ℓ = 8. For all three setups, the true prior p∗ is sampled uniformly from
P , the noise variance σ2 = 0.252, and the horizon T = 500. For the first two setups, 500 arms are
equidistantly spaced in [0, 20] and for the third 500 arms are sampled uniformly on [0, 20]16. The
prior elimination methods use δ = 0.05. All models are evaluated on 500 seeds on each setup. As
baselines, we use PE-GP-UCB and Maximum A Posteriori (MAP) GP-TS where MAP GP-TS is
identical to HP-GP-TS except for greedily selecting pt from the posterior: pt = argmaxp Pt−1(p)

1.
Regardless of the selected prior, the weighting of the hyperposterior Pt is updated for all priors.
Hence, greedily selecting the prior could reduce unnecessary exploration. In addition, we investigate
the oracle variants of PE-GP-TS and PE-GP-UCB with δ = 0.05 that are only given the true prior:
P1 = {p∗}.

The cumulative regret for the three synthetic experiments is shown in Fig. 2. Across all three
experiments, we observe that HP-GP-TS has lower regret than the other methods and performs close
to the oracle GP-TS. For the kernel and subspace experiments, PE-GP-TS has lower regret than
the oracle GP-UCB. Hence, even if PE-GP-UCB was optimized to perform as well as the oracle, it
would still not achieve the regret of our proposed methods. MAP GP-TS has slightly higher regret
than HP-GP-TS for the lengthscale and subspace experiments but has significantly higher regret and
variance for the kernel experiment. The greedy selection of MAP (MLE) leads to under-exploration
for MAP GP-TS in certain instances.

1Note that since the hyperprior is uniform, MAP is equivalent to discrete maximum likelihood estimation.
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The number of priors remaining |Pt| and the hyperposterior entropy for the kernel experiment is shown
in Fig. 3. The PE-methods eliminate at most one prior on average. In contrast, the hyperposterior
entropy of HP-GP-TS is equivalent to 80-90% of the probability mass being assigned to one prior.
HP- and MAP-GP-TS thus effectively discards priors at a much faster rate. The same pattern holds
for the lengthscale and subspace experiments, see Figs. 8 and 9 in Section D.

In Fig. 4, we visualize how often the methods select the true prior p∗ (or kernel) in the kernel
experiment as confusion matrices. PE-GP-UCB selects the Matérn-3/2 kernel more than 96% of the
rounds. The Matérn-3/2 kernel induces a distribution over functions that are less smooth compared to
the other kernels and produces much higher confidence intervals outside the observed data leading
to excessive optimistic exploration. PE-GP-TS also shows a bias towards the Matérn-3/2 kernel
but does not select it as frequently as PE-GP-UCB - demonstrating that one layer of optimism has
been removed. The overall “accuracy" of the selected priors, i.e.

∑
t∈[T ]1{pt = p∗}/T , for the

elimination-based methods is around 17% in the kernel experiment compared to 62.5% and 63.2%
for MAP and HP-GP-TS respectively. For HP-GP-TS, we observe that it can easily identify the
periodic and linear kernels. However, the RBF, Matérn and RQ kernels are often confused with each
other. These kernels do not have as easily distinguishable characteristics and are likely to produce
similar posteriors even with a small amount of data. See Fig. 10 in Section D for confusion matrices
in the lengthscale and subspace experiments.

Scaling |P | We perform two experiments to understand how the regret of our algorithms scale with
the number of priors. In both experiments, the average difficulty of the problem is kept constant
such that the regret of the oracle models is constant. In the first experiment, we increase the
discretization of the lengthscale values. The lengthscales are equidistantly spaced in [0.5, 4] with
|P | ∈ {8, 16, 32, 64, 128}. As |P | increases, the difference between similar priors is reduced. In the
second experiment, we increase the number of priors in the subspace experiment from 5 up to 16.
Each prior can share at most 3 out of 4 dimensions with other priors which ensures the priors remain
meaningfully different. The total regret as the number of priors increases is shown in Fig. 5. For the
lengthscale experiment, increasing the number of priors above 8 does not affect the regret for any
algorithm. This is likely due to the redundancy in the priors. However in the subspace experiment, the
regret of the prior elimination algorithms scales approximately as

√
|P | whilst MAP- and HP-GP-TS

are consistently close to the constant regret of the oracle.
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Real-world data We perform three experiments with real-world data from the Intel Berkeley dataset
(Madden et al., 2004), California Performance Measurement System (PeMS) (Chen et al., 2001;
California Department of Transportation, 2024) and Pacific Northwest (PNW) daily precipitation
dataset (Widmann & Bretherton, 1999; 2000). Each dataset contains measurements from a set of
sensors over time. We split each dataset into a training and test set where the test set contains the last
third of the data. Hence, the distribution of the test data may have shifted slightly from the training
data. The training sets are split further into separate buckets to define our priors. For each bucket
p, we compute the empirical mean µ̂p and covariance Σ̂p which defines the prior GP(µ̂p, Σ̂p). The
buckets in the Intel data corresponds to the 12 days in the training dataset. For the PeMS data, each
hour between 06:00 and 13:00 defines one prior, giving 7 priors. For the daily precipication data, each
month in the year constitutes a prior, yielding 12 priors. When running the experiments, we select
a measurement of all sensors from the test data uniformly at random. The selected measurements
correspond to the unknown function f(x) where x is the sensor index and the goal is then to identify
sensors measuring large temperatures, small speeds or high precipication respectively for the three
datasets. When the algorithms select an arm to evaluate, we add Gaussian noise to yt with variance
σ2 around 5% of the signal variance, similar to Srinivas et al. (2012); Bogunovic et al. (2016). See
Section C for more details about the experimental setup.

The cumulative regret for the experiments with real-world data is presented in Fig. 6. For the Intel and
PNW data, HP- and MAP GP-TS obtain the lowest and second lowest cumulative regret respectively.
HP- and MAP GP-TS have lower regret than PE-GP-TS initially but PE-GP-TS catches up and has
the lowest total regret. To understand this better, we visualize quantiles of the total regret in Fig. 12.
MAP- and HP-GP-TS have the lowest median regret for all three experiments and hence perform best
in a majority of instances. However, the 90th and 95th quantiles are considerably larger for the PeMS
data which impacts the average regret significantly. Hence, for the PeMS data, the prior elimination
methods seem to yield more stable results.

In Fig. 3, the number of priors remaining in |Pt| and the hyperposterior entropy is shown for the Intel
experiment. Similar to the synthetic experiment, on average, the prior elimination methods eliminate
less than 1 prior whereas the hyperposteriors of HP- and MAP GP-TS concentrate the equivalent of
80-90% of the probability mass to one prior. The results for PeMS and PNW experiment are shown
in Figs. 8 and 9 in Section D. Here, effectively no priors are eliminated. For the PNW experiment, the
hyperposteriors do not concentrate as much compared to the other experiments. This could indicate
that knowing the exact prior is not as important for the PNW data.

6 CONCLUSION

In this paper, we have proposed two algorithms for joint prior selection and regret minimization in
GP bandits based on GP-TS. We have analyzed the algorithms theoretically and have experimentally
evaluated both algorithms on synthetic and real-world data. We find that they both select the true
prior more often and obtain lower regret than previous work due to lowering the amount of optimistic
exploration.
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is used in many different disciplines where the typical goal is to improve allocation of resources or
increase resource output. We believe such applications are beneficial to society at large and believe
our work does not raise any ethical concerns. The datasets used in this paper do not involve any
human or animal subjects.
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The proposed algorithms are described in Section 3 with more details provided in Algorithms 1 and 2.
For the theoretical results, we describe the overall assumptions of the problem in Section 2 and
provide more detailed assumptions in the respective theorems and lemmas in Section 4. We provide
detailed proofs of all theorems and lemmas in Section A. The experimental setup is described in
Section 5 with further details about the data processing and results provided in Sections C and D. All
experimental results are averaged across 500 runs with fixed seeds to ensure reproducibility. A link
to an anonymous repository containing the source code will be posted as a comment on OpenReview.
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A PROOFS

In the following section, we state and prove the results shown in the main text.

A.1 PE-GP-TS

First, we state and prove concentration inequalities for f(x) and f̃t,p(x).

Lemma 4.1. If f(x) ∼ GP(µ1,p∗ , k1,p∗) and βt = 2 log
(

|X ||P |π2t2

3δ

)
. Then, with probability at

least 1− δ, the following holds for all t, x, p ∈ [T ]×X × P :

|f(x)− µt,p∗(x)| ≤
√

βtσt,p∗(x), (4)

|f̃t,p(x)− µt,p(x)| ≤
√

βtσt,p(x). (5)

Proof. Follows by the same steps as Lemma 5.1 of Srinivas except we condition on the complete
history Ht instead of only y1:t−1. Additionally, for Eq. (5) we must take an additional union bound
over p ∈ P .

Fix t, x, p ∈ [T ] × X × P . Given the history Ht, f̃t,p(x) ∼ N (µt,p(x), σ
2
t,p(x)). Using that

P(Z > c) ≤ 1/2e−c2/2 for Z ∼ N (0, 1), we get that

P

(∣∣∣∣∣ f̃t,p(x)− µt,p∗(x)

σt,p∗(x)

∣∣∣∣∣ >√βt

)
≤ exp(−βt/2) (12)

=
3δ

|X ||P |π2t2
(13)

Note that
∑

t≥1
1
t2 = π2

6 By taking the union bound over X , P and t ≥ 1, Eq. (5) holds w.p. at least
1 − δ/2. By the same reasoning and skipping the union bound over P , Eq. (4) holds w.p. at least
1− δ/2. Thus, both events hold w.p. at least 1− δ.

Next, we state three lemmas from Ziomek et al. (2025) that are used in the proof of our regret bound.

Lemma A.1. (Lemma 5.1 of Ziomek et al. (2025)) If ξt = 2σ2 log
(

|P |π2t2

6δ

)
, then the following

holds with probability at least 1− δ:∣∣∣∣∣∣
∑

i∈St,p

ϵi

∣∣∣∣∣∣ ≤
√

ξt|St,p| ∀t, p ∈ [T ]× P. (14)

Lemma A.2. (Lemma 5.2 of Ziomek et al. (2025)) Let Bp∗ = β1 + supx∈X |µ1,p∗(x)|, then if µ1,p∗

and k1,p∗ satisfy |µ1,p∗(·)| < ∞ and k1,p∗(·, ·) ≤ 1 and Lemma 4.1 holds, then

sup
x∈X

|f(x)| ≤ Bp∗ . (15)

Lemma A.3. (Lemma 5.3 of Ziomek et al. (2025)) For C = 2/ log(1+σ−2),
∑

t/∈C
√
βtσt,pt(xt) ≤√

CTβT γ̂T |P | where βT = maxp∈P βT and γ̂T = maxp∈P γT,p.

Then, we state and prove the new simple regret bound for PE-GP-TS.
Lemma 4.2. If the event of Lemma 4.1 holds, then the following holds for the simple regret of
PE-GP-TS for all t ∈ [T ]:

f(x∗)− f(xt) ≤ 2
√
βtσt,p∗(x∗) +

√
βtσt,pt

(xt)− ηt + ϵt. (6)

Proof. First, we upper bound f(x∗) as follows

f(x∗) ≤ µt,p∗(x∗) +
√
βtσt,p∗(x∗) (Eq. (4)) (16)

≤ f̃t,p∗(x∗) + 2
√

βtσt,p∗(x∗) (Eq. (5)) (17)

≤ f̃t,pt
(xt) + 2

√
βtσt,p∗(x∗). (TS selection rule) (18)
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Then, we lower bound f(xt)

f(xt) = µt,pt
(xt) + ηt − ϵt (Def. of ηt) (19)

≥ f̃t,pt(xt)−
√

βtσt,pt(xt) + ηt − ϵt. (Eq. (5)) (20)

Combining, Eqs. (18) and (20) we obtain

f(x∗)− f(xt) ≤ 2
√
βtσt,p∗(x∗) +

√
βtσt,pt(xt)− ηt + ϵt. (21)

Finally, we state and prove the cumulative regret bound for PE-GP-TS.
Theorem 4.3. Let Bp∗ = β1 + supx∈X |µ1,p∗(x)| and C = 2/ log(1 + σ−2). If p∗ ∈ P and
f ∼ GP(µ1,p∗ , k1,p∗), then PE-GP-TS with confidence parameters βt = 2 log(2|X ||P |π2t2/3δ)
and ξt = 2σ2 log(|P |π2t2/3δ), satisfies the following regret bound with probability at least 1− δ:

R(T ) ≤ 2|P |Bp∗ + 2
√

ξT |P |T + 2
√
CTβT γ̂T |P |+ 2

√
CTβT

∑
t∈[T ]

σ2
t,p∗(x∗) (7)

Proof. First, we show that the true prior p∗ is never rejected if Lemmas A.1 and 4.1 hold.∣∣∣∣∣∣
∑

i∈St,p∗

ηi

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

i∈St,p∗

(yi − f(xi) + f(xi)− µi,p∗(xi)

∣∣∣∣∣∣ (22)

≤

∣∣∣∣∣∣
∑

i∈St,p∗

ϵi

∣∣∣∣∣∣+
∑

i∈St,p∗

|f(xi)− µi,p∗(xi)| (Triangle ineq.) (23)

≤
√

ξt|St,p∗ |+
∑

i∈St,p∗

√
βiσi,p∗(xi). (Lemmas A.1 and 4.1) (24)

Next, we bound the cumulative regret. To establish a bound on the cumulative regret, we must
separate out the rounds where priors are eliminated. Hence, define the set of critical iterations as

C =

t ∈ [T ] :

∣∣∣∣∣∣
∑

i∈St,pt

ηi

∣∣∣∣∣∣ >√ξtSt,pt +
∑

i∈St,pt

√
βiσi,pt(xi)

 . (25)

Using Lemma A.2 and Eq. (21), we can bound the cumulative regret as follows:

BR(T ) =
∑
t∈C

BRt +
∑
t/∈C

BRt (26)

≤ 2|P |Bp∗ +
∑
t/∈C

2
√

βtσt,p∗(x∗) +
∑
t/∈C

√
βtσt,pt

(xt) +
∑
p∈P

∑
t∈ST,p\C

(ϵt − ηt). (27)

where Bp∗ := β1+supx∈X |µ1,p∗(x)|. If t /∈ C, line 9 in Algorithm 1 evaluates to false and hence∑
p∈P

∑
t∈ST,p\C

−ηt ≤
∑
p∈P

√
ξT |ST,p|+

∑
p∈P

∑
t∈ST,p\C

√
βtσt,p(xt). (28)

Additionally, using Lemma A.1, we can bound the Gaussian noise:

∑
p∈P

∑
t∈ST,p\C

ϵt ≤
∑
p∈P

∣∣∣∣∣∣
∑

t∈ST,p\C

ϵt

∣∣∣∣∣∣ ≤
∑
p∈P

∣∣∣∣∣∣
∑

t∈ST,p

ϵt

∣∣∣∣∣∣ (29)

≤
∑
p∈P

√
ξT |ST,p| (Lemma A.1) (30)

≤
√
ξT |P |T (Cauchy-Schwarz) (31)
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Combining the above, the cumulative regret is bounded by

BR(T ) ≤ 2|P |Bp∗ + 2
√
ξT |P |T + 2

∑
t/∈C

√
βtσt,p∗(x∗) + 2

∑
t/∈C

√
βtσt,pt

(xt). (32)

Finally, applying Lemma A.3, we obtain the result

BR(T ) ≤ 2|P |Bp∗ + 2
√
ξT |P |T + 2

√
CTβT

∑
t∈[T ]

σ2
t,p∗(x∗) + 2

√
CTβT γ̂T |P |. (33)

A.2 UCB-ANALYSIS OF HP-GP-TS

Next, we state and prove our UCB-based regret bound for HP-GP-TS.

Theorem 4.5. If p∗ ∼ P1, f ∼ GP(µ1,p∗ , k1,p∗) and βt = 2 log(|X |t2/
√
2π), then the Bayesian

regret of HP-GP-TS is bounded by

BR(T ) ≤ π2/6 +
∑
t∈[T ]

E [Ut,p∗(x∗)− Ut,pt(x
∗)] +

√
CTβT γ̄T . (10)

Proof. To begin, we note that xt|Ht
d
= x∗|Ht and pt|Ht

d
= p∗|Ht since both xt and pt are sampled

from their respective posteriors. Let Ut,p(x) := µt,p(x) +
√
βtσt,p(x). Then, we start decomposing

the instant regret into two terms:

BR(T ) =
∑
t∈[T ]

E [f(x∗)− f(xt)] (34)

=
∑
t∈[T ]

E[f(x∗)− Ut,p∗(x∗) + Ut,p∗(x∗) (35)

− Ut,pt
(x∗) + Ut,p∗(xt)− f(xt)] (x∗, pt|Ht

d
= xt, p

∗|Ht) (36)

=
∑
t∈[T ]

E [f(x∗)− Ut,p∗(x∗)]

︸ ︷︷ ︸
(1)

+
∑
t∈[T ]

E [Ut,pt(xt)− Ut,p∗(xt)]︸ ︷︷ ︸
(2)

+
∑
t∈[T ]

E [Ut,p∗(xt)− f(xt)]︸ ︷︷ ︸
(3)

(37)

We begin by bounding term (1),

(1) =
∑
t∈[T ]

E
[
f(x∗)− µt,p∗(x∗)−

√
βtσt,p∗(x∗)

]
(38)

≤
∑
t∈[T ]

E
[[
f(x∗)− µt,p∗(x∗)−

√
βtσt,p∗(x∗)

]
+

]
([·]+ := max(·, 0))

(39)

≤
∑
t∈[T ]

∑
x∈X

E
[[
f(x)− µt,p∗(x)−

√
βtσt,p∗(x)

]
+

]
(x∗ ∈ X , [·]+ ≥ 0)

(40)

≤
∑
t∈[T ]

∑
x∈X

Ep∗,Ht

[
Et

[[
f(x)− µt,p∗(x)−

√
βtσt,p∗(x)

]
+

∣∣ p∗, Ht

]]
(Tower rule)

(41)

Recall that for Z ∼ N (µ, σ) with µ ≤ 0, E[[Z]+] = σ√
2π

exp
(

−µ2

2σ2

)
. In our case, note that

f(x)|p∗, Ht ∼ N (µt,p∗(x), σ2
t,p∗(x)) and −µt,p∗(x) − √

βtσt,p∗(x) is deterministic given p∗, Ht.
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Hence,

(1) ≤
∑
t∈[T ]

∑
x∈X

Ep∗,Ht

[
σt,p∗(x)√

2π
exp

(−βt

2

)]
(42)

≤
∑
t∈[T ]

∑
x∈X

Ep∗,Ht

[
1√
2π

exp

(
−βt

2

)]
(σt,p∗(x) ≤ σ0,p∗(x) ≤ 1) (43)

=
∑
t∈[T ]

∑
x∈X

1√
2π

exp(−βt/2) (44)

≤
∑
t∈[T ]

1

t2
≤ π2

6
. (βt = 2 log(|X |t2/

√
2π)) (45)

Next, we bound (3) as follows:

(3) =
∑
t∈[T ]

E [Ut,p∗(xt)− f(xt)] (46)

=
∑
t∈[T ]

EHt
[Et [Ut,p∗(xt)− f(xt)|Ht]] (Tower rule) (47)

=
∑
t∈[T ]

EHt
[Et [Ut,p∗(xt)− µt,p∗(xt)|Ht]] (E[f(xt)|Ht] = E[µt,p∗(xt)|Ht]) (48)

=
∑
t∈[T ]

EHt
[Et[
√
βtσt,p∗(xt)|Ht]] (Ut,p∗(·) = µt,p∗(·) +

√
βtσt,p∗(·)) (49)

=
∑
t∈[T ]

E[
√

βtσt,p∗(xt)] (50)

Continuing,

(3) = E

∑
t∈[T ]

√
βtσt,p∗(xt)

 (51)

≤ E

√∑
t∈[T ]

βt

∑
t∈[T ]

σ2
t,p∗(xt)

 (Cauchy-Schwarz) (52)

=

√∑
t∈[T ]

βtE

√∑
t∈[T ]

σ2
t,p∗(xt)

 (βt deterministic) (53)

≤
√∑

t∈[T ]

βt

√√√√√E

∑
t∈[T ]

σ2
t,p∗(xt)

 (Jensen’s inequality) (54)

≤
√

βTT

√√√√√Ep∗

E
∑
t∈[T ]

σ2
t,p∗(xt)

∣∣∣∣ p∗
 (βt increasing) (55)

≤
√

βTT
√

CEp∗ [γT,p∗ ] (Lemma 5.4 of Srinivas et al. (2012)) (56)

≤
√
βTT

√
Cγ̄T (57)

Combining the bounds for (1) and (3), we obtain the desired result

BR(T ) ≤ π2

6
+
∑
t∈[T ]

E [Ut,pt
(xt)− Ut,p∗(xt)] +

√
CTβT γ̄T . (58)
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A.3 ANALYSIS OF EXPECTED POSTERIOR PROBABILITIES

Lemma 4.4. If |P | = 2 and the two priors share the same kernel function (kp = k ∀p ∈ P ), then for
any fixed sequence of arms x1:t = {xi}ti=1 the posterior probability of the true prior p∗ satisfies

Ey

[
Pt+1(p)

∣∣p∗ = p, x1:t

]
≥ 1+P0(p)e

∥Σ− 1
2 µ∥2

Φ
(
− 3

2
∥Σ− 1

2µ∥
)
− 1

P0(p)
Φ
(
− ∥Σ− 1

2µ∥
2

)
(9)

where µ ∈ Rt such that (µ)i = µp∗(xi)− µp̃(xi) for p̃ ̸= p∗ and (Σ)i,j = k(xi, xj).

Proof. Fix p∗ = p and let p̃ denote the incorrect prior. Without loss of generality, assume µ1,p(x) = 0
∀x ∈ X such that the two priors are: GPp(0, k) and GP p̃(µ, k). For the observed rewards y ∈ Rt,
we use Np(y) = N (y;0,K+ σ2I) and Np̃(y) = N (y;µ(x1:t),K+ σ2I) to denote the likelihood
(or multivariate Gaussian density) under the priors p and p̃ where µ(x1:t) ∈ Rt and K ∈ Rt×t s.t.
(µ)i = µ(xi) and (K)i,j = k(xi, xj). To simplify the notation, let µ := µ(x1:t) and Σ = K + σ2I
s.t. Np(y) = N (y;0,Σ) and Np̃(y) = N (y;µ,Σ).

By Bayes’ theorem, the posterior probability of p satisfies:

Pt+1(p) =
Np(y)P0(p)

Np(y)P0(p) +Np̃(y)P0(p̃)
=

Np(y)
Np̃(y)

P0(p)

Np(y)
Np̃(y)

P0(p) + (1− P0(p))
. (59)

Note that Np(y)/Np̃(y) = exp
(
− 1

2

(
yTΣ−1y − (yT − µ)Σ−1(y − µ)

))
=: exp(Q(y)) and that

the quotient in the integrand can be written as q(x) = exc
exc+(1−c) for c := P0(p) ∈ (0, 1). Since

we wish to lower bound the expectation of Pt+1(p), we will utilize the lower bounds q(x) ≥ cex

∀x ≤ 0 and q(x) ≥ 1 − 1−c
c e−x ∀x ∈ R. The first lower bound will be applied to the region

H := {y
∣∣Q(y) ≤ 0} whilst the second is applied to the complement Hc:

Ey

[
Pt+1(p)

∣∣x1:t

]
=

1√
(2π)t

∫
Rt

1√
detΣ

exp(Q(y))c

exp(Q(y)c+ 1− c
exp

(
−1

2
yTΣ−1y

)
dy (60)

≥ 1√
(2π)t

(
c

∫
H

1√
detΣ

exp(Q(y)) exp

(
−1

2
yTΣ−1y)

)
dy︸ ︷︷ ︸

I1:=

(61)

+

∫
Hc

1√
detΣ

(
1− 1− c

c
exp(−Q(y))

)
exp

(
−1

2
yTΣ−1y)

)
dy︸ ︷︷ ︸

I2:=

)
. (62)

Let Σ
1
2 be the positive definite and symmetric square root of Σ s.t. Σ = Σ

1
2Σ

1
2 . Next, we apply

the change of variables y = Σ
1
2 (vµ̄ +w) s.t. w ⊥ µ̄ and µ̄ := Σ− 1

2µ/∥Σ− 1
2µ∥. Note that the

Jacobian of this variable change is
√
detΣ and

yTΣ−1y = (vµ̄+w)TΣ
1
2Σ−1Σ

1
2 (vµ̄+w) = ∥vµ̄+w∥2 = v2 + ∥w∥2, (63)

(y − µ)TΣ−1(y − µ) = ((v − ∥Σ− 1
2µ∥)µ̄+w)T ((v − ∥Σ− 1

2µ∥)µ̄+w) (64)

= (v − ∥Σ− 1
2µ∥)2 + ∥w∥2, (65)

Q(y) = −1

2

(
v2 + ∥w∥2 − (v − ∥Σ− 1

2µ∥)2 − ∥w∥2
)
= −1

2

(
2v∥Σ− 1

2µ∥ − ∥Σ− 1
2µ∥2

)
.

(66)

The region H = {Q(y) ≤ 0} can then be expressed as H =
{
(v,w)

∣∣v ≥ ∥Σ− 1
2µ∥/2,w ⊥ µ

}
and Hc = {(v,w)

∣∣v < ∥Σ− 1
2µ∥/2,w ⊥ µ}. Next, we apply the change of variables to I1 and
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decompose the integral into two parts:

I1 =

∫
H

exp

(
−1

2

(
−∥Σ− 1

2µ∥2 + 2v∥Σ− 1
2µ∥+ v2 + ∥w∥2

))
dvdw (67)

= exp(∥Σ− 1
2µ∥2)

∫
v≥∥Σ− 1

2 µ∥/2
exp

(
−1

2
(v + ∥Σ− 1

2µ∥)2
)
dv

∫
Rt−1

exp

(
−∥w∥2

2

)
dw

(68)

= exp(∥Σ− 1
2µ∥2) ·

√
2π

(
1− Φ

(
3

2
∥Σ− 1

2µ∥
))

·
√
(2π)t−1 (69)

=
√
(2π)t exp(∥Σ− 1

2µ∥2)Φ
(
−3

2
∥Σ− 1

2µ∥
)

(Φ(−x) = 1− Φ(x)) (70)

where Φ(·) is the CDF of the unit-Gaussian. Similarly, we apply the change of variables to I2 and
decompose the integral into four parts:

I2 =

∫
Hc

(
exp

(
−1

2

(
v2 + ∥w∥2

))
(71)

− 1− c

c
exp

(
−1

2
(−2v∥Σ− 1

2µ∥+ ∥Σ− 1
2µ∥2 + v2 + ∥w∥2)

))
dvdw (72)

=

∫
v<∥Σ− 1

2 µ∥/2
exp

(
−v2

2

)
dv

∫
Rt−1

exp

(
−w2

2

)
dw (73)

− 1− c

c

∫
v<∥Σ− 1

2 µ∥/2
exp

(
−1

2

(
v − ∥Σ− 1

2µ∥
)2)

dv

∫
Rt−1

exp

(
−∥Σ− 1

2µ∥2
2

)
dw

(74)

=
√
2πΦ

(
∥Σ− 1

2µ∥
2

)
·
√
(2π)t−1 − 1− c

c

√
2πΦ

(
−∥Σ− 1

2µ∥
2

)
·
√
(2π)t−1 (75)

=
√
(2π)t

(
1− 1

c
Φ

(
−∥Σ− 1

2µ∥
2

))
. (Φ(−x) = 1− Φ(x)) (76)

Combining the results for I1 and I2, we get that

Ey

[
Pt+1(p)

∣∣x1:t

]
≥ 1 + P0(p)e

∥Σ− 1
2 µ∥2

Φ

(
−3

2
∥Σ− 1

2µ∥
)
− 1

P0(p)
Φ

(
−∥Σ− 1

2µ∥
2

)
(77)

Note that a sharp bound of Eq. (77) in terms of elementary functions can be obtained using bounds
on the error function (Cook, 2018; Abramowitz & Stegun, 1972):

Ey

[
Pt+1(p)

∣∣x1:t

]
≥ 1 + P0(p)

√
2

π
e−

∥Σ− 1
2 µ∥2
8

2

3∥Σ− 1
2µ∥+

√
9∥Σ− 1

2µ∥2 + 16
(78)

− 1

P0(p)

√
2

π
e−

∥Σ− 1
2 µ∥2
8

2

∥Σ− 1
2µ∥+

√
∥Σ− 1

2µ∥2 + 32π−1

. (79)

A.4 INFORMATION-THEORETIC REGRET BOUND FOR GP-TS

We begin by showing that the rewards are subgaussian.
Lemma A.4. Fix x ∈ X and let Z = f(x) + ϵt − Et[f(x)]. If p∗ ∼ P1, f ∼ GP(µ1,p∗ , k1,p∗) with
k1,p∗(·, ·) ≤ σ2

0 , then Z|Ht is
√

σ2
0 + σ2-subgaussian.
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Proof. Start by considering Z =
∑

p∈P 1{p∗ = p}(fp(x) − µt,p(x)) where fp ∼ GPp such that
fp(x)− µt,p(x) is σ0-subgaussian. Then,

E[λZ|Ht] = E[E[exp(λZ) | p∗ = p,Ht] (80)

=
∑
p∈P

Pt(p
∗ = p)E[exp(λ(fp(x)− µt,p(x))) | p∗ = p,Ht] (81)

≤
∑
p∈P

Pt(p
∗ = p) exp(σ2

t,p(x)λ
2/2) (82)

≤
∑
p∈P

Pt(p
∗ = p) exp(σ2

0λ
2/2) (83)

= exp(σ2
0λ/2) (84)

Hence, Z is σ-subgaussian. Then, Z + ϵt|Ht is
√

σ2
0 + σ2-subgaussian since Z|Ht and ϵt|Ht are

independent.

Then, we state and prove the information-theoretic regret bound for HP-GP-TS.

Theorem 4.6. If p∗ ∼ P1, f ∼ GP(µ1,p∗ , k1,p∗), the Bayesian regret of HP-GP-TS is bounded by

BR(T ) ≤
√
2|X | log(|X |)(σ2

0 + σ2)T . (11)

Proof. Here, we analyze the regret of HP-GP-TS using the information-theoretic framework of Russo
& Van Roy (2016). The proof presented here follows the proof in section D.2 of Russo & Van Roy
(2016) with subgaussian noise. The idea of the information-theoretic framework is to express the
regret as follows

E

∑
t∈[T ]

f(x∗)− f(xt)

 = E

∑
t∈[T ]

E
[
f(x∗)− f(xt)︸ ︷︷ ︸

≥0

|Ht

] (Tower rule) (85)

= E

∑
t∈[T ]

√
E [f(x∗)− f(xt)|Ht]

2 · I(· ; · |Ht)

I(· ; · |Ht)

 (86)

where I(· ; · |Ht) is the mutual information between two carefully chosen variables such that
E [f(x∗)− f(xt)|Ht]

2 ≤ CI(· ; · |Ht) for some C.

Let Et[·] = E[·|Ht],Pt[·] = P[·|Ht]. Then,

Et[f(x
∗)− f(xt)] =

∑
x∈X

Pt(x
∗ = x)Et[f(x)|x∗ = x]−

∑
x∈X

Pt(xt = x)Et[f(x)|xt = x] (87)

=
∑
x∈X

Pt(x
∗ = x) (Et[f(x)|x∗ = x]− Et[f(x)|xt = x]) (Pt(xt = x) = Pt(x

∗ = x)) (88)

=
∑
x∈X

Pt(x
∗ = x) (Et[f(x)|x∗ = x]− Et[f(x)]) .

(
Et[f(x)|xt = x] = Et[f(x)]
since f |Ht⊥⊥xt|Ht

)
(89)

Let Z = f(x) + ϵt − Et[f(x)]. Note that Z|Ht is
√
σ2
0 + σ2-subgaussian. Consequently,

logEt[exp(λZ)] ≤ λ2(σ2
0+σ2)
2 ∀λ ∈ R.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Fix x∗, x ∈ X . Then,

λ
(
Et[f(x) + ϵt|x∗ = x∗]− Et[f(x)]

)
− λ2(σ2

0 + σ2)

2
(90)

≤ λ
(
Et[f(x) + ϵt|x∗ = x∗]− Et[f(x)]

)
(91)

− logEt[exp(λ(f(x) + ϵt − Et[f(x)])] (Z|Ht is
√
σ2
0 + σ2-subgaussian)

(92)
= λEt[Z|x∗ = x∗]− logEt[exp(λZ)] (93)
≤ D (Pt(f(x) + ϵt|x∗ = x∗)||Pt(f(x) + ϵt)) . (Fact 12 of Russo & Van Roy (2016))

(94)

Now, let λ = 1
σ2
0+σ2 (Et[f(x) + ϵt|x∗ = x∗]− Et[f(x)]), then the following holds for all x∗, x ∈ X

Et [f(x)|x∗ = x∗]− Et[f(x)] ≤
√
2(σ2

0 + σ2)D (Pt(f(x) + ϵt|x∗ = x∗)||Pt(f(x) + ϵt)). (95)

Let It(· ; · ) = I(· ; · |Ht = ht). Then,

It(x
∗; (xt, yt)) = It(x

∗;xt) + It(x
∗; yt|xt) (Chain rule) (96)

= It(x
∗; yt|xt) (x∗|Ht⊥⊥xt|Ht) (97)

=
∑
x∈X

Pt(xt = x)It(x
∗; yt|xt = x) (98)

=
∑
x∈X

Pt(xt = x)It(x
∗; f(xt) + ϵt|xt = x) (99)

=
∑
x∈X

Pt(xt = x)It(x
∗; f(x) + ϵt) (f, x∗|Ht⊥⊥xt|Ht) (100)

=
∑
x∈X

Pt(xt = x)

( ∑
x∗∈X

Pt(x
∗ = x∗)· (101)

D
(
Pt(f(x) + ϵt|x∗ = x∗)

∣∣∣∣∣∣Pt(f(x) + ϵt)
))

(102)

=
∑

x,x∗∈X
Pt(x

∗ = x)Pt(x
∗ = x∗)· (xt|Ht

d
= x∗|Ht) (103)

D
(
Pt(f(x) + ϵt|x∗ = x∗)

∣∣∣∣∣∣Pt(f(x) + ϵt)
)

(104)

Putting the above together, we now bound Et[f(x
∗)− f(xt)]

2:

Et[f(x
∗)− f(xt)]

2 =

(∑
x∈X

Pt(x
∗ = x) (Et[f(x)|x∗ = x]− Et[f(x)])

)2

(105)

≤ |X |
∑
x∈X

Pt(x
∗ = x)2 (Et[f(x)|x∗ = x]− Et[f(x)])

2
(Cauchy-Schwarz)

(106)

≤ |X |
∑

x,x∗∈X
Pt(x

∗ = x)Pt(x
∗ = x∗) (Et[f(x)|x∗ = x∗]− Et[f(x)])

2 (107)

≤ 2|X |(σ2
0 + σ2)

∑
x,x∗∈X

(
Pt(x

∗ = x)Pt(x
∗ = x∗)· (108)

D (Pt(f(x) + ϵt|x∗ = x∗)||Pt(f(x) + ϵt))
)

(109)

≤ 2|X |(σ2
0 + σ2)It(x

∗; (xt, yt)). (110)
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Returning to the full regret,

E
[∑
t∈[T ]

f(x∗)− f(xt)

]
= E

∑
t∈[T ]

√
Et [f(x∗)− f(xt)]

2 · It(x
∗ ; (xt, yt))

It(x∗ ; (xt, yt))

 (111)

≤
√

2|X |(σ2
0 + σ2)E

∑
t∈[T ]

√
It(x∗ ; (xt, yt))

 (112)

(113)
Then, the expectation can then be bounded as

E
[∑
t∈[T ]

√
It(x∗ ; (xt, yt))

]
= ≤

∑
t∈[T ]

E
[√

It(x∗ ; (xt, yt))
]

(114)

≤
∑
t∈[T ]

1 ·
√
E [It(x∗ ; (xt, yt))] (Jensen’s inequality)

(115)

=
∑
t∈[T ]

√
EHt

[I(x∗ ; (xt, yt)|Ht = ht)] (116)

=
∑
t∈[T ]

√
I(x∗ ; (xt, yt)|Ht) (117)

≤
√∑

t∈[T ]

12
∑
t∈[T ]

I(x∗ ; (xt, yt)|Ht) (Cauchy-Schwarz)

(118)
Finally, the regret can be bounded as

E
[∑
t∈[T ]

f(x∗)− f(xt)

]
=
√

2|X |(σ2
0 + σ2)

√
TI(x∗;HT ) (119)

≤
√
2|X |(σ2

0 + σ2)
√

TH(x∗) (120)

≤
√

2|X |(σ2
0 + σ2)

√
T log |X | (121)

B DESCRIPTION OF KERNELS

The RBF kernel, k(x, x̃) = exp(−||x − x̃||2/ℓ2) guarantees that f is smooth. The length-
scale parameter ℓ > 0 determines how quickly f changes, smaller values lead to more fluctua-

tions. The rational quadratic (RQ) kernel k(x, x̃) =
(
1 + ||x−x̃||2

2αℓ2

)−α

where α > 0 is a mix-
ture of RBF kernels with varying lengthscales. The Matérn kernel (Matérn, 1986) k(x, x̃) =
21−ν

Γ(ν)

(√
2ν||x−x̃||

ℓ

)ν
Kν

(√
2ν||x−x̃||

ℓ

)
where ν > 0 is the smoothness parameter that imposes that

f is k-times differentiable if ν > k for integer k. The functions Γ(ν) and Kv correspond to the
gamma function and a modified Bessel function (Williams & Rasmussen, 2006). The periodic kernel
k(x, x̃) = exp

(
− 1

2

∑d
i=1 sin

2(πρ (x− x̃))/ℓ
)

generates smooth and periodic functions with period

ρ > 0 (Mackay, 1998). The linear kernel k(x, x̃) = vx⊤x̃/ν generates linear functions where v is
the variance parameter.

C ADDITIONAL EXPERIMENTAL DETAILS

In this section, we provide some additional details about the experiments.
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For all the real-world datasets, sensors containing any null measurements have been filtered out.

The Intel Berkeley dataset consists of measurements from 46 temperature sensors across 19 days.
The training set consists of the first 12 days of measurements and the remaining 7 days constitute the
test set. The noise variance is set to σ2 = 0.72.

The PeMS data consists of measurements from 211 sensors along the I-880 highway from all of 2023.
The goal is to find the sensors with low speeds to identify congestions. We use the 5-min averages
provided by PeMS. Data between 2023-01-01 and 2023-09-01 is put into the training set whilst the
data until 2023-12-31 is put into the test set. The noise variance is set to σ2 = 2.252.

The PNW precipication data consists of daily precipication data from 1949 to 1950 across 167 50×50
km regions in the Pacific Northwest. The goal is to find the region with the highest precipitation
for any given day. The training data consists of the measurements made prior to 1980 and the test
data consists of the measurements between 1980 and 1994. The original data is stated to be given in
mm/day however the data seems to be off by a factor of 10. We rescale the data to a log-scale using
log(·/10 + 0.1), similar to Krause et al. (2008). The noise variance is set to σ2 = 0.412.

In the Intel experiment, we removed one outlier seed. All methods had a final cumulative regret around
6000°C, note that the average for the worst performing model across the other seeds was ≈ 150°C.
The outlier is shown Fig. 7. We can see that one of the sensors display very high temperatures
compared to all other sensors, which is why all methods performed poorly on this seed. It should
be noted that many of the sensors in the Intel data logged degrees above 100°C after a certain time -
likely due to sensor failure rather boiling temperatures in an office environment. Also note that these
days were excluded from both our training and test data. The outlier could be an indication that this
particular sensor was starting to fail earlier than others.

0 10 20 30 40

22.5

25.0

27.5

30.0

32.5

35.0

37.5
2004-03-16 (5): 23

Figure 7: Removed sample from the test data in the Intel experiment. One of the sensors display very
high temperatures.

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide some additional experimental results.

First, we include the mean number of priors in Pt for all experiments in Fig. 8. Similarly, we
include the average entropy of the hyperposterior for all experiments in Fig. 9. For the lengthscale,
subspace, PeMS and PNW precipication experiments, hardly any priors are eliminated. In contrast,
the hyperposterior entropy concentrates rapidly across all experiments with the subspace and PNW
precipication having the most and least concentrated hyperposterior.

We include the full set of confusion matrices for the lengthscale and subspace experiments in
Fig. 10. In the lengthscale experiments, we observe that PE-GP-UCB and -TS oversample the
shortest lengthscale. This is similar to the kernel experiment where the Matérn 3/2 kernel was also
oversampled. However, we see that HP-GP-TS and MAP GP-TS do not suffer from this optimistic
bias. In the subspace experiment, HP- and MAP GP-TS have an accuracy of around 96% where as
PE-GP-TS and -UCB have accuracies 30% and 36% respectively. The priors are equivalent up to
coordinate permutations and are therefore difficult. The PE-methods do not oversample any specific
prior but commit to much time to exploring along the irrelevant dimensions.

In Tables 1 and 2, the total regret for the lengthscale and subspace scaling experiments are shown.
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Figure 8: Mean number of priors remaining in Pt over time for PE-GP-UCB and -TS.
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Figure 9: Average entropy in the hyperposterior Pt over time for HP- and MAP GP-TS. The dashed
reference values correspond to entropies of discrete distributions with prob. q on one choice and prob.
1−q

|P |−1 on the other |P | − 1 choices.

In Fig. 11, we visualize the median cumulative regret on the real-world data experiments. Similarly,
in Fig. 12, we show further quantiles of the final cumulative regret. MAP and HP-GP-TS exhibit
similar median regret across the experiments but MAP GP-TS has a larger variance and tail values.

Table 1: Average total regret and ±1 standard error for the lengthscale experiment as |P | increases.

Algorithm Lengthscales, |P |
8 16 32 64 128

MAP GP-TS 30.2 ± 1.2 32.4 ± 2.5 32.5 ± 2.1 28.7 ± 1.1 30.8 ± 1.9
HP-GP-TS 31.4 ± 1.0 31.7 ± 0.9 30.8 ± 0.8 30.7 ± 1.0 31.0 ± 1.4
PE-GP-TS 61.8 ± 0.5 61.3 ± 0.5 62.2 ± 0.5 62.4 ± 0.4 64.3 ± 0.4

PE-GP-UCB 114.2 ± 0.6 114.8 ± 0.6 115.5 ± 0.6 114.5 ± 0.6 114.8 ± 0.6
Oracle GP-TS 28.1 ± 0.8 26.4 ± 0.8 27.3 ± 0.8 26.5 ± 0.7 25.7 ± 0.7

Oracle GP-UCB 48.3 ± 1.2 46.9 ± 1.1 48.4 ± 1.1 46.5 ± 1.0 45.6 ± 1.0
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(a) Kernel experiment
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(b) Lengthscale experiment

Su
b1

Su
b2

Su
b3

Su
b4

Su
b5

A
cc

.

Selected priors

Sub1

Sub2

Sub3

Sub4

Sub5

Acc.

T
ru

e
p
ri

o
rs

95.9 0.9 1.3 0.9 0.9 95.9

0.9 96.0 0.9 1.1 1.0 96.0

0.8 1.0 96.7 0.8 0.8 96.7

0.8 0.8 1.0 96.5 0.9 96.5

1.2 1.1 0.9 0.7 96.0 96.0

96.3 95.8 96.6 96.1 96.3 96.2

HP-GP-TS

Su
b1

Su
b2

Su
b3

Su
b4

Su
b5

A
cc

.

Selected priors

95.4 1.4 1.7 0.9 0.6 95.4

1.1 96.3 1.1 1.1 0.5 96.3

2.1 0.6 95.9 0.5 0.9 95.9

0.9 0.5 0.8 96.9 0.8 96.9

1.6 0.7 0.6 0.5 96.6 96.6

94.3 96.5 96.5 96.7 97.0 96.2

MAP GP-TS

Su
b1

Su
b2

Su
b3

Su
b4

Su
b5

A
cc

.

Selected priors

30.2 17.6 17.3 17.2 17.7 30.2

17.0 30.4 17.9 17.2 17.5 30.4

17.2 16.6 30.9 17.3 18.0 30.9

17.6 17.5 17.5 30.1 17.2 30.1

18.3 17.0 17.4 17.6 29.7 29.7

30.4 28.8 35.0 28.2 28.9 30.3

PE-GP-TS

Su
b1

Su
b2

Su
b3

Su
b4

Su
b5

A
cc

.

Selected priors

38.2 15.8 14.2 15.0 16.8 38.2

14.0 34.6 17.6 16.5 17.2 34.6

17.7 15.2 36.0 16.4 14.7 36.0

15.6 16.0 17.2 35.1 16.1 35.1

16.8 16.5 14.9 17.8 34.0 34.0

37.4 33.3 40.8 32.5 33.6 35.6

PE-GP-UCB

0

20

40

60

80

100

(c) Subspace experiment

Figure 10: Confusion matrices for the true prior p∗ and pt across all time steps of the synthetic
experiments.

Table 2: Average total regret and ±1 standard error for the subspace experiment as |P | increases.

Algorithm Subspaces, |P |
5 8 12 16

MAP GP-TS 87.2 ± 1.0 89.9 ± 1.1 89.1 ± 0.9 90.9 ± 1.2
HP-GP-TS 88.3 ± 0.9 88.8 ± 0.9 89.5 ± 0.9 90.8 ± 0.9
PE-GP-TS 177.1 ± 1.4 269.5 ± 1.9 344.7 ± 2.3 396.9 ± 2.5

PE-GP-UCB 389.0 ± 1.5 526.0 ± 1.8 622.4 ± 2.3 688.0 ± 2.7
Oracle GP-TS 86.0 ± 1.0 84.1 ± 0.9 84.6 ± 1.0 84.8 ± 1.0

Oracle GP-UCB 217.3 ± 1.0 218.2 ± 1.0 218.6 ± 1.0 218.9 ± 0.9
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Figure 11: Median cumulative regret on Intel temperature data (top), PeMS speed data (middle) and
PNW precipication data (bottom). Errorbars correspond to first and last decile.
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Figure 12: Quantiles of the final cumulative regret on the real-world data experiments. The median is
shown with a black line. The whiskers correspond to the 5th and 95th percentile and the lower and
upper edges of the boxes show the first and third quantile.
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