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Abstract

With the increasing acquisition of datasets over
time, we now have access to precise and varied
descriptions of the world, encompassing a broad
range of phenomena. These datasets can be seen
as observations from an unknown causal gener-
ative processes, commonly described by Struc-
tural Causal Models (SCMs). Recovering SCMs
from observations poses formidable challenges,
and often require us to learn a specific genera-
tive model for each dataset. In this work, we
propose to learn a single model capable of in-
ferring the SCMs in a zero-shot manner. Rather
than learning a specific SCM for each dataset, we
enable the Fixed-Point Approach (FiP) (Scetbon
et al., 2024) to infer the generative SCMs condi-
tionally on their empirical representations. As a
by-product, our approach can perform zero-shot
generation of new dataset samples and intervened
samples. We demonstrate via experiments that
our amortized procedure achieves performances
on par with SoTA methods trained specifically
for each dataset on both in and out-of-distribution
problems. To the best of our knowledge, this is
the first time that SCMs are inferred in a zero-
shot manner from observations, paving the way
for a paradigmatic shift towards the assimilation
of causal knowledge across datasets.

1. Introduction
Learning the causal generative process from observations is
a fundamental problem in several scientific domains (Sachs
et al., 2005; Foster et al., 2011; Xie et al., 2012), as it offers a
comprehensive understanding of the data generation process,
and allows for simulating the effect of controlled experi-
ments/interventions. With a learned model of the generative
process, one could even accelerate scientific discoveries by
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reliably predicting the effects of unseen interventions, elim-
inating the need for laboratory experiments (Ke et al., 2023;
Zhang et al., 2024). Further, understanding the causal mech-
anisms behind the data generation process helps in robust
representation learning as it provides a principled solution to
tackle out-of-distribution (OOD) generalization (Arjovsky
et al., 2019; Zhang et al., 2020; Schölkopf et al., 2021).

A popular approach for modeling causal processes is the
structural causal model (SCM) framework (Peters et al.,
2017) where causal mechanisms are modeled via structured
functional relationships, and causal structures are given by
directed acyclic graphs (DAGs). Since in several practical
applications we only have access to observational data, the
task of recovering the generative SCM from observations
is an important problem in causality (Pearl, 2009). Solv-
ing this inverse problem is challenging as both the graph
and the functional relationships modeling the causal mecha-
nisms are unknown a priori. Several works have focused on
the graph recovery problem by approximating the discrete
search space of DAGs (Chickering, 2002; Peters et al., 2014;
Deleu et al., 2022), or using continuous optimization ob-
jectives (Zheng et al., 2018; Lachapelle et al., 2019; Lippe
et al., 2021). Another line of work has studied the recovery
of the functional relationships from data, often under struc-
tural assumptions like known causal graphs or topological
orders, using maximum likelihood estimation (MLE) inde-
pendently per node (Blöbaum et al., 2022), autoregressive
flows to model SCMs (Khemakhem et al., 2021; Geffner
et al., 2022; Javaloy et al., 2023) , or transformers to model
SCMs as fixed-point (FiP) problems (Scetbon et al., 2024).

Despite these advances, a major limitation remains: each
new dataset of observations requires training a specific
model, which prevents sharing of causal knowledge across
datasets. This can be alleviated via amortized learning (Gor-
don et al., 2018; Amos, 2022) as it allows knowledge shar-
ing across datasets through a supervised training objective.
Rather than optimizing the parameters of a specific model
for each dataset, amortized methods aim at training a single
model that learns to predict the solution to various instances
of the same optimization problem by exploiting their shared
structure. Once trained, such methods enables zero-shot
inference (without updating parameters) to new problems at
test time, a first step towards developing foundation models
for causal reasoning. Recent works have proposed tech-
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Zero-Shot Learning of Causal Models

niques for amortized causal structure learning (Lorch et al.,
2022; Ke et al., 2022), average treatment effect (ATE) es-
timation (Nilforoshan et al., 2023; Zhang et al., 2023), etc.
However, none of these works have yet amortized the learn-
ing of the functional relationships to directly infer the SCMs.

Contributions. In this work, we introduce a conditional
version of FiP (Scetbon et al., 2024), termed Cond-FiP, that
zero-shot predicts the functional mechanisms of additive
noise SCMs. Our contributions are summarized below.

• We propose a novel framework that enables amor-
tized learning of causal mechanisms across different
instances from the functional class of SCMs.

– To achieve this, we first propose to amortize the
learning of an encoder model that aims at infer-
ring the noise from observational data and causal
structures, and use its latent representation as em-
beddings of datasets.

– Then, to infer causal mechanism, we introduce
a novel extension of FiP, termed Cond-FiP, that
conditions the fixed-point process on dataset em-
beddings obtained by our encoder.

• Given a dataset and its causal structure, our approach
enables zero-shot generation of new dataset samples,
and simulation of intervened ones as well.

• We show empirically that Cond-FiP achieves simi-
lar performances as the state-of-the-art (SOTA) ap-
proaches trained from scratch for each dataset on both
in and out-of-distribution (OOD) problems. Further,
Cond-FiP obtains better results than baselines in scare
data regimes, due to its amortized training procedure.

2. Related Works
Amortized Causal Learning. There is an increasing em-
phasis on developing amortized training methods in causal-
ity research. The primary benefit with these methods is their
ability to incorporate information from a variety of datasets,
and learn general algorithms that can infer infer causal
knowledge from observations in a zero-shot manner. Lorch
et al. (2022) and Ke et al. (2022) were the earliest works to
develop amortized structure learning methods, where they
propose transformer-based architectures to integrate sam-
ples from multiple datasets. They sample datasets from syn-
thetic data generators during training, which enables them
to use supervised objectives for structure learning. This also
connects with the recent literature on in-context learning
of function classes using transformers (Müller et al., 2021;
Akyürek et al., 2022; Garg et al., 2022; Von Oswald et al.,
2023). These methods were improved by Wu et al. (2024)
for OOD generalization, and applied for the challenging task
of recovering gene regulatory networks (Ke et al., 2023).

Further, recent works have developed amortized techniques
for ATE estimation (Nilforoshan et al., 2023; Zhang et al.,
2023), model selection for causal discovery (Gupta et al.,
2023), partial causal discovery (topological order) (Scetbon
et al., 2024), etc. In this work, we tackle the novel task of
amortized learning to infer the causal mechanisms of SCMs.

Autoregressive Causal Learning. While a vast majority of
the literature on causal discovery concerns structure learn-
ing (Chickering, 2002; Peters et al., 2014; Zheng et al.,
2018), recent works on causal autoregressive flows (Khe-
makhem et al., 2021; Javaloy et al., 2023) focus on SOTA
generative modeling techniques for learning the causal gen-
erative processes induced by SCMs. Khemakhem et al.
(2021) proved a novel connection between SCMs and au-
toregressive flows, as the mapping from noise variables to
observable variables in SCMs is a triangular map given the
topological order of the causal graph. While their work
restricted the functional relationships to additive and affine
flows, this was extended by Javaloy et al. (2023) to more
flexible triangular monotonic increasing maps. More re-
cently, Scetbon et al. (2024) proposed to directly model
SCMs, viewed as fixed-point problems on the ordered nodes,
using transformer-based architectures. While these methods
enable efficient learning of SCMs and their generative pro-
cesses, they all require to train a specific generative model
per dataset. In contrast, we present a novel extension of
FiP (Scetbon et al., 2024) that allows amortized learning of
functional relationships across different instances from the
functional class of SCMs.

3. Amortized Causal Learning: Setup &
Background

Structural Causal Models. An SCM defines the causal
generative process of a set of d endogenous (causal) random
variables V = {X1, · · · , Xd}, where each causal variable
Xi is defined as a function of a subset of other causal vari-
ables (V \ {Xi}) and an exogenous noise variable Ni:

Xi = Fi(PA(Xi), Ni) s.t. PA(Xi) ⊂ V , Xi ̸∈ PA(Xi)
(1)

Hence, an SCM describes the data-generation process of
X := [X1, · · · , Xd] ∼ PX from the noise variables N :=
[N1, · · · , Nd] ∼ PN via the function F := [F1, · · · , Fd],
and a graph G ∈ {0, 1}d×d indicating the parents of each
variable Xi, that is [G]i,j := 1 if Xj ∈ PA(Xi). G is as-
sumed to be a directed and acyclic graph (DAG), and SCMs
to be Markovian (independent noise variables), denoted as
S(PN ,G,F )

In addition, we only consider additive noise models (ANM),
which are SCMs of the form Xi = Fi(PA(Xi)) +Ni.
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Figure 1. Sketch of the approach proposed in this work. Given a dataset of observations DX and a causal graph G obtained from an
unkown SCM S(PN ,G,F ), the encoder produces a dataset embedding µ(DX ,G), which serves as a condition to instantiate Cond-FiP.
Then for any point z ∈ Rd, T (z, DX ,G) aims at replicating the functional mechanism F (z) of the generative SCM.

DAG-Attention Mechanism. In FiP (Scetbon et al., 2024)
the authors propose to leverage the transformer architecture
to learn SCMs from observations. By reparameterizing an
SCM according to a topological ordering induced by its
graph, the authors show that any SCM can be reformulated
as a fixed-point problem of the form X = H(X,N) where
H admits a simple triangular structure:

[JacxH(x,n)]i,j = 0, if j ≥ i

[JacnH(x,n)]i,j = 0, if i ̸= j,

where JacxH , JacnH denote the Jacobian of H w.r.t the
first and second variables respectively.

Motivated by this fixed-point reformulation, FiP considers a
transformer-based architecture to model the functional rela-
tionships of SCMs and propose a new attention mechanism
to represent DAGs in a differentiable manner. Recall that
the standard attention matrix is defined as:

AM (Q,K) =
exp((QKT −M)/

√
dh)

exp((QKT −M)/
√
dh) 1d

(2)

where Q,K ∈ Rd×dh denote the keys and queries for a
single attention head, and M ∈ {0,+∞}d×d is a (poten-
tial) mask. When M is chosen to be a triangular mask,
the attention mechanism (2) enables to parameterize the
effects of previous nodes on the current one However, the
normalization inherent to the softmax operator in standard
attention mechanisms prevents effective modeling of root
nodes, which should not be influenced by any other node in
the graph. To alleviate this issue, FiP proposes to consider
the following formulation instead:

DAM (Q,K) =
exp((QKT −M)/

√
dh)

V
(
exp((QKT −M)/

√
dh) 1d

) (3)

where Vi(v) = vi if vi ≥ 1, else Vi(v) = 1 for any v ∈ Rd.
While softmax forces the coefficients along each row of the
attention matrix to sum to one, the attention mechanism de-
scribed in (3) allows the rows to sum in [0, 1], thus enabling
to model root nodes in attention.

Amortized Learning of SCMs. The goal of amortized
learning is to learn (meta-learning) to predict the solution of
similar instances of the same optimization problem (Gordon
et al., 2018). More formally, given some random inputs
I ∼ PI and an objective function L(θ, I), the goal of amor-
tized learning is to learn a parameterized model Mϕ s.t.

Mϕ(I) ≃ θ∗(I) := argminθ∈ΘL(θ, I)

To train such a model, amortized learning requires to have
access to various pairs (I, θ∗(I)) and optimize the parame-
ters ϕ of M in a supervised manner (Garg et al., 2022).

In our work, we aim to develop amortized learning tech-
niques to predict functional mechanisms from datasets (and
causal graphs). More formally, in our setting, I := (DX,G)
and θ∗(I) := F where F is the true SCM generating DX.
Hence, our goal is to learn a single model capable of zero-
shot inference of generative SCMs at test time.

4. Methodology: Conditional FiP
In this section, we introduce the proposed approach, Cond-
FiP, composed of two key components: (1) a dataset en-
coder that generates dataset embeddings based on obser-
vations and causal graphs, and (2) a conditional variant of
FiP (Scetbon et al., 2024), designed for zero-shot inference
of the SCMs of datasets when conditioned on their embed-
dings produced by the encoder. We first present our dataset
encoder, then introduce cond-FiP, and conclude with details
on generating new observational and interventional samples.
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4.1. Dataset Encoder

The objective of this section is to develop a method capable
of producing efficient latent representations of datasets. To
achieve this, we propose to train an encoder that predicts
the noise samples from their associated observations given
the causal structures using amortized learning. The latent
representations obtained by our encoder will be used later
as dataset embeddings to infer SCMs in a zero-shot manner.

Training Setting. We consider the amortized setting where
at training time, we have access to empirical representations
of K SCMs

(
S(P(k)

N ,G(k),F (k))
)K
k=1

that have been sam-
pled independently according to a distribution of SCMs
S(P(k)

N ,G(k),F (k)) ∼ PS . These empirical representa-
tions, denoted (D

(k)
X ,G(k))Kk=1 respectively, contain each

n observations D
(k)
X := [X

(k)
1 , . . . ,X

(k)
n ]T ∈ Rn×d, and

the causal graph G(k) ∈ {0, 1}d×d. At training time, we
also require to have access to the associated noise samples
D

(k)
N := [N

(k)
1 , . . . ,N

(k)
n ]T ∈ Rn×d, which play the role

of the target variable in our supervised task. For the sake of
clarity, we will omit the dependence on k in our notation and
assume access to the full distribution of SCMs PS . Our goal
here is to learn a model that given a dataset of observations
DX and the causal graph associated G, recovers the true
noise DN from which the observations have been generated.
By solving this prediction task, we expect the trained model
to provide efficient dataset embeddings as detailed below.

Encoder Architecture. Following (Lorch et al., 2021;
Scetbon et al., 2024), we propose to encode datasets us-
ing a transformer-based architecture that alternatively at-
tends on both the sample and node dimensions of the input.
More specifically, after having embedded the dataset DX

into a higher dimensional space using a linear operation
L(DX) ∈ Rn×d×dh where dh is the hidden dimension,
the encoder E alternates the application of transformer
blocks, consisting of a self-attention block followed by
an MLP block (Vaswani et al., 2017), where the attention
mechanism is applied either across the samples n or the
nodes d. When attending over samples, the encoder uses
standard self-attention as defined in (2) without masking
(M = {0}n×n), however, when the model attends over the
nodes, we leverage the knowledge of the causal graph to
mask the undesirable relationships between the nodes, that
is we set M = +∞ × (1 − G), with the convention that
0× (+∞) = 0, in the standard attention (2). Finally, the ob-
tained embeddings E(L(DX),G) ∈ Rn×d×dh are passed
to a prediction network H : Rn×d×dh → Rn×d defined
as 2-hidden layers MLP which brings back the encoded
datasets to their original space.

Training Procedure. To infer the noise samples in a zero-
shot manner, we propose to minimize the mean squared
error (MSE) of predicting the target noises DN from the

input (DX ,G) over the distribution of SCMs PS available
during training:

ES∼PS ||DN −H ◦ E(L(DX),G)||22 .

Further, as we restrict ourselves to the case of ANMs, we
can equivalently reformulate our training objective in order
to predict the functional relationships rather than the noise
samples. Indeed, recall that for an ANM S(PN ,G,F ), we
have by definition that F (X) = X − N . Therefore, by
denoting the new targets as F (DX) := DX −DN , we pro-
pose instead to train our encoder to predict the evaluations
of the functional relationships over the SCM distribution by
minimizing:

ES∼PS ||F (DX)−H ◦ E(L(DX),G)||22 .

Please check Appendix A.1 for more details on the encoder
training procedure and justification for why recoering noise
is equivalent to learning the inverse SCM.

Inference. Given a new dataset DX and its causal graph G,
the proposed encoder is able to both provide an embedding
E(L(DX),G) ∈ Rn×d×dh , and evaluate the functional
mechanisms F̂ (DX) := H ◦ E(L(DX),G). However,
this model alone is insufficient for generating new data,
whether observational or interventional. This task will be
addressed by our conditional decoder, which is detailed in
the following section.

On the Knowledge of Graphs. Prior works on amortized
causal learning (Lorch et al., 2022; Ke et al., 2022) proposed
to learn to predict the causal graphs using only observations
DX on synthetically generated datasets. These methods
justify our setup where the true graphs are provided as part
of the input context to the model, as we can use them to infer
the causal graphs in a zero-shot manner from observations
if the true graphs information was not available.

4.2. Cond-FiP: Conditional Fixed-Point Decoder

In this section, we present our proposed approach for zero-
shot infernce the functional mechanisms of SCMs via amor-
tized training using synthetically generated datasets. To do
so, we propose to extend the formulation of FiP with dataset
embeddings E(L(DX),G) obtained by our trained encoder
as conditions to infer the correct functional mechanisms of
the associated SCMs. See Figure 1 for a sketch of Cond-FiP.

Training Setting. Analogous to the encoder training setup,
we assume that we have access to a distribution of SCMs
S(PN ,G,F ) ∼ PS at training time, from which we can ex-
tract empirical representations of the form (DX ,G) contain-
ing the observations and the associated causal graphs respec-
tively. Here, we aim at learning a single model T that can do
zero-shot inference of the functional mechanisms of an SCM

4
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Zero-Shot Learning of Causal Models

given its empirical representation. Formally, we aim at train-
ing T such that for given any dataset DX and its associated
causal graph G obtained from an SCM S(PN ,G,F ) ∼ PS ,
the conditional function z ∈ Rd → T (z, DX ,G) ∈ Rd

induced by the model approximates the true functional re-
lationship F : z ∈ Rd → F (z) ∈ Rd. We achieve this by
enabling FiP to be conditioned on dataset embeddings from
our dataset encoder, detailed below.

Decoder Architecture. The design of our decoder is based
on the FiP architecture for fixed-point SCM learning, with
two major differences: (1) we use the dataset embeddings
obtained from our encoder as a high dimensional codebook
to embed the nodes, and (2) we leverage adaptive layer norm
operators (Peebles & Xie, 2023) in the transformer blocks
of FiP to enable conditional attention mechanisms.

Conditional Embedding. The key change of our decoder
compared to the original FiP is in the embedding of the input.
FiP proposes to embed a data point z := [z1, . . . , zd] ∈ Rd

into a high dimensional space using a learnable codebook
C := [C1, . . . , Cd]

T ∈ Rd×dh and positional embedding
P := [P1, . . . , Pd]

T ∈ Rd×dh , from which they define:

zemb := [z1 ∗ C1, . . . , zd ∗ Cd]
T + P ∈ Rd×dh .

By doing so, (Scetbon et al., 2024) ensures that the embed-
ded samples admit the same causal structure as the original
samples. However, this embedding layer is only adapted if
the samples considered are all drawn from the same obser-
vational distribution, as the representation of the nodes, that
is given by the codebook C, is fixed. In order to generalize
their embedding strategy to the case where multiple SCMs
are considered, we consider conditional codebooks and posi-
tional embeddings adapted for each dataset. Formally, given
a dataset DX and a causal graph G, we propose to define
the conditional codebook and positional embedding as

C(DX ,G) := µ(DX ,G)WC

P (DX ,G) := µ(DX ,G)WP

where µ(DX ,G) := MaxPool(E(L(DX),G)) ∈ Rd×dh

is obtained by max-pooling w.r.t the sample dimension the
dataset embedding E(L(DX),G) ∈ Rn×d×dh produced by
our trained encoder, and WC ,WP ∈ Rdh×dh are learnable
parameters. Then we propose to embed any point z ∈ Rd

conditionally on (DX ,G) by considering:

zemb :=[z1 ∗ C1(DX ,G), . . . , zd ∗ Cd(DX ,G)]T

+ P (DX ,G) ∈ Rd×dh

Adaptive Transfomer Block. Once an input z ∈ Rd has
been embedded into a higher dimensional space zemb ∈
Rd×dh , FiP proposes to model SCMs by simulating the
reconstruction of the data from noise. Starting from n0 ∈

Rd×dh a learnable parameter, they propose to update the
current noise L ≥ 1 times by computing:

nℓ+1 = h(DAM (nℓ, zemb)zemb + nℓ)

where h refers to the MLP block, and for clarity, we omit
both the layer’s dependence on its parameters and the in-
clusion of layer normalization in the notation. Note that
here the authors consider their DAG-Attention (3) mecha-
nism in order to modelize correctly the root nodes of the
SCM. To obtain a conditional formulation of their com-
putational scheme, we propose first to replace the starting
noise n0 by a conditional one w.r.t. (DX ,G) and defined as
n0 := µ(DX ,G)Wn0

∈ Rd×dh , where Wn0
∈ Rdh×dh is

a learnable parameter. Additionally, we propose to add adap-
tive layer normalization operators (Peebles & Xie, 2023) to
both attention and MLP blocks, where each scale or shift is
obtained by applying a 1 hidden-layer MLP to the condition,
which in our case is µ(DX ,G).

Projection. To project back the latent representation of z
obtained from previous stages, that is nL ∈ Rd×dh , we pro-
pose to simply use a linear operation to get ẑ = nLWout ∈
Rd, where Wout ∈ Rdh is learnable. In the following, we
denote the overall architecture T , which given an input
z ∈ Rd and some condition (DX ,G) outputs ẑ, that is
T (z, DX ,G) = ẑ. Note that, for simplicity, we omit the
dependence of ẑ on (DX ,G) in the notation.

Training Procedure. Recall that our goal is zero-shot in-
ference of the functional mechanisms of SCMs given their
empirical representations. Therefore, to train our model
T , we propose to minimize the reconstruction error of
the true functional mechanisms estimated by our model
over the distribution of SCMs PS . More precisely, for any
SCM S(PN ,G,F ) ∼ PS and its empirical representation
(DX ,G), we aim at minimizing

Ez∼PX
∥T (z, DX ,G)− F (z)∥22 (4)

where z ∼ PX is chosen independent of the random dataset
DX . Therefore, when integrating over the distribution of
SCMs, we obtain the following optimization problem:

ES∼PSEz∼PX
∥T (z, DX ,G)− F (z)∥22 .

To compute (4), we propose to sample n independent sam-
ples X ′

1, . . . ,X
′
n from PX , leading to a new dataset DX′

independent of DX , from which we obtain the following
optimization problem:

ES∼PS∥T (DX′ , DX ,G)− F (DX′)∥22 .

Therefore our training objective aims at learning T such that
for any given empirical representation (DX ,G) of an un-
known SCM S(PN ,G,F ) ∼ PS , the conditional function
induced by our model, that is z → T (z, DX ,G), is close to

5
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the true functional mechanism F in the MSE sense. In the
following, we explain in more detail how to use cond-FiP
for causal generation and inference tasks.

Remark on ANM assumption. Though our method re-
lies on the ANM assumption for encoder training (Ap-
pendix A.1), we do not need this assumption for decoder
training! An interesting future work would be to consider
more general dataset encoding to get rid of this assumption.

4.3. Inference with Cond-FiP

We provide a summary of inference procedure with Cond-
FiP, please check Appendix A.2 for more details.

Observational Generation. Cond-FiP is capable of gen-
erating new data samples: given a random vector noise
n ∼ PN , we can estimate the observational sample asso-
ciated according to an unknown SCM S(PN ,G,F ) ∼ PS
as long as we have access to its empirical representation
(DX ,G). Formally, starting from n0 = n, we infer the
associated observation by computing for ℓ = 1, . . . , d:

nℓ = T (nℓ−1, DX ,G) + n . (5)

After (at most) d iterations, nd corresponds to the ob-
servational sample associated to the original noise n ac-
cording to our conditional SCM T (·, DX ,G). To sample
noise from PN , we leverage cond-FiP that can estimates
noise samples under the ANM assumption by computing
D̂N := DX − T (DX , E(L(DX),G). From these esti-
mated noise samples, we can efficiently estimate the joint
distribution of the noise by computing the inverse cdfs of
the marginals as proposed in FiP.

Interventional Generation. Cond-FiP also enables the
estimation of interventions given an empirical representa-
tion (DX ,G) of an unkown SCM S(PN ,G,F ) ∼ PS . To
achieve this, we start from a noise sample n, and we gener-
ate the associated intervened sample ẑdo by directly modify-
ing the conditional SCM provided by Cond-FiP. More specif-
ically, we modify in place the SCM obtained by Cond-FiP,
leading to its interventional version T do(·, DX ,G). Now,
generating an intervened sample can be done by applying
the loop defined in (5), starting from n and using the inter-
vened SCM T do(·, DX ,G) rather than the original one.

5. Experiments
5.1. Experimental Setup

Data Generation Process. We use the synthetic data gener-
ation procedure proposed by Lorch et al. (2022) to generate
SCMs in our empirical study, as it offers a wide variety of
SCMs, making it ideal for amortized training. We have the
option to sample graphs from various schemes and noise
variables from diverse distributions. Further, we can con-

trol the complexity of causal relationships: either we set
them to be linear (LIN) functions randomly sampled, or use
random fourier features (RFF) for generating random non-
linear causal relationships. We construct two distribution of
SCMs, PIN, and POUT, which vary based on the choice for
sampling causal graphs, noise variables, and causal relation-
ships. Please refer to Appendix B.1 for more details.

Training Datasets. We randomly sample SCMs from the
PIN distribution (≃ 4e6 SCMs), and we restrict the total
nodes to be d = 20 nodes. From each of these SCMs,
we extract the causal graph G and generate ntrain = 400
observations to obtain DX . This procedure is used for gen-
erating the training datasets for both amortized training of
the dataset encoder and Cond-FiP.

Test Datasets. We evaluate the model for both in-
distribution and out-of-distribution generalization by sam-
pling datasets from PIN and POUT respectively. We split our
collection of test datasets into the four following categories.
Our test datasets are categorized as follows: LIN IN and
RFF IN where the SCM are sampled from PIN with linear
and non-linear functional relationships respectively. Simi-
larly, we define LIN OUT and RFF OUT where the SCMs
are sampled from POUT instead.

For each category, we vary total nodes d ∈ [10, 20, 50, 100]
and sample for each dimension d either 6 or 9 SCMs, based
on the total possible schemes for sampling the causal graphs,
from which we generate ntest = 800 observational samples.
Hence, we have a total of 120 test datasets, allowing for a
comprehensive evaluation of methods. An interesting aspect
of our test setup is that we evaluate the model’s ability to
generalize to larger graphs (d = 50, d = 100) despite the
train datasets containing only graphs with d = 20 nodes.

Further, we generate test datasets using a different synthetic
data simulator, C-Suite (Geffner et al., 2022), which consists
of 9 different configurations for sampling SCMs.

Model and Training Configuration. For both the dataset
encoder and cond-FiP, we set the embedding dimension to
dh = 256 and the hidden dimension of MLP blocks to 512.
Both of our transformer-based models contains 4 attention
layers and each attention consists of 8 attention heads. The
models were trained for a total of 10k epochs with the Adam
optimizer (Paszke et al., 2017), where we used a learning
rate of 1e− 4 and a weight decay of 5e− 9. We also use the
EMA implementation of (Karras et al., 2023) to train our
models. Each epoch contains ≃ 400 randomly generated
datasets from the distribution PIN, which are processed with
a batch size of 2 on a single L40 GPU with 48GB memory.

5.2. Benchmark of Cond-FiP

Baselines. We compare Cond-FiP against FiP (Scetbon
et al., 2024), DECI (Geffner et al., 2022), and
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DoWhy DECI FiP Cond-FiP

0.2

0.4

0.6

(a) Noise Prediction

DoWhy DECI FiP Cond-FiP

0.2

0.4

0.6

0.8

(b) Sample Generation

DoWhy DECI FiP Cond-FiP

0.2

0.4

0.6

0.8

(c) Interventional Generation

Figure 2. We compare Cond-FiP against the baselines for the different evaluation tasks on the CSuite benchmark. The y-axis denotes the
RMSE for the respective tasks across the 9 datasets.

Method Total
Nodes

LIN
IN

RFF
IN

LIN
OUT

RFF
OUT

DoWhy 20 0.03 0.15 0.03 0.23
DECI 20 0.10 0.21 0.08 0.23
FiP 20 0.04 0.12 0.05 0.15
Cond-FiP 20 0.06 0.09 0.07 0.12

DoWhy 50 0.03 0.18 0.03 0.29
DECI 50 0.09 0.24 0.07 0.29
FiP 50 0.04 0.14 0.04 0.23
Cond-FiP 50 0.06 0.10 0.07 0.14

DoWhy 100 0.03 0.20 0.03 0.31
DECI 100 0.08 0.26 0.07 0.30
FiP 100 0.04 0.16 0.04 0.24
Cond-FiP 100 0.05 0.10 0.07 0.16

Table 1. Results for Noise Prediction. We benchmark Cond-FiP
for the task of predicting noise variables from the input observa-
tions. Each cell reports the mean RMSE over the multiple test
datasets for each scenario. Shaded rows denote the case where
the graph size is larger than the train graph sizes (d = 20) for
Cond-FiP. Please refer to Table 4 for results with standard error.

DoWhy (Blöbaum et al., 2022). We evaluate the zero-shot
generalization capabilities of our amortized approach when
compared to non-amortized baselines trained from scratch
on each test dataset. For a fair comparison with our method,
we use ntrain = 400 samples to train baselines, and evaluate
the performance on the remaining 400 test samples. Also,
we provide the true graph G to all the baselines for con-
sistency as Cond-FiP requires true graphs. Finally, we use
400 sample to obtain the dataset embedding, and evaluate
Cond-FiP on the remaining ones.

Note that the most important comparison is with the baseline
FiP, as Cond-FiP is the amortized version of it. Also, we
don’t report detailed comparisons with CausalNF (Javaloy
et al., 2023), as it didn’t provide good results as compared
to other baselines (details in Appendix G).

Evaluation Tasks. We evaluate the performance of all the
methods on the following three tasks.

• Noise Prediction: Given the observations DX and the
true graph G, infer the noise variables D̂N

Method Total
Nodes

LIN
IN

RFF
IN

LIN
OUT

RFF
OUT

DoWhy 20 0.06 0.27 0.05 0.39
DECI 20 0.16 0.39 0.13 0.44
FiP 20 0.08 0.23 0.08 0.27
Cond-FiP 20 0.05 0.24 0.07 0.30

DoWhy 50 0.08 0.35 0.06 0.54
DECI 50 0.15 0.46 0.13 0.67
FiP 50 0.09 0.26 0.08 0.48
Cond-FiP 50 0.08 0.25 0.07 0.48

DoWhy 100 0.06 0.33 0.06 0.63
DECI 100 0.14 0.50 0.14 0.71
FiP 100 0.08 0.3 0.09 0.55
Cond-FiP 100 0.07 0.29 0.09 0.57

Table 2. Results for Sample Generation. We benchmark Cond-
FiP for the task of generating samples from the input noise vari-
ables. Each cell reports the mean RMSE over the multiple test
datasets for each scenario. Shaded rows denote the case where
the graph size is larger than the train graph sizes (d = 20) for
Cond-FiP. Please refer to Table 5 for results with standard error.

• Sample Generation: Given the noise samples DN

and the true graph G, generate the causal variables D̂X

• Interventional Generation: Generate intervened sam-
ples from noise samples DN and the true graph G.

Metric. Let us denote a predicted & true target as Ŷ ∈
Rntest×d and Y ∈ Rntest×d. Then RMSE is computed as
1

ntest

∑ntest
i=1

√
1
d∥[Y ]i − [Ŷ ]i∥22. Note that we scale RMSE

by dimension d, which allows us to compare results across
different graph sizes.

Results on Noise Predictions. Table 1 presents the results
for the case of inferring noise from observations. Across
all the different scenarios (in/out-distribution), Cond-FiP
is competitive with the baselines that were trained from
scratch at test time. Further, Cond-FiP is able to generalize
to larger graphs (d = 50, d = 100) despite being trained for
only graphs of size d = 20. We also obtain similar findings
with the CSuite benchmark (Figure 2a), which is a different
simulator than what we used for training Cond-FiP.
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Results on Sample Generation. We now test the gener-
ative capabilities of Cond-FiP, where the models are pro-
vided with input noise variables. Table 2 presents results
for generating observational data, and shows that Cond-FiP
is competitive with the baselines across all the scenarios.
Similar to the case of noise prediction, Cond-FiP can gener-
alize to larger graphs at test time and is robust to datasets
generated from different simulators like CSuite (Figure 2b).
We also obtain similar finding a real-world Protein Sachs
dataset (Sachs et al., 2005) where we compare the distribu-
tion generated by models with the true distribution of data
according to the Maximum Mean Discrepency (Gretton
et al., 2012). Please refer to Appendix C for more details.

Results on Interventional Generation. Cond-FiP can also
simulate interventional data while being robust to distribu-
tion shifts, graph sizes (Table 3), and different simulators
(Figure 2c). This is especially interesting as we never ex-
plicitly trained Cond-FiP for interventional tasks. This pro-
vide further evidence towards Cond-FiP capturing the true
causal/functional mechanisms.

Results without True Causal Graph. Our results so far
require the knowledge of true graph (G) as part of the input
context to Cond-FiP. However, we can extend Cond-FiP
to work without access to true causal graph by using prior
works (Lorch et al., 2022; Ke et al., 2022) to first infer causal
graph in zero-shot manner. Appendix D provides results for
experiments where we do not assume the knowledge of true
graphs, and we find Cond-FiP can be augmented to zero-
shot infer the full SCMs from observations only.

Scare Data Regime. An advantage of zero-shot inference
methods is their generalization capabilities when the dataset
size becomes smaller. As the test dataset size decreases, the
performances of baselines can be severely affected since
they require training from scratch on these datasets. In con-
trast, zero-shot inference methods are less impacted as their
parameters remains unchanged at inference, and the induc-
tive bias learned during their training phase enables them to
generalize even with a smaller input context. Appendix E
provides detailed results for this case (illustration for spe-
cific setting in Figure 3), we find that Cond-FiP exhibits
superior generalization as compared to the baselines.

Ablation Study. We conduct ablations on the encoder and
the decoder to better understand the effect of the training
data on the generalization performances. We find that Cond-
FiP with encoder trained using only linear/rff data is still
competitive to the case of training on combined linear and
rff data. However, for decoder, training on combined data
is better than training with only linear/rff data. Please re-
fer to Appendix F.1 and F.2 for more details. We also test
the sensitivity of Cond-FiP to distribution shifts, compar-
ing its performance across scenarios as the severity of the
distribution shift is increased (details in Appendix F.3).

50 100 400
Test Dataset Size

0.25

0.40

0.55

0.70 DECI
FiP
Cond-FiP

Figure 3. We compare the performance (RMSE) of Cond-FiP for
interventional generation (d = 100 and RFF IN) as we reduce
the test dataset size. Cond-FiP generalizes much better than the
baselines in the low-data regime. Detailed results in Appendix E.

Method Total
Nodes

LIN
IN

RFF
IN

LIN
OUT

RFF
OUT

DoWhy 20 0.06 0.27 0.05 0.36
DECI 20 0.16 0.38 0.15 0.42
FiP 20 0.09 0.23 0.12 0.25
Cond-FiP 20 0.09 0.24 0.14 0.31

DoWhy 50 0.08 0.29 0.06 0.53
DECI 50 0.17 0.44 0.13 0.64
FiP 50 0.11 0.25 0.09 0.46
Cond-FiP 50 0.13 0.27 0.12 0.48

DoWhy 100 0.05 0.33 0.06 0.60
DECI 100 0.14 0.49 0.15 0.70
FiP 100 0.08 0.29 0.10 0.54
Cond-FiP 100 0.10 0.30 0.14 0.58

Table 3. Results for Interventional Generation. We benchmark
Cond-FiP for generating interventional data from the input noise
variables. Each cell reports the mean RMSE over the multiple test
datasets for each scenario. Shaded rows denote the case where
the graph size is larger than the train graph sizes (d = 20) for
Cond-FiP. Please refer to Table 6 for results with standard error.

6. Conclusion
In this work, we demonstrate that a single model can be
trained to infer Structural Causal Models (SCMs) in a zero-
shot manner through amortized training. Our proposed
method, Cond-FiP, not only generalizes effectively to novel
SCMs at test time but also remains robust across varying
SCM distributions. To the best of our knowledge, this is the
first approach to establish the feasibility of learning causal
generative models in a foundational manner.

While Cond-FiP generalizes to new instance problems with
larger graphs, it is still unable to improve its performances
when given larger context sizes at inference (Appendix H).
To further enhance the generalization capabilities, we would
need to scale both the model and the training data, allowing
the model to encounter more complex and diverse contexts.
Future work will focus on scaling Cond-FiP to larger prob-
lem instances and application to real-world scenarios.
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Appendix
List of Contents
The content in the Appendix has been organized as follows.

• Appendix A: Additional Details on Cond-FiP

– Appendix A.1: Details on Encoder Training
– Appendix A.2: Inference with Cond-FiP

• Appendix B: Details on Experiments with AVICI Benchmark

– Appendix B.1: Experiment Setup
– Appendix B.2: Complete Results for Cond-FiP on AVICI Benchmark

• Appendix C: Experiments on Real World Benchmark

• Appendix D: Results without True Causal Graph

• Appendix E: Evaluating Generalization of Cond-Fip in Scarce Data Regime

– Appendix E.1: Experiments with ntest = 100

– Appendix E.2: Experiments with ntest = 50

• Appendix F: Ablation Study

– Appendix F.1: Ablation Study of Encoder
– Appendix F.2: Ablation Study of Decoder
– Appendix F.3: Sensitivity to Distribution Shifts

• Appendix G: Comparing Cond-FiP with CausalNF

• Appendix H: Evaluating Generalization of Cond-Fip to Larger Sample Size
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A. Additional Details on Cond-FiP
A.1. Details on Encoder Training

We provide further details on training the encoder and show how recovering the noise is equivalent to learn the inverse
causal generative process. Recall that an SCM is an implicit generative model that, given a noise sample N, generates the
corresponding observation according to the following fixed-point equation in X

X = F (X,N)

More precisely, to generate the associated observation, one must solve the above fixed-point equation in X given the
noise N. Let us now introduce the following notation that will be instrumental for the subsequent discussion: we denote
FN(z) : z → F (z,N).

Due to the specific structure of F (determined by the DAG G associated with the SCM), the fixed-point equation mentioned
above can be efficiently solved by iteratively applying the function FN to the noise (see Eq. (5) in the manuscript). As a
direct consequence, the observation X can be expressed as a function of the noise:

X = Fgen(N)

where Fgen(N) := (FN)
◦d(N), d is the number of nodes, and ◦ denotes the composition operation. In the following we refer

to Fgen as the explicit generative model induced by the SCM.

Conversely, assuming that the mapping z → Fgen(z) is invertible, then one can express the noise as a function of the data:

N = F−1
gen (X)

Therefore, learning to recover the noise from observation is equivalent to learn the function F−1
gen , which is exactly the inverse

of the explicit generative model Fgen. It is also worth noting that under the ANM assumption (i.e. F (X,N) = f(X) + N),
Fgen is in fact always invertible and its inverse admits a simple expression which is

F−1
gen (z) = z − f(z)

Therefore, in this specific case, learning the inverse generative model F−1
gen is exactly equivalent to learning the causal

mechanism function f .

Additive Noise Model Assumption. Our method relies on the ANM assumption only for the training the encoder. This is
because we require the encoder to predict the noise from data in order to obtain embeddings, and under the ANM assumption,
the mapping from data to noise can be easily expressed as x → x− F (x) where F is the generative functional mechanism
of the generative ANM. However, if we were to consider general SCMs, i.e. of the form X = F (X,N), we would need
access to the mapping x → F−1(x, ·)(x) (assuming this function is invertible), which for general functions is not tractable.
An interesting future work would be to consider a more general dataset encoding (using self-supervised techniques), but we
believe this is out of the scope of this work.
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A.2. Inference with Cond-FiP

Cond-FiP Model. Once Cond-FiP is trained, we have access to two trained models: (1) an encoder that given a dataset
DX and the causal graph associated G produced an embedding µ(DX,G) as defined l.277., and (2) a decoder that given an
embedding µ and a causal graph G, produces a function z ∈ Rd → T (z, µ,G) ∈ Rd.

Cond-FiP simply consists of the composition of the two models, that is given a dataset DX and the causal graph associated
G, produce a function z ∈ Rd → T (z, µ(DX,G),G) ∈ Rd, which for simplicity we denote z ∈ Rd → T (z,DX,G) ∈ Rd.
Having clarified this, we can now proceed to more detailed explanations of the inference process using Cond-FiP.

Sample Generation. Given a dataset DX and its causal graph G, we denote z → T (z,DX ,G) the function infered by
Cond-FiP. This function defines the predicted SCM obtained by our model, and we can directly use it to generate new points.
More precisely, given a noise sample n, we can generate the associated observational sample by solving the following
equation in x:

x = T (x, DX ,G) + n

To solve this fixed-point equation, we rely on the fact that G is a DAG, which enables to solve the fixed-point problem using
the following simple iterative procedure. Starting with z0 = n, we compute for ℓ = 1, . . . , d where d is the number of nodes

zℓ = T (zℓ−1, DX ,G) + n

After d iterations we obtain the following,

zd = T (zd, DX ,G) + n

Therefore, zd is the solution of the fixed-point problem above, which corresponds to the observational sample associated to
n according to our predicted SCM z → T (z,DX ,G).

Interventional Prediction. Recall that given a dataset DX and its causal graph G, z ∈ Rd → T (z,DX ,G) ∈ Rd denotes
the SCM infered by Cond-FiP. Let us also denote the coordinate-wise formulation of our SCM defined for any z ∈ Rd as
T (z,DX ,G) = [[T (z,DX ,G)]1, . . . , [T (z,DX ,G)]d], where for all i ∈ {1, . . . , d}, z ∈ Rd → [T (z,DX ,G)]i ∈ R is a
real-valued function.

In order to intervene on this predicted SCM, we simply have to modify in place the predicted function. For example, assume
that we want to perform the following intervention do(Xi) = a. Then, to obtain the intervened SCM, we define a new
function z → T do(Xi)=a(z,DX ,G) defined for any z ∈ Rd as: [T do(Xi)=a(z,DX ,G)]j := [T (z,DX ,G)]j if j ̸= i and
[T do(Xi)=a(z,DX ,G)]i := a.

Now, using this intervened SCM z → T do(Xi)=a(z,DX ,G), we can apply the exact same generation procedure as the one
introduced above to generate intervened samples according to our intervened SCM.

13
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B. Details on Experiments with AVICI Benchmark
B.1. Experiment Setup

We use the synthetic data generation procedure proposed by Lorch et al. (2022) to generate SCMs in our empirical study. It
provides access to a wide variety of SCMs, hence making it an excellent setting for amortized training.

• Graphs: We have the option to sample graphs as per the following schemes: Erods-Renyi (Erdos & Renyi, 1959), scale-
free models (Barabási & Albert, 1999), Watts-Strogatz (Watts & Strogatz, 1998), and stochastic block models (Holland
et al., 1983).

• Noise Variables: To sample noise variables, we can choose from either the gaussian or laplace distribution where
variances are sampled randomly.

• Functional Mechanisms: We can control the complexity of causal relationships: either we set them to be linear
(LIN) functions randomly sampled, or use random fourier features (RFF) for generating random non-linear causal
relationships.

We construct two distribution of SCMs PIN, and POUT, which vary based on the choice for sampling causal graphs, noise
variables, and causal relationships. The classification aids in understanding the creation of train and test datasets.

• In-Distribution (PIN): We sample causal graphs using the Erods-Renyi and scale-free models schemes. Noise variables
are sampled from the gaussian distribution, and we allow for both LIN and RFF causal relationships.

• Out-of-Distribution (POUT): Causal graphs are drawn from Watts-Strogatz and stochastic block models schemes.
Noise variables follow the laplace distribution, and both the LIN and RFF cases are used to sample functions. However,
the parameters of these distributions are sampled from a different range as compared to PIN to create a distribution shift.

We provide further details on the shift in the support of parameters for functional mechanisms below. For complete details
please refer to Table 3, Appendix in Lorch et al. (2022).

• Linear Functional Mechanism.

– In-Distribution (PIN)

* Weights: ∼ U±(1, 3), Bias ∼ U(−3, 3).
– Out-of-Distribution (POUT)

* Weights: ∼ U±(0.5, 2) ∪ U±(2, 4), Bias ∼ U(−3, 3).

• RFF Functional Mechanism.

– In-Distribution (PIN)

* Length Scale: ∼ U(7, 10), Output Scale: ∼ U(5, 8) ∪ U(8, 12), Bias ∼ U±(−3, 3).
– Out-of-Distribution (POUT):

* Length Scale: ∼ U(10, 20), Output Scale: ∼ U(8, 12) ∪ U(18, 22), Bias ∼ U±(−3, 3).
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B.2. Complete Results for Cond-FiP on AVICI Benchmark

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

DoWhy 10 0.03 (0.0) 0.13 (0.02) 0.04 (0.01) 0.11 (0.01)

DECI 10 0.09 (0.01) 0.23 (0.03) 0.12 (0.01) 0.23 (0.03)

FiP 10 0.04 (0.0) 0.09 (0.01) 0.06 (0.01) 0.08 (0.01)

Cond-FiP 10 0.06 (0.01) 0.10 (0.01) 0.07 (0.01) 0.10 (0.01)

DoWhy 20 0.03 (0.01) 0.15 (0.02) 0.03 (0.0) 0.23 (0.01)

DECI 20 0.10 (0.02) 0.21 (0.03) 0.08 (0.02) 0.23 (0.02)

FiP 20 0.04 (0.0) 0.12 (0.02) 0.05 (0.0) 0.15 (0.02)

Cond-FiP 20 0.06 (0.01) 0.09 (0.01) 0.07 (0.0) 0.12 (0.0)

DoWhy 50 0.03 (0.0) 0.18 (0.03) 0.03 (0.0) 0.29 (0.03)

DECI 50 0.09 (0.01) 0.24 (0.02) 0.07 (0.01) 0.29 (0.02)

FiP 50 0.04 (0.0) 0.14 (0.03) 0.04 (0.0) 0.23 (0.04)

Cond-FiP 50 0.06 (0.01) 0.10 (0.01) 0.07 (0.01) 0.14 (0.01)

DoWhy 100 0.03 (0.0) 0.20 (0.03) 0.03 (0.0) 0.31 (0.02)

DECI 100 0.08 (0.02) 0.26 (0.03) 0.07 (0.01) 0.30 (0.02)

FiP 100 0.04 (0.0) 0.16 (0.03) 0.04 (0.0) 0.24 (0.02)

Cond-FiP 100 0.05 (0.0) 0.10 (0.01) 0.07 (0.01) 0.16 (0.01)

Table 4. Results for Noise Prediction. We compare Cond-FiP against the baselines for the task of predicting noise variables from the
input observations. Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. Shaded rows
denote the case where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

DoWhy 10 0.05 (0.0) 0.18 (0.03) 0.06 (0.01) 0.12 (0.02)

DECI 10 0.15 (0.02) 0.33 (0.04) 0.16 (0.02) 0.27 (0.03)

FiP 10 0.07 (0.0) 0.13 (0.02) 0.08 (0.01) 0.11 (0.02)

Cond-FiP 10 0.06 (0.01) 0.14 (0.02) 0.05 (0.01) 0.08 (0.01)

DoWhy 20 0.06 (0.01) 0.27 (0.05) 0.05 (0.0) 0.39 (0.04)

DECI 20 0.16 (0.02) 0.39 (0.05) 0.13 (0.02) 0.44 (0.04)

FiP 20 0.08 (0.01) 0.23 (0.05) 0.08 (0.01) 0.27 (0.04)

Cond-FiP 20 0.05 (0.01) 0.24 (0.06) 0.07 (0.01) 0.30 (0.03)

DoWhy 50 0.08 (0.01) 0.35 (0.09) 0.06 (0.01) 0.54 (0.06)

DECI 50 0.15 (0.01) 0.46 (0.06) 0.13 (0.02) 0.67 (0.06)

FiP 50 0.09 (0.01) 0.26 (0.05) 0.08 (0.01) 0.48 (0.06)

Cond-FiP 50 0.08 (0.01) 0.25 (0.05) 0.07 (0.0) 0.48 (0.07)

DoWhy 100 0.06 (0.0) 0.33 (0.07) 0.06 (0.01) 0.63 (0.07)

DECI 100 0.14 (0.02) 0.50 (0.09) 0.14 (0.02) 0.71 (0.08)

FiP 100 0.08 (0.01) 0.3 (0.06) 0.09 (0.01) 0.55 (0.08)

Cond-FiP 100 0.07 (0.01) 0.29 (0.07) 0.09 (0.01) 0.57 (0.07)

Table 5. Results for Sample Generation. We compare Cond-FiP against the baselines for the task of generating samples from the input
noise variables. Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. Shaded rows denote
the case where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP.
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Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

DoWhy 10 0.08 (0.03) 0.19 (0.04) 0.05 (0.01) 0.12 (0.02)

DECI 10 0.17 (0.02) 0.34 (0.04) 0.13 (0.02) 0.25 (0.03)

FiP 10 0.08 (0.01) 0.15 (0.02) 0.07 (0.01) 0.09 (0.01)

Cond-FiP 10 0.10 (0.03) 0.21 (0.03) 0.07 (0.01) 0.11 (0.01)

DoWhy 20 0.06 (0.01) 0.27 (0.06) 0.05 (0.0) 0.36 (0.03)

DECI 20 0.16 (0.02) 0.38 (0.05) 0.15 (0.04) 0.42 (0.03)

FiP 20 0.09 (0.01) 0.23 (0.05) 0.12 (0.04) 0.25 (0.03)

Cond-FiP 20 0.09 (0.01) 0.24 (0.05) 0.14 (0.03) 0.31 (0.03)

DoWhy 50 0.08 (0.01) 0.29 (0.05) 0.06 (0.01) 0.53 (0.06)

DECI 50 0.17 (0.02) 0.44 (0.06) 0.13 (0.02) 0.64 (0.06)

FiP 50 0.11 (0.02) 0.25 (0.05) 0.09 (0.01) 0.46 (0.06)

Cond-FiP 50 0.13 (0.02) 0.27 (0.04) 0.12 (0.02) 0.48 (0.07)

DoWhy 100 0.05 (0.0) 0.33 (0.07) 0.06 (0.01) 0.60 (0.07)

DECI 100 0.14 (0.02) 0.49 (0.08) 0.15 (0.02) 0.70 (0.08)

FiP 100 0.08 (0.01) 0.29 (0.07) 0.10 (0.01) 0.54 (0.08)

Cond-FiP 100 0.10 (0.01) 0.30 (0.06) 0.14 (0.02) 0.58 (0.07)

Table 6. Results for Interventional Generation. We compare Cond-FiP against the baselines for the task of generating interventional
data from the input noise variables. Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.
Shaded rows denote the case where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP.
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C. Experiments on Real World Benchmark
We use the real world flow cytometry dataset (Sachs et al., 2005) to benchmark Cond-FiP againts the baselines. This dataset
contains n ≃ 800 observational samples expressed in a d = 11 dimensional space, and the reference (true) causal graph. We
sample a train dataset Dtrain

X ∈ Rntrain×d and test dataset Dtest
X ∈ Rntest×d of size ntrain = ntest = 400 each, where the train

dataset is to used to train the baselines and obtain dataset embedding for Cond-FiP.

Since we don’t have access to the true functional relationships, we cannot compute RMSE for noise prediction or sample
generation like we did in our experiments with synthetic benchmarks. Instead for each method, we obtain the noise

predictions D̂train
N on the train split, and use it to fit a gaussian distribution for each component (node). Then we use

the learned gaussian distribution to sample new noise variables, D̂sample
N , which are mapped to the observations as per

the causal mechanisms learned by each method, D̂sample
X . Finally, we compute the maximum mean discrepancy (MMD)

distance between D̂sample
X and Dtest

X as metric to determine whether the method has captured the true causal relationships. For

consistency, we also evaluate the reconstruction performances of the models by using directly the inferred noise D̂train
N from

the models, and the compute MMD between the reconstructed data and the test data.

Table 7 presents our results, where for reference we also report the MMD distance between the true train and test split, which
should be very small since both the datasets are sampled from the same distribution. We find that Cond-FiP is competitive
with the baselines that were trained from scratch. Except DoWhy, the MMD distance with reconstructed samples from the
methods are close to oracle performance.

Method MMD(D̂sample
X , Dtest

X ) MMD(D̂train
X , Dtest

X ) MMD(Dtrain
X , Dtest

X )

DoWhy 0.015 0.014 0.005
DECI 0.014 0.005 0.005
FiP 0.015 0.005 0.005
Cond-FiP 0.013 0.005 0.005

Table 7. Results for Sachs dataset. We compare Cond-FiP against the baselines for the task of generating sample data on the real world
benchmark. Each cell reports the MMD, and we also report the reconstruction error for all of the methods.
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D. Results without True Causal Graph
Our results in the main paper (Table 1, Table 2, Table 3) require the knowledge of true graph (G) as part of the input context
to Cond-FiP. In this section we conduct where we don’t provide the true graph in the input context, rather we infer the graph
Ĝ using an amortized causal discovery approach (AVICI (Lorch et al., 2022)) from the observational data DX . We chose
AVICI for this task since it can enable to infer the graph in a zero-shot manner, hence allowing the combined pipeline of
AVICI + Cond-FiP to be a zero-shot technique for learning SCMs. More precisely, AVICI zero-shot infers the graph G
from input context DX , and we pass (Ĝ, DX) as the input context for Cond-FiP. Therefore, for any z ∈ Rd, Cond-FiP (
T (z, DX , Ĝ)) aims to replicate the functional mechanism F (z) of the underlying SCM.

The results for benchmarking Cond-FiP with inferred graphs using AVICI for the task of noise prediction, sample generation,
and interventional generation are provided in Table 8, Table 9, and Table 10 respectively. For a fair comparison, the
baselines FiP, DECI, and DoWhy also use the inferred graph (Ĝ) by AVICI instead of the true graph (G). We find that
Cond-FiP remains competitive to baselines even for the scenario of unknown true causal graph. Hence, our amortized
training procedure can be extended easily for zero-shot inference of both graphs and causal mechanisms of the SCM.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

DoWhy 10 0.16 (0.05) 0.24 (0.04) 0.12 (0.03) 0.12 (0.02)

DECI 10 0.21 (0.05) 0.29 (0.04) 0.16 (0.03) 0.19 (0.04)

FiP 10 0.16 (0.05) 0.2 (0.04) 0.13 (0.03) 0.09 (0.01)

Cond-FiP 10 0.15 (0.05) 0.2 (0.04) 0.13 (0.03) 0.11 (0.01)

DoWhy 20 0.19 (0.05) 0.22 (0.03) 0.2 (0.03) 0.26 (0.01)

DECI 20 0.23 (0.05) 0.28 (0.03) 0.24 (0.04) 0.28 (0.02)

FiP 20 0.2 (0.05) 0.2 (0.03) 0.21 (0.03) 0.21 (0.02)

Cond-FiP 20 0.18 (0.05) 0.17 (0.02) 0.21 (0.03) 0.16 (0.02)

DoWhy 50 0.44 (0.05) 0.3 (0.03) 0.51 (0.03) 0.38 (0.04)

DECI 50 0.46 (0.05) 0.33 (0.04) 0.52 (0.03) 0.42 (0.05)

FiP 50 0.44 (0.05) 0.28 (0.04) 0.51 (0.03) 0.35 (0.05)

Cond-FiP 50 0.43 (0.05) 0.24 (0.03) 0.53 (0.03) 0.29 (0.04)

DoWhy 100 0.49 (0.06) 0.38 (0.03) 0.64 (0.03) 0.53 (0.04)

DECI 100 0.5 (0.06) 0.41 (0.03) 0.64 (0.03) 0.55 (0.03)

FiP 100 0.49 (0.06) 0.37 (0.03) 0.64 (0.03) 0.51 (0.04)

Cond-FiP 100 0.48 (0.06) 0.34 (0.03) 0.64 (0.03) 0.49 (0.04)

Table 8. Results for Noise Prediction without True Graph. We compare Cond-FiP against the baselines for the task of predicting noise
variable from input observations. Unlike experiments in the main paper, we do not use the true graph, and infer the graph first in a
zero-shot manner using AVICI (Lorch et al., 2022). Each cell reports the mean (standard error) RMSE over the multiple test datasets for
each scenario. Shaded rows deonte the case where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP.
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Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

DoWhy 10 0.22 (0.07) 0.29 (0.05) 0.13 (0.04) 0.14 (0.02)

DECI 10 0.29 (0.06) 0.39 (0.05) 0.18 (0.04) 0.22 (0.05)

FiP 10 0.23 (0.06) 0.26 (0.05) 0.15 (0.04) 0.12 (0.02)

Cond-FiP 10 0.22 (0.07) 0.26 (0.05) 0.13 (0.04) 0.11 (0.02)

DoWhy 20 0.25 (0.05) 0.38 (0.06) 0.29 (0.06) 0.42 (0.03)

DECI 20 0.3 (0.06) 0.52 (0.07) 0.34 (0.06) 0.47 (0.04)

FiP 20 0.26 (0.05) 0.37 (0.07) 0.3 (0.06) 0.33 (0.04)

Cond-FiP 20 0.24 (0.05) 0.36 (0.06) 0.29 (0.06) 0.35 (0.03)

DoWhy 50 0.53 (0.07) 0.46 (0.06) 0.58 (0.03) 0.59 (0.07)

DECI 50 0.55 (0.07) 0.54 (0.07) 0.59 (0.02) 0.66 (0.06)

FiP 50 0.53 (0.07) 0.44 (0.05) 0.58 (0.02) 0.53 (0.07)

Cond-FiP 50 0.52 (0.07) 0.43 (0.05) 0.58 (0.02) 0.53 (0.07)

DoWhy 100 0.67 (0.07) 0.52 (0.06) 0.69 (0.02) 0.68 (0.04)

DECI 100 0.69 (0.08) 0.57 (0.08) 0.69 (0.02) 0.71 (0.04)

FiP 100 0.66 (0.07) 0.5 (0.07) 0.68 (0.02) 0.64 (0.05)

Cond-FiP 100 0.64 (0.06) 0.49 (0.06) 0.68 (0.02) 0.63 (0.05)

Table 9. Results for Sample Generation without True Graph. We compare Cond-FiP against the baselines for the task of generating
samples from the input noise variable. Unlike experiments in the main paper, we do not use the true graph, and infer the graph first in a
zero-shot manner using AVICI (Lorch et al., 2022). Each cell reports the mean (standard error) RMSE over the multiple test datasets for
each scenario. Shaded rows deonte the case where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

DoWhy 10 0.32 (0.09) 0.3 (0.05) 0.13 (0.04) 0.13 (0.02)

DECI 10 0.37 (0.08) 0.39 (0.05) 0.17 (0.03) 0.21 (0.04)

FiP 10 0.32 (0.08) 0.27 (0.05) 0.14 (0.04) 0.1 (0.02)

Cond-FiP 10 0.31 (0.08) 0.3 (0.05) 0.14 (0.04) 0.13 (0.02)

DoWhy 20 0.29 (0.06) 0.38 (0.07) 0.37 (0.05) 0.4 (0.03)

DECI 20 0.34 (0.06) 0.51 (0.07) 0.41 (0.05) 0.43 (0.03)

FiP 20 0.3 (0.06) 0.37 (0.07) 0.38 (0.05) 0.31 (0.03)

Cond-FiP 20 0.29 (0.06) 0.37 (0.06) 0.37 (0.05) 0.33 (0.03)

DoWhy 50 0.54 (0.08) 0.45 (0.06) 0.62 (0.04) 0.57 (0.06)

DECI 50 0.57 (0.08) 0.52 (0.07) 0.63 (0.03) 0.64 (0.06)

FiP 50 0.55 (0.08) 0.43 (0.05) 0.62 (0.03) 0.51 (0.07)

Cond-FiP 50 0.54 (0.08) 0.43 (0.05) 0.62 (0.03) 0.51 (0.06)

DoWhy 100 0.66 (0.06) 0.52 (0.07) 0.71 (0.05) 0.65 (0.05)

DECI 100 0.68 (0.07) 0.58 (0.09) 0.71 (0.05) 0.7 (0.04)

FiP 100 0.65 (0.06) 0.51 (0.07) 0.71 (0.05) 0.62 (0.05)

Cond-FiP 100 0.64 (0.06) 0.49 (0.06) 0.7 (0.04) 0.62 (0.05)

Table 10. Results for Interventional Generation without True Graph. We compare Cond-FiP against the baselines for the task of
interventional data from the input noise variable. Unlike experiments in the main paper, we do not use the true graph, and infer the graph
first in a zero-shot manner using AVICI (Lorch et al., 2022). Each cell reports the mean (standard error) RMSE over the multiple test
datasets for each scenario. Shaded rows deonte the case where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP.
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E. Evaluating Generalization of Cond-Fip in Scarce Data Regime
E.1. Experiments with ntest = 100

In this section we benchmark Cond-FiP against the baselines for the scenario when test datasets in the input context have
smaller sample size (ntest = 100) as compared to the train datasets (ntest = 400).

We report the results for the task of noise prediction, sample generation, and interventional generation in Table 11, Table 12,
and Table 13 respectively. We find that Cond-FiP exhibits superior generalization as compared to baselines. For example, in
the case of RFF IN, Cond-FiP is even better than FiP for all the tasks! This can be attributed to the advantage of zero-shot
inference; as the sample size in test dataset decreases, the generalization of baselines would be affected a lot since they
require training from scratch on these datasets. However, zero-shot inference methods would be impacted less as they do
not have to trained from scratch, and the inductive bias learned by them can help them generalize even with smaller input
context.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

DoWhy 10 0.06 (0.01) 0.22 (0.03) 0.09 (0.01) 0.16 (0.03)

DECI 10 0.15 (0.01) 0.3 (0.02) 0.22 (0.01) 0.3 (0.03)

FiP 10 0.07 (0.01) 0.18 (0.01) 0.12 (0.01) 0.11 (0.01)

Cond-FiP 10 0.07 (0.01) 0.14 (0.01) 0.09 (0.01) 0.14 (0.01)

DoWhy 20 0.06 (0.01) 0.27 (0.05) 0.07 (0.01) 0.37 (0.01)

DECI 20 0.15 (0.02) 0.33 (0.02) 0.17 (0.02) 0.35 (0.03)

FiP 20 0.09 (0.01) 0.21 (0.03) 0.1 (0.01) 0.27 (0.03)

Cond-FiP 20 0.08 (0.01) 0.12 (0.01) 0.1 (0.01) 0.15 (0.01)

DoWhy 50 0.06 (0.01) 0.29 (0.04) 0.05 (0.01) 0.47 (0.04)

DECI 50 0.14 (0.01) 0.33 (0.02) 0.14 (0.02) 0.4 (0.03)

FiP 50 0.08 (0.01) 0.23 (0.03) 0.08 (0.01) 0.37 (0.04)

Cond-FiP 50 0.08 (0.0) 0.12 (0.01) 0.08 (0.01) 0.15 (0.01)

DoWhy 100 0.06 (0.01) 0.31 (0.04) 0.06 (0.01) 0.5 (0.03)

DECI 100 0.13 (0.01) 0.36 (0.03) 0.12 (0.02) 0.44 (0.02)

FiP 100 0.08 (0.01) 0.25 (0.04) 0.1 (0.01) 0.39 (0.03)

Cond-FiP 100 0.07 (0.0) 0.13 (0.01) 0.08 (0.01) 0.17 (0.01)

Table 11. Results for Noise Prediction with Smaller Sample Size (ntest = 100). We compare Cond-FiP against the baselines for the task
of predicting noise variable from input observations. Each test dataset contains 100 samples, as opposed to 400 samples in the main paper.
Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. Shaded rows deonte the case where
the graph size is larger than the train graph sizes (d = 20) for Cond-FiP.
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Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

DoWhy 10 0.1 (0.01) 0.3 (0.06) 0.12 (0.02) 0.19 (0.03)

DECI 10 0.23 (0.01) 0.45 (0.04) 0.31 (0.02) 0.38 (0.04)

FiP 10 0.13 (0.01) 0.29 (0.04) 0.18 (0.02) 0.15 (0.03)

Cond-FiP 10 0.09 (0.01) 0.2 (0.03) 0.09 (0.02) 0.14 (0.02)

DoWhy 20 0.11 (0.01) 0.47 (0.15) 0.11 (0.02) 0.5 (0.03)

DECI 20 0.26 (0.02) 0.53 (0.05) 0.26 (0.03) 0.57 (0.04)

FiP 20 0.17 (0.02) 0.34 (0.06) 0.17 (0.02) 0.39 (0.03)

Cond-FiP 20 0.08 (0.0) 0.31 (0.06) 0.13 (0.01) 0.37 (0.02)

DoWhy 50 0.11 (0.01) 0.42 (0.08) 0.09 (0.01) 0.66 (0.06)

DECI 50 0.23 (0.02) 0.59 (0.08) 0.27 (0.04) 0.73 (0.06)

FiP 50 0.13 (0.01) 0.38 (0.07) 0.14 (0.01) 0.58 (0.06)

Cond-FiP 50 0.1 (0.01) 0.32 (0.05) 0.12 (0.01) 0.54 (0.05)

DoWhy 100 0.11 (0.01) 0.44 (0.08) 0.11 (0.01) 0.74 (0.05)

DECI 100 0.25 (0.02) 0.62 (0.08) 0.25 (0.01) 0.78 (0.07)

FiP 100 0.15 (0.01) 0.4 (0.07) 0.19 (0.02) 0.67 (0.07)

Cond-FiP 100 0.11 (0.01) 0.35 (0.07) 0.14 (0.02) 0.63 (0.07)

Table 12. Results for Sample Generation with Smaller Sample Size (ntest = 100). We compare Cond-FiP against the baselines for the
task of generating samples from the input noise variable. Each test dataset contains 100 samples, as opposed to 400 samples in the main
paper. Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. Shaded rows deonte the case
where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

DoWhy 10 0.09 (0.01) 0.34 (0.08) 0.11 (0.01) 0.2 (0.04)

DECI 10 0.24 (0.02) 0.43 (0.04) 0.26 (0.03) 0.35 (0.04)

FiP 10 0.13 (0.01) 0.29 (0.04) 0.14 (0.02) 0.14 (0.03)

Cond-FiP 10 0.09 (0.02) 0.21 (0.03) 0.09 (0.01) 0.12 (0.02)

DoWhy 20 0.1 (0.01) 0.37 (0.08) 0.11 (0.02) 0.49 (0.04)

DECI 20 0.25 (0.03) 0.5 (0.05) 0.28 (0.03) 0.54 (0.04)

FiP 20 0.16 (0.01) 0.33 (0.06) 0.2 (0.03) 0.38 (0.03)

Cond-FiP 20 0.1 (0.01) 0.27 (0.05) 0.15 (0.02) 0.29 (0.03)

DoWhy 50 0.12 (0.02) 0.49 (0.14) 0.09 (0.01) 0.64 (0.07)

DECI 50 0.26 (0.03) 0.56 (0.07) 0.26 (0.03) 0.72 (0.06)

FiP 50 0.16 (0.02) 0.36 (0.06) 0.15 (0.01) 0.57 (0.06)

Cond-FiP 50 0.13 (0.02) 0.29 (0.04) 0.12 (0.01) 0.49 (0.07)

DoWhy 100 0.11 (0.01) 0.46 (0.07) 0.11 (0.01) 1.16 (0.38)

DECI 100 0.24 (0.02) 0.62 (0.08) 0.26 (0.01) 0.78 (0.07)

FiP 100 0.16 (0.02) 0.39 (0.07) 0.2 (0.02) 0.66 (0.07)

Cond-FiP 100 0.12 (0.02) 0.32 (0.07) 0.13 (0.01) 0.58 (0.07)

Table 13. Results for Interventional Generation with Smaller Sample Size (ntest = 100). We compare Cond-FiP against the baselines
for the task of generating interventional data from the input noise variable. Each test dataset contains 100 samples, as opposed to 400
samples in the main paper. Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. Shaded
rows deonte the case where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP.
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E.2. Experiments with ntest = 50

We conduct more experiments for the smaller sample size scenarios, where decrease the sample size even further to
ntest = 50 samples. We report the results for the task of noise prediction, sample generation, and interventional generation in
Table 14, Table 15, and Table 16 respectively. We find that baselines perform much worse than Cond-FiP for the all different
SCM distributions, highlighting the efficacy of Cond-FiP for inferring functional relationships when the input context has
smaller sample size. Note that there were issues with training DoWhy for such a small dataset, hence we do not consider
them for this scenario.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

DECI 10 0.19 (0.02) 0.41 (0.03) 0.2 (0.02) 0.42 (0.04)

FiP 10 0.13 (0.03) 0.27 (0.03) 0.15 (0.02) 0.21 (0.03)

Cond-FiP 10 0.09 (0.01) 0.17 (0.01) 0.11 (0.01) 0.16 (0.01)

DECI 20 0.2 (0.01) 0.42 (0.03) 0.25 (0.04) 0.45 (0.05)

FiP 20 0.12 (0.01) 0.33 (0.04) 0.15 (0.02) 0.35 (0.04)

Cond-FiP 20 0.1 (0.01) 0.16 (0.01) 0.11 (0.01) 0.17 (0.01)

DECI 50 0.2 (0.02) 0.43 (0.02) 0.2 (0.03) 0.5 (0.05)

FiP 50 0.13 (0.01) 0.32 (0.03) 0.13 (0.01) 0.49 (0.05)

Cond-FiP 50 0.1 (0.01) 0.16 (0.0) 0.1 (0.01) 0.17 (0.01)

DECI 100 0.19 (0.02) 0.43 (0.03) 0.21 (0.01) 0.53 (0.02)

FiP 100 0.11 (0.01) 0.32 (0.04) 0.13 (0.01) 0.48 (0.02)

Cond-FiP 100 0.09 (0.01) 0.16 (0.01) 0.09 (0.01) 0.18 (0.01)

Table 14. Results for Noise Prediction with Smaller Sample Size (ntest = 50). We compare Cond-FiP against the baselines for the task
of predicting noise variable from input observations. Each test dataset contains 50 samples, as opposed to 400 samples in the main paper.
Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. Shaded rows deonte the case where
the graph size is larger than the train graph sizes (d = 20) for Cond-FiP.
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Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

DECI 10 0.31 (0.02) 0.58 (0.05) 0.27 (0.04) 0.49 (0.07)

FiP 10 0.2 (0.03) 0.4 (0.05) 0.21 (0.03) 0.25 (0.04)

Cond-FiP 10 0.12 (0.02) 0.28 (0.03) 0.12 (0.01) 0.18 (0.03)

DECI 20 0.34 (0.02) 0.66 (0.08) 0.39 (0.07) 0.68 (0.05)

FiP 20 0.2 (0.01) 0.51 (0.08) 0.25 (0.04) 0.51 (0.02)

Cond-FiP 20 0.13 (0.01) 0.4 (0.06) 0.19 (0.02) 0.43 (0.02)

DECI 50 0.32 (0.02) 0.66 (0.06) 0.36 (0.02) 0.8 (0.06)

FiP 50 0.2 (0.01) 0.48 (0.07) 0.22 (0.02) 0.69 (0.06)

Cond-FiP 50 0.15 (0.02) 0.4 (0.05) 0.16 (0.01) 0.59 (0.06)

DECI 100 0.36 (0.04) 0.68 (0.08) 0.39 (0.03) 0.84 (0.06)

FiP 100 0.2 (0.02) 0.49 (0.09) 0.28 (0.03) 0.73 (0.07)

Cond-FiP 100 0.16 (0.01) 0.42 (0.07) 0.22 (0.01) 0.68 (0.06)

Table 15. Results for Sample Generation with Smaller Sample Size (ntest = 50). We compare Cond-FiP against the baselines for the
task of generating samples from the input noise variable. Each test dataset contains 50 samples, as opposed to 400 samples in the main
paper. Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. Shaded rows deonte the case
where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

DECI 10 0.3 (0.03) 0.53 (0.05) 0.26 (0.04) 0.42 (0.05)

FiP 10 0.21 (0.04) 0.35 (0.04) 0.2 (0.03) 0.22 (0.03)

Cond-FiP 10 0.12 (0.01) 0.19 (0.03) 0.07 (0.01) 0.14 (0.02)

DECI 20 0.33 (0.02) 0.6 (0.06) 0.43 (0.07) 0.63 (0.04)

FiP 20 0.21 (0.02) 0.46 (0.07) 0.29 (0.04) 0.49 (0.02)

Cond-FiP 20 0.11 (0.01) 0.29 (0.06) 0.15 (0.02) 0.32 (0.03)

DECI 50 0.34 (0.02) 0.66 (0.07) 0.34 (0.02) 0.78 (0.06)

FiP 50 0.21 (0.02) 0.46 (0.07) 0.23 (0.02) 0.68 (0.06)

Cond-FiP 50 0.13 (0.02) 0.31 (0.05) 0.12 (0.02) 0.51 (0.07)

DECI 100 0.37 (0.04) 0.67 (0.08) 0.4 (0.04) 0.84 (0.06)

FiP 100 0.21 (0.02) 0.49 (0.08) 0.28 (0.03) 0.73 (0.07)

Cond-FiP 100 0.12 (0.01) 0.33 (0.07) 0.14 (0.01) 0.58 (0.07)

Table 16. Results for Interventional Generation with Smaller Sample Size (ntest = 50). We compare Cond-FiP against the baselines
for the task of generating interventional data from the input noise variable. Each test dataset contains 50 samples, as opposed to 400
samples in the main paper. Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. Shaded
rows deonte the case where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP.
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F. Ablation Study
F.1. Ablation Study of Encoder

Similar to the ablation study of decoder Appendix F, we conduct an ablation study where we train two variants of the
encoder in Cond-FiP described as follows:

• Cond-FiP (LIN): We sample SCMs with linear functional relationships during training of the encoder.

• Cond-FiP (RFF): We sample SCMs with rff functional relationships during training of the encoder.

Note that for the training the subsequent decoder, we sample SCMs with both linear and rff functional relationships as in
the main results ( Table 1, Table 2, and Table 3). Note that in the main results, the encoder was trained by sampling SCMs
with both linear and rff functional relationships. Hence, this ablation helps us to understand whether the strategy of training
encoder on mixed functional relationships can bring more generalization to the amortization process, or if we should have
trained encoders specialized for linear and non-linear functional relationships.

We present our results of the ablation study for the task of noise prediction, sample generation, and interventional generation
in Table 17, Table 18, Table 19 respectively. Our findings indicate that Cond-FiP is robust to the choice of encoder training
strategy! Even though the encoder for Cond-FiP (LIN) was only trained on data from linear SCMs, its generalization
performance is similar to Cond-FiP where the encoder was trained on data from both linear and non-linear SCMs.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

Cond-FiP(LIN) 10 0.07 (0.01) 0.21 (0.02) 0.08 (0.01) 0.2 (0.03)

Cond-FiP(RFF) 10 0.06 (0.01) 0.11 (0.01) 0.07 (0.01) 0.09 (0.01)

Cond-FiP 10 0.06 (0.01) 0.1 (0.01) 0.07 (0.01) 0.1 (0.01)

Cond-FiP(LIN) 20 0.07 (0.01) 0.19 (0.02) 0.09 (0.01) 0.21 (0.01)

Cond-FiP(RFF) 20 0.06 (0.01) 0.09 (0.01) 0.1 (0.02) 0.11 (0.01)

Cond-FiP 20 0.06 (0.01) 0.09 (0.01) 0.07 (0.0) 0.12 (0.0)

Cond-FiP(LIN) 50 0.07 (0.01) 0.21 (0.02) 0.07 (0.01) 0.24 (0.01)

Cond-FiP(RFF) 50 0.07 (0.01) 0.09 (0.01) 0.07 (0.0) 0.14 (0.01)

Cond-FiP 50 0.06 (0.01) 0.1 (0.01) 0.07 (0.01) 0.14 (0.01)

Cond-FiP(LIN) 100 0.06 (0.0) 0.22 (0.02) 0.07 (0.01) 0.26 (0.01)

Cond-FiP(RFF) 100 0.06 (0.01) 0.09 (0.01) 0.07 (0.01) 0.14 (0.01)

Cond-FiP 100 0.05 (0.0) 0.1 (0.01) 0.07 (0.01) 0.16 (0.01)

Table 17. Encoder Ablation for Noise Prediction. We compare Cond-FiP against the baselines for the task of predicting noise variable
from input observations against two variants. One variant corresponds to the encoder trained on SCMs with only linear functional
relationships, Cond-FiP(LIN). Similarly, we have another variant where the decoder was trained on SCMs with only rff functional
relationships, Cond-FiP(RFF). Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.
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Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

Cond-FiP(LIN) 10 0.05 (0.01) 0.14 (0.02) 0.06 (0.0) 0.08 (0.01)

Cond-FiP(RFF) 10 0.08 (0.01) 0.18 (0.06) 0.06 (0.0) 0.07 (0.01)

Cond-FiP 10 0.06 (0.01) 0.14 (0.02) 0.05 (0.01) 0.08 (0.01)

Cond-FiP(LIN) 20 0.05 (0.01) 0.25 (0.06) 0.07 (0.01) 0.3 (0.03)

Cond-FiP(RFF) 20 0.08 (0.01) 0.22 (0.05) 0.11 (0.01) 0.29 (0.03)

Cond-FiP 20 0.05 (0.01) 0.24 (0.06) 0.07 (0.01) 0.3 (0.03)

Cond-FiP(LIN) 50 0.08 (0.01) 0.26 (0.05) 0.11 (0.04) 0.52 (0.08)

Cond-FiP(RFF) 50 0.11 (0.01) 0.26 (0.05) 0.15 (0.02) 0.48 (0.07)

Cond-FiP 50 0.08 (0.01) 0.25 (0.05) 0.07 (0.0) 0.48 (0.07)

Cond-FiP(LIN) 100 0.07 (0.01) 0.27 (0.06) 0.08 (0.0) 0.57 (0.07)

Cond-FiP(RFF) 100 0.11 (0.01) 0.29 (0.08) 0.18 (0.03) 0.61 (0.08)

Cond-FiP 100 0.07 (0.01) 0.29 (0.07) 0.09 (0.01) 0.57 (0.07)

Table 18. Encoder Ablation for Sample Generation. We compare Cond-FiP against the baselines for the task of generating samples
from input noise variables against two variants. One variant corresponds to the encoder trained on SCMs with only linear functional
relationships, Cond-FiP(LIN). Similarly, we have another variant where the decoder was trained on SCMs with only rff functional
relationships, Cond-FiP(RFF). Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

Cond-FiP(LIN) 10 0.09 (0.02) 0.2 (0.03) 0.06 (0.01) 0.1 (0.01)

Cond-FiP(RFF) 10 0.13 (0.04) 0.23 (0.08) 0.08 (0.01) 0.1 (0.01)

Cond-FiP 10 0.1 (0.03) 0.21 (0.03) 0.07 (0.01) 0.11 (0.01)

Cond-FiP(LIN) 20 0.08 (0.01) 0.24 (0.05) 0.12 (0.04) 0.3 (0.03)

Cond-FiP(RFF) 20 0.13 (0.02) 0.23 (0.05) 0.13 (0.03) 0.31 (0.02)

Cond-FiP 20 0.09 (0.01) 0.24 (0.05) 0.14 (0.03) 0.31 (0.03)

Cond-FiP(LIN) 50 0.12 (0.02) 0.29 (0.05) 0.1 (0.01) 0.51 (0.07)

Cond-FiP(RFF) 50 0.14 (0.02) 0.29 (0.05) 0.18 (0.03) 0.47 (0.06)

Cond-FiP 50 0.13 (0.02) 0.27 (0.04) 0.12 (0.02) 0.48 (0.07)

Cond-FiP(LIN) 100 0.1 (0.01) 0.3 (0.06) 0.12 (0.01) 0.56 (0.07)

Cond-FiP(RFF) 100 0.12 (0.01) 0.31 (0.07) 0.2 (0.04) 0.6 (0.09)

Cond-FiP 100 0.1 (0.01) 0.3 (0.06) 0.14 (0.02) 0.58 (0.07)

Table 19. Encoder Ablation for Interventional Generation. We compare Cond-FiP against the baselines for the task of generating
interventional data from input noise variables against two variants. One variant corresponds to the encoder trained on SCMs with only
linear functional relationships, Cond-FiP(LIN). Similarly, we have another variant where the decoder was trained on SCMs with only
rff functional relationships, Cond-FiP(RFF). Each cell reports the mean (standard error) RMSE over the multiple test datasets for each
scenario.
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F.2. Ablation Study of Decoder

We conduct an ablation study where we train two variants of the decoder Cond-FiP described as follows:

• Cond-FiP (LIN): We sample SCMs with linear functional relationships during training.

• Cond-FiP (RFF): We sample SCMs with non-linear functional relationships for training.

Note that in the main results (Tabel 2, Table 3) we show the performances of Cond-FiP trained by sampling SCMs with both
linear and non-linear functional relationships. Hence, this ablations helps us to understand whether the strategy of training
on mixed functional relationships can bring more generalization to the amortization process, or if we should have trained
decoders specialized for linear and non-linear functional relationships.

We present the results of our ablation study in Table 20 and Table 21, for the task of sample generation and interventional
generation respectively. Our findings indicate that Cond-FiP decoder trained for both linear and non-linear functional
relationships is able to specialize for both the scenarios. While Cond-FiP (LIN) is only able to perform well for linear
benchmarks, and similarly Cond-FiP (RFF) can only achieve decent predictions for non-linear benchmarks, Cond-FiP is
achieve the best performances on both the linear and non-linear benchmarks.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

Cond-FiP(LIN) 10 0.07 (0.02) 0.4 (0.06) 0.07 (0.01) 0.25 (0.06)

Cond-FiP(RFF) 10 0.1 (0.02) 0.15 (0.02) 0.08 (0.01) 0.09 (0.01)

Cond-FiP 10 0.06 (0.01) 0.14 (0.02) 0.05 (0.01) 0.08 (0.01)

Cond-FiP(LIN) 20 0.07 (0.01) 0.44 (0.07) 0.10 (0.01) 0.58 (0.02)

Cond-FiP(RFF) 20 0.11 (0.01) 0.26 (0.06) 0.14 (0.01) 0.31 (0.03)

Cond-FiP 20 0.05 (0.01) 0.24 (0.06) 0.07 (0.01) 0.3 (0.03)

Cond-FiP(LIN) 50 0.10 (0.01) 0.5 (0.07) 0.14 (0.02) 0.69 (0.04)

Cond-FiP(RFF) 50 0.15 (0.02) 0.27 (0.05) 0.19 (0.02) 0.5 (0.07)

Cond-FiP 50 0.08 (0.01) 0.25 (0.05) 0.07 (0.0) 0.48 (0.07)

Cond-FiP(LIN) 100 0.1 (0.01) 0.51 (0.07) 0.15 (0.02) 0.72 (0.04)

Cond-FiP(RFF) 100 0.16 (0.03) 0.29 (0.07) 0.27 (0.04) 0.59 (0.06)

Cond-FiP 100 0.07 (0.01) 0.29 (0.07) 0.09 (0.01) 0.57 (0.07)

Table 20. Decoder Ablation for Sample Generation. We compare Cond-FiP for the task of generating samples from input noise variables
against two variants. One variant corresponds to a decoder trained on SCMs with only linear functional relationships, Cond-FiP(LIN).
Similarly, we have another variant where the decoder was trained on SCMs with only rff functional relationships, Cond-FiP(RFF). Each
cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.
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Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

Cond-FiP(LIN) 10 0.09 (0.02) 0.40 (0.07) 0.06 (0.01) 0.22 (0.04)

Cond-FiP(RFF) 10 0.16 (0.05) 0.22 (0.03) 0.08 (0.01) 0.11 (0.01)

Cond-FiP 10 0.10 (0.03) 0.21 (0.03) 0.07 (0.01) 0.11 (0.01)

Cond-FiP(LIN) 20 0.10 (0.01) 0.45 (0.07) 0.16 (0.03) 0.57 (0.02)

Cond-FiP(RFF) 20 0.14 (0.02) 0.26 (0.05) 0.21 (0.03) 0.32 (0.02)

Cond-FiP 20 0.09 (0.01) 0.24 (0.05) 0.14 (0.03) 0.31 (0.03)

Cond-FiP(LIN) 50 0.14 (0.02) 0.49 (0.07) 0.14 (0.02) 0.68 (0.04)

Cond-FiP(RFF) 50 0.19 (0.03) 0.28 (0.05) 0.21 (0.03) 0.49 (0.06)

Cond-FiP 50 0.13 (0.02) 0.27 (0.04) 0.12 (0.02) 0.48 (0.07)

Cond-FiP(LIN) 100 0.12 (0.02) 0.52 (0.07) 0.18 (0.03) 0.71 (0.04)

Cond-FiP(RFF) 100 0.18 (0.03) 0.32 (0.07) 0.24 (0.04) 0.59 (0.07)

Cond-FiP 100 0.10 (0.01) 0.30 (0.06) 0.14 (0.02) 0.58 (0.07)

Table 21. Decoder Ablation for Interventional Generation. We compare Cond-FiP against two variants for the task of interventional
data from input noise variables. One variant corresponds to a decoder trained on SCMs with only linear functional relationships,
Cond-FiP(LIN). Similarly, we have another variant where the decoder was trained on SCMs with only rff functional relationships,
Cond-FiP(RFF). Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.
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F.3. Sensitivity to Distribution Shifts

In our main results (Table 1, 2, 3) we experimented with datasets sampled from SCM following a different distribution
(LIN OUT, RFF OUT) than the datasets used for training Cond-FiP (LIN IN, RFF IN). As expected, the performance of
all methods drop in the presence of distribution shift. We now analyze how sensitive is Cond-FiP to distribution shifts by
comparing its performance across scenarios as the severity of the distribution shift is increased.

To illustrate how we control the magnitude of distribution shift, we discuss the difference in the distribution of causal
mechanisms across PIN and POUT. The distribution shift arises because the support of the parameters of causal mechanisms
changes from PIN to POUT. For example, for linear causal mechanism case, the weights in PIN are sampled uniformly
from (−3,−1) ∪ (1, 3); while in POUT they are sampled from uniformly from (0.5, 4). We now change the support set
of the parameters in POUT to (0.5α, 4α), so that by increasing α we make the distribution shift more severe. We follow
this procedure for the support set of all the parameters associated with functional mechanisms and generate distributions
(POUT(α)) with varying shift w.r.t PIN by changing α. Note that α = 1 corresponds to the same POUT as the one used for
sampling datasets in our main results.

We conduct two experiments for evaluating the robustness of Cond-FiP to distribution shifts, described ahead.

• Controlling Shift in Causal Mechanisms. We start with the parameter configuration of POUT from the setup in main
results; and then control the magnitude of shift by changing the support set of parameters of causal mechanisms.

• Controlling Shift in Noise Variables. We start with the parameter configuration of POUT from the setup in main
results; and then control the magnitude of shift by changing the support set of parameters of noise distribution.

Tables 22, 23, and 24 provide results for the case of controlling shift via causal mechanisms, for the task of noise prediction,
sample generation, and interventional generation respectively. We find that the performance of Cond-FiP does not change
much as we increase α, indicating that Cond-FiP is robust to the varying levels of distribution shits in causal mechanisms.

However, for the case of controlling shift via noise variables (Table 25, 26, and 27) we find that Cond-FiP is quite sensitive to
the varying levels of distribution shift in noise variables. The performance of Cond-FiP degrades with increasing magnitude
of the shift (α) for all the tasks.

Total Nodes Shift Level (α) LIN OUT RFF OUT

10 1 0.07 (0.01) 0.10 (0.01)

10 2 0.06 (0.01) 0.10 (0.01)

10 5 0.05 (0.01) 0.10 (0.01)

10 10 0.05 (0.01) 0.10 (0.01)

20 1 0.07 (0.0) 0.12 (0.0)

20 2 0.06 (0.0) 0.13 (0.01)

20 5 0.05 (0.0) 0.11 (0.01)

20 10 0.05 (0.0) 0.10 (0.01)

50 1 0.07 (0.01) 0.14 (0.01)

50 2 0.05 (0.01) 0.17 (0.01)

50 5 0.05 (0.01) 0.14 (0.01)

50 10 0.04 (0.0) 0.14 (0.01)

100 1 0.07 (0.01) 0.16 (0.01)

100 2 0.05 (0.01) 0.18 (0.0)

100 5 0.05 (0.0) 0.17 (0.01)

100 10 0.05 (0.0) 0.16 (0.01)

Table 22. Results for Noise Prediction under Distribution Shifts in Causal Mechanisms. We evaluate the robustness of Cond-FiP to
distribution shifts in the parametrization of causal mechanisms. We vary the distribution shift controlled by α, where α = 1 corresponds
to the case in main results Table 1. Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. We
find that Cond-FiP is robust to varying levels of distribution shift in causal mechanisms.

28



1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

Zero-Shot Learning of Causal Models

Total Nodes Shift Level (α) LIN OUT RFF OUT

10 1 0.05 (0.01) 0.08 (0.01)

10 2 0.05 (0.0) 0.07 (0.01)

10 5 0.05 (0.0) 0.07 (0.01)

10 10 0.06 (0.0) 0.06 (0.01)

20 1 0.07 (0.01) 0.30 (0.03)

20 2 0.06 (0.01) 0.34 (0.05)

20 5 0.06 (0.01) 0.35 (0.05)

20 10 0.06 (0.01) 0.29 (0.07)

50 1 0.07 (0.0) 0.48 (0.07)

50 2 0.07 (0.0) 0.47 (0.07)

50 5 0.07 (0.01) 0.38 (0.06)

50 10 0.07 (0.01) 0.32 (0.06)

100 1 0.09 (0.01) 0.57 (0.07)

100 2 0.09 (0.01) 0.60 (0.05)

100 5 0.09 (0.01) 0.58 (0.05)

100 10 0.12 (0.02) 0.56 (0.06)

Table 23. Results for Sample Generation under Distribution Shifts in Causal Mechanisms. We evaluate the robustness of Cond-FiP to
distribution shifts in the parametrization of causal mechanisms. We vary the distribution shift controlled by α, where α = 1 corresponds
to the case in main results Table 2. Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. We
find that Cond-FiP is robust to varying levels of distribution shift in causal mechanisms.

Total Nodes Shift Level (α) LIN OUT RFF OUT

10 1 0.07 (0.01) 0.11 (0.01)

10 2 0.07 (0.01) 0.11 (0.01)

10 5 0.07 (0.01) 0.10 (0.01)

10 10 0.06 (0.01) 0.10 (0.01)

20 1 0.14 (0.03) 0.31 (0.03)

20 2 0.10 (0.02) 0.33 (0.04)

20 5 0.17 (0.1) 0.34 (0.04)

20 10 0.10 (0.03) 0.28 (0.05)

50 1 0.12 (0.02) 0.48 (0.07)

50 2 0.12 (0.03) 0.47 (0.07)

50 5 0.11 (0.01) 0.39 (0.06)

50 10 0.11 (0.02) 0.32 (0.06)

100 1 0.14 (0.02) 0.58 (0.07)

100 2 0.13 (0.02) 0.60 (0.06)

100 5 0.14 (0.03) 0.58 (0.05)

100 10 0.18 (0.04) 0.55 (0.06)

Table 24. Results for Interventional Generation under Distribution Shifts in Causal Mechanisms. We evaluate the robustness of
Cond-FiP to distribution shifts in the parametrization of causal mechanisms. We vary the distribution shift controlled by α, where α = 1
corresponds to the case in main results Table 3. Each cell reports the mean (standard error) RMSE over the multiple test datasets for each
scenario. We find that Cond-FiP is robust to varying levels of distribution shift in causal mechanisms.
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Total Nodes Shift Level (α) LIN OUT RFF OUT

10 1 0.07 (0.01) 0.10 (0.01)

10 2 0.07 (0.01) 0.11 (0.01)

10 5 0.07 (0.01) 0.18 (0.02)

10 10 0.08 (0.01) 0.26 (0.04)

20 1 0.07 (0.0) 0.12 (0.0)

20 2 0.07 (0.0) 0.16 (0.01)

20 5 0.07 (0.0) 0.30 (0.01)

20 10 0.07 (0.0) 0.41 (0.02)

50 1 0.07 (0.01) 0.14 (0.01)

50 2 0.07 (0.01) 0.19 (0.01)

50 5 0.07 (0.01) 0.33 (0.02)

50 10 0.07 (0.01) 0.44 (0.02)

100 1 0.07 (0.01) 0.16 (0.01)

100 2 0.07 (0.01) 0.22 (0.0)

100 5 0.07 (0.01) 0.35 (0.01)

100 10 0.07 (0.01) 0.44 (0.01)

Table 25. Results for Noise Prediction under Distribution Shifts in Noise Variables. We evaluate the robustness of Cond-FiP to
distribution shifts in the parametrization of noise distribution. We vary the distribution shift controlled by α, where α = 1 corresponds
to the case in main results Table 1. Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.
We find that Cond-FiP is sensitive to varying levels of distribution shift in noise variables, its performance decreases with increasing
magnitude of the shift.

Total Nodes Shift Level (α) LIN OUT RFF OUT

10 1 0.05 (0.01) 0.08 (0.01)

10 2 0.05 (0.0) 0.13 (0.03)

10 5 0.05 (0.01) 0.28 (0.06)

10 10 0.05 (0.01) 0.36 (0.08)

20 1 0.07 (0.01) 0.30 (0.03)

20 2 0.07 (0.01) 0.45 (0.04)

20 5 0.07 (0.01) 0.59 (0.03)

20 10 0.07 (0.01) 0.58 (0.02)

50 1 0.07 (0.0) 0.48 (0.07)

50 2 0.07 (0.0) 0.59 (0.06)

50 5 0.07 (0.0) 0.64 (0.03)

50 10 0.07 (0.0) 0.58 (0.02)

100 1 0.09 (0.01) 0.57 (0.07)

100 2 0.09 (0.01) 0.63 (0.05)

100 5 0.09 (0.01) 0.65 (0.03)

100 10 0.09 (0.01) 0.59 (0.02)

Table 26. Results for Sample Generation under Distribution Shifts in Noise Variables. We evaluate the robustness of Cond-FiP to
distribution shifts in the parametrization of noise distribution. We vary the distribution shift controlled by α, where α = 1 corresponds
to the case in main results Table 2. Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.
We find that Cond-FiP is sensitive to varying levels of distribution shift in noise variables, its performance decreases with increasing
magnitude of the shift.
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Total Nodes Shift Level (α) LIN OUT RFF OUT

10 1 0.07 (0.01) 0.11 (0.01)

10 2 0.07 (0.01) 0.14 (0.02)

10 5 0.07 (0.01) 0.25 (0.05)

10 10 0.07 (0.01) 0.32 (0.06)

20 1 0.14 (0.03) 0.31 (0.03)

20 2 0.14 (0.03) 0.42 (0.03)

20 5 0.14 (0.03) 0.57 (0.03)

20 10 0.14 (0.03) 0.56 (0.02)

50 1 0.12 (0.02) 0.48 (0.07)

50 2 0.12 (0.01) 0.58 (0.06)

50 5 0.12 (0.01) 0.65 (0.04)

50 10 0.12 (0.01) 0.59 (0.02)

100 1 0.14 (0.02) 0.58 (0.07)

100 2 0.14 (0.02) 0.65 (0.06)

100 5 0.14 (0.02) 0.67 (0.04)

100 10 0.14 (0.02) 0.60 (0.03)

Table 27. Results for Interventional Generation under Distribution Shifts in Noise Variables. We evaluate the robustness of Cond-FiP
to distribution shifts in the parametrization of noise distribution. We vary the distribution shift controlled by α, where α = 1 corresponds
to the case in main results Table 3. Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.
We find that Cond-FiP is sensitive to varying levels of distribution shift in noise variables, its performance decreases with increasing
magnitude of the shift.
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G. Comparing Cond-FiP with CausalNF
We also compare Cond-FiP with CausalNF (Javaloy et al., 2023) for the task of noise prediction (Table 28) and sample
generation (Table 29). The test datasets consist of ntest = 400 samples, exact same setup as in our main results (Table 1,
Table 2, and Table 3). To ensure a fair comparison, we provided CausalNF with the true causal graph.

Our analysis reveals that CausalNF underperforms compared to Cond-FiP in both tasks, and it is also a weaker baseline
relative to FiP. Note also the authors did not experiment with large graphs for CausalNF; the largest graph they used
contained approximately 10 nodes. Also, they trained CausalNF on much larger datasets with a sample size of 20k, while
our setup has datasets with 400 samples only.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

CausalNF 10 0.16 (0.02) 0.41 (0.09) 0.38 (0.04) 0.35 (0.02)

Cond-FiP 10 0.06 (0.01) 0.10 (0.01) 0.07 (0.01) 0.10 (0.01)

CausalNF 20 0.18 (0.03) 0.45 (0.12) 0.29 (0.05) 0.36 (0.03)

Cond-FiP 20 0.06 (0.01) 0.09 (0.01) 0.07 (0.00) 0.12 (0.00)

CausalNF 50 0.25 (0.03) 0.56 (0.09) 0.45 (0.06) 0.38 (0.04)

Cond-FiP 50 0.06 (0.01) 0.10 (0.01) 0.07 (0.01) 0.14 (0.01)

CausalNF 100 0.24 (0.02) 0.80 (0.1) 0.37 (0.06) 0.49 (0.05)

Cond-FiP 100 0.05 (0.0) 0.10 (0.01) 0.07 (0.01) 0.16 (0.01)

Table 28. Results for Noise Prediction with CausalNF. We compare Cond-FiP against CausalNF for the task of predicting noise variables
from input observations. We find that CausalNF underperforms compared to Cond-FiP by a significant margin.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

CausalNF 10 0.27 (0.07) 0.29 (0.04) 0.20 (0.03) 0.20 (0.03)

Cond-FiP 10 0.06 (0.01) 0.14 (0.02) 0.05 (0.01) 0.08 (0.01)

CausalNF 20 0.23 (0.02) 0.36 (0.05) 0.22 (0.02) 0.45 (0.02)

Cond-FiP 20 0.05 (0.01) 0.24 (0.06) 0.07 (0.01) 0.30 (0.03)

CausalNF 50 1.5 (0.26) 0.93 (0.13) 3.09 (0.55) 0.95 (0.04)

Cond-FiP 50 0.08 (0.01) 0.25 (0.05) 0.07 (0.00) 0.48 (0.07)

CausalNF 100 1.23 (0.13) 0.85 (0.08) 1.67 (0.13) 0.96 (0.04)

Cond-FiP 100 0.07 (0.01) 0.29 (0.07) 0.09 (0.01) 0.57 (0.07)

Table 29. Results for Sample Generation with CausalNF. We compare Cond-FiP against CausalNF for the task of generating samples
from input noise variables. We find that CausalNF underperforms compared to Cond-FiP by a significant margin.
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H. Evaluating Generalization of Cond-Fip to Larger Sample Size
In the main tables (Table 1, Table 2, and Table 3), we evaluated Cond-FiP’s generalization capabilities to larger graphs
(d = 50, d = 100) than those used for training (d = 20). In this section, we carry a similar experiment where instead of
increasing the total nodes in the graph, we test Cond-FiP on datasets with more samples ntest = 1000, while Cond-FiP was
only trained for datasets with sample size ntrain = 400.

The results for the experiments are presented in Table 30, Table 31, and Table 32 for the task of noise prediction, sample
generation, and interventional generation respectively. Our findings indicate that Cond-FiP is still able to compete with
other baseline in this regime. However, we observe that the performances of Cond-FiP did not improve by increasing the
sample size compared to the results obtained for the 400 samples case, meaning that the performance of our models depends
exclusively on the setting used at training time. We leave for future works the learning of a larger instance of Cond-FiP
trained on larger sample size problems.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

DoWhy 10 0.02 (0.0) 0.10 (0.01) 0.21 (0.04) 0.23 (0.02)

DECI 10 0.05 (0.01) 0.12 (0.01) 0.21 (0.04) 0.27 (0.03)

FiP 10 0.03 (0.0) 0.06 (0.0) 0.21 (0.04) 0.23 (0.02)

Cond-FiP 10 0.05 (0.01) 0.11 (0.01) 0.21 (0.04) 0.25 (0.02)

DoWhy 20 0.02 (0.0) 0.11 (0.02) 0.16 (0.01) 0.3 (0.02)

DECI 20 0.04 (0.01) 0.11 (0.02) 0.16 (0.01) 0.29 (0.02)

FiP 20 0.03 (0.0) 0.08 (0.02) 0.16 (0.01) 0.26 (0.02)

Cond-FiP 20 0.06 (0.01) 0.09 (0.01) 0.18 (0.01) 0.26 (0.01)

Table 30. Results for Noise Prediction with Larger Sample Size (ntest = 1000). We compare Cond-FiP against the baselines for the
task of predicting noise variables from the input observations. Each cell reports the mean (standard error) RMSE over the multiple test
datasets for each scenario.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

DoWhy 10 0.04 (0.0) 0.14 (0.02) 0.29 (0.04) 0.3 (0.03)

DECI 10 0.07 (0.01) 0.17 (0.02) 0.29 (0.04) 0.33 (0.04)

FiP 10 0.05 (0.0) 0.09 (0.01) 0.29 (0.04) 0.29 (0.03)

Cond-FiP 10 0.05 (0.01) 0.14 (0.02) 0.29 (0.04) 0.29 (0.03)

DoWhy 20 0.04 (0.01) 0.21 (0.05) 0.28 (0.01) 0.55 (0.06)

DECI 20 0.07 (0.01) 0.21 (0.04) 0.29 (0.01) 0.59 (0.06)

FiP 20 0.05 (0.0) 0.17 (0.04) 0.28 (0.01) 0.53 (0.06)

Cond-FiP 20 0.05 (0.0) 0.24 (0.05) 0.28 (0.01) 0.53 (0.06)

Table 31. Results for Sample Generation with Larger Sample Size (ntest = 1000). We compare Cond-FiP against the baselines for
the task of generating samples from the input noise variables. Each cell reports the mean (standard error) RMSE over the multiple test
datasets for each scenario.
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Zero-Shot Learning of Causal Models

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT

DoWhy 10 0.04 (0.01) 0.16 (0.03) 0.26 (0.03) 0.27 (0.03)

DECI 10 0.09 (0.01) 0.19 (0.02) 0.26 (0.03) 0.31 (0.04)

FiP 10 0.05 (0.01) 0.12 (0.02) 0.26 (0.03) 0.27 (0.03)

Cond-FiP 10 0.09 (0.02) 0.19 (0.03) 0.27 (0.03) 0.3 (0.03)

DoWhy 20 0.04 (0.0) 0.20 (0.04) 0.26 (0.01) 0.53 (0.06)

DECI 20 0.08 (0.01) 0.20 (0.03) 0.29 (0.02) 0.54 (0.05)

FiP 20 0.06 (0.01) 0.16 (0.04) 0.28 (0.02) 0.48 (0.06)

Cond-FiP 20 0.07 (0.01) 0.27 (0.05) 0.30 (0.02) 0.51 (0.06)

Table 32. Results for Interventional Generation with Larger Sample Size (ntest = 1000). We compare Cond-FiP against the baselines
for the task of generating interventional data from the input noise variables. Each cell reports the mean (standard error) RMSE over the
multiple test datasets for each scenario.
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