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Abstract

Recently, there has been a growing focus on determining the minimum width
requirements for achieving the universal approximation property in deep, narrow
Multi-Layer Perceptrons (MLPs). Among these challenges, one particularly chal-
lenging task is approximating a continuous function under the uniform norm, as
indicated by the significant disparity between its lower and upper bounds. To ad-
dress this problem, we propose a framework that simplifies finding the minimum
width for deep, narrow MLPs into determining a purely geometrical function de-
noted as w(dx, dy). This function relies solely on the input and output dimensions,
represented as dx and dy, respectively. To achieve this, we first demonstrate that
deep, narrow MLPs, when provided with a small additional width, can approximate
any C2-diffeomorphism. Subsequently, using this result, we prove that w(dx, dy)
equates to the optimal minimum width required for deep, narrow MLPs to achieve
universality. By employing the aforementioned framework and the Whitney em-
bedding theorem, we provide an upper bound for the minimum width, given by
max(2dx + 1, dy) + α(σ), where 0 ≤ α(σ) ≤ 2 represents a constant depending
explicitly on the activation function. Furthermore, we provide novel optimal values
for the minimum width in several settings, including w(2, 2) = w(2, 3) = 4.

1 Introduction

The universal approximation property (UAP) denotes the capability of neural networks to approximate
a specific class of functions, forming the foundation for their efficacy and garnering significant interest
in the research community. Among the extensively explored subjects is the investigation of the UAP
of deep, narrow multilayer perceptrons (MLPs) characterized by restricted width and an arbitrary
number of layers. Given the practical application of MLPs involving modest widths and more than
two layers, comprehending the UAP of such networks has emerged as a pivotal focus.

In this context, a series of papers has aimed to determine the minimum width, representing the neces-
sary and sufficient width for achieving the UAP. The minimum width depends on input dimension
dx, output dimension dy, activation functions, and the employed norm. Out of various norms, one
particularly important and challenging task is to determine the minimum width under the uniform
norm. In this paper, our focus centers on the universal approximation of continuous functions under
the uniform norm. The earlier findings concerning uniform approximation are summarized in Table 1.
In general, research on determining the minimum width for approximations under the uniform norm,
using continuous activation functions, suggests a range between max(dx + 1, dy) and dx + dy . This
discrepancy highlights a significant gap.

In this context, we present novel upper and lower bounds for the minimum width required by deep,
narrow MLPs to possess the UAP. Our support for these bounds unfolds in two steps. Initially, we

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



approximate diffeomorphisms using deep, narrow MLPs, building upon the concept of the UAP of
invertible neural networks. Subsequently, we approximate arbitrary continuous functions through
a composition of linear transformations and a diffeomorphism. We characterize this process by
revealing that the minimum width of Leaky-ReLU MLPs corresponds to a geometrical function
denoted as w(dx, dy). This function represents the required dimension of diffeomorphisms necessary
to approximate arbitrary continuous functions given an input dimension of dx and an output dimension
of dy .

Building upon these statements, we establish upper and lower bounds. By applying results from
geometric topology, we prove that MLPs with width max(2dx + 1, dy) can approximate any continu-
ous function. Additionally, by utilizing more refined results of topological algebra, we can improve
this bound in certain specific cases. For example, when the input dimension is two and the output
dimension is three, the optimal minimum width is exactly four, and when both the input and output
dimensions are two, the optimal minimum width remains four. These findings highlight the practical
utility of our framework.

Our contributions can be summarized as follows:

• We prove that deep, narrow MLPs with a width of d, employing the Leaky-ReLU activation
function, can approximate any C2-diffeomorphisms on Rd. Furthermore, for more general
activation functions, we demonstrate that deep, narrow MLPs with width d + 1 using
ReLU and d+ 2 employing a general activation function, respectively, can approximate any
C2-diffeomorphisms uniformly on Rd.

• We propose the purely topological quantity w(dx, dy), representing the optimal minimum
width for achieving the UAP of deep, narrow MLPs employing the Leaky-ReLU activation
function.

• Building upon the aforementioned results, we prove that deep, narrow MLPs with a width
of max(2dx + 1, dy) + α(σ) can approximate any continuous function in C(Rdx ,Rdy )
uniformly on a compact domain, where 0 ≤ α(σ) ≤ 2 is a constant depending on the
activation function.

• We prove that when the input dimension is 2k and the output dimension is 4k − 1, the
optimal minimum width is 4k.

• We demonstrate that a width of 4 is the optimal minimum width for deep, narrow MLPs to
approximate arbitrary continuous function mapping [0, 1]2 to R2.

2 Related Works

In this section, we explore previous research concerning the universal approximation property of
neural networks. Initial studies primarily focused on two-layered MLPs. Cybenko (1989) demon-
strated that two-layered MLPs with sigmoidal activation functions possess the UAP for approximating
continuous functions. Later, Leshno et al. (1993) expanded the scope of activation functions to more
general ones.

Beyond two-layered MLPs, extensive investigations have explored the UAP of deep, narrow MLPs.
For instance, Lu et al. (2017) showed that deep, narrow MLPs with a width of dx + 4 and ReLU
activation functions possess the UAP in L1([0, 1]

dx ,R), while they do not have the UAP with a width
of dx. This early research paved the way for further studies that narrowed down the minimum width
range and expanded the application scope of theories. Hanin (2019) extended the study to encompass
arbitrary output dimensions dy: The minimum width lies between dx + 1 and dx + dy for the ReLU
activation function. Johnson (2019) demonstrated that a width of dx is insufficient to achieve the
UAP in continuous function spaces for an activation function that can be approximated by increasing
functions. Kidger & Lyons (2020) proved that a dimension of dx + dy + 1 is sufficient for activation
functions under a weak condition, and dx + dy + 2 is sufficient for polynomials. Furthermore, Cai
(2023) explored the lower bound max(dx, dy) of the minimum width for arbitrary activation functions
and proved that the UAP can be achieved with max(dx, dy) using the floor function and an activation
function having the universal ordering of extrema property. Tabuada & Gharesifard (2022) addressed
the UAP of deep, narrow residual networks. Recently, Li et al. (2023) claimed that the upper bound
could be reduced to max(dx + 1, dy) + 1dx+1=dy

. On the other hand, Shen et al. (2022); Hong
& Kratsios (2024); Liu & Chen (2024) treat the approximation rates of neural networks with low
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Table 1: A summary of known results on minimum width for universal approximation of continuous
functions. K denotes a compact domain, and “Conti.” is short for continuous.

Reference Domain Activation σ Upper / Lower Bounds

Hanin (2019) C(K,Rdy ) ReLU dx + 1 ≤ wmin ≤ dx + dy
Johnson (2019) C(K,R) uniformly conti.† wmin ≥ dx + 1

Kidger & Lyons (2020) C(K,Rdy ) conti. nonpoly‡ wmin ≤ dx + dy + 1
C(K,Rdy ) nonaffine poly wmin ≤ dx + dy + 2

Park et al. (2021) C([0, 1],R2) ReLU wmin = 3 > max(dx + 1, dy)
Cai (2023) C(K,Rdy ) Arbitrary wmin ≥ max(dx, dy)
Kim et al. (2024) C(K,Rdy ) uniformly conti.† wmin ≥ dy + 1dx<dy≤2dx

Ours

C(K,Rdy ) Leaky-ReLU wmin ≤ max(2dx + 1, dy)
C(K,Rdy ) ReLU wmin ≤ max(2dx + 1, dy) + 1
C(K,Rdy ) conti. nonpoly‡ wmin ≤ max(2dx + 1, dy) + 2
C([0, 1]2k,R4k−1) Leaky-ReLU wmin = 4k
C([0, 1]2,R2) ReLU wmin = 4
C([0, 1]2,R2) Leaky-ReLU wmin = 4
C([0, 1]2,R2) uniformly conti.† wmin ≥ 4

† Requires that σ can be uniformly approximated by a sequence of one-to-one functions.
‡ Requires that σ is continuously differentiable at some point z with σ′(z) ̸= 0.

width. In the recurrent setting (Song et al., 2023), investigations into minimal-width deep RNNs
have demonstrated that similar universal approximation properties hold, broadening the scope of
width-efficient architectures beyond feedforward models.

In addition to the uniform norm, Park et al. (2021) presented the optimal minimum width as max(dx+
1, dy) for deep, narrow MLPs using ReLU activation functions in Lp space. They demonstrated that
this is not applicable for the uniform norm, establishing the optimal width for the UAP in C([0, 1],R2)
as three. Kim et al. (2024) proved that the lower bound equals or exceeds dy + 1 if dy is less than or
equal to 2dx, and on a compact domain, the minimum width for Lp space is max(dx, dy, 2) when
using the ReLU activation function. Rochau et al. (2024) provided an alternative constructive proof
of the same result. HERNÁNDEZ & ZUAZUA proved that width 2 is sufficient in the classification
setting.

In this paper, we prove that a width of max(2dx + 1, dy) is sufficient for universal approximation.
This provides an advantage in cases where dy is large compared to previous results, which always
required an upper bound of approximately dx+dy . We also prove that when both the input and output
dimensions are two, the minimum required width is 4, demonstrating that the max(dx + 1, dy)-type
results obtained in the Lp norm setting do not apply to the uniform norm. See Table 1 for a summary.

3 Notation and Definition

In this section, we introduce the notations and definitions utilized throughout this paper: R represents
the set of real numbers. R+ denotes the set of positive real numbers. N stands for the set of natural
numbers, and N0 = N ∪ {0}. For a, b ∈ R, [a, b] and (a, b) represent the closed and open intervals
from a to b, respectively. Mn,m denotes the set of n×m real matrices with real inputs. GL(n) ⊂
Mn,n represents the set of invertible n× n-matrices. Affn,m and IAffn stand for the sets of affine
transformations from Rn to Rm and invertible affine transformations from Rn to Rn, respectively.
For a d-dimensional vector x ∈ Rd, xi denote the i-th component of x; in other words, x =
(x1, x2, . . . , xd). Additionally, xi:j represents the (j − i+ 1)-dimensional vector (xi, xi+1, . . . , xj).

3.1 Compact Approximation

Let X and Y be metric spaces. C(X,Y ) represents the set of continuous functions from X to Y . For
a function f ∈ C(X,Y ) and a non-empty set X ′ ⊂ X , f |X′ denotes the restriction of the function to
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the domain X ′. For a set of functions A ⊂ C(X,Y ), A|X′ is defined as {f |X′ : f ∈ A}. We focus
on the uniform approximation of a continuous function on a compact set, defined as follows:
Definition 3.1. Given two subsets, A,B ⊂ C(Rn,Rm), we say that A compactly approximates B if,
for any f ∈ B, a compact set K ⊂ Rn, and ϵ > 0, there exists g ∈ A such that

∥f − g∥∞,K := supx∈K ∥f(x)− g(x)∥∞ < ϵ. (1)

This is denoted as A ≻ B or B ≺ A.

The compact approximation relation is transitive: if A ≻ B, and B ≻ C, then, A ≻ C. Additionally,
we use the notation f ≺ A to indicate that {f} ≺ A. For a set of functions A ⊂ C(X,Y ), A
represents the closure with respect to the uniform norm.

3.2 Activation Function

We follow the commonly used condition for activation functions proposed by Kidger & Lyons (2020).
Note that this condition permits a linearization of the activation function, as established in Lemma
4.1 of Kidger & Lyons (2020).
Condition 1. An activation function σ is a C1-function near α ∈ R, with σ′(α) ̸= 0.

We define several activation functions that satisfy Condition 1:

• ReLU: ReLU(x) :=

{
x if x ≥ 0

0 if x < 0
.

• Leaky-ReLU : LRβ(x) :=

{
x if x ≥ 0

βx if x < 0
.

Activation functions applied to vectors function as componentwise operators: For x ∈ Rd,

σ(x) := (σ(x1), . . . , σ(xd)). (2)

3.3 Deep, Narrow MLP

A set of MLPs, denoted as N σ
d0,d1,...,dN

, is defined as follows:

N σ
d0,d1,...,dN

:=
{
f : Rd0 → RdN

∣∣Wi ∈ Affdi−1,di , f(x) = WN ◦ σ ◦ · · · ◦ σ ◦W1

}
. (3)

For Leaky-ReLU, an additional parameter β can vary for each layer, resulting in the set N LR
d0,d1,...,dN

:

N LR
d0,d1,...,dN

:=
{
WN ◦LRβN−1

◦· · ·◦LRβ1
◦W1 : Rd0 → RdN

∣∣Wi ∈ Affdi−1,di
, βi ∈ R+,

}
. (4)

We define a set of deep, narrow MLPs with input dimension dx, output dimension dy , and at most n
intermediate dimensions as follows:

∆σ
dx,dy,n :=

⋃
N∈N0

⋃
1≤d1,d2,...,dN≤n

N σ
dx,d1,d2...,dN ,dy

. (5)

For natural numbers n ≥ m ∈ N, we define the natural projection pn,m : Rn → Rm and the inclusion
qm,n as follows:

pn,m : (x1, . . . , xn) 7→ (x1, . . . , xm), (6)
and

qm,n : (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0). (7)
For any n ≥ dx, dy and f ∈ ∆σ

dx,dy,n
, it can be decomposed as:

f = pn,dy
◦ g ◦ qdx,n, (8)

where g ∈ ∆σ
n,n,n.

Definitions of several geometric concepts including diffeomorphism and embedding, are provided in
Appendix A. We define the set of diffeomorphisms as follows:
Definition 3.2 (Diffeomorphism: Dr(U)). Let U ⊂ Rd be an open subset, and let r be a non-negative
integer or infinity. Dr(U) is the set of Cr-diffeomorphisms from U to Rd.
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4 Main Theorem

4.1 Problem Formulation

Our primary objective is to determine the minimum width wmin ∈ N such that for any compact set
K ⊂ Rn, a continuous function f ∈ C(K,Rm) can be uniformly approximated by ∆σ

n,m,wmin
. In

other words, we aim to determine the value wmin(n,m, σ) such that

wmin(n,m, σ) := min
{
l ∈ N

∣∣C(Rn,Rm) ≺ ∆σ
n,m,l

}
. (9)

4.2 Approximating Diffeomorphisms and Continuous Functions

In this subsection, we begin by demonstrating the capability of deep, narrow MLPs to approximate
diffeomorphisms and aim to prove that any continuous function can be approximated by composing
linear transformations and diffeomorphisms.

Lemma 4.1. Let σ be a continuous function that satisfies Condition 1. Then, for a natural number
d ∈ N, the set ∆σ

d,d,d+α(σ) compactly approximates D2(Rd), where

α(σ) =


0 if σ = Leaky-ReLU
1 if σ = ReLU
2 if σ = Otherwise

. (10)

In other words, we have the relation

D2(Rd) ≺ ∆σ
d,d,d+α(σ). (11)

In Teshima et al. (2020), it was shown that any diffeomorphism can be approximated by a compo-
sition of single coordinate transformations. Therefore, it suffices to prove that deep narrow MLPs
can approximate any such single coordinate transformation (see Definition A.5 for the formal defini-
tion). This is established in Lemma B.1. With the exception of the Leaky-ReLU case, the proof is
relatively direct. For the Leaky-ReLU case, we progressively extend the class of functions that can be
approximated. Using Lemma B.3, we show that any increasing scalar function can be approximated
by width one Leaky-ReLU networks. This result implies that any width-1 neural network with
increasing activation functions can be approximated by a Leaky-ReLU network of the same width
(see Corollary B.4). Building on this, we prove in Lemma B.5 that any ACF (see Definition A.6)
can be approximated by deep narrow MLPs. Finally, Lemma B.6 shows that any single coordinate
transformation can, in turn, be approximated by an ACF.

The detailed proof of Lemma 4.1 is provided in Appendix B.1.

Now, we quantify the required geometric width for approximation as w(n,m). Additionally, we
demonstrate that the network-independently defined value w(n,m) equals the minimum width of
deep, narrow, Leaky-ReLU MLPs.

Let Emb(X,Y ) denote the set of smooth embeddings from X to Y , and Embp.l.(X,Y ) represent
the set of piecewise linear embeddings from X to Y . For natural numbers d1 ≥ d2, define pd1,d2 :
Rd1 → Rd2 as the projection to the first d2 coordinates. And define w(n,m) as:

w(n,m) := min
{
l ∈ N0

∣∣pl,m(Emb([0, 1]n,Rl)
)
= C([0, 1]n,Rm)

}
. (12)

Intuitively, w(n,m) represents the minimum width required to approximate any arbitrary continuous
function using diffeomorphisms.

Remark 4.2. We note that the interval [0, 1] can be replaced with the interval [a, b] for a < b.
Additionally, Emb([0, 1]n,Rl) can be replaced with any dense subset of Emb([0, 1]n,Rl), such as
Embp.l.([0, 1]

n,Rl) (Munkres, 1960).

We will prove that the difference between w(n,m) and w(n,m, σ) is bounded by two, and that
w(n,m) has the same value as w(n,m,Leaky-ReLU). The next lemma demonstrates that any smooth
embedding can be represented by the composition of an inclusion and a smooth diffeomorphism.
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Lemma 4.3 (Theorem C of Palais (1960)). Consider natural numbers n and m where n ≤ m,
and a smooth embedding f : K = [0, 1]n → Rm. Then, there exists a smooth diffeomorphism
F : Rm → Rm such that the following equation holds:

F ◦ qn,m = f. (13)

Using the preceding lemma along with the definition of w(n,m), we can present the following
theorem:

Theorem 4.4. Let σ be a continuous function satisfying Condition 1. Then, for natural numbers n
and m, ∆σ

n,m,w(n,m)+α(σ) compactly approximates C(Rn,Rm), where

α(σ) =


0 if σ = Leaky-ReLU
1 if σ = ReLU
2 if σ = Otherwise

. (14)

In other words,
C(Rn,Rm) ≺ ∆σ

n,m,w(n,m)+α(σ). (15)

Proof. Without loss of generality, assume that K = [0, 1]n. In cases where K differs, we can achieve
this by continuously extending the function to encompass a cube containing K and then rescaling.
By the definition of w(n,m), for any f ∈ C([0, 1]n,Rm) and ϵ > 0, there exists an embedding
g ∈ Emb([0, 1]n,Rw(n,m)) such that

∥f − pw(n,m),n ◦ g∥∞,[0,1]n < ϵ. (16)

Because w(n,m) ≥ n, by Lemma 4.3, for qn,w(n,m) : (x1, . . . , xn) 7→ (x1, . . . , xn, 0, . . . , 0), there
exists a smooth diffeomorphism G such that g = G ◦ qn,w(n,m). By Lemma 4.1, there exists an
H ∈ ∆σ

w(n,m),w(n,m),w(n,m)+α(σ) such that

∥G−H∥∞,K×[0,1]w(n,m)−n < ϵ. (17)

Then,
∥pw(n,m),n ◦H ◦ qn,w(n,m) − pw(n,m),n ◦G ◦ qn,w(n,m)∥∞,[0,1]n < ϵ. (18)

Therefore,
∥f − pw(n,m),m ◦H ◦ qn,w(n,m)∥∞,K < 2ϵ. (19)

pw(n,m),m ◦H ◦ qn,w(n,m) ∈ ∆σ
w(n,m),w(n,m),w(n,m)+α(σ). This completes the proof.

Furthermore, we can give the lower bound for the minimum width required for the UAP.

Theorem 4.5. Let σ be an increasing, continuous activation function. For natural numbers n and
m in N, ∆σ

n,m,w(n,m)−1 does not compactly approximate C(Rn,Rm). In other words, the following
relation holds:

C(Rn,Rm) ⊀ ∆σ
n,m,w(n,m)−1. (20)

The detailed proof is provided in Appendix C.1.

Combining Theorem 4.4 with Theorem 4.5, we conclude that the minimum width
wmin(n,m,Leaky-ReLU) equals w(n,m) for Leaky-ReLU and provides a tight inequality for gen-
eral increasing activation functions.

Corollary 4.6. The following equation holds:

wmin(n,m,Leaky-ReLU) = w(n,m) (21)

For a general increasing activation function σ, which satisfies Condition 1, the following inequality
holds:

w(n,m) ≤ wmin(n,m, σ) ≤ w(n,m) + α(σ), (22)

where

α(σ) =

{
1 if σ = ReLU
2 if σ = Otherwise

. (23)
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4.3 Some Observations about the Upper bound of w(n,m)

In the previous subsection, we demonstrated the fundamental correlation between the minimum width
of the deep, narrow MLP and w(n,m). In this subsection, we will present a sufficient condition for
w(n,m) to be equal to m. The following lemma demonstrates that a continuous function can be
approximated by a smooth embedding when the output dimension is greater than twice the input
dimension:
Lemma 4.7. Consider natural numbers n and m where m > 2n. Let f : K = [0, 1]n ⊂ Rn → Rm

be a continuous function. Then, for ϵ ∈ R+, there exists a smooth embedding g : K → Rm such that

∥f − g∥∞,K < ϵ. (24)

Proof. Consider a connected, open subset U of Rn such that K ⊂ U ⊂ Rn. Since K is compact,
there exists a continuous extension f0 of f such that

f0|K = f. (25)

As U is a manifold, it satisfies the assumptions of Theorems 3.17 and 3.18 in Persson (2014).
Therefore, there exists an injective immersion g such that

∥f − g∥∞,U < ϵ. (26)

Consequently, the restriction g|K defined on the compact set K becomes a smooth embedding.

Now, we present an upper bound in the following theorem.
Theorem 4.8. Let σ be a continuous function satisfying Condition 1. Then, for any natural numbers
n,m ∈ N, the set ∆σ

n,m,max(2n+1,m)+α(σ) compactly approximates C(Rn,Rm), where

α(σ) =


0 if σ = Leaky-ReLU
1 if σ = ReLU
2 if σ = Otherwise

. (27)

In other words, the following relation holds:

C(Rn,Rm) ≺ ∆σ
n,m,max(2n+1,m)+α(σ). (28)

Proof. Lemma 4.7 implies that w(n,m) ≤ max(2n+ 1,m). By Theorem 4.4, we can immediately
get the conclusion.

Remark 4.9. As previously demonstrated by Kim et al. (2024), the minimum width wmin(dx, dy, σ)
satisfies the relation wmin ≥ dy + 1dx<dy≤2dx for an increasing activation function. It indicates
that when the output dimension dy is twice the input dimension dx, wmin(dx, 2dx, σ) is equals
or exceeds dy + 1. In the same configuration, following Theorem 4.8, we derive the relation:
wmin(dx, dy,Leaky-ReLU) ≤ 2dx + 1 = dy + 1. By merging these results, we arrive at the optimal
minimum width wmin(dx, dy,Leaky-ReLU) = dy + 1 = 2dx + 1.

Furthermore, we know that wmin(dx, dy, σ) ≥ max(dx, dy) for a general activation function σ (Cai,
2023). If dy > 2dx, then wmin(dx, dy,Leaky-ReLU) ≤ dy presenting the optimal minimum width as
wmin(dx, dy,Leaky-ReLU) = dy .

In addition to the aforementioned relation, there exists an evident upper bound for w(n,m):

w(n,m) ≤ n+m, (29)

for all n,m ∈ N. This reaffirms the result presented by Hanin (2019) in the case of Leaky-ReLU.

wmin(n,m,Leaky-ReLU) ≤ n+m, (30)

For ReLU (Hanin, 2019) and other general activation functions (Kidger & Lyons, 2020), the results
are slightly less favorable:

wmin(n,m, σ) ≤ n+m+ α(σ), (31)

where α(σ) = 1 for σ = ReLU, and α(σ) = 2 for other activation functions.
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4.4 Some Novel Upper Bounds of w(n,m)

The framework of diffeomorphism not only gives the upper bound derived from Whitney embedding.
By utilizing sophisticated techniques of geometric topology, we can give some non-trivial optimal
width including w(2, 3) = 4. Note that it is strictly smaller than both of dx+dy = 5 and 2dx+1 = 5.

Proposition 4.10. For even k, w(k, 2k − 1) = 2k.

Proof. The lower bound w(k, 2k − 1) ≥ 2k is by the result of Kim et al. (2024). For the upper
bound, consider an arbitrary continuous function f : [0, 1]k → R2k−1. By Theorem 5.10 of Hirsch
(1959), for any ϵ ∈ R+, there exists an immersion g such that ∥f − g∥∞,[0,1]k < ϵ. By Corollary 3.2
of Lashof & Smale (1959), there exists an embedding h : [0, 1]k → R2k such that its first 2k − 1
components p2k,2k−1 ◦ h satisfy ∥g − p2k,2k−1 ◦ h∥ < ϵ. This completes the proof.

4.5 Lower Bound of w(n,m)

In this subsection, we offer a nontrivial example of minimum width using the concept of w(n,m). In
particular, we will prove that w(2, 2) = 4 employing algebraic topological techniques. To provide a
lower bound, we construct a function f : [0, 1]2 → R2 that cannot be made injective by concatenating
an additional one-dimensional output function.

Such a function is constructed by designing a function with a winding number of two, meaning
that if a circle in the domain wraps around the origin once, its image wraps around the origin twice.
Specifically, we use a function that maps (r, θ) to (r, 2θ) where r and θ are the radius and the angle in
the polar coordinate system. This ensures that self-intersections always occur at two antipodal points
on a certain circle. Then, the Borsuk-Ulam theorem guarantees that any function from a circle S1 to
R must have the same value at some pair of antipodal points, which implies that the concatenation
also attains the same value at some pair of antipodal points. Therefore, the minimum width is at
least 4. Topological algebra helps formalize these abstract discussions mathematically by utilizing
relationships between homology, the fundamental group, and related concepts. See Hatcher (2000)
for further details.

From now on, all homology will refer to singular homology with Z-coefficients, denoted as Hi(X;Z).
For simplicity, we will write it as Hi(X). The homology of a topological space provides information
about the presence of holes in the space. For example, existence of nonzero H1 indicates the presence
of a one-dimensional hole.

We use the following lemma, which suggests that the homology of a level set of a function is robust
under the perturbation.

Lemma 4.11 (Theorem 2 of Bendich et al. (2010)). Let X be a compact topological space. For a
continuous function f : X → R and fa : X → R defined as fa(x) := |f(x) − a|, we define Xr as
follows:

Xr (fa) = f−1
a [0, r] (32)

For h : X → R, such that ∥f − h∥∞,X < r, h−1(a) is included in Xr (fa):

h−1(a) ↪→ Xr (fa) , (33)

and this inclusion induces the homomorphism of the homology:

jh : Hn

(
h−1(a)

)
→ Hn (Xr (fa)) (34)

In addition, as f−1(a− r) and f−1(a+ r) are also included in Xr (fa), we have inclusions:

ι0 : f−1(a+ r) ↪→ Xr (fa) , and ι1 : f−1(a− r) ↪→ Xr (fa) , (35)

which induce the homomorphisms ι0∗ and ι1∗ of the homology:

ι0∗ : Hn

(
f−1(a+ r)

)
→ Hn (Xr (fa)) , and ι1∗ : Hn

(
f−1(a− r)

)
→ Hn (Xr (fa)) . (36)

Define B0,r and B1,r as the images of two homomorphism:

B0,r := ι0∗
(
Hn

(
f−1(a+ r)

))
, and B1,r := ι1∗

(
Hn

(
f−1(a− r)

))
. (37)
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Define Un(r) as:
Un(r) =

⋂
∥h−f∥∞,X≤r

im(jh). (38)

Then, the following equation holds:

Un(r) = B0,r ∩ B1,r. (39)

We employ the well-known theorem as a lemma. It gives a relationship between the homology and
the fundamental group of the space.
Lemma 4.12 (Hurewicz Theorem (Theorem 2A.1 of Hatcher (2000))). By regarding loops as singular
1-cycles, we obtain a homomorphism h : π1 (X,x0) → H1(X). If X is path-connected, then h is
surjective and has a kernel, which is the commutator subgroup of π1(X). Consequently, h induces
an isomorphism from the abelianization of π1(X) onto H1(X).

By the preceding lemma, we can ensure that the fundamental group of the self-intersection sets is
nontrivial.

Now, we introduce the concept of the winding number in the framework of topological algebra. We
can observe that if a curve is given as input to the previously defined function that doubles the angle,
the winding number of the output curve also doubles that of the input curve.
Definition 4.13 (Winding Number). For O = (0, 0) ∈ R2 and a closed curve c : [0, 1] → R2 −O,
consider c as an element of the fundamental group:

[c] ∈ π1(R2 −O, x0) = Z, (40)

where the fundamental group π1(R2 −O, x0) is generated by the curve ω1 = (cos(2πθ), sin(2πθ)).
Then, the winding number of c is the natural number [c] as an element of π1(R2 −O, x0) = Z.

As the image curve has a winding number greater than one, it must have a self-intersection by the
following lemma.
Lemma 4.14. For any closed curve c : S1 → {(x, y) ∈ R2|1 < x2 + y2 < 2} in the annulus with a
winding number greater than 1, c is not injective.

Proof. Suppose c is an injective curve. By the Jordan Curve Theorem (See Proposition 2B.1 of
Hatcher (2000) for details), an injective curve bounds a region homeomorphic to the disk. Therefore,
there exists an embedding C : D2 → R2 such that its restriction to the boundary is c:

C|S1 = c. (41)

Because S1 ↪→ D2 − {O} induces an isomorphism of the fundamental group, the degree should be 1
or −1. Therefore, a curve with a winding number greater than 1 is not injective.

Using the lemmas, we can rigorously prove the following theorem.
Theorem 4.15. w(2, 2) = 4.

The proof of Theorem 4.15 is provided in Appendix C.2. Then, the theorem yields a direct corollary,
stating that the minimum width for universal approximation is 4 when both the input and output
dimensions are two.
Corollary 4.16.

wmin(2, 2,ReLU) = wmin(2, 2,Leaky-ReLU) = 4. (42)

Proof. The lower bound wmin(2, 2,ReLU) ≥ w(2, 2) ≥ 4 is a direct consequence of Theorem 4.15
and Corollary 4.6. The upper bound is provided by Hanin (2019). This completes the proof.

Remark 4.17. In Li et al. (2023), authors claimed that the optimal minimum width is given by
max(dx + 1, dy) + 1(dx+1=dy). However, as demonstrated in the previous corollary, it is not the
case. This may originate from a subtle misconception, specifically the assumption that an arbitrary
d-dimensional continuous function can be approximated by a (d+ 1)-dimensional diffeomorphism,
which does not hold in general. In this paper, we carefully control injectivity and embedding properties
to rigorously demonstrate that, in some cases, additional width is unavoidable.
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5 Limitations

In Section 4.4, we proved that for even k, the optimal minimum width is w(k, 2k − 1) = 2k.
But what about the case when k is odd? It is highly plausible that for odd k, the minimum width
is w(k, 2k − 1) = 2k + 1, since odd k permits the existence of self-intersections with structure
[S1;RP1] in the sense of Z2-bordism. Unfortunately, to the best of our knowledge, there is currently
no mathematical tool available for analyzing the self-intersection structure of uniformly perturbed
functions in this setting. It would be particularly interesting if one could rigorously prove that
the minimum width indeed depends on the parity of the input dimension. Moreover, our current
analysis has primarily focused on cases where the output dimension is roughly twice the input
dimension, allowing us to exploit properties of homology and the fundamental group. Exploring
higher-dimensional intersection settings remains a challenging but important direction for determining
the minimum width of MLPs.

6 Conclusion

In this paper, we introduced novel upper and lower bounds for the minimum width of a deep, narrow
MLP required to achieve the UAP within continuous function spaces. While our derived bound
exhibits optimality only when the output dimension is about twice the input dimension, we propose
that the strategy of approximating arbitrary functions through diffeomorphisms could potentially lead
to achieving optimality across all cases. Exploring this perspective presents an intriguing avenue for
future research. Additionally, we anticipate that analyzing the quantitative approximation capacity of
general MLPs from the viewpoint of diffeomorphisms might yield valuable insights.
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A Definitions

In this section, we define several subsets of the set of diffeomorphisms.

Definition A.1 (Diffeomorphism). For d, r ∈ N and open sets U1, U2 ⊂ Rd, a function f : U1 → U2

is called a Cr-diffeomorphism if and only if f is bijective, r-times continuously differentiable, and its
inverse f−1 is r-times continuously differentiable.

Definition A.2 (Embedding). Let M and N be manifolds. A function f : M → N is called an
embedding if and only if it is an immersion and a homeomorphism onto its image f(M).

Definition A.3. For any natural number d, let G be a subset of invertible functions from Rd to Rd.
Then, INNG is defined as:

INNG :=
{
W1 ◦ g1 ◦ · · · ◦Wn ◦ gn ◦Wn+1

∣∣n ∈ N, gi ∈ G,Wi ∈ IAffd

}
(43)
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Note that the approximation capability of INNG remains unchanged even if IAffd, in the definition,
is replaced with Affd,d.

Definition A.4 (Compactly supported diffeomorphism: Diffr
c(Rd)). A diffeomorphism f : Rd → Rd

is compactly supported if there exists a compact subset K ⊂ Rd such that for any x /∈ K, f(x) = x.
Diffr

c(Rd) is the set of all compactly supported Cr-diffeomorphisms from Rd to Rd.

Definition A.5 (Single-coordinate transformations: Sr
c (Rd)). Sr

c (Rd) is the set of all compactly
supported Cr-diffeomorphisms defined as follows:

Sr
c (Rd) :=

{
τ ∈ Diffr

c(Rd)
∣∣∃i ∈ {1, . . . , d} s.t

τ(x)j = xj forj ̸= i and τ(x)i = τ̃(x), τ̃ ∈ C(Rd,R)
}
. (44)

Definition A.6 (Single-coordinate affine coupling flows). ACFd is the set of all single-coordinate
affine coupling flows defined as follows:

ACFd :=
{
(x1, . . . , xd−1, exp(s(x1:d−1)xd + t(x1:d−1)))

∣∣s, t ∈ C(Rd−1,R)
}
, (45)

B Proofs for Approximation

B.1 Proof of Lemma 4.1

To prove the lemma, we introduce a lemma that suggests we can focus on approximating S∞
c (Rd) to

achieve the approximation of diffeomorphisms.

Lemma B.1. For a natural number d ∈ N, the following relation holds:

INNS∞
c (Rd) ≻ D2(Rd). (46)

Proof. This result directly follows from Theorem 1(B) in Teshima et al. (2020). As every element of
S∞
c (Rd) is invertible and locally bounded due to its continuity, it satisfies the conditions outlined

in Theorem 1. Given that INNS∞
c (Rd) ≻ S∞

c (Rd), we can therefore conclude that INNS∞
c (Rd) ≻

D2(Rd).

Proof of Lemma 4.1. According to Lemma B.1, it suffices to prove that the set of neural networks
can approximate S∞

c : ∆σ
d,d,d+α(σ) ≻ S∞

c (Rd).

When σ = Leaky-ReLU, we need to prove that ∆σ
d,d,d ≻ S∞

c (Rd). We can accomplish this by
employing Lemma B.2.

For σ = ReLU, by Theorem 1 in Hanin (2019), for f(x) = (x1, . . . , xd, τ(x)), we have f ≺
∆σ

d,d+1,d+1. Therefore, (x1, . . . , xd−1, τ(x)) ∈ ∆σ
d,d,d+1, implying S∞

c (Rd) ≺ ∆σ
d,d,d+1.

For other continuous activation functions σ, Proposition 4.2 of Kidger & Lyons (2020) demonstrates
that for f(x) = (x1, . . . , xd, τ(x)), we have f ≺ ∆σ

d,d+1,d+2. Consequently, (x1, . . . , xd−1, τ(x)) ∈
∆σ

d,d,d+2, concluding that S∞
c (Rd) ≺ ∆σ

d,d,d+2.

It is worth noting that while Theorem 1 of Hanin (2019) and Proposition 4.2 of Kidger & Lyons
(2020) do not explicitly state the form of approximated function as (x1, . . . , xd, τ(x)), their proofs
implicitly rely on this form.

Now, the remaining task is to prove the following lemma for the Leaky-ReLU case.

Lemma B.2 (Single-Coordinate Transformations to Leaky-ReLU). For a natural number d ∈ N, the
following relation holds:

∆LR
d,d,d ≻ S∞

c (Rd). (47)

The proof of this lemma involves a series of lemmas and corollaries that gradually extend the scope
of functions approximable using Leaky-ReLU. The proof is provided in Appendix B.2.
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B.2 Proof of Lemma B.2

The following lemma implies that any increasing function can be approximated by composing
Leaky-ReLUs and affine transformations.
Lemma B.3 (Increasing Functions to Leaky-ReLU). Define the sets as follows:

U0 := {ax+ b : R → R| a ∈ R+, b ∈ R} , (48)

Un+1 := {aLRβ(f) + b : R → R| a, β ∈ R+, b ∈ R, f ∈ Un} , (49)

U :=

∞⋃
n=0

Un. (50)

Then, for any continuous, increasing activation function σ : R → R, the following relation holds:

σ ≺ U. (51)

The proof of Lemma B.3 is provided in Appendix B.3. This lemma directly implies the subsequent
corollary: deep, narrow MLPs using the Leaky-ReLU activation function can approximate a deep,
narrow MLP using an increasing activation function and the same width.
Corollary B.4 (Generalization of Activation). For a natural number d ∈ N and any continuous,
increasing activation function σ, the following relation holds:

∆σ
d,d,d ≺ ∆LR

d,d,d. (52)

Utilizing the corollary above, we can demonstrate that Leaky-ReLU deep, narrow MLPs can approxi-
mate any ACF.
Lemma B.5 (ACF to Leaky-ReLU). For a natural number d ∈ N, the following relation holds:

INNACFd
≺ ∆LR

d,d,d. (53)

The proof of Lemma B.5 is provided in Appendix B.4. Next, we establish a technical lemma serving
as the multidimensional counterpart of Lemma B.3. For a multidimensional function from Rd to R
that increases with a coordinate xd, we can freely change the value when xd is large, while it remains
unaffected when xd is small.
Lemma B.6. Consider a compact set K = [0, 1]d ⊂ Rd, two distinct real values α1 < α2, and a
single-coordinate transformation F = (x1, . . . , xd−1, f(x)) ∈ Sr

c , where the function f(x) satisfies
the following relation:

f(x) ≤ 0 if xd < α1, and f(x) = 0 if xd = α1. (54)

Assuming that F ≺ ∆LR
d,d,d

∣∣∣
K

. Then, for a continuous function b : Rd−1 → R such that b(x1:d−1) > 0

for all x ∈ K, there exists a single-coordinate transformation G = (x1, . . . , xd−1, g(x)) ≺ ∆LR
d,d,d

∣∣∣
K

satisfying the following relation:

g(x) :=

{
f(x) if xd ≤ α1

f(x)b(x1:d−1) if xd = α2
. (55)

The proof of Lemma B.6 is provided in Appendix B.5. Utilizing the lemma, we can prove Lemma
B.2.

Proof. Consider an arbitrary single-coordinate transformation F (x) =
(x1, . . . , xd−1, τ(x1, . . . , xd)) and a compact set K ⊂ Rd. Without loss of generality, assume
K ⊂ [0, 1]d. Additionally, assume τ strictly increases with respect to xd.

Because τ is a continuous function defined on a compact set, for an ϵ > 0, there exists a natural
number N ∈ N such that if ∥x− x′∥ < 1

N , then |τ(x)− τ(x′)| < ϵ. Now, define ui : Rd−1 → R as
follows:

ui(x1:d−1) := F

(
x1:d−1,

i

N

)
. (56)
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If there exists a single-coordinate transformation G = (x1, . . . , xd−1, g(x1:d)) ≺ ∆LR
d,d,d such that

ui(x1:d−1) = g
(
x1:d−1,

i
N

)
for x ∈ K, then F ≺ ∆LR

d,d,d. We will demonstrate the existence

of a sequence {Gn}∞n=1 ⊂ ∆LR
d,d,d

∣∣∣
K

such that Gn(x1:d−1,
i
N ) = ui(x1:d−1) for 1 ≤ i ≤ n via

mathematical induction.

By Lemma B.6, there exists a single-coordinate transformation G0 = (x1, . . . , xd−1, g0(x))
such that g0(x1:d−1, 0) = u0(x1:d−1). Assume the induction hypothesis holds for n = n0, im-
plying the existence of a single-coordinate transformation Gn0 = (x1, . . . , xd−1, gn0(x)) such
that gn0(x1:d−1,

i
N ) = ui(x1:d−1) for 1 ≤ i ≤ n0. Then, by Lemma B.5, we can con-

struct G′
n0

:= (x1, . . . , xd−1, gn0
(x) − un0

(x1:d−1)) ∈ ∆LR
d,d,d

∣∣∣
K

. Notably, G′
n0

satisfies the

assumptions of Lemma B.6 with α1 = n0

N and α2 = n0+1
N . By applying Lemma B.6 with

b(x1:d−1) =
un0+1(x1:d−1)−un0

(x1:d−1)

gn0
(x1:d−1,

n0+1
N )−un0

(x1:d−1)
, we obtain a single-coordinate transformation G′′(n0) =

(x1, . . . , xd−1, g
′′
n0
(x)) such that g′′n0

(x1:d−1,
i
N ) = ui(x1:d−1) − un0

(x1:d−1) for i ≤ n0 + 1. Fi-

nally, by Lemma B.5, we can get Gn0+1 := (x1, . . . , xd−1, g
′′
n0
(x) + un0

(x1:d−1)) ∈ ∆LR
d,d,d

∣∣∣
K

. As
a result, the induction hypothesis is satisfied, and this completes the proof.

B.3 Proof of Lemma B.3

Proof. Because increasing piecewise linear functions are dense in the space of increasing continuous
functions defined on a compact interval, it suffices to prove that for any natural number n ∈ N and an
increasing piecewise linear function f with n breakpoints, we have f ∈ Un. We will proceed with
mathematical induction on n. For the base case, n = 0, there is nothing to prove. Assume that the
induction hypothesis holds for some n = n0, and consider the case of n = n0 + 1, where we have an
increasing piecewise linear function f with n0 + 1 breakpoints, denoted as α1 < α2 < · · · < αn0+1.
The function f is affine on each of the intervals (−∞, α1], [α1, α2], . . . , [αn0 , αn0+1], [αn0+1,∞).
Now, let f have values as follows:

f(x) =

{
f(αn0+1) + γ1(x− αn0+1) if x ∈ [αn0 , αn0+1]

f(αn0+1) + γ2(x− αn0+1) if x ∈ [αn0+1,∞)
. (57)

Consider the function f0 defined as:

f0(x) :=

{
f(x) if x ∈ (−∞, αn0+1]

f(αn0+1) + γ1(x− αn0+1) if x ∈ [αn0+1,∞)
. (58)

The function f0 coincides with f on the interval (−∞, αn0+1] and is affine on the interval [αn0
,∞).

This means that the affine function on the interval [αn0
, αn0+1] naturally extends to the interval

[αn0
+1,∞) with the same slope. Therefore, f0 has n0 breakpoints, and by the induction hypothesis,

f0 ∈ Un0
. We can express f in terms of f0 as follows:

f(x) =
γ2
γ1

LR γ1
γ2

(f0(x)− f(αn0+1)) + f(αn0+1). (59)

Thus, f ∈ Un0+1, and the induction hypothesis is satisfied for n = n0 + 1. This completes the
proof.

B.4 Proof of Lemma B.5

Proof. For β ∈ R+, a, c ∈ R and b ∈ Rd−1, we define the function g as follows:

g : (x1, x2, . . . , xd) 7→ (x1, x2, . . . , xd−1, xd + aLRβ(b · x1:d−1 + c)). (60)

We will prove that g ≺ ∆LR
d,d,d. If b is the zero vector, g is a constant adding function satisfying the

statement. If b is not the zero vector and b = (b1, . . . , bd−1), there exists an index 1 ≤ i ≤ d − 1
such that bi ̸= 0. Let W ∈ IAffd be an invertible affine transformation defined as:

W : (x1, x2, . . . , xd) 7→ (x1, x2, . . . , xi−1, b · x1:d−1 + c, xi+1, . . . , xd). (61)
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Because bi is nonzero, W is invertible. Applying LRβ to the i-th component gives:

(x1, . . . , xi−1,LRβ(b · x1:d−1 + c), xi+1, . . . , xd) ≺ ∆LR
d,d,d. (62)

By adding a times the i-th component to the last component, we have:

(x1, . . . ,LRβ(b · x1:d−1 + c), . . . , xd + aLRβ(b · x1:d−1) + c) ≺ ∆LR
d,d,d. (63)

By applying LR 1
β

to the i-th component and applying W−1, we get:

(x1, . . . , xd−1, xd + aLRβ(b · x1:d−1 + c)) ≺ ∆LR
d,d,d. (64)

Next, we will prove that for the function h defined as:

h : (x1, x2, . . . , xd) 7→ (x1, x2, . . . , xd−1, xd + t(x1, . . . , xd−1)), (65)

h ≺ ∆LR
d,d,d. By the UAP of two-layered neural networks (Leshno et al., 1993), for any ϵ > 0 and a

compact set K ⊂ Rd−1, there exist β ∈ R+, ai, ci ∈ R, and bi ∈ Rd−1 such that:∥∥∥∥∥t(x1:d−1)−
n∑

i=1

aiLRβ(bi · x1:d−1 + ci)

∥∥∥∥∥
∞,K

< ϵ. (66)

Composing Eq (64) for n different ai, bi, and ci yields:(
x1, . . . , xd−1, xd +

n∑
i=1

aiLRβ (bi · x1:d−1 + ci)

)
≺ ∆LR

d,d,d. (67)

Thus, h ≺ ∆LR
d,d,d.

Finally, by composing the operations described so far, we demonstrate that any ACF can be approxi-
mated by ∆LR

d,d,d. It is achieved by combining the following four operations:

• Apply the logarithm to the last component.

• Add log(s(x1, . . . , xd−1)) to the last component.

• Apply the exponential function to the last component.

• Add t(x1, . . . , xd−1) to the last component.

This results in the following transformation:

(x1, x2, . . . , xd) 7→ (x1, x2, . . . , xd−1, exp (log(xd) + log(s))+t) = (x1, x2, . . . , xd−1, sxd+t) ≺ ∆LR
d,d,d.

(68)
This completes the proof.

B.5 Proof of Lemma B.6

Proof. We begin by observing that it is sufficient to consider functions b satisfying b(x1:d−1) ≥ 1

for all x ∈ K. Define β as β := infx∈K b(x1:d−1). We introduce the function F̃ (x) :=

(x1, . . . , xd−1, f̃(x)), defined as:

f̃(x) := βLR 1
β
(f(x))) . (69)

If F ∈ ∆LR
d,d,d

∣∣∣
K

, then F̃ ∈ ∆LR
d,d,d

∣∣∣
K

. The value of f̃(x) can be calculated as:

f̃(x) =

{
f(x) if xd ≤ α1

βf(x) if xd > α1
. (70)

This ratio g(x)

f̃(x)
= b(x1:d−1)

β ≥ 1 for all x ∈ K, and F̃ also satisfied all the assumptions of the lemma.
Therefore, we only need to consider functions b that satisfy b ≥ 1.
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Next, we will inductively construct a sequence {Gi = (x1, . . . , xd−1, gi(x))}∞i=1 ⊂ ∆LR
d,d,d

∣∣∣
K

that

uniformly converges to G when xd = α2. We start with g0(x) := f(x). Define bi : Rd−1 → R as :

bi(x1:d−1) :=
gi(x1:d−1, α2)

f(x1:d−1, α2)
, (71)

for all x ∈ K. Define γi ∈ R as:

γi := sup

{
b(x1:d−1)

bi(x1:d−1)

∣∣∣∣x ∈ K

}
. (72)

Next, we define two mutually exclusive sets, denoted as Li,0 and Li,1:

Li,0 =

{
x1:d−1 ∈ [0, 1]d−1

∣∣ 1 ≤ b(x1:d−1)

bi(x1:d−1)
≤ γ

1
3
i

}
. (73)

Li,1 =

{
x1:d−1 ∈ [0, 1]d−1

∣∣ γ 2
3
i ≤ b(x1:d−1)

bi(x1:d−1)
≤ γi

}
. (74)

Define a distance metric D as:

D(x,C) := infy∈C ∥x− y∥2, (75)

And then, we define the function ϕi : Rd−1 → R as:

ϕi(x) :=
D(x, Li,0)

D(x, Li,0) +D(x, Li,1)
. (76)

The function ϕi satisfies the inequality 0 ≤ ϕi(x1:d−1) ≤ 1 for all x ∈ K, has a value of zero on
Li,0, and a value of one on Li,1. Define hi : Rd−1 → R as follows:

hi(x1:d−1) := (1− ϕi(x1:d−1))gi(x1:d−1, α2) (77)

Then, 0 ≤ hi(x1:d−1) ≤ gi(x1:d−1, α2) for all x ∈ K, has a value of zero on Li,1 and a value of
gi(x1:d−1, α2) on Li,0.

Now, we define gi+1(x) ∈ ∆LR
d,d,d

∣∣∣
K

as follows:

gi+1(x) := γ
1
3
i LR

γ
− 1

3
i

(gi(x)− hi(x1:d−1)) + hi(x1:d−1). (78)

We have

gi+1(x)


= gi(x) = 0 if xd ≤ α1

= gi(x) if xd = α2 and x1:d−1 ∈ Li,0

= γ
1
3
i gi(x) if xd = α2 and x1:d−1 ∈ Li,1

≤ γ
1
3
i gi(x) if xd = α2 and x1:d−1 /∈ Li,0 ∪ Li,1

. (79)

Thus, for x where xd = α2 and x1:d−1 ∈ Li,0, we have

g(x)

gi+1(x)
=

g(x)

gi(x)
=

b(x1:d−1)

bi(x1:d−1)
. (80)

As 1 ≤ b(x1:d−1)
bi(x1:d−1)

≤ γ
1
3
i for x1:d−1 ∈ Li,0, we deduce that 1 ≤ g(x)

gi+1(x)
≤ γ

1
3
i .

For x where xd = α2 and x1:d−1 ∈ Li,1,

g(x)

gi+1(x)
=

g(x)

γ
1
3
i gi(x)

= γ
− 1

3
i

b(x1:d−1)

bi(x1:d−1)
. (81)

As γ
2
3
i ≤ b(x1:d−1)

bi(x1:d−1)
≤ γi for x1:d−1 ∈ Li,1, we get 1 ≤ γ

1
3
i ≤ g(x)

gi+1(x)
≤ γ

2
3
i .

For x where xd = α2 and x1:d−1 /∈ Li,0 ∪ Li,1,

γ
− 1

3
i

b(x1:d−1)

bi(x1:d−1)
=

g(x)

γ
1
3
i gi(x)

≤ g(x)

gi+1(x)
≤ g(x)

gi(x)
=

b(x1:d−1)

bi(x1:d−1)
. (82)
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As γ
1
3
i ≤ b(x1:d−1)

bi(x1:d−1)
≤ γ

2
3
i for x1:d−1 /∈ Li,0 ∪ Li,1, we conclude that 1 ≤ g(x)

gi+1(x)
≤ γ

2
3
i .

We obtain the following results: for all x ∈ K, where xd = α2, we have 1 ≤ g(x)
gi+1(x)

= b(x1:d−1)
bi+1(x1:d−1)

≤

γ
2
3
i . This implies 1 ≤ γi+1 ≤ γ

2
3
i . Consequently, as i tends towards infinity, γi converges to one.

Therefore, g(x1:d−1,α2)
gi+1(x1:d−1,α2)

uniformly converges to one as i increases, implying the convergence of

Gi to G. As a result, there exists a function G = (x1, . . . , xd−1, g(x1:d)) ∈ ∆LR
d,d,d

∣∣∣
K

such that

g(x1:d−1, α2) = b(x1:d−1)f(x1:d−1, α2).

To check that G is a single-coordinate transformation, we observe:
gi+1(x1:d−1, xd)− gi+1(x1:d−1, x

′
d) > gi(x1:d−1, xd)− gi(x1:d−1, x

′
d), (83)

for xd > x′
d, which implies that g(x1:d−1, xd)−g(x1:d−1, x

′
d) > g0(x1:d−1, xd)−g0(x1:d−1, x

′
d) >

0 for all x ∈ K. Therefore, g satisfies the strictly increasing condition, and G becomes a single-
coordinate transformation.

C Proofs for Topology

C.1 Proof of Theorem 4.5

Proof. For a non-decreasing continuous activation function σ, there exist smooth, strictly increasing
activation functions σn that uniformly converge to σ. Therefore, ∆σ

d,d,d ≺
⋃

n∈N ∆σn

d,d,d ≺ D∞(Rd),
making it sufficient to consider only a set of smooth, strictly increasing activation functions σ.

For f ∈ ∆σ
n,m,w(n,m)−1, it can be decomposed as:

f = pw(n,m)−1,m ◦ g ◦ qn,w(n,m)−1, (84)
where g ∈ ∆σ

w(n,m)−1,w(n,m)−1,w(n,m)−1. Because ∆σ
w(n,m)−1,w(n,m)−1,w(n,m)−1 ≺

D∞(Rw(n,m)−1), g ◦ qn,w(n,m)−1

∣∣
[0,1]n

∈ Emb([0, 1]n,Rw(n,m)−1). Therefore, we have:

f |[0,1]n ∈ pw(n,m)−1,m

(
Emb([0, 1]n,Rw(n,m)−1)

)
, (85)

and because f ∈ ∆σ
n,m,w(n,m)−1 is arbitrary, we conclude:

∆σ
n,m,w(n,m)−1

∣∣∣
[0,1]n

⊂ pw(n,m)−1,m

(
Emb([0, 1]n,Rw(n,m)−1)

)
. (86)

Because w(n,m)− 1 < w(n,m), by the definition of w(n,m):

pw(n,m)−1,m

(
Emb([0, 1]n,Rw(n,m)−1)

)
⊉ C([0, 1]n,Rm), (87)

and consequently,
∆σ

n,m,w(n,m)−1

∣∣∣
[0,1]n

⊉ C([0, 1]n,Rm). (88)

Hence, we conclude that C(Rn,Rm) ⊀ ∆σ
n,m,w(n,m)−1.

C.2 Proof of Theorem 4.15

Proof. Firstly, it is obvious that w(2, 2) ≤ 4 = 2 + 2. Therefore, it is sufficient to prove that
w(2, 2) ≥ 4. Assume the opposite, w(2, 2) ≤ 3. Then, for an arbitrary continuous function f in
C([−2, 2]2,R2), f is contained in p3,2◦Emb([−2, 2]2,R3) = p3,2◦Embp.l.([−2, 2]2,R3). Consider
the piecewise linear map f : [−2, 2]2 → R2 defined as follows:

f(x1, x2) :=



(
1 −1

0 2

)(
x1

x2

)
if 0 ≤ x2 ≤ x1,

(
1 −1

2 0

)(
x1

x2

)
if 0 ≤ x1 ≤ x2,

−f(x2,−x1) if x1 ≤ 0 and 0 ≤ x2,

f(−x1,−x2) if x2 ≤ 0.

(89)
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We can check that f is the piecewise linear double-winding function. By the assumption, there exists
a piecewise linear embedding G ∈ Embp.l.([−2, 2]2,R3) such that

∥f − p3,2 ◦G∥∞,[−2,2]2 <
1

4
. (90)

Let Σ : R2 → R be defined as
Σ : (x1, x2) 7→ |x1|+ |x2|. (91)

We observe that f conserves the level of Σ: (Σ ◦ f)(x) = Σ(x) for all x ∈ R2. Therefore,

(Σ ◦ f)−1
(1) = Σ−1(1) =

{
(x1, x2) ∈ R2

∣∣ |x1|+ |x2| = 1
}
, (92)

which is homeomorphic to a circle S1. Similarly,

(Σ ◦ f)−1

(
1

2

)
= Σ−1

(
1

2

)
=

{
(x1, x2) ∈ R2

∣∣ |x1|+ |x2| =
1

2

}
, (93)

And

(Σ ◦ f)−1

(
3

2

)
= Σ−1

(
3

2

)
=

{
(x1, x2) ∈ R2

∣∣ |x1|+ |x2| =
3

2

}
, (94)

are homeomorphic to S1, and

(Σ ◦ f)−1

([
1

2
,
3

2

])
= Σ−1

([
1

2
,
3

2

])
=

{
(x1, x2) ∈ R2

∣∣ 1
2
≤ |x1|+ |x2| ≤

3

2

}
, (95)

is homeomorphic to a closed annulus S1 × [0, 1].
Define g as g := p3,2 ◦G. Because ∥f − g∥∞,[−2,2]2 < 1

4 , we have

|Σ ◦ f − Σ ◦ g| < 1

2
. (96)

Now, apply Lemma 4.11 to Σ ◦ f . Because (Σ ◦ f)−1 ( 1
2

)
= Σ−1( 12 ) and (Σ ◦ f)−1 ( 3

2

)
= Σ−1( 32 )

are deformation retractions of (Σ ◦ f)−1 (
[ 12 ,

3
2 ]
)
, the following equation holds:

U1

(
1

2

)
= H1

(
B0, 12

)
= H1

(
B1, 12

)
= H1

(
(Σ ◦ f)−1

([
1

2
,
3

2

]))
= H1

(
Σ−1 (1)

)
= Z (97)

Thus, U1(
1
2 ) = Z. Note that jg : H1

(
(Σ ◦ g)−1

(1)
)
→ U1(

1
2 ) is surjective.

Because g and Σ are piecewise linear, (Σ ◦ g)−1
(1) consists of finite connected components

A1, . . . , Ak. Then, the first homology H1

(
(Σ ◦ g)−1

(1)
)

is decomposed as:

H1

(
(Σ ◦ g)−1

(1)
)
=

k⊕
i=1

H1 (Ai) , (98)

And we can express jg as a sum of homomorphisms jig : H1 (Ai) → U1

(
1
2

)
:

jg(x) =

k∑
i=1

jig(xi), (99)

for x =
⊕k

i=1 xi. As jg is surjective, we can choose an index i0 such that ji0g is a nonzero ho-
momorphism. Set a basepoint x0 ∈ Ai0 . By Lemma 4.12, there exists a surjective Hurewicz
homomorphism h1 : π1 (Ai0 , x0) → H1 (Ai0). Additionally, the Hurewicz homomorphism
h2 : π1

(
(Σ ◦ f)−1 ([ 1

2 ,
3
2

])
, x0

)
→ H1

(
(Σ ◦ f)−1 ([ 1

2 ,
3
2

]))
is an isomorphism. By compos-

ing homomorphism, we obtain:

π1 (Ai0 , x0)
h1−→ H1 (Ai0) (100)
ji0g−−→ H1

(
(Σ ◦ f)−1

([
1

2
,
3

2

]))
= U1

(
1

2

)
h−1
2−−→ π1

(
(Σ ◦ f)−1

([
1

2
,
3

2

])
, x0

)
,

(101)
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resulting in the nonzero homomorphism h−1
2 ◦ ji0g ◦ h1:

h−1
2 ◦ ji0g ◦ h1 : π1 (Ai0 , x0) → π1

(
(Σ ◦ f)−1

([
1

2
,
3

2

])
, x0

)
. (102)

Furthermore, we can observe that
h−1
2 ◦ ji0g ◦ h1 = ι∗, (103)

where ι∗ represents the homomorphism of the fundamental group induced by the inclusion ι : Ai0 ↪→
(Σ ◦ f)−1 ([ 1

2 ,
3
2

])
.

Now, we will prove the existence of a simple closed curve γ : S1 → (Σ ◦ g)−1
(1), homotopic to

the cycle ω1 : θ 7→ (cos(2πθ), sin(2πθ)). Because g and Σ are piecewise linear, (Σ ◦ g)−1
(1) can

be realized by a simplicial complex, and we can assume that π1

(
(Σ ◦ g)−1

(1), x0

)
is generated

by curves with finite segments, where all self-intersection points are breakpoints of curves. Choose
γ0 ∈ π1

(
(Σ ◦ g)−1

(1), x0

)
= π1 (Ai0 , x0) such that ι∗ ([γ0]) is nonzero. We iteratively construct a

closed curve γi until it has no self-intersection points. Suppose γi has a self-intersection point a ̸= b:
γi(a) = γi(b). Define γ+

i as γi|[a,b] and γ−
i be defined as γi|S1−(a,b). Then, γ+

i and γ−
i become

closed curves again with fewer segments than γi. Because the winding number of γi equals the sum of
those of γ+

i and γ−
i , at least one of γ+

i or γ−
i has a nonzero winding number, and we set γi+1 as the

one with a nonzero winding number. Each γi has a strictly smaller number of segments as i increases
and has a winding number not equal to zero. Because γ0 has finite segments, this process stops in a
finite sequence. Therefore, we can get a non-self-intersecting curve γ := γn with a nonzero winding
number. If γ has a winding number with an absolute value greater than one, by Lemma 4.14, it must
have a self-intersection point. Thus, γ has a winding number 1 or −1. Reverse reparametrization
yields a curve with winding number one.

Because g is homotopic to f through linear interpolation and γ is homotopic to ω1, their compositions
are homotopic. This implies the same winding number between g ◦ h and f ◦ ω1. Therefore, the
winding number of g ◦ γ : S1 → S1 = Σ−1(1) is two. Now consider G. Because G is an embedding,
it is injective. Therefore, G|γ(S1) : γ(I) → S1 × R is injective. As the image G(γ(S1)) is compact,
the image in S1 × R can be embedded in the annulus {(x1, x2) ∈ R|1− ϵ ≤ |x1|+ |x2| ≤ 1 + ϵ}.
And the map G ◦ γ has winding number two. However, by Lemma 4.14, any map with winding
number two is not injective, leading to a contradiction.
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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