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Abstract

We present the Benchmark of Information001
Retrieval (IR) tasks with Complex Objectives002
(BIRCO) to evaluate the ability of IR models003
to follow multi-faceted task objectives. We004
study the performance of various embedding,005
distilled and fine-tuned IR models on BIRCO,006
and find them lacking. We provide a unified007
framework for investigating the performance of008
large language models (LLMs) on these tasks.009
The proposed framework consists of 3 modular010
components: task-objective awareness; chain-011
of-thought reasoning; and task decomposition.012
We investigate the effects of these factors on013
LLM performance, and identify a simple base-014
line model which matches or outperforms ex-015
isting approaches and more complex alterna-016
tives. No approach achieves satisfactory perfor-017
mance on all benchmark tasks, suggesting that018
stronger models and new retrieval protocols are019
necessary to address complex user needs. 1020

1 Introduction021

Information retrieval (IR) tasks have traditionally022

been centered around matching queries with seman-023

tically similar passages. However, user objectives024

may go significantly beyond retrieving based on025

similarity. As a motivating example, consider a026

user who wants to find papers that refute a par-027

ticular scientific claim. This would not be well-028

captured by similarity-driven search, which would029

also retrieve papers that support the claim. In addi-030

tion, the user may have multiple objectives in their031

search. They may be searching for papers that mea-032

sure the response of a drug in a specific population,033

using a certain set of measurements.034

We propose the BIRCO benchmark for eval-035

uating the performance of IR systems on tasks036

with complex objectives. We curate 5 open-source037

datasets (DORIS-MAE (Wang et al., 2023), Ar-038

guAna (Wachsmuth et al., 2018), WhatsThatBook039

1https://github.com/BIRCO-benchmark/BIRCO.git

(Lin et al., 2023), Clinical-Trial (Koopman and 040

Zuccon, 2016), and RELIC (Thai et al., 2022)), 041

which contain paragraph-length queries with multi- 042

faceted task objectives. This represents a challeng- 043

ing test bed for methods that aim to address com- 044

plex user search needs. 045

IR systems have branched into three primary cat- 046

egories: pre-trained embedding models, language 047

models (encoder-decoder and decoder-only) that 048

have been fine-tuned for IR tasks, and task-agnostic 049

models based on Large Language Models (LLMs) 050

like GPT-4. Our research aims to examine the 051

performance of these models on the BIRCO bench- 052

mark. We focus on state-of-the-art models from all 053

categories, investigating their ability to handle the 054

complex requirements of BIRCO. 055

In order to study the factors that affect LLM per- 056

formance on these tasks, we introduce a framework 057

for constructing retrieval protocols. This frame- 058

work varies four factors: task-specific descriptions 059

of the search objective, ranking vs. direct scor- 060

ing, chain-of-thought reasoning (Wei et al., 2022), 061

and decomposition of complex tasks into subtasks. 062

Through this study, we aim to provide a foundation 063

for advancing IR systems, particularly in the realm 064

of complex search objectives. 065

2 Related Work 066

IR Benchmarks 067

IR benchmarks such as MS MARCO (Nguyen 068

et al., 2016), NQ (Kwiatkowski et al., 2019), 069

LOTTE (Santhanam et al., 2022), BEIR (Thakur 070

et al., 2021) and BERRI (Asai et al., 2023) con- 071

sist mostly of sentence-level queries, and their task 072

objectives, while varying to some degree, focus 073

on finding semantically similar passages, with one 074

exception: the ArguAna dataset (Wachsmuth et al., 075

2018), which is a counterargument retrieval task. 076

Complex Query IR Tasks 077

Several recent datasets (DORIS-MAE, WTB, 078

Clinical-Trial, RELIC) pose more complex re- 079
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Figure 1: BIRCO contains 5 IR tasks with complex objectives

MS MARCO BIRCO NQ BIRCO BEIR| BIRCO
Models MRR@10 MRR@10 Models R@20 R@20 Models R@10 R@10

ANCEFirstP 33.0 20.0 ANCEFirstP 81.9 49.6 E5-L-v2 50.0 38.52
SimLM 41.1 18.1 SimLM 85.2 44.6 RankLLaMA 56.6 47.42

SPLADE-v2 36.8 17.7 BM25 59.1 33.5 TART 44.8 39.48

Table 1: Comparing BIRCO’s difficulty with other IR datasets. Models and metrics are chosen based on availability
of data in the published literature.

trieval tasks (Wang et al., 2023; Lin et al., 2023;080

Koopman and Zuccon, 2016; Thai et al., 2022).081

In these datasets, the queries are paragraph-length,082

and passages should match the queries along multi-083

ple dimensions. See Figure 1.084

Specialized retrieval models085

Pretrained (Greene et al., 2022; Wang et al., 2022;086

Gao et al., 2021) and fine-tuned (Liu et al., 2023;087

Chuang et al., 2022; Dai et al., 2022; Gao et al.,088

2023; Ferraretto et al., 2023; Pan et al., 2023) em-089

bedding models have formed the core of most IR090

systems due to their speed and simplicity. More re-091

cently, there have been methods for fine-tuning lan-092

guage models for ranking and retrieval, including093

monoT5 (Nogueira et al., 2020) and Rank-Llama094

(Ma et al., 2023a). TART (Asai et al., 2023) and095

INSTRUCTOR (Su et al., 2023) are trained to fol-096

low task-specific instructions during retrieval.097

LLM-based IR systems098

Recent research has shown that LLMs can be effec-099

tively used for the re-ranking stage of IR. Sachan100

et al. (2022); Liang et al. (2022) compute a rele-101

vance score with output logits, Qin et al. (2023)102

use pairwise comparison among passages with103

open-source LLMs, Sun et al. (2023); Ma et al.104

(2023b) use list-wise comparisons, and Zhuang105

et al. (2023) have the LLM assign a 4-way label106

to each query/passage pair. These methods have107

primarily been evaluated on sentence-level queries.108

109

3 Benchmark Construction110

BIRCO is constructed to allow for statistically valid111

evaluation of model performance. Four of the five112

benchmark datasets do not have previously defined 113

development set/test set splits. We therefore de- 114

fine splits for these datasets, ensuring that there is 115

no overlap between queries or passages across the 116

splits. 117

BIRCO is also designed specifically for bench- 118

marking LLM performance. There are two distinc- 119

tive issues that arise in this context. First, retrieval 120

performance can be inflated due to data contami- 121

nation from pretraining. In order to address this, 122

we remove queries that GPT-4 can answer without 123

access to passages. (This is most relevant for WTB 124

and RELIC.) Second, it is prohibitively expensive 125

to evaluate LLMs on the entire set of passages for 126

each query. We therefore define candidate pools for 127

each query, restricting LLM search to these smaller 128

pools. This is standard for many other IR tasks, 129

where it is known as the passage re-ranking stage. 130

3.1 Candidate Pool Construction 131

To make BIRCO more tractable for LLM-based 132

retrieval, we construct candidate pools for each 133

query using the lexicon-matching algorithm BM25 134

(Trotman et al., 2014) and state-of-the-art text em- 135

bedding model ada-002 (Greene et al., 2022). Each 136

query has a candidate pool of 50 passages. (The 137

ground-truth passage is inserted when necessary.) 138

As shown in Appendix Table 4, the difficulty is 139

comparable to the original datasets for four of five 140

tasks, and remains challenging for the fifth. 141

4 A Framework for LLM Re-Ranking 142

We investigate the effect of several factors on LLM 143

retrieval performance. 144
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Figure 2: A framework for integrating LLMs into retrieval tasks

Figure 3: An example query and LLM-generated decision criteria

4.1 Task Objective Awareness145

The tasks in BIRCO vary in their objectives, which146

can be clearly articulated in prompts to LLMs. Any147

model that uses a prompt containing the task de-148

scription is suffixed with "O". Alternatively, as a149

simpler baseline, LLMs can be prompted to retrieve150

semantically similar passages without knowing the151

task objective. Prompts used for task objectives152

can be found in Appendix C.153

4.2 Ranking vs. Scoring154

LLMs can find relevant passages by either ranking155

them comparatively or by directly scoring them.156

RankGPT (Sun et al., 2023) puts a list of passages in157

the LLM prompt, and iteratively filters for the most158

relevant passages using a sliding window approach.159

LLMs can also score passages one at a time. For160

this direct scoring approach, the LLM is prompted161

to generate a numerical score from 0-10.162

When passages are directly scored by the LLM,163

there can be ties in which several passages receive164

the same score. By default, we use E5-v2, an em-165

bedding model, for tie-breaking.166

4.3 Explicit Reasoning167

To investigate the role of natural language reason-168

ing in complex query retrieval, we compare two169

approaches to scoring a query/passage pair. As170

shown in Figure 2, the first approach (shown in the171

middle of Figure 2, Reason+OGPT) is to generate a172

set of decision criteria for judging whether a query173

is relevant to a passage. The LLM is instructed to 174

follow its own decision criteria step-by-step before 175

producing a final score. Another approach (top of 176

Figure 2, Score+OGPT) is to directly produce a score 177

given the query, passage, and task objective. The 178

detailed prompt structure for these two methods is 179

recorded in Appendix D. 180

4.4 Task Decomposition 181

We investigate the effect of task decomposition, 182

in which the LLM-generated decision criteria are 183

used to define substasks which are independently 184

solved by the LLM. The final score is computed by 185

averaging scores from the subtasks. This strategy, 186

denoted as Subtask+OGPT, aims to reduce the com- 187

plexity of evaluating whether a passage is relevant 188

to a query. 189

5 Experiments 190

We use the GPT4-06-13 checkpoint as the LLM via 191

OpenAI’s API. See Appendix A for details about 192

the baseline models, compute requirements, and 193

additional embedding model experiments. 194

5.1 Results 195

Table 1 compares model performance on BIRCO 196

to other IR benchmarks. Models perform signifi- 197

cantly worse on BIRCO compared to published 198

results on MS MARCO (Nguyen et al., 2016), 199

NQ (Kwiatkowski et al., 2019), and BEIR (Thakur 200

et al., 2021), validating the difficulty of BIRCO. 201
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Model DORIS-MAE ArguAna WTB Clinical-Trial RELIC
nDCG@10 R@5 nDCG@10 R@5 nDCG@10 R@5 nDCG@10 R@5 nDCG@10 R@5

Embedding Models
E5-L-v2 72.0 ± 1.2 14.6 ± 1.9 43.5 ± 3.2 62.0 ± 4.8 36.6 ± 4.0 39.9 ± 4.8 29.4 ± 2.7 10.5 ± 1.7 11.1 ± 2.6 14.9 ± 3.4
SIMCSE 70.8 ± 1.3 14.4 ± 1.8 39.8 ± 3.5 51.1 ± 5.1 31.7 ± 4.0 37.0 ± 5.0 27.7 ± 2.7 10.5 ± 1.6 12.9 ± 2.5 15.6 ± 3.7

Promptagator 76.0 ± 1.4 15.6 ± 1.8 63.0 ± 3.3 77.8 ± 4.2 59.1 ± 4.2 62.9 ± 4.7 NA NA NA NA

Encoder-Decoder Models
TART 64.9 ± 1.5 10.2 ± 1.7 47.6 ± 3.1 63.7 ± 4.8 42.7 ± 3.7 46.1 ± 4.9 32.8 ± 2.5 10.8 ± 1.3 9.4 ± 1.9 7.9 ± 2.7

TART+O 49.6 ± 1.8 4.9 ± 1.0 23.1 ± 2.8 28.0 ± 4.4 17.9 ± 2.4 20.7 ± 4.1 23.6 ± 2.2 7.7 ± 1.0 14.3 ± 2.3 18.3 ± 3.8
MonoT5 66.9 ± 1.5 12.4 ± 1.8 45.9 ± 3.2 52.0 ± 4.9 50.8 ± 4.2 59.0 ± 4.9 33.2 ± 2.5 14.2 ± 2.3 13.9 ± 2.7 11.9 ± 3.2

Decoder-Only Model
Rank-LLaMA 75.1 ± 1.3 18.4 ± 2.0 53.2 ± 2.9 71.9 ± 4.4 63.7 ± 3.9 69.8 ± 4.6 29.7 ± 2.2 9.8 ± 1.1 15.4 ± 2.4 19.0 ± 4.0

Comparison-based LLM IR Systems
RankGPT 76.2 ± 1.3 17.5 ± 2.3 26.7 ± 2.2 17.0 ± 3.8 79.5 ± 3.5 85.9 ± 3.4 39.9 ± 2.6 14.8 ± 1.4 40.1 ± 4.0 48.0 ± 5.1

Rank+OGPT 77.4 ± 1.3 17.6 ± 2.1 54.4 ± 3.2 70.9 ± 4.5 82.1 ± 3.3 88.0 ± 3.2 38.6 ± 2.8 14.6 ± 1.5 62.3 ± 3.9 70.1 ± 4.5

Scoring-based LLM IR Systems
Score+OGPT 79.9 ± 1.2 19.3 ± 2.0 51.6 ± 2.7 70.0 ± 4.6 83.3 ± 3.1 90.9 ± 2.8 43.4 ± 2.4 17.2 ± 1.6 54.1 ± 3.3 70.1 ± 4.6

Reason+OGPT 74.9 ± 1.3 18.1 ± 2.3 59.9 ± 2.9 76.8 ± 4.2 74.9 ± 3.6 82.8 ± 3.7 45.7 ± 3.1 17.0 ± 1.7 39.9 ± 3.3 51.0 ± 5.0
Subtask+OGPT 78.5 ± 1.2 18.5 ± 1.9 69.5 ± 3.0 85.9 ± 3.5 79.6 ± 3.5 85.9 ± 3.3 43.5 ± 2.9 16.5 ± 1.6 53.2 ± 3.5 62.9 ± 4.8

Table 2: nDCG@10 and Recall@5 for the benchmark datasets. Bold indicates p > 0.05 compared to the highest
numerical value indicated in red. Error bars are standard errors. The notation +O indicates task objective awareness.

Table 2 shows the results for the strongest em-202

bedding models and language models on BIRCO.203

Most GPT4-based IR strategies significantly out-204

perform embedding or small (<10B) language mod-205

els. Among LLM models, RankGPT performs most206

poorly, achieving notably weaker results on Ar-207

guAna and RELIC. This is the only model with-208

out task objective awareness for which we report209

results; other models without task objective aware-210

ness performed very poorly on the development211

sets, so they were excluded from further analyses212

for cost reasons.213

Score+OGPT performs well on 4 out of 5 tasks.214

This is one of the simplest LLM models: its prompt215

describes the task objective, and the model directly216

outputs a score given a query, passage pair, without217

performing any reasoning.218

The Subtask model, which decomposes the219

query into subtasks and evaluates each subtask220

separately, has strong performance on all datasets.221

However, it only exceeds the performance of other222

LLM models on ArguAna.223

No model achieves strong performance on224

DORIS-MAE (as measured by recall) or Clinical-225

Trial.226

6 Conclusion227

We have introduced BIRCO, a benchmark for IR228

tasks with complex objectives. BIRCO includes229

scientific, medical, literary, and current-events re-230

trieval tasks, and is significantly more challenging231

than previous IR benchmarks. 232

We found that embedding methods and small 233

(<10B parameters) language models have weak 234

performance on the BIRCO tasks. Methods that 235

use LLMs for ranking have stronger performance, 236

though none achieve strong results across all tasks. 237

We evaluated several hypotheses regarding LLM 238

performance. First, providing clear instructions to 239

the LLMs regarding task objectives was critical to 240

achieving good performance. Second, we did not 241

find evidence that ranking by comparing passages 242

improved performance relative to directly scoring 243

passages. Third, in contrast to results in many 244

other NLP domains (Kojima et al., 2022; Huang 245

et al., 2022), we did not find evidence that chain-of- 246

thought reasoning improves retrieval performance. 247

Finally, decomposing queries into subtasks im- 248

proved performance on only a single dataset. 249

The results underscore the need to develop IR 250

methods that go beyond similarity-based retrieval. 251

Strong performance on BIRCO requires models 252

that can understand multi-faceted user intents. 253

While GPT-4-based methods had the strongest per- 254

formance, even they did not achieve adequate per- 255

formance across tasks. Furthermore, it is currently 256

prohibitively expensive to perform inference with 257

LLMs for all but the smallest IR tasks. The chal- 258

lenge of complex user objectives will require im- 259

provements in model abilities and efficiency. 260
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7 Limitations261

There are few existing datasets with complex262

queries or non-standard search goals. We hope our263

work can encourage more research and task cre-264

ation in this area, increasing the number of bench-265

marked IR tasks with complex objectives.266

Furthermore, LLM methods are computationally267

expensive and can only be effectively employed in268

the passage re-ranking stage of a multi-stage IR269

process.270

8 Ethical Considerations271

No ethical concerns for this work.272
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A Experiment Details 485

Unless otherwise stated, we use the GPT4-06-13 486

checkpoint as the LLM and access it via OpenAI’s 487

API. Each LLM-based system takes less than 12 488

hours to run, and costs approximately $500-$1000. 489

All embedding models have 350M parameters or 490

less. Encoder-decoder or decoder models have 491

7B parameters or less, and experiments on these 492

models can be run on one node of an 8 NVIDIA 493

H100 GPU (80G) within one hour. 494

A.1 Baselines 495

For pretrained embedding models, we choose sev- 496

eral recent state-of-the-art models as well as several 497

that have been extensively benchmarked on other 498

tasks: E5-v2-Large (Wang et al., 2022), SimCSE- 499

Large (Gao et al., 2021), SPECTER-v2 (Singh 500

et al., 2022), ROBERTA-Large (Liu et al., 2019), 501

SPLADE-v2 (Formal et al., 2021), and SPLADE++ 502

(Formal et al., 2022). There are several encoder- 503

decoder models specifically trained for information 504

retrieval: monoT5 (Nogueira et al., 2020), which 505

is supervised on MS MARCO, and TART (Asai 506

et al., 2023), which is instruction-tuned and can 507

incorporate task descriptions. For DORIS-MAE, 508

ArguAna and WTB, we also report results for E5- 509

L-v2 fine-tuned using synthetic data generated by 510

Promptagator (Dai et al., 2022). Additionally, we 511

evaluate a decoder-only model Rank-LLaMA-7B 512

(Ma et al., 2023a) trained on MS MARCO. 513

A.2 Full Experiment Results 514

See Table 3 for full experiment results with more 515

embedding models. 516

B BIRCO Descriptions 517

We provide a more detailed description for each 518

dataset in BIRCO. Also see Figure 1. 519

DORIS-MAE 520

60 queries that are complex research questions 521

from computer scientists. The query communicates 522

specific requirements from research papers. Each 523

query has a candidate pool sized approximately 524

110. 525

ArguAna 526

100 queries, each with a candidate pool of around 527

50 passages. Queries and passages are both com- 528

plex one-paragraph arguments about current af- 529

fairs. The objective is to find matching counter- 530

arguments. 531

Clinical-Trial 532
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Model DORIS-MAE ArguAna WTB Clinical-Trial RELIC
nDCG@10 R@5 nDCG@10 R@5 nDCG@10 R@5 nDCG@10 R@5 nDCG@10 R@5

Embedding Models
RoBERTa-L 66.8 ± 1.3 12.0 ± 1.6 31.5 ± 3.6 40.2 ± 5.1 14.6 ± 2.7 16.0 ± 3.7 25.9 ± 2.2 8.9 ± 1.2 8.4 ± 2.2 8.9 ± 2.7
SPLADE++ 66.8 ± 1.3 8.2 ± 1.2 34.0 ± 3.4 47.9 ± 5.0 9.5 ± 2.2 8.9 ± 2.9 27.5 ± 2.2 9.5 ± 1.2 11.4 ± 2.2 13.9 ± 3.3
SPLADE-v2 67.9 ± 1.4 10.6 ± 2.1 37.8 ± 3.7 40.7 ± 5.0 16.2 ± 3.0 20.2 ± 4.1 22.3 ± 2.3 7.2 ± 1.1 10.7 ± 2.1 11.0 ± 3.0

SPECTER-v2 71.4 ± 1.2 13.5 ± 2.3 37.7 ± 3.3 49.1 ± 5.1 9.8 ± 2.0 13.0 ± 3.4 30.4 ± 2.1 11.2 ± 1.2 7.7 ± 1.6 12.0 ± 3.1
E5-L-v2 72.0 ± 1.2 14.6 ± 1.9 43.5 ± 3.2 62.0 ± 4.8 36.6 ± 4.0 39.9 ± 4.8 29.4 ± 2.7 10.5 ± 1.7 11.1 ± 2.6 14.9 ± 3.4
SIMCSE 70.8 ± 1.3 14.4 ± 1.8 39.8 ± 3.5 51.1 ± 5.1 31.7 ± 4.0 37.0 ± 5.0 27.7 ± 2.7 10.5 ± 1.6 12.9 ± 2.5 15.6 ± 3.7

Promptagator 76.0 ± 1.4 15.6 ± 1.8 63.0 ± 3.3 77.8 ± 4.2 59.1 ± 4.2 62.9 ± 4.7 NA NA NA NA

Encoder-Decoder Models
TART 64.9 ± 1.5 10.2 ± 1.7 47.6 ± 3.1 63.7 ± 4.8 42.7 ± 3.7 46.1 ± 4.9 32.8 ± 2.5 10.8 ± 1.3 9.4 ± 1.9 7.9 ± 2.7

TART+O 49.6 ± 1.8 4.9 ± 1.0 23.1 ± 2.8 28.0 ± 4.4 17.9 ± 2.4 20.7 ± 4.1 23.6 ± 2.2 7.7 ± 1.0 14.3 ± 2.3 18.3 ± 3.8
MonoT5 66.9 ± 1.5 12.4 ± 1.8 45.9 ± 3.2 52.0 ± 4.9 50.8 ± 4.2 59.0 ± 4.9 33.2 ± 2.5 14.2 ± 2.3 13.9 ± 2.7 11.9 ± 3.2

Decoder-Only Model
Rank-LLaMA 75.1 ± 1.3 18.4 ± 2.0 53.2 ± 2.9 71.9 ± 4.4 63.7 ± 3.9 69.8 ± 4.6 29.7 ± 2.2 9.8 ± 1.1 15.4 ± 2.4 19.0 ± 4.0

Comparison-based LLM IR Systems
RankGPT 76.2 ± 1.3 17.5 ± 2.3 26.7 ± 2.2 17.0 ± 3.8 79.5 ± 3.5 85.9 ± 3.4 39.9 ± 2.6 14.8 ± 1.4 40.1 ± 4.0 48.0 ± 5.1

Rank+OGPT 77.4 ± 1.3 17.6 ± 2.1 54.4 ± 3.2 70.9 ± 4.5 82.1 ± 3.3 88.0 ± 3.2 38.6 ± 2.8 14.6 ± 1.5 62.3 ± 3.9 70.1 ± 4.5

Comparison-based LLM IR Systems
Score+OGPT 79.9 ± 1.2 19.3 ± 2.0 51.6 ± 2.7 70.0 ± 4.6 83.3 ± 3.1 90.9 ± 2.8 43.4 ± 2.4 17.2 ± 1.6 54.1 ± 3.3 70.1 ± 4.6

Reason+OGPT 74.9 ± 1.3 18.1 ± 2.3 59.9 ± 2.9 76.8 ± 4.2 74.9 ± 3.6 82.8 ± 3.7 45.7 ± 3.1 17.0 ± 1.7 39.9 ± 3.3 51.0 ± 5.0
Subtask+OGPT 78.5 ± 1.2 18.5 ± 1.9 69.5 ± 3.0 85.9 ± 3.5 79.6 ± 3.5 85.9 ± 3.3 43.5 ± 2.9 16.5 ± 1.6 53.2 ± 3.5 62.9 ± 4.8

Table 3: Experiment results for all models. nDCG@10 and Recall@5 for the benchmark datasets. Bold indicates
p > 0.05 compared to the highest numerical value indicated in red. The notation +O indicates task objective
awareness.

100 queries that are paragraph-length patient case-533

reports. Each query has a candidate pool com-534

prising 30-110 passages that are paragraph-length535

descriptions of clinical trials. The objective is to536

find the most suitable clinical trial for a patient.537

WhatsThatBook538

100 queries, with each query describing a book in539

an ambiguous manner. Each query has a pool of 50540

passages, which are book descriptions.541

RELIC542

100 queries which are excerpts from scholars an-543

alyzing classic English-language literature. Pas-544

sages are sentences from a novel that have been ex-545

tracted from the queries. The objective is to match546

a literary analysis with its missing quotations.547

C Task Objectives for BIRCO548

We report our prompts, which were optimized on a549

small-scale development set for each dataset. The550

dev set for DORIS-MAE has 40 queries. The dev551

set for Clinical-Trial has the rest 9 queries. All the552

other datasets have 50 queries in their dev sets.553

C.1 Task Objective for ArguAna554

"This information retrieval (IR) task has a debate555

format where a topic is given, and two directly556

opposing sides of arguments about this topic are557

formed. A query is an argument that takes one side 558

of this topic, focuses on a particular point about 559

this topic, and takes a stance (i.e., opinion, position, 560

view, perspective) about this particular point. A 561

passage is an argument that takes the opposing side 562

of the same topic, focuses on the same particular 563

point about the same topic, and takes a directly 564

opposing stance that directly (i.e., no implying or 565

inferring) refutes and attacks the query’s stance 566

regarding this particular point. Both query and 567

passage might have citations in them but these cita- 568

tions should not be considered in the scope of this 569

task. The overall goal of this specific information 570

retrieval IR task is to identify the central topic of 571

the debate, to articulate the query’s stance, and to 572

find the passage that takes the opposing stance." 573

C.2 Task Objective for DORIS-MAE 574

"The query consists of users’ needs, leading to sev- 575

eral research questions that span a paragraph. Each 576

candidate passage is an abstract from a scientific 577

paper. The objective of this information retrieval 578

task is to identify the abstract that most effectively 579

meets the user’s needs in the query." 580
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C.3 Task Objective for WTB581

"The query has this format: a user is trying to re-582

member the name of a specific book. The user only583

remembers some details about the book, such as584

places, events, and some characters’ names. Some585

of the details are described using informal language.586

The passage is a book description or summary of587

a specific book. The passage typically describes588

the overall storyline of the book and contains some589

details about the book. The objective of this in-590

formation retrieval IR task is for you to find the591

passage that has details or components that holisti-592

cally best match, explicitly or implicitly, the details593

or components raised in the query. In other words,594

you need to find the book description (i.e., the pas-595

sage) that is most likely the book the user is looking596

for in the query."597

C.4 Task Objective for RELIC598

"The query is a piece of literary analysis written599

by a scholar. In the query (i.e., the excerpt from a600

literary analysis), one or more quotations from a601

classic English novel is used as evidence to support602

the claims made by the literary analysis. Quota-603

tions are identified by quotation marks. Now, one604

quotation is being intentionally masked from the605

literary analysis (i.e., the query), and replaced by606

the symbol [masked sentence(s)]. An important607

claim is made in the preceding context and another608

important point is made in the subsequent context609

surrounding the [masked sentence(s)]. The objec-610

tive of this information retrieval task is to find the611

most suitable passage that can be used to **directly612

support** at least one claim made in the query (i.e.,613

the claim that is made in the preceding or the claim614

subsequent context surrounding the [masked sen-615

tence(s)]) and is very natural to be plugged into616

the [masked sentence(s)] part of the query. Ob-617

viously the most suitable passage should **NOT618

REPEAT** or be contained in any part of the query.619

It does not make sense to repeat the same or very620

similar things twice in literary analysis."621

C.5 Task Objective for Clinical-Trial622

"The motivation of the Information Retrieval task623

is that clinical trials are experiments conducted in624

the development of new medical treatments, drugs625

or devices, and recruiting candidates for a trial is626

often a time-consuming and resource-intensive ef-627

fort. A query is a patient case report (either in628

the form of electronic patient records or ad-hoc629

queries). A passage is a clinical trial. This Informa- 630

tion Retrieval task is to improve patient recruitment 631

for clinical trials. The overall goal of this specific 632

information retrieval IR task is to match eligible 633

patients (the query) to clinical trials (the passage) 634

for recruitment." 635

D Prompt Structure for Score and Reason 636

Please refer to Figure 4, 5 for the prompts for 637

Reason+OGPT and Subtask+OGPT. 638

E The Effects of Candidate Pool 639

Construction 640

Please refer to Table 4 for the statistics about the 641

test set and the whole dataset. 642

F Example (Query, Passage) Pairs from 643

the Dataset 644

Please refer to Figure 6, 7, 8, 9, 10 for examples of 645

query and passage pairs from the datasets. 646
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Figure 4: Prompt for Reason+OGPT

Figure 5: Prompt for Subtask+OGPT

Dataset Test Set Whole Dataset

E5-v2 nDCG@10 E5-v2 R@5 E5-v2 nDCG@10 E5-v2 R@5

ArguAna 43.5 ± 3.2 62.0 ± 4.8 48.0 ± 1.0 59.7 ± 1.4
WTB 36.6 ± 4.0 39.9 ± 4.8 21.0 ± 2.8 24.7 ± 3.5

Clinical-Trial 29.4 ± 2.7 10.5 ± 1.7 32.4 ± 2.6 13.1 ± 1.9
RELIC 11.1 ± 2.6 14.9 ± 3.4 8.2 ± 0.4 10.1 ± 0.5

Table 4: Model performance on BIRCO’s test sets and the full original datasets

Figure 6: Example from DORIS-MAE
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Figure 7: Example from ArguAna

Figure 8: Example from WhatsThatBook
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Figure 9: Example from Clinical-Trial

Figure 10: Example from RELIC
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