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Abstract

Understanding the neural implementation of com-
plex human behaviors is one of the major goals
in neuroscience. To this end, it is crucial to find
a true representation of the neural data, which
is challenging due to the high complexity of
behaviors and the low signal-to-ratio (SNR) of
the signals. Here, we propose a novel unsuper-
vised learning framework, Neural Latent Aligner
(NLA), to find well-constrained, behaviorally rel-
evant neural representations of complex behav-
iors. The key idea is to align representations
across repeated trials to learn cross-trial consis-
tent information. Furthermore, we propose a
novel, fully differentiable time warping model
(TWM) to resolve the temporal misalignment
of trials. When applied to intracranial electro-
corticography (ECoG) of natural speaking, our
model learns better representations for decoding
behaviors than the baseline models, especially in
lower dimensional space. The TWM is empir-
ically validated by measuring behavioral coher-
ence between aligned trials. The proposed frame-
work learns more cross-trial consistent representa-
tions than the baselines, and when visualized, the
manifold reveals shared neural trajectories across
trials.

1. Introduction
Recent advance in neural recording technologies has
prompted active development of diverse neuralmodels (e.g.,
Pandarinath et al. 2018b; Pei et al. 2021; Kostas et al. 2021),
and successful applications have provided significant in-
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sights into the principles of neural computation and repre-
sentation (Pandarinath et al., 2018b; Saxena & Cunningham,
2019; Vyas et al., 2020). Furthermore, these models often
provide well-constrained representations that are crucial for
developing robust brain-computer interfaces (BCIs) (Pan-
darinath et al., 2018a; Dyer et al., 2017; Karpowicz et al.,
2022; Dabagia et al., 2022). However, application of these
models to neural data from naturalistic experiments has been
limited, despite the rich implications that such data can offer
(Kay et al., 2008; Huth et al., 2016; Silbert et al., 2014;
Chartier et al., 2018).

A major challenge is that the stimuli and tasks in naturalistic
experiments are highly complex, while existing methods
have been developed based on conventional experiments
with simple task structures. Previous methods assume the
low dimensionality of the task structure or simple dynam-
ics (Pandarinath et al., 2018b; Ye & Pandarinath, 2021).
Neither assumption is applicable to real-world behaviors.
However, regardless of complexity, behaviorally relevant
representations should encode consistent information when
the corresponding behaviors are the same. We leverage this
hypothesis to learn representations that exclusively encode
information consistent across repeated trials. Another sig-
nificant obstacle is the temporal misalignment among trials
caused by the varying durations of behaviors, which hinders
direct comparisons across trials. When properly aligned, a
novel pattern can be unveiled (Williams et al., 2020).

Here, we suggest a new unsupervised learning framework,
Neural Latent Aligner (NLA), to align latent representations
across trials, in both time domain and the representational
space. NLA outputs a temporal factor called content fac-
tor, designed to exclusively represent cross-trial consistent
information without noise. To achieve this, we propose a
new contrastive loss based on InfoNCE (Oord et al., 2018)
by incorporating the repeated trials as an additional sam-
pling dimension. The objective is elaborated in Methods
(§3.1 & 3.2.3). To address the issue of temporal misalign-
ment, we develop a new time warping model (TWM) with a
novel parametrization of temporal alignments. Additionally,
we propose two variants of our models, NLA-sDTW and
NLA-SUP, which employ distinct approaches for solving
the temporal misalignment.
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Figure 1. Overview of the proposed framework. A) Sequential autoencoder with 1D CNNs for encoding sx and cx (content factor). B)
Diagram of the proposed cross-trial alignment. Two trials of the same behaviors are provided to the pipeline to minimize the Contrastive
alignment loss (Cal). C) Time warping model for modeling alignment distribution from source to target.

We apply our proposed framework to human-speaking neu-
ral data, which consists of high-density intracranial elec-
trocorticography (ECoG) measured from two participants
while they read full sentences aloud multiple times. Natural
speaking involves the complex coordination of multiple mo-
tor tasks, making it suitable to demonstrate the effectiveness
of our approach and the limitations of previous methods.

We evaluate our method in three aspects: 1) behavioral rele-
vance of learned representations, 2) behavioral coherence
of unsupervised alignment, and 3) cross-trial consistency.
In all three aspects, our model outperforms the baselines:
SeqVAE, LFADS (Pandarinath et al., 2018b), and NDT (Ye
& Pandarinath, 2021) (§3.4.1).

Our major contributions are as follows:

• We propose a novel approach, NLA, for aligning neural
data across trials to obtain a true representation from
noisy neural data.

• We introduce a novel parametrization of temporal align-
ment that can be implemented as a fully differentiable
neural network.

• The content factor of NLA shows the highest cor-
relations with behaviors, in both high- and low-
dimensional settings.

• Our TWM can align trials more coherently than other
unsupervised alignment methods.

• The content factor exhibits greater consistency across
trials compared to baseline representations.

• The manifold of the content factor reveals shared neural
trajectories and dynamical structures across trials.

2. Related Work
2.1. Representation learning of neural data

Variational autoencoders (VAEs) (Kingma & Welling, 2013),
and its variants have been widely employed for modeling
neural data (Zhou & Wei, 2020; Khemakhem et al., 2020;
Pandarinath et al., 2018b; Keshtkaran et al., 2022; Liu et al.,
2021). In particular, sequential VAEs with dynamic priors
have been successful in recovering latent dynamical systems
of neural processes (Pandarinath et al., 2018b; Keshtkaran
et al., 2022). Some studies try to learn neural representations
invariant to random perturbation (e.g., dropping or time-
jittering) (Azabou et al., 2021; Liu et al., 2021). Inspired
by BERT, predicting randomly masked parts of neural spik-
ing can effectively learn representations of motor neurons
(Devlin et al., 2018; Ye & Pandarinath, 2021). Contrastive
learning has been applied to large-scale EEG data (Kostas
et al., 2021; Défossez et al., 2022). However, learning good
representations from noisy neural data becomes challenging
when the amount of available data is insufficient compared
to the task dimensionality.

2.2. Contrastive learning

Contrastive learning aims to learn representations that are
invariant to variance within positive samples but distinc-
tive from negative samples. This approach has been ex-
tensively utilized in the field of self-supervised learning
(Henaff, 2020; Chen et al., 2020; Baevski et al., 2020; Rad-
ford et al., 2021). The most relevant work to our study is
SimCLR (Chen et al., 2020), which introduces the concept
of generating noisy versions of the data through data aug-
mentation. Here, we obtain the noisy instances from pool
of repeated trials rather than from data augmentation.
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2.3. Aligning temporally misaligned representations

Dynamic Time Warping (DTW) (Rabiner & Juang, 1993;
gio) is a technique used to find an optimal warping path with
minimum frame-wise distance between two sequences. Soft-
DTW (Cuturi & Blondel, 2017) is a differentiable version
of DTW that allows for backpropagation through the visited
paths with weighting, not only the optimal path.

DTW has been applied in representation learning to find
features invariant to different durations (Haresh et al., 2021;
Khaertdinov & Asteriadis, 2022). Previous works empha-
size the importance of incorporating contrast in the loss
function to prevent representation degeneration.

Williams and colleagues propose to use TWM to align neu-
ral signals and reveal previously unseen patterns (Williams
et al., 2020). However, their TWM is constrained to be
piecewise linear to avoid overfitting caused by high levels
of noise, and it requires a specific template for each behav-
ior, limiting its generalizability to unseen behaviors. These
limitations make their TWM unsuitable for complex and
diverse behaviors.

3. Methods
3.1. Problem formulation

Given a behavior (y ∈ Y), a set of neural representations is
defined as Dy , where each data point (x ∈ Dy) is an instance
of noisy representations of y (e.g., raw neural signals). Our
objective is to find a mapping (f̂ ) that maximizes the mutual
information (MI, I) between the mapped representation
(f(x)) and the true representation of y (denoted as x∗) (1).1

f̂ = argmax
f

I(f(X);X∗) (1)

The above MI maximization can be approximated by mini-
mizing the contrastive loss function (2) (Oord et al., 2018).

E
y∈Y,x∈Dy

[
− log

sim(f(x), x∗)∑
x̃∈D∗

neg
sim(f(x), x̃)

]
(2)

This constrastive loss function encourages the representation
mapped from noisy signals to be closer to the true signal
while being distinctive from negative samples (x̃ ∈ D∗

neg).

However, since x∗ is not accessible, the loss function is
further approximated by additional sampling of x′ (3).

E
y∈Y

[
E

(x,x′)∈Dy

[
− log

sim(f(x), x′)∑
x̃∈Dneg

sim(f(x), x̃)

]]
(3)

Now, a pair is sampled from Dy, which requires two di-
mensions of the sampling pool: 1) a representative set of

1Capital letters mean corresponding random variables.

diverse behaviors (Y), and 2) multiple repetitions of each
behavior (Dy). The datasets described in §3.3.1 satisfy these
conditions.

3.2. Neural Latent Aligner

3.2.1. SEQUENTIAL AUTOENCODER

A sequential autoencoder is adopted to model a non-linear
projection to latent space. This enables measuring similari-
ties in the latent space of signals, thereby shaping the mani-
fold of learned representations to fulfill the objective. Both
the encoder (Enc) and decoder (Dec) are designed as stacks
of three 1D convolutional layers with residual connections
(more details can be found in Appendix.A). The mapping
function f is simply implemented by filtering the outputs of
the encoder using two layers of 1D convolution. The autoen-
coder backbone is trained to minimize the mean squared er-
ror of reconstruction (Lrecon := Ex

[
(x− Dec(Enc(x)))2

]
).

The content factor, denoted as cx, is a temporal factor ex-
tracted from neural data that captures the representation of
our interest (cx := f(x)). On the other hand, sx represents
the auto-encoded factor, obtained through the encoding pro-
cess (sx := Enc(x)). It serves as a surrogate of x by having
all the information from x including noise. Both factors lie
on a d-dimensional space and form a sequence to represent
time series of neural activity (cxt , s

x
t ∈ Rd). Here, d is cho-

sen to be sufficiently large (i.e., d = 256) to ensure that sx

can effectively capture the full information of the signals.

3.2.2. TIME WARPING MODEL

Considering the alignment of two time series, zA and zB ,
the probability that the j-th time-point of zB is aligned to
the i-th time point of zA is denoted as P (i = j|zA, zB).
The probability distribution over j should be 1) unimodal
to be one-to-one mapping, and 2) monotonic to avoid time-
reversing alignment. To address these, we introduce a novel
parametrization that satisfies both requirements.

1) Unimodality: The distribution is parametrized as a Gaus-
sian distribution centered at µi with a variance of σ2

i .

2) Monotonicity: The means of the distribution are mono-
tonically increasing by estimating non-negative ”jumps”
between adjacent means (∆µi := µi − µi−1,∆µi ≥ 0).

TWM(zA, zB) = [u∆µ, uσ] (4)

∆µi = (LB − µi−1) σ(u
∆µ
i ) (5)

µi =

i∑
k=0

∆µk (6)

σ2
i = exp(uσ

i ) (7)

The alignment variables, [u∆µ, uσ], are defined for aligning

3
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Figure 2. Architecture of the proposed neural time warping model.

the source (zB), to the target (zA)(4), with the length of
LB and LA, respectively. The first variable, u∆µ, is passed
through the sigmoid function (σ(·)) and multiplied by the
length of the remaining sequence (LB − µi−1) (5). Starting
from an initial zero mean (µ0 = 0), the mean at each time
point is obtained by accumulating jumps up to that point
(6). This formulation allows the means to increase mono-
tonically while staying in the range of the source. Lastly,
uσ is the logarithm of the variance (7).

P (i = j|zA, zB) ∝ exp
(
−(j − µi)

2

2σ2
i

)
(8)

zB→A
i =

LB∑
j=1

P (i = j|zA, zB) zBj (9)

The final distribution is parameterized as a Gaussian dis-
tribution (8), and it is divided by the normalization factor,∑LB

k=1 exp(−(k−µi)
2

2σ2
i

). The final warped sequence is then
obtained by the expectation (or weighted sum) (9).

This parametrization enables a neural network implementa-
tion of TWM(·) and for this particular application, we utilize
the Transformer architecture (Vaswani et al., 2017). The
multi-head attention mechanism in Transformer is highly
effective in incorporating comparisons within and across
sequences. The model takes the target and source sequences
as input, and at each time point, two learnable encodings are
added: positional encoding to encode the position in the se-
quence (PEi,1≤i≤L), and sequence encoding to distinguish
between the two sequences (SEi,i∈{1,2}). An overview of
the model is depicted in Figure 2.

3.2.3. CONTRASTIVE ALIGNMENT LOSS

As x and x′ are sequential representations, the similarity is
factored by each time point, and summed over the sequence

in the log space (10). The exponential of the inner product
is used for measuring the similarity.2

E
y∈Y

[
E

(x,x′)∈Dy

[
−

Lx∑
t

log
sim(cxt , s

x′→x
t )∑Lx

k sim(cxk, s
x′→x
t )

]]
(10)

The negative samples are also adjusted to be pooled along
the sequence of content factors. This modification is crucial
for stabilizing the training process and encouraging accurate
signal warping.3 We refer to this function as Contrastive
alignment loss (Cal).

3.2.4. FINAL LOSS FUNCTION

The final training objective is a weighted sum of the re-
construction loss, the contrastive alignment loss, and ad-
ditional L2 loss on the content factor (Lc

L2) (11). We set
λ1 = 0.1, λ2 = 0.001, after some explorations.

L = Lrecon + λ1 Cal + λ2 Lc
L2 (11)

3.3. Dataset

3.3.1. DATASET DESCRIPTION

We apply our framework to ECoG collected by Anu-
manchipalli et al. (2019), where participants read aloud
full sentences from MOCHA-TIMIT (Wrench, 1999). The
MOCHA-TIMIT dataset covers a wide range of natural
articulations, thus satisfying the first condition of Equa-
tion 3. Our framework also requires multiple trials of the
same behavior to perform the two-fold sampling, sampling
a behavior and sampling noisy instances of the behavior.
For this purpose, we selected two specific participants, S1
and S2, from the original dataset. S1 spoke 50 sentences
for 9.40 ± 0.63 times, and S2 spoke 450 sentences for
2.53 ± 0.50 times. These sentences are randomly sam-
pled from MOCHA-TIMIT. The duration for each trial is
variable to be 2.29± 0.53 seconds for S1, and 2.93± 0.81
seconds for S2. We split the dataset based on sentences.
The total durations for [train, valid, test] sets are [943s, 42s,
93s] for S1, and [2940s, 70s, 327s] for S2.4 No trial of the
test sentences is included in the train or valid set.

The high-density 16 × 16 grids were used to collect the
ECoG data from brain regions involved in speech: the ven-
trals sensorimotor cortex (vSMC), superior temporal gyrus
(STG), and inferior frontal gyrus (IFG). The signals are pro-
cessed to high-gamma amplitudes and downsampled to 200
Hz (Chartier et al., 2018; Anumanchipalli et al., 2019). All

2The inner product demonstrates more stable training than other
metrics. For more details, please refer to Appendix E.1.

3Contrasting over warped factors makes training unstable.
4The number of sentences in each split [train, valid, test] is [45,

5, 5] for S1 and [400, 10, 40] for S2. For S1, 5 sentences in the
valid set are also in the train set but the trials are not overlapped.
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256 channels are included and the signals are buffered by 1
second before and after each speaking event.

For the behavioral labels, articulatory kinematic trajectories
(AKTs) are extracted by an audio-to-articulatory inversion
(AAI) model that is trained on electromagnetic articulogra-
phy (EMA) corpora (Wrench, 1999; Richmond et al., 2011).
Each time point is labeled with 12-dimensional articulatory
representations, X,Y coordinates of 6 articulators (Figure
3 A). In addition to AKT, we use the frame-wise phoneme
labels to evaluate the models. See Appendix B for detail.

3.3.2. ONLINE ALIGNMENT OF TRAINING DATASET

For each iteration, a batch of sentences is sampled, and then
a pair of repeated trials are sampled for each sentence. The
pair is not allowed to be identical, since the pool of possible
pairs is not large (especially for S2). Then, the 2 seconds
of the signals are sampled for each trial of the pair. As
this window size does not encompass the entire sentence,
we roughly align the trials prior to sampling to ensure the
sampled pairs have overlapping content to be aligned.

Assuming we have a roughly estimated alignment between
two trials, the onset of the window is randomly sampled
from one of the pair, and then, this onset is warped to the
other trial to anchor the window of the counterpart.5 We
update the alignment of training data for every 10K of iter-
ations by applying DTW on the content factor. The initial
alignment is set as identity function. This online alignment
in the middle of training would not be accurate, but it is
sufficient to guide the training.

3.4. Baselines

3.4.1. BASELINE REPRESENTATIONS

We compare our approach to the following baselines:

• SeqVAE: A variational version of our model that min-
imizes ELBO (Kingma & Welling, 2013), instead of
the cross-trial alignment. Following previous works
(Li & Mandt, 2018; Zhu et al., 2020; Lian et al., 2022),
we use a learnable dynamic prior modeled by LSTM.

• LFADS: A sequential VAE based on dynamical system,
which is designed to find latent factors of the neural
process to infer neural population dynamics (Pandari-
nath et al., 2018b; Keshtkaran et al., 2022).

• NDT: Neural Data Transformer (NDT) is a masked
autoencoder for neural data (Ye & Pandarinath, 2021).
The model is composed of Transformers that learns
representations by predicting randomly masked inputs.

The rationale for this selection is that 1) SeqVAE shares
the backbone autoencoder with NLA, and thus, provides di-

5Random jitter of ± 50 ms is added.

rect comparisons with NLA, 2) LFADS has been frequently
employed in this field, and 3) NDT is chosen since the
masked autoencoder has been proposed for a de facto stan-
dard of representation learning in many domains (Devlin
et al., 2018; He et al., 2022; Tamkin et al., 2022).

For VAEs, the weight (β) for the KL-divergence term is
searched over [10−4, 10−3, 10−2, 10−1].6 We also train
LFADS with two different sizes of the latent factor, 32 and
256. NDT is implemented with six layers of Transformer,
and the representation of each layer is considered separately.
The best layer is chosen by evaluation on the validation data.
All the resulting representations have a size of 256 if not
specified. See Appendix C for the implementation details.

3.4.2. NLA VARIANTS

To show the effectiveness of the cross alignment loss in
general, we suggest two variants of our framework. These
variants share the objective but differ in the temporal align-
ment method, replacing the suggested TWM.

• NLA-sDTW: Instead of TWM, optimal time warping
paths are found by DTW. Training with deterministic
alignment from DTW is unstable, thus we use soft-
DTW (Cuturi & Blondel, 2017) to make the alignment
differentiable. However, soft-DTW calculates the loss
by tracking down DTW algorithm, and does not di-
rectly provide the alignment distribution nor output the
warped series. Therefore, we use Equation 12 for the
distance function to approximate Equation 10.

sdtw dist(cxi , s
x′

j ) := −log
sim(cxi , s

x′

j )∑Lx

k sim(cxk, s
x′
j )

(12)

• NLA-SUP: Instead of finding alignment in unsuper-
vised way, NLA-SUP employs a supervised alignment,
which is obtained by applying DTW to AKT labels.

4. Results
4.1. Behavioral relevance of learned representations

The representations from the trained models are evaluated by
the performance in linear decoding of behavior (Pei et al.,
2021). Here, we use the articulation (AKT) as the refer-
ence behavior. AKT is the most prominently represented
feature in the brain while speaking (Chartier et al., 2018;
Anumanchipalli et al., 2019), and linear decoding of AKT is
a robust and valid task for evaluating speech representations
(Cho et al., 2023). Together, AKT is an optimal target to
inspect the behavioral relevance of the neural representation
of the speech. We fit ridge regression to predict AKT from
0.4-second window of content factors, and the correlation

6Additional β = 1 is tried for LFADS.
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Table 1. Performance (r) of linear AKT decoding with full dimen-
sionality (d=256) and reduced dimensionality (d=32).

Model S1 S2
d=32 d=256 d=32 d=256

SeqVAE 0.349 0.430 0.318 0.474
LFADS 0.385 0.404 0.360 0.422
NDT 0.396 0.444 0.401 0.501
NLA 0.468 0.460 0.488 0.509
NLA-sDTW 0.435 0.463 0.478 0.506
NLA-SUP 0.472 0.473 0.465 0.510

coefficients on the unseen test sentences are averaged over
articulators (Figure 3 A). We also measure this score on
the low-dimensional space of the learned representations,
where the dimensionality is reduced by PCA.7 The results
are reported in Table 1.

As shown in Table 1, NLA and its variants show higher
correlations with AKT than the baselines, for both S1 and S2.
The difference from the baselines gets even larger in lower
dimensional settings. When we measure AKT correlations
by dimensionality, our NLAs are resistant to dimensionality
reduction, while the performance of the baselines sharply
declines (Figure 3 B).

In general, the performance variance within NLAs is lower

7For LFADS, the models trained with explicitly reduced dimen-
sionality are reported if they are better than PCA. See Appendix
E.3 for further discussion.

than the difference from the baselines. Among NLAs, NLA
shows the minimum loss or even gain after the dimensional-
ity is reduced to 32. These results suggest that the cross-trial
alignment learns to represent behaviors in a more compact
and efficient way, and NLA can learn better content factors
than NLA-sDTW, which are comparable to NLA-SUP.

4.2. Empirical validation of time warping model

As a proxy for evaluating the alignment inference, we mea-
sure the behavioral coherence between aligned trials. We
create additional validation and test datasets by sampling
2-second windows of source-target pairs (valid: 200 pairs,
test: 1000 pairs) for each participant. To ensure that the sam-
pled pairs have overlapping contents, we use the supervised
alignment of trials to anchor the sampling. 8 Then, we apply
unsupervised warping to align the source to the target and
check how the phonemes and AKTs are accurately aligned.

When a phoneme in the source is warped, the distance from
the reference phoneme in the target trial is measured. Then,
the alignment is considered to be correct if the distance is
below a threshold. As Figure 4 D, a curve of true positive
rate (TPR) can be plotted by adjusting the threshold value,
and the area under the curve (AUC:= area/threshold) indi-
cates the sensitivity of the alignment. For AKT, we simply
measure the average correlation between the target AKT and
the warped source AKT. We additionally report the score by
the supervised alignment as a reference for the upper bound
of the suggested metrics.

8The same sampling method as §3.3.2.
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Figure 4. A) Example distribution of alignment inferred from TWM. The red line is the warping path estimated by taking the maximum.
B) Alignments from DTW applied to SeqVAE, LFADS, and NDT, on the same source-target pair as A). C) Frame-wise phoneme labels of
source (row 1), target (row 2), and source warped by the unsupervised alignment methods (row 3-8). The phoneme is annotated for each
color-coded segment. The accuracy of the alignment can be qualitatively measured by inspecting vertical alignment of the segments. D)
TPR (Y-axis) by time threshold (X-axis) for each subject (top: S1, bottom: S2). The color codes are the same as Figure 3.

Table 2. Aligned phoneme AUC of alignment methods.

Model S1 S2
≤ 0.5s ≤ 2s ≤ 0.5s ≤ 2s

SeqVAE 0.683 0.874 0.702 0.868
LFADS 0.711 0.882 0.697 0.867
NDT 0.734 0.888 0.737 0.877
NLA 0.834 0.927 0.825 0.908
NLA-sDTW 0.793 0.904 0.777 0.889
NLA-SUP 0.789 0.900 0.785 0.889
Supervised 0.867 0.932 0.849 0.913

For our proposed TWM, the alignment is inferred by taking
the centers of the output distributions (red line in Figure 4
A). For other models, the alignment is obtained by apply-
ing DTW on the representations.9 The alignment inferred
by TWM is smooth (Figure 4 A) but those of other mod-
els show a staircase pattern (Figure 4 B). When visually
inspected in Figure 4 C, the source phonemes aligned by
NLA (the 3rd row) show the highest coherence with the
target phonemes (the 2nd row). The threshold-TPR curves

9See Appendix E.2 for selecting distance function for DTW.

Table 3. Aligned AKT correlation of alignment methods.

Model S1 S2
SeqVAE 0.469 0.495
LFADS 0.483 0.465
NDT 0.555 0.531
NLA 0.708 0.715
NLA-sDTW 0.667 0.634
NLA-SUP 0.632 0.657
Supervised 0.874 0.851

of NLA are generally above those of other models, and
NLA shows the highest AUC for both S1 and S2 (Table 4.2).
The correlations of the aligned AKT are also the highest in
NLA (Table 3). This suggests that TWM provides the most
accurate unsupervised alignment of behaviors among the
methods compared.

4.3. Cross-trial consistency

We evaluate the cross-trial consistency of the representations
to check how well they are aligned within the same behav-
iors. To make the metric comparable across models, we
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”At twilight on the twelfth day we’ll have Chablis”
Onset–0.5s Stop+0.5s

Figure 5. Manifolds visualized by t-SNE (from left to right: NLA, SeqVAE, LFADS, and NDT). The longest sentence with eight repetitions
in the test set of S1 is selected: “At twilight on the twelfth day we’ll have Chablis.” The progress from onset-0.5s to stop+0.5s is colored
for each trial individually, and time points in the trial are connected with line. For each model class, the representation with the highest
CTC is selected.

Table 4. Cross-trial consistency (CTC) of learned representations.

Model S1 S2
SeqVAE 0.053 0.046 (0.053)
LFADS 0.121 (0.216) 0.199 (0.265)
NDT 0.091 (0.178) 0.182 (0.211)
NLA 0.281 0.230
NLA-sDTW 0.227 0.186
NLA-SUP 0.273 0.242

measure weighted correlations in the PCA space. The cor-
relation of the target (zA) and the source (zB) is measured
on each PC (e.g., the i-th PC) as ρi = corr(zAvi, zBvi),
and then weighted by the variance of the data explained
by the PC (wi). Finally, the cross-trial consistency (CTC)
is defined as summation of the weighted PC correlations
(CTC(Z) :=

∑d
i wiρi). The resulting score lies in [-1,

1]. Here, we use the supervised alignment (i.e., DTW on
AKT) for all models, to make the evaluation fair. The CTC
for each model class is reported on Table 4. Since there
would be a trade-off between representation capacity and
cross-trial consistency, we select hyperparameters that yield
the highest decoding performance or the highest CTC. If
different, we report the latter in parentheses (Table 4).

For S1, NLA shows the highest CTC, which is even higher
than the supervised version (NLA-SUP). For S2, the CTC
score of NLA is also close to that of NLA-SUP, and higher
than the baselines except for LFADS with 0.265. This partic-
ular LFADS instance has a decoding performance of 0.327,
which is significantly low based on Table 3. Compared to
NLA-sDTW, NLA in both participants outperforms NLA-
sDTW by a large margin. These results demonstrate that

our NLA can learn representations consistent across trials.

When the manifold is visualized by t-SNE, shared neural
trajectories and dynamics are easily identifiable in NLA
(Figure 5 leftmost panel). NDT also shows a general trend
(Figure 5 rightmost panel) but with coarse dynamics com-
pared to NLA. The representations near the stop are clus-
tered in SeqVAE (Figure 5 second left panel) but no visible
cluster is found in other time points. LFADS show some
shared dynamics but not as clear as NLA (Figure 5 second
right panel). More examples can be found in Appendix D.2.

5. Discussion
The content factor extracted by our model encodes behaviors
with compact dimensionality. This property has the potential
to enhance the sample efficiency and robustness of BCI
applications, which is crucial given the expense and limited
nature of data collection, especially in invasive recording.

The definition of consistency used in our framework is flexi-
ble, so that it can be defined to be across subject to investi-
gate neurotypical principles, or across session to stabilize
long term deployment of BCI (Dyer et al., 2017; Karpowicz
et al., 2022). Tasks in other domain, such as action recogni-
tion, can be revisited with our framework. Exploring these
broader applications is our future direction.

Our method reveals a more interpretable and meaningful
manifold than the previous methods, although the high-
density ECoG is a challenging modality. Therefore, the
method can be utilized to investigate the neural manifolds
and dynamics of complex behaviors, without relying on
external labels. As far as we know, this is the first demon-
stration of the unsupervised discovery of a clean manifold
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from highly noisy and complex neural data.

Limitation: Our approach requires multiple repetitions for
the same condition, which may not be applicable to some
experiments (e.g., spontaneous speech).

6. Conclusion
We propose a novel unsupervised learning framework to
learn representation from noisy neural data by cross-trial
alignment. To this end, we develop a contrastive alignment
loss and a differentiable time warping model. The effective-
ness of our proposed framework is empirically demonstrated
with challenging human ECoG data.
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A. Implementation detail
A.1. Sequential autoencoder

The backbone of our proposed famework is a sequential autoencoder with 1D CNN. Both encoder and decoder are composed
of two layers of convolutional layers with residual connection (ResLayer). The configurations are shown in the Table
A.1. The parameters are denoted as the PyTorch convention: conv1d (in channel,out channel, kernel, stride, dilation), and
convT1d (in channel, out channel, kernel, stride). The mapping, f, is defined as two stacks of conv1d (256, 256, 3, 1, 1)
on top of the encoder. The activation function, ReLU, is applied for the output of every conv1d, and followed by Batch
normalization. The input to this model is in the shape of (Batch size (B), T=400, number of channels=256), and the resulting
latent factors have (B, L=100, d=256).

Table 5. Architecture of the backbone sequential autoencoder.
Encoder

ResLayer1 conv1d (256, 256, 3, 2, 1)
conv1d (256, 256, 3, 1, 2)

ResLayer2 conv1d (256, 256, 3, 2, 1)
conv1d (256, 256, 3, 1, 2)

Linear fc (256, 256)
Decoder

Upsample convT1d (256, 256, 2, 1)

ResLayer1 conv1d (256, 256, 3, 1, 1)
conv1d (256, 256, 3, 1, 1)

Upsample convT1d (256, 256, 2, 1)

ResLayer2 conv1d (256, 256, 3, 1, 1)
conv1d (256, 256, 3, 1, 1)

Logit fc (256, 256)

A.2. Time warping model

The time warping model is implemented with four layers of Transformer (Vaswani et al., 2017). We follow a conventional
practice of implementing Transformer. Each Transformer layer is composed of multi-head attention and feed forward
modules. Following the same notation in Vaswani et al. (2017), we use dmodel = 64, dk = 32, h = 4 for multi-head attention,
and dff = 128 for the feed forward model. ReLU is used for the activation function of the feedforward model, and Dropout
rate 0.2 is applied to the attentions and the output of the first layer in the feedforward model. Additional Layer normalization
is applied to the output of each module. The proposed time warping model is then composed of an input layer with fc(256,
64), four stacks of the Transformer blocks, and an output layer with fc(64, 2). The positional embedding (PE) and sequential
embedding (SE) are added to the input before the Transformer layers. The input to this model is pairs of sequences, [(B, L,
d), (B, L, d)], and then the output is also pairs of parameters for alignment distribution [(B, L, 2), (B, L, 2)]. In the main
text, we suggest to warp one trial to another using one half of the outputs, but in practice, we align them bidirectionally by
leveraging the other half part of the outputs.

For soft-DTW in NLA-sDTW, we use codes provided by Maghoumi et al. (2021), using default setting (γ = 1.0) other than
the proposed distance function. For inferring alignment after training the models except for NLA, we use DTW implemented
by Giorgino (2009) and every DTW uses default setting without window.

A.3. Training configuration

We use one NVIDIA RTX A5000 to train the models, and the batch size of 64 is used. We augment the data by
randomly dropping 5-10% of channels of randomly chosen 50% of trials in the batch. Adam optimizer is used with
β1 = 0.9, β2 = 0.999. The number of iterations is 500K and the learning rate is annealed from 1e-3 to 1e-4 using cosine
annealing.
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B. Data preprocessing detail
B.1. Signal processing

The ECoG with 16 x 16 grids collected raw local field potentials in 3K Hz. The 60 Hz line noise by DC connector is filtered
out with a notch filter. Then, the Hilbert transform is applied to extract the analytic amplitude of the high-gamma frequency
(70–200 Hz). Lastly, the signals are downsampled to 200 Hz.

B.2. Articulatory kinematic trajectory (AKT)

The audio-to-articulation inversion (AAI) model is trained with bidirectional LSTM on two electromagnetic articulography
(EMA) datasets, MOCHA-TIMIT (Wrench, 1999) and MNGU0 (Richmond et al., 2011). The AAI model is trained to
predict 12-dimensional (X,Y coordinates for each of 6 articulators) articulatory representations (AKTs) from acoustic
features (MFCC). Then, the AKTs are inferred using recorded participants’ audio.

B.3. ECoG grid locations

S1 S2

Figure 6. The location of the implanted ECoG (left: S1, right: S2). The figures are from Anumanchipalli et al. (2019)

C. Baseline implementation
C.1. SeqVAE

The variational inference is added to the autoencoder with the same CNN architecture as A.1. A dynamic prior on the latent
space is defined in non-parametric way. We follow the ideas and the implementation by the previous deep sequential VAE
models (Li & Mandt, 2018; Zhu et al., 2020; Lian et al., 2022).

For each time point, a sample from prior distribution is generated by running LSTM on random vectors sampled from a
diagonal Gaussian distribution, N (0, I). This LSTM is trained along with the VAE and provides sample depend on the
sampling history, shaping dynamical prior of the embedding space. We redirect to (Li & Mandt, 2018) for the detailed
formulation of the dynamic prior. This LSTM is implemented as a single layer with the hidden size of 256.

We train model for different weighting factors of KL-divergence term in ELBO: [1e-4, 1e-3, 1e-2, 1e-1]. All the training
configurations are the same as A.3. The batch size is increased to 128 since the pairs are batched in NLA, so we need to
double up the batch size to match the size.

C.2. LFADS

We follow the implementation by Pandarinath et al. (2018b); Keshtkaran et al. (2022), with a bidirectional GRU encoder,
and a unidirectional GRU controller and generator. The size of all the hidden states are set as 128, and the size of the factor
is set as 32 or 256. For the prior on the initial state, we used a Gaussian distribution with trainable mean and fixed variance
of 0.1. The prior on the controller output is autoregressively defined with trainable autocorrelation variables. The input
signals are downsampled to 50 Hz to match frequency of the resulting representation from other models. The weight for
KL-divergence term is selected from [1e-4, 1e-3, 1e-2, 1e-1, 1], and fixed throughout the training. The number of iterations
is set as 50K and the batch size is also doubled. Other settings are identical to A.3.
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C.3. NDT

For NDT, a masked autoencoder with the Transformer architecture is implemented. There are some key differences from the
original model proposed by Ye & Pandarinath (2021): 1) convolutional positional encoding, 2) randomized masking plan,
and 3) modified loss objective to incorporate unmasked prediction (autoencoding).

First of all, since Transformer lacks generalizability to unseen lengths, the model trained with the fixed window of inputs
fails to model variable length of trials. To tackle this, our NDT takes the full-length trials as inputs, and to do so, we use
convolutional positional embedding (Baevski et al., 2020) instead of the lookup table positional embedding. The convolution
with kernel size of 128 and group of 8 is applied to the input to extract positional information from the data, and then added
to the input before entering the Transformer layers. This convolutional position encoding is proven to be successful in
speech domain (Baevski et al., 2020) and agnostic to the input length. Other than that, Transformer has the same architecture
as A.2 with dmodel = 256, h = 4, dk = 64, dff = 256, and six layers are used.

We also diversify the masking probability by randomly selecting from [0.2, 0.4, 0.6]. The input sequence are first segmented
and each segment is masked with the chosen masking probability. The length of the segment is randomly chosen from
[5, 10]. The model overfits severely if only trained with masked prediction objective. Therefore, we use an auxiliary loss
of the reconstruction of the unmasked part. This loss is weighted with 0.1 and added to the masked prediction loss. This
modification prevents the model from overfitting. The number of iterations are set as 100K and the other settings are the
same as A.3.

D. Additional analyses
D.1. Reconstruction performance

The ECoG signals are highly noisy and there is spontaneous background activity that is not random but behaviorally
irrelevant. Thus, we don’t compare this in the main body since the reconstruction performance doesn’t distinguish noise,
failing to be a valid evaluation metric. Table 6 shows the reconstruction performance of each model, measured as average
correlation coefficients of 256 channels. We select the model instance by decoding accuracy in validation set and the
number in parentheses means the score selected using decoding from low-dimensional models (dim=32) if applicable. The
reconstruction performance is maxing out in NLAs and this is natural since the content factor is not directly involved in the
reconstructions. So NLA is free of the capacity-regularization trade-off that is shown in the case of SeqVAE and LFADS.

Table 6. Reconstruction accuracy (r)

Model S1 S2
SeqVAE 0.959 (0.902) 0.963 (0.909)
LFADS 0.721 (0.528) 0.549 (0.765)
NDT 0.907 0.918
NLA 0.992 0.985
NLA-sDTW 0.988 0.984
NLA-SUP 0.990 0.986

D.2. Manifold visualization

The manifolds of other test sentences in S1 are visualized in Figure D.2. The difference across models pointed out in the
main text is replicated in other sentences. We also try with higher perplexity (right) and the results show the same conclusion.
The dimension of the data is reduced to 32 by PCA prior to running t-SNE.

E. Other design choices
E.1. Distance functions for training NLA

The choice of distance function affects the stability of training the TWM in NLA. The instability of TWM results in
degeneration of the inferred alignment (e.g., all the alignment center indices are collapsed to zero or the end). With the
Euclidean distance or cosine distance, the training requires more careful hyperparameter selection. However, training TWM
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Figure 7. t-SNE visualizations on other test sentences with different perplexities (left: 20, right: 200). The main figure uses perplexity=20.

with the inner product distance was highly stable. Thus, we decided to use the inner product as the similarity function for all
experiments. For further stabilization, the inner product values are softly clamped to be in [-5, 5] by 5 tanh(x/5). Instead,
we experimented with the Euclidean distance and cosine distance for one of our variants, NLA-sDTW. For cosine distance,
the similarity is divided by temperature which is set as 0.2. We consistently found lower performance when cosine or the
Euclidean distance is used. Table 7 shows the scores of NLA-sDTW with other distance functions: decoding (§4.1), alnPh &
alnAKT (§4.2), and CTC (§4.3).

Table 7. Model performance by distance function type

Distance decoding alnPh alnAKT CTC
S1 S2 S1 S2 S1 S2 S1 S2

product 0.463 0.506 0.904 0.889 0.667 0.634 0.227 0.186
cosine 0.457 0.498 0.895 0.883 0.617 0.596 0.083 0.098
euclidean 0.442 0.503 0.883 0.865 0.596 0.453 0.034 0.042

E.2. Optimal distance function for post-training DTW

As the temporal alignments are not inferred in the baseline models, we use DTW to get the temporal alignments between
trials after training the models. We experimented with the Euclidean distance and product distance (negative of inner
product) particularly for this post-training DTW. Table 8 shows behavioral coherence scores, alnPh and alnAKT (§4.2), by
distance functions for each model. For the baseline models (SeqVae, LFADS, NDT), the product distance is mostly selected
as optimal on the validation set. For NLA-sDTW and NLA-SUP, the Euclidean distance is mostly selected as optimal.
However, the difference in the scores across distance methods is not as significant as the difference between the scores
of NLAs and those of the baselines. The choice of distance has minimal effect in post-training DTW and the alignments
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inferred by TWM show higher scores than any configurations.

Table 8. Behavioral coherence by distance function type in post-training DTW.

Model Distance alnPh alnAKT
S1 S2 S1 S2

SeqVAE product 0.874 0.868 0.469 0.495
euclidean 0.868 0.862 0.444 0.449

LFADS product 0.882 0.867 0.483 0.465
euclidean 0.871 0.859 0.486 0.460

NDT product 0.887 0.877 0.555 0.531
euclidean 0.888 0.873 0.531 0.521

NLA-sDTW product 0.897 0.889 0.647 0.634
euclidean 0.904 0.891 0.667 0.639

NLA-SUP product 0.895 0.887 0.632 0.649
euclidean 0.900 0.889 0.664 0.657

NLA N/A 0.927 0.908 0.708 0.715

E.3. Reason for using PCA to reduce the dimensionality of the learned reperesentations

We reduce dimensionality post hoc since models with explicitly reduced dimensionality tend to overfit. The overfitting
problem is particularly happening with the reconstruction by the decoder since we only reduced the size of target representa-
tions, d, and left other parts the same. Thus, the decoder has the same capacity while the input has lower dimensionality.
Therefore, we suspect that overfitting is happening because the decoder is trained to compensate for the neural signals from
short input encoding, which is hard to be generalized. This may be mitigated by controlling the size of the decoder as well,
but this opens up too much degree of freedom to cover. Thus, we decided to use post hoc dimensionality reduction by PCA
due to the limitation of computing resources to explore other possibilities.
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