
Informed Initialization for Bayesian Optimization
and Active Learning

Carl Hvarfner
Meta

hvarfner@meta.com

David Eriksson
Meta

deriksson@meta.com

Eytan Bakshy
Meta

ebakshy@meta.com

Max Balandat
Meta

balandat@meta.com

Abstract

Bayesian Optimization is a widely used method for optimizing expensive black-box
functions, relying on probabilistic surrogate models such as Gaussian Processes.
The quality of the surrogate model is crucial for good optimization performance,
especially in the few-shot setting where only a small number of batches of points
can be evaluated. In this setting, the initialization plays a critical role in shaping
the surrogate’s predictive quality and guiding subsequent optimization. Despite
this, practitioners typically rely on (quasi-)random designs to cover the input space.
However, such approaches neglect two key factors: (a) space-filling designs may
not be desirable to reduce predictive uncertainty, and (b) efficient hyperparam-
eter learning during initialization is essential for high-quality prediction, which
may conflict with space-filling designs. To address these limitations, we propose
Hyperparameter-Informed Predictive Exploration (HIPE), a novel acquisition strat-
egy that balances predictive uncertainty reduction with hyperparameter learning
using information-theoretic principles. We derive a closed-form expression for
HIPE in the Gaussian Process setting and demonstrate its effectiveness through
extensive experiments in active learning and few-shot BO. Our results show that
HIPE outperforms standard initialization strategies in terms of predictive accu-
racy, hyperparameter identification, and subsequent optimization performance,
particularly in large-batch, few-shot settings relevant to many real-world Bayesian
Optimization applications.

1 Introduction

Bayesian Optimization (BO) (Frazier, 2018; Garnett, 2023; Jones et al., 1998; Mockus et al., 1978)
is a principled framework for sample-efficient global optimization of black-box functions with
applications across diverse fields such as biological discovery (Griffiths and Hernández-Lobato, 2020;
Stanton et al., 2022), materials science (Ament et al., 2023b; Attia et al., 2020; Frazier and Wang,
2016), online A/B testing (Agarwal et al., 2018; Feng et al., 2025; Letham et al., 2019), and machine
learning hyperparameter optimization (HPO) (Feurer et al., 2015; Snoek et al., 2014). BO combines
a probabilistic surrogate model—commonly a Gaussian Process (GP)—with an acquisition function
to select where to evaluate the unknown objective function. In many applications, the runtime of a
single black-box function evaluation may restrict the experimenter to a small number of batches –
the number of sequential rounds of experiments – but many real-world experimental setups permit
conducting multiple experiment simultaneously (e.g., on a parallel compute cluster, in a randomized
controlled trial, or batch-testing multiple specimens in a lab).
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The success of Bayesian Optimization in practice is highly sensitive to the quality of the surrogate
model (Eriksson and Jankowiak, 2021; Foldager et al., 2023; Hvarfner et al., 2023). This is a
challenge particularly during the early stages of optimization when few observations are available.
In these early stages, a small set of inputs is typically selected at random, or via space-filling or
quasi-random sampling strategies such as Latin Hypercube Sampling (LHS) or scrambled Sobol’
sequences (Bossek et al., 2020; Owen, 2023). While such strategies aim to achieve broad coverage of
the input space for initialization of the surrogate model, they may not necessarily result in improving
predictive accuracy, or reduce predictive variance, across the entire input space Ren and Sweet
(2024). Moreover, they neglect a a second crucial aspect of modeling: the need to accurately infer
the model’s hyperparameters (Zhang et al., 2019), such as the kernel lengthscales of a GP. With
accurate hyperparameter estimates, variation in unimportant dimensions will have less influence on
the selection of points in subsequent iterations of BO, leading to more sample-efficient optimization
(Eriksson and Jankowiak, 2021; Hvarfner et al., 2023; Müller et al., 2023). Conversely, poor
hyperparameter estimation may cause subsequent BO iterations to fail to make meaningful progress
(Berkenkamp et al., 2019), which may be caused by misidentifying signal for noise, exploring
irrelevant dimensions, or returning poor terminal recommendations (Hvarfner et al., 2022).

In this work, we provide a principled approach to addressing this initialization challenge. Our main
contributions are as follows:

1. We propose Hyperparameter-Informed Predictive Exploration (HIPE), an acquisition function
for initialization that optimizes for both predictive uncertainty reduction and hyperparameter
learning.

2. We derive a closed-form expression for this objective in the case of Gaussian Process models, and
implement a practical Monte Carlo approximation to make it amenable to batched optimization.

3. We conduct extensive experiments in active learning and Bayesian Optimization on synthetic
and real-world BO tasks, demonstrating that HIPE outperforms competing methods in terms of
both model accuracy metrics and BO performance in few-shot, large-batch settings.

2 Background

2.1 Gaussian Processes

Gaussian Processes (GPs) are a widely used surrogate model in BO due to their flexibility, closed-
form and well-calibrated predictive distributions. GPs define a distribution over functions, f̂ „

GPpmp¨q, kp¨, ¨qq, specified by a mean function mp¨q and a covariance (kernel) function kp¨, ¨q. For a
given location x, the function value f̂pxq is normally distributed, with closed-form expressions for
the predictive mean µpxq and variance σ2pxq. In practice, the mean function is often kept constant,
leaving the covariance function to capture the structural properties of the objective.

To model differences in variable importance in GPs with stationary kernels, each input dimension
is commonly scaled by a lengthscale hyperparameter ℓi, a practice known as Automatic Relevance
Determination (ARD) (Williams and Rasmussen, 1995). Additional, optional hyperparameters include
a learnable noise variance σ2

ε and signal variance σ2
f . The full set of hyperparameters θ “ tℓ, σ2

ε , σ
2
fu

may be learned either by maximizing the marginal likelihood ppD | θq (Maximum Likelihood
Estimation, MLE) or by incorporating hyperpriors ppθq to perform Maximum A Posteriori (MAP)
estimation. Alternatively, a fully Bayesian treatment (Lalchand and Rasmussen, 2020; Osborne,
2010) integrates over θ to approximate the full Bayesian posterior distribution using Markov Chain
Monte Carlo (MCMC) methods, thereby explicitly accounting for hyperparameter uncertainty. For
additional background on GPs, see (Rasmussen and Williams, 2005).

2.2 Bayesian Optimization

Bayesian Optimization (BO) (Frazier, 2018) is a sample-efficient framework for finding the maximizer
x˚ “ argmaxxPX fpxq of a black-box function f : X Ñ R over a D-dimensional input space
X “ r0, 1sD. The function f is assumed to be expensive to evaluate and observable only through
noisy point-wise measurements, ypxq “ fpxq ` ε, where ε „ N p0, σ2

εq.
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At the core of BO is an acquisition function, which uses a surrogate model to quantify the (expected)
utility of candidate points x. Acquisition functions balance exploration and exploitation typically
through greedy heuristics. Popular examples include Expected Improvement (EI) (Bull, 2011;
Jones et al., 1998) and its numerically stable variant, LogEI (Ament et al., 2023a), as well as the
Upper Confidence Bound (UCB) (Srinivas et al., 2012, 2010). In batch BO, multiple points are
selected in parallel to accelerate data collection. This is often achieved by computing and jointly
optimizing a (quasi-)MC estimate of the utility u associated with acquisition function over the full
batch X “ tx1,x2, ...,xqu of size q (Balandat et al., 2020; Wilson et al., 2017; Wilson et al., 2020).

2.3 Bayesian Active Learning

Bayesian Active Learning (BAL) and Bayesian Experimental Design (BED) (Chaloner and Verdinelli,
1995) aims to improve predictive models by strategically selecting data points that are most infor-
mative, either with regard to the model or to future predictions. A central quantity is the Expected
Information Gain (EIG):

EIGpξ; ypxqq “ Hrξs ´ Eypxq rHrξ|ypxqss , (1)

where H is the Shannon (differential) entropy and ξ is a parameter of interest. Importantly, EIG is
symmetric, and can be equivalently formulated as an entropy reduction over ypxq, instead of ξ.

Bayesian Active Learning by Disagreement Bayesian Active Learning by Disagreement
(BALD) (Houlsby et al., 2011; Kirsch et al., 2019) selects query points that maximize the mu-
tual information between model predictions and hyperparameters θ:

BALDpxq “ EIGpypxq;θq “ Hrypxq|Ds ´ EθrHrypxq|D,θss. (2)

BALD identifies locations where models within an ensemble exhibit the greatest disagreement in
predictive uncertainty. In the GP setting, this often leads to axis-aligned queries when there is high
uncertainty in the lengthscales, and to repeated queries when observation noise is highly uncertain.
Notably, BALD is model-agnostic and can be applied to a wide range of surrogate models and hyper-
parameters, including subspace models (Garnett et al., 2014) and additive decompositions (Gardner
et al., 2017; Hvarfner et al., 2023).

Negative Integrated Posterior Variance and Expected Predictive Information Gain The Nega-
tive Integrated Posterior Variance (NIPV) (Chen and Zhou, 2014; Seo et al., 2000) criterion selects
queries that minimize the expected posterior variance over a test distribution p˚pxq:

NIPVpx; p˚q “ ´Ex˚„p˚

“

σ2px˚q | x,D
‰

. (3)

Similarly, Expected Predictive Information Gain (EPIG) (Bickford Smith et al., 2023) selects queries
that minimize the expected predictive entropy over p˚pxq:

EPIGpx; p˚q “ ´Ex˚„p˚
rHrypxqs | x˚,Ds . (4)

Both objectives promote the selection of data that reduces uncertainty over the test distribution, but
without considering the effect on hyperparameter learning. The test distribution encodes how much
emphasis is put on different parts of the domain. It can be specified by subject matter experts; in the
case of no prior knowledge it is typically the uniform distribution. Throughout the remainder of the
paper, we will exclusively consider NIPV with a uniform p˚.

3 Related Work

Initialization has received surprisingly little attention in the context of BO. Bossek et al. (2020)
conducts a study on the effect of various random initial designs on BO performance. Alternatively,
minimax or maximin criteria (Johnson et al., 1990) may be used to accomplish evenly distributed
designs. Maybe closest to our work is (Zhang et al., 2019), which proposes LHS-Beta, an initial design
criterion which alters samples drawn by LHS to achieve pairwise distances between points which
matches a Beta distribution. LHS-Beta pursues diverse pairwise distances in the data, in order to best
learn the lengthscale of a GP with an isotropic kernel. Müller and Zimmerman (1999); Zimmerman
(2006) address the problem of learning parameters of Kriging estimators using a empirical estimates
of optimal experimental design criteria, limiting candidates to a fixed grid of points.
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Entropy-maximizing (Guestrin et al., 2005; MacKay, 1992, 1995) or variance-minimizing (Park
et al., 2024) designs have been explored in active learning for optimal sensor placement (Krause
et al., 2006, 2008) and other applications involving GPs, such as geostatistics (Sauer et al., 2023)
and contour finding (Cole et al., 2023). Moreover, parameter-related EIG criteria are a bedrock
of the broader topic of BED (Bickford Smith et al., 2023; Chaloner and Verdinelli, 1995; Kirsch
et al., 2021; Rainforth et al., 2024), which focuses on selecting data that is most informative about
model parameters or future predictions. These prediction or model-oriented criteria have yet to see
widespread use in BO, particularly for initialization. However, information-theoretic acquisition
functions (Hennig and Schuler, 2012; Hernández-Lobato et al., 2014; Hvarfner et al., 2022; Moss
et al., 2021; Neiswanger et al., 2021, 2024; Tu et al., 2022; Wang and Jegelka, 2017) address the
optimization problem from an information theoretic perspective, albeit not with a primary focus on
initialization or model predictive performance.

The problem of actively learning model hyperparameters during BO (post initialization) has previously
been investigated by Hvarfner et al. (2023), who propose a combined BO-BAL framework to actively
learn the hyperparameters of the GP along with the optimum, and demonstrate that better-calibrated
surrogates significantly enhance BO performance. Houlsby et al. (2011) proposes BALD, an active
learning acquisition functions for hyperparameters in preference learning in GPs. Riis et al. (2022)
proposes a a Query-By-Committee-oriented acquisition function for BAL in GPs. Lastly, Berkenkamp
et al. (2019); Ziomek et al. (2024) address BO performance under hyperparameter uncertainty from a
theoretical perspective, proving regret bounds when hyperparameters of the objective are unknown.

4 Method

We consider the case of large-batch, few-shot BO, where the batch size q is large (q ě 8), and only
a small number of sequential batches B can be evaluated (often only one for initialization and one
for BO, so B “ 2). With only a handful of batches, there is little opportunity to correct for poor
initialization. If the initial design fails to reduce uncertainty in key hyperparameters or leaves large
regions of the input space unexplored, both hyperparameter inference and optimization become
challenging. This setting is common if evaluations are lengthy but can be effectively parallelized,
which is the case for instance in online A/B tests or lab experiments for biology González-Duque
et al. (2024); Stanton et al. (2022) or material design Yik et al. (2025).

In practice, the objective(s) often exhibit complex structure such as moderate or high dimensionality D
(D ą 5) and significant uncertainty in the lengthscales ℓ, noise and signal variance σ2

ε and σ2
f ,

respectively, and the importance of each input dimension. Standard space-filling designs, such as
scrambled Sobol sequences, are widely used for initialization due to their theoretical uniformity
properties. However, these methods are agnostic to the underlying model and its uncertainties. As a
result, they often fail to uncover critical hyperparameter dependencies (Zhang et al., 2019), leading to
poorly calibrated surrogate models and suboptimal acquisition decisions in the subsequent BO phase.

While Sobol and other space-filling sequences are designed to uniformly cover the input space, this
property alone does not imply that the resulting model will be desirably helpful for subsequent BO. In
fact, space-filling is not synonymous with informativeness: a model trained on a space-filling design
may still exhibit high predictive uncertainty in regions most relevant for optimization. For example,
random designs increasingly sample near the boundaries of the search space as dimensionality
grows Köppen (2000); Swersky (2017), whereas a point located at the center of the search space may
be far more informative for optimization, as it can yield a greater reduction in predictive variance
throughout the search space.

To this point, a strategy that explicitly reduces predictive uncertainty within the region of inter-
est Bickford Smith et al. (2023)—namely, the search space—not only seems better suited for our
goals, but is also better aligned with both theoretical (Berkenkamp et al., 2019; Srinivas et al., 2010)
and information gain-based criteria, as well as the practical objective of achieving a more informed,
in an informal sense, model post-initialization Garnett (2023). Methods like NIPV (Zhang et al.,
2019) which minimize predictive variance over the input space achieve this goal better than Sobol,
and yields designs that are spread out but not necessarily informative for model calibration and
hyperparameter learning.

On the other hand, methods that focus exclusively on hyperparameter informativeness, such as
BALD (Houlsby et al., 2011), tend to cluster queries along specific axes in order to resolve length-
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scales, thereby sacrificing coverage and potentially overlooking important regions of the search
space. When additional hyperparameters are present, such as a learnable noise variance, BALD
may even select duplicate queries at the same location to better estimate said noise variance. While
such behavior is not inherently problematic, it can be undesirable in the few-shot setting, where
initialization must address hyperparameter learning and space-filling simultaneously.

To overcome these limitations, we introduce HIPE, a method that explicitly balances predictive
uncertainty reduction with hyperparameter-awareness. By jointly considering coverage and informa-
tiveness, HIPE produces initial designs that effectively reduce both predictive and hyperparameter
uncertainty, ensuring robust model calibration and improved downstream optimization.

The interplay between all these initialization strategies is illustrated in Figure 1, which visualizes the
acquisition surfaces for a GP model in two dimensions under lengthscale uncertainty. Each subplot
highlights the distinct behavior of a different method. Sobol emphasizes uniform coverage of the
input space, but its designs may not achieve the desired reduction in predictive uncertainty, especially
given the inherent randomness and lack of model awareness. BALD, in contrast, focuses on reducing
lengthscale uncertainty by selecting axis-aligned queries, which can lead to clustering along specific
directions and a loss of broader coverage. NIPV aims to minimize average predictive variance across
the input space, resulting in well-spread points, but it can neglect hyperparameter informativeness
since its queries are not tailored to resolve model parameter uncertainty. Our proposed method, HIPE,
strikes a balance between predictive uncertainty reduction and hyperparameter-awareness: it selects
points that are both well-distributed and aligned with the axes of uncertainty, thereby achieving low
predictive and hyperparameter uncertainty simultaneously.
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Figure 1: Visual comparison of initialization strategies for BO with a GP in two dimensions under lengthscale
uncertainty. Each plot shows the acquisition surface used to guide batch selection. Sobol emphasizes space-
filling, but may not accomplish this to the desired degree. BALD focuses on reducing lengthscale uncertainty
via axis-aligned queries. NIPV spreads points to minimize average predictive variance over the input space.
Lastly, HIPE balances space-filling and hyperparameter-awareness, choosing spread-out points while preserving
axis-alignment between queries.

4.1 Hyperparameter-Informed Predictive Exploration

We approach the problem of initialization through the lens of optimization, by simultaneously
maximizing the coverage of a region of interest and the information acquired about model-level
uncertainty. A natural way to achieve this is to optimize a criterion that combines the EPIG and
BALD objectives:

HIPEβpXq :“ ´Eθ,ypXq

“

Ex˚
rH rypx˚q | θ, ypXqss

‰

loooooooooooooooooooooooomoooooooooooooooooooooooon

EPIG objective

`β pHrypXqs ´ Eθ rHrypXq | θssq
looooooooooooooooooomooooooooooooooooooon

BALD objective

(5)

where β ą 0 is a scalar weighting parameter. For large β, this objective favors hyperparameter
learning, while for small β it favors space-filling designs.

It turns out that for the choice of β “ 1, the maximizer of Eq. (7) is exactly the maximizer of the joint
information gain over test function values and model hyperparameters (for proof see Appendix B):
Proposition 1 (Equivalence of HIPEβ“1 to Joint Information Gain). The HIPEβ acquisition function
with β “ 1 is equivalent to maximizing the expected joint information gain over test function values
ypx˚q and model hyperparameters θ acquired by a candidate batch X . Formally,

argmax
XPRqˆD

HIPEβ“1pX; p˚q “ argmax
XPRqˆD

Ex„p˚
rEIG pypx˚q,θ;Xqs . (6)
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While Proposition 1 provides an intuitive connection between HIPE, EPIG, and BALD, the constituent
quantities often have vastly different scales. Therefore the choice of β “ 1 will generally not result
in optimal performance since the optimization will inadvertently focus on the larger of the two terms.

A key observation is that not all hyperparameter information gain amounts to information gained
on the test set – this depends on multiple aspects, including downstream test distribution and hyper-
parameterization. To what extent the reduction in hyperparameter entropy manifests in a reduction in
test set entropy can be quantified through the mutual information between the hyperparameters θ and
the test points ypx˚q, x˚ „ p˚pxq:

EIGpypx˚q;θ|Dq “ Ex˚
rHrypx˚q|Ds ´ EθrHrypx˚q|θ,Dsss . (7)

Intuitively, Eq. (7) quantifies how well the knowledge of the hyperparameters, in expectation, informs
us about the values of ypx˚q. Importantly, EIGpypx˚q;θ|Dq does not depend on the candidate set X
and can thus be pre-computed.

Setting β “ EIGpypx˚q;θ|Dq balances the two competing objectives in Eq. (5) according to their
effect on downstream predictive uncertainty, without introducing any additional hyperparameters.
We refer to the resulting acquisition function as Hyperparameter-Informed Predictive Exploration
(HIPE):

HIPEpXq :“ ´EypXq

“

Ex˚
rHrypx˚q|θ, ypXqs

‰

` EIGpypx˚q;θq EθrHrypXq|θs ´ HrypXqss

(8)
Notably, optimizing HIPE does not require having observed any data – for this problem to be
well-posed only requires test distribution, model structure, and model parameter hyperpriors.

4.2 A Parallel Monte Carlo Implementation of HIPE

Following the Monte Carlo approach used in modern acquisition functions (Balandat et al., 2020;
Wilson et al., 2020), we implement a parallel version of HIPE that enables joint optimization. For
a candidate batch X “ tx1, . . . ,xqu, we estimate the acquisition objective using M MC samples
over the hyperparameters, T test locations of the EPIG objective, and N samples from the predictive
posterior for the BALD objective:

αBALDpX;θq “ ´ log p pEθrypXq|θqsq ` Eθ rlog ppypXq | θqs (9a)

« ´
1

N

N
ÿ

n“1

«

log

˜

1

M

M
ÿ

m“1

p
´

Y pnq | θpmq
¯

¸

`
1

M

M
ÿ

m“1

log p
´

Y pnq | θpmq
¯

ff

, (9b)

where θpmq „ ppθ | Dq are i.i.d samples from the belief over hyperparameters, and Y pnq „ ypXq are
i.i.d, q-dimensional (joint) samples from the predictive posterior. Thus, the BALD objective amounts
to repeated evaluation the q-dimensional multivariate normal posterior ypXq for each candidate X ,
and estimating the posterior entropy from it. Secondly, we estimate the EPIG objective analogously
to Balandat et al. (2020) as

αEPIGpX; p˚,θq «
1

M

1

T

M
ÿ

m“1

T
ÿ

t“1

”

C ´ Hrypx
ptq
˚ q|X,θpmq,Ds

ı

, (10)

where C “ Hrypx
ptq
˚ q|Ds is constant w.r.t. X and does not need to be computed. Since

ypx
ptq
˚ q|X,θpmq,D in Eq. (10) is the GP posterior predictive at x˚, it is a Gaussian random variable

and its entropy can be computed in closed form without observing or simulating the outcome at x˚.
Thus, Eq. (10) can be evaluated in closed form for each of the M GPs’ T test points after conditioning
on the set X .

With these two MC estimators, the subsequent optimization can be carried out jointly for the entire
q-batch in a qD-dimensional space, as the entropy reduction is computed with regard to the entire
batch of candidates as opposed to a singular one. Using Sample Average Approximation (Balandat
et al., 2020), the HIPE objective is deterministic and auto-differentiable.

One downside of this formulation is that the nested MC estimator imposes substantial computational
runtime, making HIPE less suited for high-throughput applications (Daulton et al., 2022; Eriksson
et al., 2019; Maus et al., 2022). However, in those applications the quality of the initialization batch
is generally much less crucial, so this is not a limitation in practice.
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5 Results

We evaluate HIPE across two main types of tasks: Active Learning (AL) and Bayesian Optimization
(BO). We consider various synthetic and real-world problems and a number of different baselines. In
both settings, we maintain large batch sizes and few batches.

Setup For AL, we simply run a number of batches with HIPE and the other baselines with the
goal of achieving the best model fit. For BO, we consider the “two-shot” setting in which we first
have to select an initialization batch and then can perform a single iteration of (batch) BO using
qLogNEI (Ament et al., 2023a) as the acquisition function. We benchmark against the conventional
initializations Sobol and Random Search, as well as BALD, NIPV and LHS-Beta (Zhang et al.,
2019). On all tasks, we utilize a fully Bayesian GP (Eriksson and Jankowiak, 2021; Snoek et al.,
2012) using MCMC with NUTS (Hoffman and Gelman, 2014) in Pyro (Bingham et al., 2018). We
implement HIPE and all baselines in BoTorch (Balandat et al., 2020). For all experiments, the
hyperparameter set θ consists of lengthscales ℓ for each dimension with a D-scaled prior (Hvarfner
et al., 2024), a constant mean c, and an inferred noise variance σ2

ε unless otherwise specified. All
baselines, including random algorithms, are given the center of the search space as part of their initial
design, as both HIPE and NIPV select the center of the search space by design under a uniform p˚.
Complete details on the experimental setup and all benchmarks can be found in Appendix A.

Evaluation Criteria We measure model fit quality with Root Mean Square Error (RMSE) of the
mean prediction and Negative Log-Likelihood (NLL) against a large number of (ground truth) test
point sampled uniformly from the domain. In the “two-shot” optimization setting, we are interested
in how the initialization affects the quality of the GP surrogate after both the first (initialization) and
second (BO) batch. We compute relative rankings, the performance of each algorithm compared to
its competitors, for each seed of each function, and average across the task type. As such, the relative
rankings aggregate inter-algorithm performance across rows for Figs 2- 4.

We also study how these model quality improvements translate to better optimization performance.
To this end, we consider the out-of-sample inference performance (Hernández-Lobato et al., 2014;
Hvarfner et al., 2022), that is, the performance of the point x1 “ argmaxµpx | Dq selected as the
maximizer of the posterior mean of the surrogate model fit on the data available in each batch. We
choose this metric since using observed points directly performs very poorly in noisy settings, and
only considering in-sample points is rather limiting in the few-shot setting.

5.1 Batch Active Learning on GP Surrogates and Synthetic Functions

We first evaluate the ability of HIPE to learn accurate surrogate models through batch active learning
on noisy synthetic test functions and surrogate LCBench (Zimmer et al., 2021) tasks. The LCBench
tasks are derived from complete neural network training runs on various OpenML (Vanschoren et al.,
2014) datasets, with 7D GP surrogate models fitted as described in Appendix A. Additionally, we
evaluate performance on the Hartmann 6D function and a high-dimensional Hartmann 6D (12D)
variant, where dummy input dimensions are added following standard practice in high-dimensional
BO (Eriksson and Jankowiak, 2021). These dummy dimensions introduce an additional challenge,
as effectively identifying and ignoring irrelevant features is critical for accurate predictions. All
evaluations are subject to substantial observation noise, detailed in Appendix A.

We run each algorithm for 4 batches of size q “ 16 and measure the NLL and RMSE after each batch,
displaying mean and one standard error on all tasks. In Fig. 2 we see that, across all tasks, HIPE is
the only method that consistently ranks in the top two for both RMSE and NLL, demonstrating that
the models it produces are both accurate and well-calibrated. On NLL, HIPE performs comparably to
BALD, which targets hyperparameter learning and thus excels at model calibration. Similarly, HIPE
is competitive with NIPV on RMSE, a metric for which NIPV is particularly well-suited (Gramacy
and Lee, 2009).

5.2 Noisy Synthetic Test Functions

Next, we evaluate HIPE on synthetic benchmark functions in the two-shot Bayesian optimiza-
tion setting, using B “ 2 batches and a batch size of q “ 24. We consider three standard test
functions—Ackley (4D), Hartmann (4D), and Hartmann (6D)—as well as two higher-dimensional
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Figure 2: Model accuracy results in the batch active learning setting. We report RMSE across various synthetic
and LCBench surrogate tasks over 4 batches of q “ 16 evaluations across 100 seeds per benchmark. HIPE
consistently ranks in the top two in relative rankings on both metrics, achieving a strong balance between
hyperparameter learning and predictive accuracy. BALD performs competitively on marginal log-likelihood
(MLL) but underperforms on RMSE due to limited space-filling behavior, while NIPV excels at reducing RMSE
but struggles with model calibration. On aggregate, random initialization methods lag significantly behind across
all benchmarks.

variants of the Hartmann function. Observation noise is added to all tasks (σε “ 2 for Ackley and
σε “ 0.5 for Hartmann), further increasing task difficulty. In Fig. 3 shows that across all benchmarks,
HIPE consistently achieves the best or second-best performance, followed by NIPV. Random and
space-filling initialization methods (LHS-Beta, Random, and Sobol) perform noticeably worse across
all settings.
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Figure 3: Out-of-sample inference optimization performance on noisy synthetic benchmark functions under
the two-shot setting (B “ 2, q “ 24) across 100 seeds per benchmark. HIPE outperforms or matches the
best-performing method across all benchmarks, including on the high-dimensional Hartmann variants with
added dummy variables. NIPV performs well on most tasks, but its performance degrades on tasks where
hyperparameter identification is critical. Random initialization strategies perform the worst throughout.

5.3 LCBench HPO Tasks

We evaluate five additional tasks from LCBench in the two-shot optimization setting: Fashion-MNIST,
MiniBooNE, Car, Higgs, and Segment, using fixed, minimal observation noise. Fig. 4 displays that
HIPE substantially outperforms the competition on Fashion-MNIST, Mini-BooNE and Higgs, and
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performs competitively on the remaining Segment and Car. Overall, HIPE consistently delivers the
highest relative rank, outperforming competing algorithms by a substantial margin. In App. 7, we
demonstrate the performance of the same initialization schemes on q “ 8, B “ 5. In this setting,
HIPE is the top-performing method on all benchmarks, and the overall ranking of algorithms remains
roughly intact.
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Figure 4: Two-shot optimization results on five hyperparameter optimization tasks from LCBench across
200 seeds for each task. HIPE achieves the highest final performance on four of the five tasks and remains
competitive on the remaining one (Segment). Relative rankings across the five problems show that HIPE
consistently outperforms other methods. This confirms the practical relevance of our approach for real-world
HPO scenarios, where both accurate predictive modeling and effective exploration are crucial.

5.4 Runtime Analysis

We compare the time required to optimize HIPE to other options, namely NIPV, as well as its runtime
compared to other components of a BO loop that employs fully Bayesian GP modeling. In Table 1,
we demonstrate that, while HIPE is substantially slower to optimize than NIPV, its total runtime is
still a minor component of the overall runtime of the BO run.

Runtime Component (sec) HIPE NIPV Random
Model fit (initial) 21.91 ˘ 0.15 21.91 ˘ 0.15 N/A
Acquisition Opt. 19.61 ˘ 1.12 8.62 ˘ 0.37 —
Model fit (BO loop) 181.79 ˘ 7.60 189.90 ˘ 5.17 177.33 ˘ 7.69
qLogNEI Optimization 4.97 ˘ 0.18 4.44 ˘ 0.05 4.35 ˘ 0.06

Table 1: Total runtime comparison (in seconds) for HIPE, NIPV, and Random across different components over
the course of a 4-batch, q “ 8 optimization run. HIPE is more time-consuming to optimize compared to NIPV.
While NIPV takes approximately half as long to optimize, the runtime to optimize HIPE is small relative to the
time required to fit the fully Bayesian GP with NUTS.

5.5 High-Dimensional SVM Tasks

Finally, we evaluate HIPE and baseline methods on challenging high-dimensional SVM hyperparam-
eter optimization tasks with D “ 20 and D “ 40 input dimensions, considered in similar variants by
Ament et al. (2023a); Eriksson and Jankowiak (2021); Hvarfner et al. (2024); Papenmeier et al. (2023).
For both tasks, only the last two dimensions—corresponding to the SVM’s global regularization
parameters—significantly influence the objective, while the remaining dimensions, corresponding to
feature-specific lengthscales, are of lesser importance. Effectively identifying and prioritizing these
relevant dimensions is critical for successful optimization. We again consider the two-shot setting,
using a larger batch size of q “ 32 due to the higher dimensionality of the problems.

The left panel of Fig. 5 reports the out-of sample inference performance after each batch. On the
20D task, HIPE achieves competitive, mid-range performance relative to the evaluated methods.
On the more challenging 40D task, HIPE obtains the highest performance, albeit by a narrow
margin over the next-best alternatives. The limited budget relative to the dimensionality presents a
significant challenge, as the ability to accurately learn the model hyperparameters diminishes with
increasing dimensionality. Despite this, we observe in the right panel of Fig. 5 that HIPE identifies

9



the important hyperparameters remarkably well after initialization on the 40D task—assigning the
last two dimensions lengthscales that are, on average, nearly half an order of magnitude smaller
than those inferred under a Sobol initialization. In Fig.10, we display the inferred hyperparameter
values for NIPV and Random as well. While these methods infer lower lengthscales for the last two
dimensions than Sobol, they do not manage to infer as low values as HIPE.

Finally, we note that the best solutions to the SVM problem were almost exclusively located near
the boundaries of the search space—particularly in the last two dimensions, which neither NIPV nor
HIPE naturally explore during initialization.
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Figure 5: Results on 20D and 40D SVM hyperparameter optimization tasks. Left: Objective value of
inferred maximum after each batch. On 20D, HIPE achieves average performance, climbing to a mid-tier
result in the second batch after focusing on hyperparameter learning in the first batch. HIPE obtains a large
standard error in the first batch, as two repetitions poorly infers the maximizer and suggests ill-performing
points as a result. On 40D, it outperforms all baselines, demonstrating strong robustness in higher dimensions
and the ability to recover after a less successful first batch. Notably, the performance of Random decreases
between batches on the 20D task, demonstrating the difficulty of accurately inferring the optimum. Right:
Log-mean estimated lengthscale hyperparameters after initialization on the 40D task. HIPE identifies the last
two dimensions–corresponding to the SVM’s global regularization parameters – much more effectively than
Sobol, assigning substantially smaller lengthscales to the relevant inputs.

6 Discussion

Contributions We introduced HIPE, a principled, hyperparameter-free information-theoretic
method for initializing Bayesian Optimization and Bayesian Active Learning algorithms. its HIPE
yields initial designs that balance coverage of (relevant) areas of the domain with the ability to
effectively learn model hyperparameters. HIPE is especially useful in the few-shot, large-batch
setting, where it achieves superior surrogate model quality compared to various initialization baselines,
as demonstrated by our experiments.

Limitations HIPE can become computationally expensive, especially for large batch sizes q in
higher dimensions D, though in many applications this cost is still insignificant compared to the
time and resources required to evaluate the underlying black-box function. Finally, the current
paper focuses on GP surrogates, and while our main insights and the general approach apply also to
other surrogate types, our implementation does not translate directly. Thus, the computation of the
acquisition function would have to be re-derived for other types of Bayesian models.

Future work Here we studied the “cold start” problem of initializing Bayesian Optimization and
Bayesian Active Learning from scratch. In practice, we may have access to data from related (but not
necessarily identical) problems. This motivates an extension of HIPE to the transfer learning setting,
e.g., by means of using a multi-task GP surrogate. Additionally, incorporating prior knowledge of
domain experts in a principled fashion is of high practical relevance, and can readily be utilized in the
form of a non-uniform p˚. Finally, we are also interested in studying the multi-objective setting in
which different surrogates of potentially different form with different hyperparameters and priors
model different objectives but share observations at the same input locations.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The only theoretical contribution in this paper is Proposition 1, for which
assumptions are discussed and a proof is provided in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Implementation details on our main contribution are discussed in the paper,
the experimental setup is detailed in the Appendix, and our results can easily be reproduced
using the accompanying code submission.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code submission allows to easily reproduce the results in the paper.
Furthermore, our main contribution, HIPE, will be made available in the popular open
source library BoTorch (https://github.com/pytorch/botorch) upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details on the experimental setup are provided in Appendix A as well as part
of the code submission.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental results provide confidence intervals and experiments have
been performed with sufficiently many replications to highlight any claimed differences
between our contributions and baselines.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources used for the experiments in the paper are summarized
in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research done for this paper neither involved any human subjects nor
did it generate or use any data sets that could raise potential privacy concerns. Moreover,
since it focuses on foundational methodological contributions to Bayesian Optimization and
Bayesian Active Learning, it is highly unlikely to generate any adverse societal impact and
potential harmful consequences.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]

Justification: This paper focuses on foundational methodological contributions to Bayesian
Optimization and Bayesian Active Learning. As such, the contributions are highly unlikely
to generate any adverse societal impact and potential harmful consequences.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not involve the release of any data or models that would pose
any risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Work on this paper did not require the use of any models. Any code or data
sets that were used are properly credited and their respective licenses are mentioned and
properly respected.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code submission includes documentation both in the form of a readme file
as well as docstrings throughout the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs in any
way.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Experimental Setup

We describe the full experimental setup used in the paper: the design of the Bayesian optimization and
active learning loops, the benchmarks used, the compute as well as the licenses of all software and
datasets. Our code, including all the benchmarks and plotting to reproduce our results, is available at
https://github.com/hipeneurips/HIPE.

A.1 Bayesian Optimization Loop

All experiments were conducted using a standardized pipeline based on BoTorch (Balandat et al.,
2020) and GPyTorch (Gardner et al., 2018). We use fully Bayesian Gaussian Process (GP) models,
with hyperparameter inference performed via the No-U-Turn Sampler (NUTS )(Hoffman and Gelman,
2014) as implemented in Pyro (Bingham et al., 2018). Unless otherwise specified, we draw 192
burn-in samples followed by 288 hyperparameter samples, retaining every 24th sample for evaluation.

Our GP prior is adapted from Hvarfner et al. (2024) to better suit a fully Bayesian setting. Specifically,
we set µ0 “ ´0.75 and σ “ 0.75, resulting in ℓd „ LN p0.75 ` logpDq{2, 0.75q. The noise
standard deviation is modeled as σε „ LN p´5.5, 0.75q, and the constant mean parameter follows
c „ N p0, 0.25q. These modifications ensure that the means of the priors for ℓd and σ2

ε approximately
match the modes of the corresponding parameters in the prior proposed by Hvarfner et al. (2024),
producing similar hyperparameter values in practice.

Acquisition functions are optimized jointly over the batch using multi-start L-BFGS-B optimization
with 4 random restarts and 384 initial samples drawn from a scrambled Sobol sequence. For the
optimization of LogEI, we additionally sample 384 points from a Gaussian distribution centered at
the current incumbent to improve local search performance.

For our proposed HIPE method and relevant baselines (BALD and NIPV), Monte Carlo estimators
use M “ 12 hyperparameter samples, T “ 1024 test points drawn uniformly from the search space,
and N “ 128 predictive posterior samples.

A.2 Benchmarks

We use three types of benchmarks: synthetic optimization test functions, surrogate-based hyper-
parameter optimization tasks from LCBench (Zimmer et al., 2021), and high-dimensional SVM
hyperparameter optimization problems. Synthetic functions are standard benchmarks for evaluating
active learning and Bayesian optimization under controlled noise and dimensionality. LCBench
tasks are GP surrogate models trained on 2,000 evaluations of multi-layer perceptrons (MLPs) on
real-world datasets, using a Matern 3/2 kernel; all surrogates are included as part of our code release.
The SVM benchmarks follow the setup in Ament et al. (2023a), based on the problem originally
introduced in Eriksson and Jankowiak (2021). For these tasks, a Support Vector Regressor (Drucker
et al., 1996) is fit to the CTSlice dataset, using a fixed subset of 5,000 data points, with 20% reserved
for validation. To vary the dimensionality, an XGBoost model is fit to the original 388-dimensional
dataset, and the most important features are retained according to XGBoost’s default feature selection
criterion. The objective is to minimize the validation RMSE. In synthetic functions, additive Gaussian
noise is introduced directly to the function evaluations. The LCBench benchmarks rely on pre-trained
surrogate models, where the posterior mean is evaluated, and in cases where σε is non-zero, additional
noise is added to the evaluation of the posterior mean.

A.3 Compute Resources

All experiments were conducted using an NVIDIA A40 GPU cluster. The compute usage to run all
experiments in the main paper amounts to approximately 1000 GPU hours, and an additional 500
GPU hours to produce all the results provided in Appendix C.

A.4 Licenses

The following software packages, libraries and datasets were used in our experiments and for
presenting the results in the paper:

• GPyTorch, BoTorch, Hydra: MIT License
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Table 2: Noise levels for all Active Learning (AL) and Bayesian Optimization (BO) benchmarks.

Category Benchmark Task Type Dimensionality σε

Synthetic

Ackley (4D) BO 4 2.0
Hartmann (6D) BO / AL 6 0.5
Hartmann (6D) BO / AL 12 0.5
Hartmann (4D) BO 4 0.5
Hartmann (4D) BO 8 0.5

LCBench

Car AL 7 2.5
Australian AL 7 2.5
Fashion-MNIST BO 7 0.0
MiniBooNE BO 7 0.0
Car BO 7 0.0
Higgs BO 7 0.0
Segment BO 7 0.0

SVM Feature-reduced SVM BO 20 0.0
Feature-reduced SVM BO 40 0.0

• PyTorch, NumPy, SciPy, Pandas: BSD Licenses
• Matplotlib, Seaborn: PSF/BSD Licenses
• LCBench: Apache License

B Derivation of HIPE as Joint Information Gain

Recall Proposition 1 from section 4.1.
Proposition 1 (Equivalence of HIPEβ“1 to Joint Information Gain). The HIPEβ acquisition function
with β “ 1 is equivalent to maximizing the expected joint information gain over test function values
ypx˚q and model hyperparameters θ acquired by a candidate batch X . Formally,

argmax
XPRqˆD

HIPEβ“1pX; p˚q “ argmax
XPRqˆD

Ex„p˚
rEIG pypx˚q,θ;Xqs . (6)

Proof of Proposition 1. For β “ 1, we have

HIPE1pXq “ ´Eθ,ypXq

“

Ex˚
rH rypx˚q | θ, ypXqss

‰

` pHrypXqs ´ Eθ rHrypXq | θssq

Therefore, with X˚ :“ argmaxXPRqˆD HIPE1pXq,

X˚ “ argmax
XPRqˆD

´Eθ,ypXq

“

Ex˚
rH rypx˚q | θ, ypXqss

‰

` pHrypXqs ´ Eθ rHrypXq | θssq (11a)

“ argmax
XPRqˆD

´Eθ,ypXq

“

Ex˚
rHrypx˚q|θ, ypXqss

‰

´ EθrHrθ|ypXqss (11b)

“ argmax
XPRqˆD

Ex˚

“

Hrypx˚q,θqs ´ EypXqrHrypx˚q,θ|ypXqss
‰

(by def) (11c)

“ argmax
XPRqˆD

Ex˚
rEIGpypx˚q,θ;Xqs (11d)

where the equalities follow from the Bayes’ rule of conditional entropy and the fact that the argmax
is independent of quantities which do not involve X .

C Additional Experiments

We present supplementary experiments to further analyze the behavior of the evaluated methods
under varying experimental conditions. These results provide additional insights into the robustness
of the methods with respect to batch size during initialization and active learning, as well as their
performance trade-offs across different evaluation metrics.
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C.1 Impact of Batch Size on Predictive Performance

We investigate how the initialization batch size q affects predictive quality and inference performance
on the LCBench tasks introduced in Section 5.3. We vary q from 6 to 24 in increments of 2 up to
q “ 16, then in steps of 4. For each batch size, we evaluate models trained on the initialization batch
only — before any active learning iterations — under a fixed-noise setting. This isolates the impact
of the initial design and avoids the confounding effects of subsequent data acquisition.

Fig. 6 summarizes the results across three key metrics: test-set NLL, test-set RMSE, and out-of-
sample inference performance. HIPE consistently achieves the lowest NLL across most benchmarks
and batch sizes, particularly in the q P r12, 16s range, demonstrating strong calibration and hyperpa-
rameter learning. In contrast, RMSE results show that HIPE often underperforms relative to simpler
baselines like Sobol and Random, suggesting a trade-off between predictive calibration and pointwise
accuracy. Inference performance shows HIPE leading for smaller batch sizes (q ă 16), although
performance plateaus or declines at higher q, indicating that additional samples are not necessarily
helpful for inference when uncertainty in relevant parameters remains high. This occurs because,
as batch size increases for our experiments, the inferred argmax has an increased propensity to be
located at a boundary. As these boundary points may not be well-performing, inference performance
occasionally stagnates or decreases with increasing batch size. Notably, as HIPE’s initialization is
generally more centered than competing methods’, it obtains higher in-sample values across most
batch sizes.

Unlike the active learning setup, these tasks are noiseless and assume fixed, known noise levels during
training. This removes uncertainty in the noise model and creates a distinct evaluation setting focused
solely on input selection and hyperparameter inference.
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Figure 6: Effect of initialization batch size q on predictive quality and inference across LCBench tasks. Each
row shows performance on one of three metrics after the initialization batch: (top) NLL, (middle) RMSE, and
(bottom) out-of-sample inference. HIPE consistently leads in NLL and small-q inference, while other methods
achieve lower RMSE, indicating a trade-off between model calibration and pointwise prediction accuracy.
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C.2 Bayesian Optimization with Different Batch Sizes

We further investigate the impact of batch size on Bayesian optimization performance by evaluating
all methods on the LCBench tasks with a reduced batch size of q “ 8. As shown in Fig. 6, HIPE
maintains its position as the best-performing method overall, achieving the lowest inference regret
across the majority of tasks. Notably, HIPE benefits more than competing methods from identifying
high-valued points during the initialization phase, which can be attributed to HIPE biasing towards
the center of the search space. However, HIPE maintains its advantage throughout, demonstrating its
impact on subsequent BO iterations.
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Figure 7: Inference regret per method using a batch size q of 8 across LCBench tasks. HIPE is once again the
best-performing method overall, but benefits from finding high-valued points during initialization to a greater
extent than other methods.

C.3 Active Learning with Different Batch Sizes

We analyze the effect of batch size in the active learning setting by comparing model performance
under small batches (q “ 8) and large batches (q “ 24). This evaluation assesses each method’s
robustness to changes in batch size and its capability to maintain predictive accuracy and effective
hyperparameter learning under varying evaluation budgets.

As shown in Fig. 8, for smaller batches of q “ 8, HIPE achieves the best performance on the
NLL metric and significantly outperforms BALD—the second-best method on NLL—in terms of
MSE. In this setting, NIPV and BALD exhibit inconsistent behavior, alternating between the worst
performance on MLL and RMSE, respectively.

When the batch size increases to q “ 24, as visualized in Fig. 8, HIPE continues to perform strongly,
consistently ranking among the top two methods across both evaluation metrics. Notably, its relative
performance improves with larger batch sizes, particularly in terms of RMSE, indicating that HIPE
scales more effectively with increased parallelism in query selection. This suggests that HIPE is
better suited for scenarios requiring efficient learning under larger batch evaluations.

C.4 Complementary Hyperparameter Visualization on SVM

We display the inferred hyperparameter values of the left-out methods (Random, NIPV) on the
40D-SVM. Both methods infer more accurate hyperparameter values than Sobol, but less accurate
than HIPE. Compared to Sobol, both Random and NIPV assign smaller lengthscales to the relevant
dimensions, indicating improved identification of important features. However, their estimates
remain less precise than those obtained by HIPE, which more effectively distinguishes the relevant
dimensions, namely the last two.
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Figure 8: Model accuracy results in the batch active learning setting with smaller batches (q “ 8). RMSE is
reported across various synthetic and LCBench surrogate tasks over 8 batches, using 100 random seeds per
benchmark. HIPE achieves the best performance on NLL and outperforms BALD, the second-best method on
NLL, in terms of RMSE. NIPV and BALD alternate in exhibiting the worst performance on MLL and RMSE,
respectively.
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Figure 9: Model accuracy results in the batch active learning setting with larger batches (q “ 24). RMSE
is reported across various synthetic and LCBench surrogate tasks over 3 batches, using 100 random seeds
per benchmark. HIPE consistently ranks among the top two methods across both metrics, achieving a strong
balance between hyperparameter learning and predictive accuracy. With larger batch sizes, HIPE exhibits
improved relative performance, particularly on RMSE, demonstrating effective scalability under increased
parallel evaluations.
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Figure 10: Estimated lengthscale hyperparameters for Sobol, Random, NIPV and HIPE on the 40D-SVM task.
Random and NIPV infer low lengthscales for the last two dimensions, which are known to be the most important.
However, HIPE does so with greater effectiveness.
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