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Abstract

This work shows how exponential concentration inequalities for additive functionals of stochastic
rocesses over a finite time interval can be derived from concentration inequalities for martingales.
he approach is entirely probabilistic and naturally includes time-inhomogeneous and non-stationary
rocesses as well as initial laws concentrated on a single point. The class of processes studied includes
artingales, Markov processes and general square integrable càdlàg processes. The general approach

s complemented by a simple and direct method for martingales, diffusions and discrete-time Markov
rocesses. The method is illustrated by deriving concentration inequalities for the Polyak–Ruppert
lgorithm, SDEs with time-dependent drift coefficients “contractive at infinity” with both Lipschitz and
quared Lipschitz observables, some classical martingales and non-elliptic SDEs.
c 2021 Elsevier B.V. All rights reserved.

eywords: Time average; Additive functional; Inhomogeneous functional; Concentration inequality;
Time-inhomogeneous Markov process; Martingale

1. Introduction

In this work we consider concentration inequalities for additive functionals of the form∫ T

0
X t dt

where X is a real-valued stochastic process. The methods we develop apply to a broad class
of processes, and we will give theorems and examples that go beyond the classical setting of
stationary Markov processes. We will treat in depth the cases where X is a martingale or X t =

f (t, Yt ) for a Markov process Y and f in an appropriate class of functions. The concentration
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inequalities will be derived for the additive functionals centered around their expectation, which
allows us to naturally treat non-stationary processes such as time-inhomogeneous diffusions.

We proceed to give an overview of the main results. In Section 2 we derive some
epresentative results using short, self-contained proofs based on direct calculations. First, we
how in Proposition 2.1 that for any continuous local martingale X such that X0 = 0 we have

the following concentration inequality for any T, R > 0:

P
(∫ T

0
Xu du ≥ R ;

∫ T

0
(T − u)2 d[X ]u ≤ σ 2

)
≤ exp

(
−

R2

2σ 2

)
.

o the author’s knowledge, the systematic treatment of concentration inequalities for additive
unctionals of martingales has not appeared in the literature before.

We will then move on to solutions to SDEs of the form

d X t = b(t, X t )dt + σd Bt ,

with X0 deterministic. In particular, denoting Ps,t the Markov transition operator associated to
X , we will show in Corollary 2.7 that if there exist constants c, κ > 0 such that

|σ⊤
∇ Pt,u f (x)| ≤ ce−κ(u−t), x ∈ Rn, 0 ≤ t ≤ u

hen we have the following Gaussian concentration inequality for all R, T > 0:

P
(

1
T

∫ T

0
f (u, Xu) du − E

[
1
T

∫ T

0
f (u, Xu) du

]
≥ R

)
≤ exp

(
−

κ2 R2T
2c2

)
.

he main novelty in the corollary is the treatment of time-inhomogeneous SDEs and the method
f proof. The Proposition from which the corollary is derived also provides a novel, refined
tatement in terms of a bound of |σ⊤

∇ Pt,u f | along trajectories of X .
Section 2 concludes with the case of discrete-time processes in Proposition 2.12, again

giving careful consideration to the time-inhomogeneous case and controlling the relevant
quantities along trajectories of the process. Concretely, we show that for a discrete-time
stochastic process X t and function f such that

|X t − X t−1| ≤ Ct , t ≥ 1,

|Ps,t f (x) − Ps,t f (y)| ≤ σs (1 − κs)t−s
|x − y|, x, y ∈ Rn, 0 ≤ s ≤ t.

e have

P

(
t∑

u=1

f (u, Xu) − E

[
t∑

u=1

f (u, Xu)

]
≥ R ;

T∑
t=1

σ 2
t C2

t

κ2
t

≤ a2

)
≤ exp

(
−

R2

8a2

)
.

The careful treatment of the time-inhomogeneous case and control on the level of trajectories
enables in particular for the first time the derivation of concentration inequalities for the
Polyak–Ruppert algorithm of the correct order in Section 4.1 (concentration inequalities for
the linear case were published concurrently with this work in [30]).

Section 3 is dedicated to a wide-ranging generalization of the results from the previous
section. In Section 3.1 we introduce a family of auxiliary martingales Zu

t = EFt Xu and
show that for general square integrable processes, the concentration properties of

∫ T
0 Xu du

are intimately linked to the predictable quadratic covariation ⟨Zu, Z v
⟩ and jumps ∆Zu of

the auxiliary martingales. In Section 3.2 we recover and extend the martingale results from
Section 2 to the discontinuous setting using the general method. In Section 3.3 we apply the

u v
general method to general Markov processes and recover expressions for ⟨Z , Z ⟩ in terms of
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the squared field operator Γ , generalizing the results on Markov processes from Section 2 to
general Markov processes on Polish spaces. All of the results from the preceding subsections
are novel in their generality. We conclude Section 3 with Section 3.4 where we show how
to incorporate arbitrary distributions of X0 and recall a number of martingale inequalities.
The subsection also includes in Corollary 3.16 a novel approach to obtain Bernstein-type
inequalities in some “self-bounding” cases.

The final Section 4 illustrates how to apply the results from the preceding section on a
number of concrete cases. Section 4.1 contains the novel results on Polyak–Ruppert mentioned
above.

Section 4.2 provides a concrete example of an SDE case with explicit conditions on the drift
and diffusion coefficients as well as the observable function. Using known results on gradient
bounds for Ps,t when the drift coefficient is “contractive at infinity” characterized by constants
ρ, κ , we show that for any initial law ν satisfying a T1(C) transport inequality and Lipschitz
unction f , we have

P (
1
T

∫ T

0
f (X t ) dt −

1
T

∫ T

0
µt ( f ) dt ≥ R + ρ∥ f ∥Lip

1 − e−κT

κT
W1(µ0, ν) )

≤ exp

⎛⎝−
κ2 R2T

2ρ2∥ f ∥
2
Lip

(
1 + C 1−e−κT

T

)
⎞⎠

or a unique evolution system of measures µt (if the process has a stationary measure µ then
t = µ for all t).

Section 4.3 provides some concrete examples using classical martingales as integrands:
rownian motion, the compensated Poisson process and compensated squared Brownian
otion B2

t − t .
Sections 4.4 and 4.4 treat the cases where the integrand X is either the squared Ornstein–

hlenbeck process or more generally the square of a Lipschitz function. These cases go beyond
he scope of most previously published approaches to concentration inequalities for additive
unctionals. The final Section 4.6 presents a simple case of a highly non-elliptic SDE, which
ields easily to the probabilistic methods presented here but is outside of the scope of previous
pproaches based for example on Poisson equations.

bout the literature. In the Markovian setting, our approach is most closely related to the work
f Joulin [25], and we recover and extend the results from that work (Propositions 3.7 and
.10). The cases of martingales and general square integrable processes do not seem to have
een systematically studied in the literature.

Most previous results on concentration inequalities for functionals of the form St have
een obtained for time-homogeneous Markov processes using functional inequalities. The
orks [7,19,21] require the existence of a stationary measure and an initial distribution

hat has an integrable density with respect to the stationary measure. The same holds true
or the combinatorial and perturbation arguments in the classic paper [28]. In [40] the
uthors establish concentration inequalities around the expectation using stochastic calculus
nd Girsanov’s theorem under strong contractivity conditions. Some concentration inequalities
or inhomogeneous functionals have previously been established in [20]. A different approach
sing renewal processes has been used in the work [29] to establish concentration inequalities
or functionals with bounded integrands.

For Markov processes, the mixing conditions in this work are most naturally formulated
n terms of bounds on either the Lipschitz seminorm, gradient or squared field (carré du
105
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champs) operator of the semigroup. Bounds on the Lipschitz seminorm are closely related
to contractivity in the L1 transportation distance and can for instance be found in [1,15] for
lliptic diffusions, in [39] for the Riemannian case, in [16] for Langevin dynamics or in [23]
or stochastic delay equations. See also [26,31] for the discrete-time case and a large number
f examples in both discrete and continuous time. Gradient estimates for semigroups can be
btained using Bismut-type formulas, see for example [12,17,36], the works [9,10] for the non-
utonomous case as well as the textbook [37]. Finally, in terms of the squared field operator,
ur mixing conditions are a relaxation of the Bakry–Emery curvature-dimension condition [2]
ince we allow for a prefactor strictly greater than 1.

otation. For a right-continuous process (X t )t≥0 with left limits we write X t− = limε→0+ X t−ε

nd ∆X t = X t −X t−. For a σ -field F and a random variable X , we denote EF X the conditional
xpectation of X with respect to F .

. Direct approach

.1. Continuous martingales

In this and the following subsections we will establish concentration inequalities by focusing
n the cases of continuous local martingales, continuous solutions to SDEs and discrete-time
tochastic processes, all with their initial law concentrated on a single point. In the first two
ases, we provide alternative and more direct proofs of results that also follow from the general
pproach in Section 3. Compared to the general approach, the direct proofs also provide an
xplicit martingale representation for the additive functionals under consideration. The discrete-
ime case introduces the ideas of Section 3 in a technically simpler setting. The focus on a
estricted class of processes keeps the proofs short and self-contained and formal computations
asily justifiable. The concentration inequalities presented here will be considerably generalized
o broader classes of processes, integrands and initial laws in Section 3.

We begin with the case of a continuous local martingale. Even though it is the simplest
cenario in our framework, it has not been studied systematically in the literature, which
ends to concentrate on concentration inequalities for additive functionals of stationary Markov
rocesses.

roposition 2.1. For a continuous local martingale X such that X0 = 0 we have the following
oncentration inequality for any T, R > 0:

P
(∫ T

0
Xu du ≥ R ;

∫ T

0
(T − u)2 d[X ]u ≤ σ 2

)
≤ exp

(
−

R2

2σ 2

)
.

urthermore for 0 ≤ t ≤ T∫ t

0
Xu du =

∫ t

0
(T − u) d Xu − (T − t)X t . (2.1)

roof. Fix T > 0 and define a local martingale MT
t by

MT
t =

∫ t

0
(T − u) d Xu .

sing integration by parts we obtain (2.1)

MT
t = (T − t)X t +

∫ t

Xu du

0

106



B. Pepin Stochastic Processes and their Applications 135 (2021) 103–138

t
E

w

C
t

s

so that in particular MT coincides with
∫

·

0 Xu du at time T :

MT
T =

∫ T

0
Xu du. (2.2)

It is well-known that for any continuous local martingale M and t ≥ 0

P
(
Mt ≥ R; [M]t ≤ σ 2)

≤ exp
(

−
R2

2σ 2

)
. (2.3)

Indeed, for λ > 0 let Eλ(M)t = exp
(
λMt −

λ2

2 [M]t

)
. Since dEλ(M)t = Eλ(M)t d Mt

he process Eλ(M)t is a positive local martingale and therefore a supermartingale so that
Eλ(M)T ≤ E Eλ(M)0 = 1. By Chebyshev’s inequality, for any R, σ 2 > 0,

P
(
Mt ≥ R; [M]t ≤ σ 2)

≤ exp
(
−λR +

λ2

2 σ 2
)
E
[
exp

(
λMt −

λ2

2 σ 2
)

; [M]t ≤ σ 2
]

≤ exp
(
−λR +

λ2

2 σ 2
)
E Eλ(M)t ≤ exp

(
−λR +

λ2

2 σ 2
)

here λ > 0 is arbitrary. The inequality (2.3) now follows by optimizing over λ.
From the definition of MT and elementary properties of the quadratic variation, we get

[MT ]t =

∫ t

0
(T − u)2d[X ]u . (2.4)

By inserting (2.2) and (2.4) into (2.3) we finally obtain

P
(∫ T

0
Xu du ≥ R ;

∫ T

0
(T − u)2 d[X ]u ≤ σ 2

)
≤ exp

(
−

R2

2σ 2

)
. □

orollary 2.2. If d[X ]u ≤ σ 2(T −u)α du for some σ 2 > 0, α ∈ (−3, +∞) and all 0 ≤ u ≤ T
hen for all R > 0

P
(

1
T 2+α/2

∫ T

0
Xu du ≥ R

)
≤ exp

(
−

(3 + α)R2T
2σ 2

)
.

Proof. We have∫ T

0
(T − u)2 d[X ]u ≤ σ 2

∫ T

0
(T − u)2+α du =

σ 2T 3+α

3 + α

o that

P
(

1
T 2+α/2

∫ T

0
Xu du ≥ R

)
= P

(∫ T

0
Xu du ≥ RT 2+α/2

;

∫ T

0
(T − u)2 d[X ]u ≤

σ 2T 3+α

3 + α

)
≤ exp

(
−

(3 + α)R2T
2σ 2

)
. □

Corollary 2.3. If d[X ]u ≤ e−(T −u) du for all 0 ≤ u ≤ T then for all R > 0

P
(

1
√

T

∫ T

0
Xu du ≥ R

)
≤ exp

(
−

R2T
4

)
.
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Proof. We have∫ T

0
(T − u)2 d[X ]u ≤

∫ T

0
(T − u)2e−(T −u) du = 2 − (T 2

+ 2T + 2)e−T
≤ 2

nd the result follows. □

emark 2.4. The continuity assumption primarily serves to keep the exposition self-contained
y providing a concise proof of the concentration inequality (2.3) for local martingales. The
ethod extends to discontinuous local martingales by making use of the more advanced
artingale inequalities described further below in Section 3.4.

emark 2.5. Compared to Proposition 3.3, the result presented here is a priori more general
ecause it applies to local martingales, whereas Proposition 3.3 is stated for martingales.
n the other hand, the process MT constructed in the proof of this section is also only a

ocal martingale, whereas the general method yields a process MT which is a martingale
y construction. Under the hypotheses of Proposition 3.3 that X t is a true martingale with
X2

t < ∞ for all t ≥ 0, the present result also yields a true martingale, since then E[MT ]t ≤

T 2 E[X ]t < ∞ for all t ≥ 0.

.2. Stochastic differential equations

In this section, we consider the case of a solution X to the following elliptic SDE on Rn:

d X t = b(t, X t )dt + σd Bt , X0 = x0 (2.5)

or x0 ∈ Rn fixed, b : [0, ∞) × Rn
→ Rn locally bounded, once differentiable in its first

rgument and twice differentiable in the second with bounded first derivative, σ a real n × n
atrix such that σσ⊤ is positive definite and B a standard n-dimensional Brownian motion.
For a bounded function f on [0, ∞)×Rn , twice continuously differentiable, and 0 ≤ t ≤ u

e define the two-parameter semigroup associated to X and f ,

Pt,u f (x) = E[ f (u, Xu)|X t = x].

If the coefficients of (2.5) are time-homogeneous, we have Pt,u f = P0,u−t f = Pu−t f ,
here the latter is just the usual (time-homogeneous) Markov semigroup.
The result in Corollary 2.7 is known in the time-homogeneous case, and can for example

e deduced using the arguments in [25]. The refined formulation in Proposition 2.6 and the
nclusion of the time-inhomogeneous setting are new.

roposition 2.6. For all T, R, c > 0 and f : [0, ∞) × Rn
→ R, bounded and twice

ontinuously differentiable, we have

P
(∫ T

0
f (u, Xu) du − E

∫ T

0
f (u, Xu) du ≥ R ;

∫ T

0
|σ⊤

∇ RT
t (X t )|2 dt ≤ c2

)
≤ exp

(
−

R2

2c2

)
with

RT
t (x) =

∫ T

Pt,u f (x) du, x ∈ Rn, 0 ≤ t ≤ T .

t
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N∫
Furthermore we have the decomposition∫ t

0
f (u, Xu) du =

∫ t

0
∇ RT

s (Xs) · σ d Bs − RT
t (X t ), 0 ≤ t ≤ T .

roof. For T > 0 fixed define a martingale MT by

MT
t = EFt

∫ T

0
f (u, Xu) du, 0 ≤ t ≤ T

here Ft = σ ({Xs}s≤t ) is the natural filtration of X . Using Fubini’s theorem with the bounded
ntegrand f , the fact that f (u, Xu) is Ft -measurable for all u ≤ t and the Markov property we
et

MT
t =

∫ T

0
EFt f (u, Xu) du =

∫ t

0
f (u, Xu) du +

∫ T

t
EFt f (u, Xu) du

=

∫ t

0
f (u, Xu) du + RT

t (X t ) (2.6)

ith

RT
t (x) =

∫ T

t
Pt,u f (x)du.

y our regularity assumptions on f and the coefficients of (2.5), we have the Kolmogorov
ackward equation (∂t + L)Pt,u f = 0 where L denotes the infinitesimal generator of X . It
ollows from standard properties of the integral that

(∂t + L)RT
t (x) = −Pt,t f (x)+

∫ T

t
(∂t + L)Pt,u f (x)du = − f (t, x), t > 0, x ∈ Rn. (2.7)

Using the Itô formula, we get

d RT
t (X t ) = (∂t + L)RT

t (X t ) dt + ∇ RT
t (X t ) · σ d Bt

= − f (t, X t ) dt + ∇ RT
t (X t ) · σ d Bt .

y (2.6) we also have

d RT
t (X t ) = − f (t, X t ) dt + d MT

t (2.8)

o that we can identify

d MT
t = ∇ RT

t (X t ) · σ d Bt . (2.9)

rom elementary properties of the stochastic integral and Brownian motion

d[MT ]t = |σ⊤
∇ RT

t (X t )|2 dt.

n the proof of Proposition 2.1 we saw that for any continuous local martingale M with M0 = 0
e have

P(Mt ≥ x, [M]t ≤ y) ≤ exp
(

−
x2

2y

)
.

ow the result follows by applying this inequality to (MT
T − MT

0 ) and noting that MT
T =

T
0 f (u, Xu) du and MT

0 = EF0
∫ T

0 f (u, Xu) du = E
∫ T

0 f (u, Xu) du, by our assumption that
X0 is concentrated on a single point x0 ∈ Rn . □
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Corollary 2.7. If there exist constants c, κ > 0 such that

|σ⊤
∇ Pt,u f (x)| ≤ ce−κ(u−t) x ∈ Rn, 0 ≤ t ≤ u

hen we have the following Gaussian concentration inequality for all R > 0, T > 0:

P
(

1
T

∫ T

0
f (u, Xu) du − E

[
1
T

∫ T

0
f (u, Xu) du

]
≥ R

)
≤ exp

(
−

κ2 R2T
2c2

)
.

roof. From our assumption we can estimate for all x ∈ Rn, 0 ≤ t ≤ T

|σ⊤
∇ RT

t (x)| ≤

∫ T

t
|σ⊤

∇ Pt,u f (x)| du ≤ c
∫ T

t
e−κ(t−u)du ≤

c
κ

here the regularity assumptions on the coefficients of (2.5) ensure well-posedness of the
olmogorov backward equation and by extension sufficient smoothness to differentiate under

he integral for the first inequality.
Now the result follows directly from Proposition 2.6 since

P
(

1
T

∫ T

0
f (u, Xu) du − E

[
1
T

∫ T

0
f (u, Xu) du

]
≥ R

)
= P

(∫ T

0
f (u, Xu) du − E

[∫ T

0
f (u, Xu) du

]
≥ RT ;

∫ T

0
|σ⊤

∇ RT
t (X t )|2 dt

≤
c2

κ2 T
)

. □

emark 2.8. The approach presented here, based on stochastic calculus, requires the existence
f an Itô-type formula and the well-posedness of the Kolmogorov backward equation. The
pproach essentially operates on the level of the individual trajectories of X , and in return yields
n explicit martingale representation for

∫ T
0 f (u, Xu) du. In contrast, the results on Markov

rocesses from Proposition 3.7 rely on knowing the quadratic variation of a certain auxiliary
artingale, for which it is sufficient to have a characterization of X in terms of a martingale

roblem.

emark 2.9. Regarding the law of X0, in contrast to the analytic approaches present in the
iterature, the case where X0 is concentrated on a single point is the most natural for our
robabilistic approach. In particular, this case is outside of the scope of many existing results
n the literature such as [19,22], which require the law of X0 to be absolutely continuous with
espect to a stationary measure of the process. In Section 3.4 we will see how to deal with
ore general initial laws in the context of the approach presented here.

emark 2.10. We avoid the question of stationarity altogether by deriving concentration
nequalities of 1

T

∫ T
0 f (u, Xu) du centered around its expectation, as opposed to the usual for-

ulation which shows concentration around
∫

f dµ for a stationary measure µ. In Section 4.2
e will see an example of how to derive concentration inequalities around

∫
f dµ.

emark 2.11. The essential ingredient in the proof is equation (2.7), which states that
t, x) ↦→

∫ T
t Pt,u f (x) du is a solution to the following PDE in g on [0, T ] × Rn:
Lg + ∂t g = − f.
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This observation is not new and the solution g notably features prominently in the classic book
n martingale problems by Stroock and Varadhan [35]. However, the application to additive
unctionals seems to be new, if not entirely surprising. Indeed, a popular approach to additive
unctionals of Markov processes [6,21] involves the solution g to the Poisson equation on Rn ,

Lg = − f.

nder certain strong ergodicity conditions, requiring in particular the stationarity of X , a
olution to the Poisson equation can be shown to exist and is then given by the well-
nown resolvent formula as x ↦→

∫
∞

0 P0,u f (x) du. In contrast, the definition of RT
t (x) =∫ T

t Pt,u f (x) du makes sense in a very general setting.

2.3. Discrete time Markov process

In this section, we consider the case of a discrete-time Markov chain in order to build
some probabilistic intuition for our assumptions and to highlight some issues that appear in the
presence of jumps. For examples of processes satisfying the conditions below, see Section 4.1
or the articles [26,31].

Consider a discrete-time Markov Process (X t )t∈N taking values in R with X0 = x0 ∈ R. Fix
measurable function f : N×R → R such that E| f (t, X t )| < ∞ for all t ∈ N and define the

ssociated two-parameter semigroup Pt,u f by

Pt,u f (x) = E[ f (u, Xu)|X t = x], 0 ≤ t ≤ u; u, t ∈ N.

Let

St =

t∑
u=1

f (u, Xu), t ≥ 1.

Proposition 2.12. Assume that for each t ∈ N there exist positive constants σt , κt with κt < 1
nd a bounded Ft−1-measurable random variable Ct such that for s, t ∈ N

|X t − X t−1| ≤ Ct , t ≥ 1,

|Ps,t f (x) − Ps,t f (y)| ≤ σs (1 − κs)t−s
|x − y|, x, y ∈ R, 0 ≤ s ≤ t.

Then for all T, R, a > 0 we have

P

(
ST − EST ≥ R ;

T∑
t=1

σ 2
t C2

t

κ2
t

≤ a2

)
≤ exp

(
−

R2

8a2

)
.

roof. Fix T > 0 and define a martingale MT by

MT
t = EFt ST =

T∑
u=1

EFt f (u, Xu)

o that

MT
t − MT

t−1 =

T∑(
EFt f (u, Xu) − EFt−1 f (u, Xu)

)
.

u=1
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Note that by our assumptions on f , we have for all t ∈ N

E|MT
t | ≤ T max

u≤T
E| f (u, Xu)| < ∞

o that MT is indeed a martingale.
We have by the Markov property, adaptedness of X t and our assumptions

EFt f (u, Xu) − EFt−1 f (u, Xu)

= Pt,u f (X t ) − EFt−1 Pt,u f (X t )

= Pt,u f (X t ) − Pt,u f (X t−1) − EFt−1
[
Pt,u f (X t ) − Pt,u f (X t−1)

]
≤ σt (1 − κt )u−t (

|X t − X t−1| + EFt−1 |X t − X t−1|
)

≤ 2σt (1 − κt )u−t Ct

his shows that the increments of the martingale MT
t are uniformly bounded by a predictable

rocess independent of T :

MT
t − MT

t−1 ≤ 2 Ct σt

T∑
u=t

(1 − κt )u−t
≤

2 Ct σt

κt
.

An extension of the classical Azuma–Hoeffding inequality (see for example Theorem 3.4 in [3])
states that for any square-integrable martingale M with M0 = 0 and such that Mt − Mt−1 ≤ Dt

for bounded, Ft−1-measurable random variables Dt we have the inequality

P(MT ≥ x ;

T∑
t=1

D2
t ≤ y) ≤ exp

(
−

x2

2y

)
.

ince we assumed X0 to be deterministic, we have MT
T − MT

0 = ST − EF0 ST = ST − EST .
By applying the preceding martingale inequality to MT we get finally

P

(
ST − EST ≥ R ;

T∑
t=1

σ 2
t C2

t

κ2
t

≤ a2

)
≤ exp

(
−

R2

8a2

)
. □

. Martingale and concentration inequalities

.1. Processes bounded in L2(Ω )

Consider a filtered probability space (Ω ,F ,P, (Ft )t≥0) satisfying the usual conditions from
he general theory of semimartingales, meaning that F is P-complete, F0 contains all P-null

sets in F and Ft is right-continuous. In this section (X t )t≥0 will denote a real-valued stochastic
process adapted to Ft , bounded in L2(Ω ) in the sense that supt EX2

t < ∞.
Define an adapted continuous finite-variation process (St )t≥0 by

St =

∫ t

0
Xu du.

Fix T > 0 and define a martingale (MT
t )t≥0 by

MT
t = EFt ST .

By the boundedness and adaptedness assumptions on X , MT is a square integrable martingale
(by Doob’s maximal inequality) which we can and will choose to be right-continuous with
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left limits so that the predictable quadratic variation ⟨MT
⟩ and the jumps (∆MT

t )t≥0 are
ell-defined.
As illustrated in Section 2, our goal is to derive concentration inequalities for ST from

oncentration inequalities for the martingale MT by using the relation ST = MT
T . In this

ubsection we take the first step towards that goal by characterizing MT (and thus ST ) based
n properties of the underlying process X , using a family of auxiliary martingales. The next
wo subsections will give explicit expressions for the auxiliary martingales in a martingale and

arkov process context. The final subsection will complete the approach by recalling known
oncentration inequalities for martingales in terms of their (predictable) quadratic variations
nd jumps.

Define the family of auxiliary martingales (Zu)u≥0 by

Zu
t = EFt Xu,

hich will be chosen right-continuous with left limits. Each Zu is square integrable so that the
redictable quadratic covariation ⟨Zu, Z v

⟩ is well-defined.
Formally the next result is just a consequence of the (bi)linearity of the integral and

predictable) quadratic variation. The proof shows that the formal calculation is justified under
ur assumption that X is square integrable. The main interest of the result lies in the fact that
e can often find explicit expressions for ⟨Zu, Z v

⟩ and ∆Zu , as we will see in the next two
ections.

heorem 3.1. For any T > 0 we have

MT
t =

∫ T

0
Zu

t du, (3.1)

∆MT
t =

∫ T

0
∆Zu

t du, (3.2)

[MT ]t =

∫ T

0

∫ T

0
[Zu, Z v]t du dv, (3.3)

⟨MT
⟩t =

∫ T

0

∫ T

0
⟨Zu, Z v

⟩t du dv. (3.4)

roof. Since the theorem only involves values of X t and Zu
t for u, t ≤ T , we can assume

ithout loss of generality that Zu
t = Zu∧T

t∧T and X t = X t∧T . We proceed with some preliminary
stimates. First, the family (Zu

τ )u,τ , u ≥ 0, τ stopping time, is uniformly bounded in L2 since,
y optional sampling and Jensen’s inequality,

E(Zu
τ )2

= E(Zu∧T
τ∧T )2

= E(EFτ∧T EFT Xu∧T )2
≤ EX2

u∧T ≤ sup
0≤t≤T

EX2
t < ∞.

t follows that ([Zu, Z v]τ )u,v,τ and (⟨Zu, Z v
⟩τ )u,v,τ are uniformly bounded in L1 since, by

lementary properties of the quadratic variation, Cauchy–Schwartz and uniform integrability
f the martingales Zu ,

E
⏐⏐[Zu, Z v]τ

⏐⏐ ≤ E([Zu]τ [Z v]τ )1/2
≤ (E(Zu

τ )2)1/2(E(Z v
τ )2)1/2.

urthermore the local martingale Zu Z v
−[Zu, Z v] is actually a uniformly integrable martingale

ince

E
⏐⏐Zu

∞
Z v

∞
− [Zu, Z v]∞

⏐⏐ = E
⏐⏐Zu

T Z v
T − [Zu, Z v]T

⏐⏐ < ∞.

u v u v
he same holds for Z Z − ⟨Z , Z ⟩ by an identical argument.
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We proceed to show (3.1), i.e. for fixed T > 0 and all t ≥ 0

EFt

∫ T

0
Xu du =

∫ T

0
Zu

t du. (3.5)

Since (Zu
t )u≥0 is uniformly bounded in L1 we get by Fubini’s theorem that for arbitrary G ∈ Ft

E
[∫ T

0
Zu

t du; G
]

=

∫ T

0
E[Zu

t ; G]du =

∫ T

0
E[Xu; G]du = E

[∫ T

0
Xu du; G

]
hich is equivalent to (3.5).
To show (3.2) note that since (Zu

t )t≥0 is uniformly integrable we have Zu
t−1/n → Zu

t− in
L1. Since (Zu

t )u,t≥0 is uniformly bounded in L1 we can use Fubini’s theorem and dominated
convergence to show that

MT
t−1/n =

∫ T

0
Zu

t−1/n du →

∫ T

0
Zu

t− du in L1.

Since the almost sure limit of the left-hand side is MT
t− by definition and the almost sure and

L1 limits coincide when they both exist, this proves (3.2).
To show (3.3), we are going to use the characterization of [MT ] as the unique adapted and

càdlàg process A with paths of finite variation on compacts such that (MT )2
− A is a local

martingale and ∆A = (∆MT )2, A0 = (MT
0 )2.

Let

At =

∫ T

0

∫ T

0
[Zu, Z v]t du dv.

Clearly A0 = (MT
0 )2 since [Zu, Z v]0 = Zu

0 Z v
0 . Since sums and limits preserve measurability,

A is adapted since all the integrands [Zu, Z v] are. By polarization

At =
1
4

∫ T

0

∫ T

0
[Zu

+ Z v]t du dv −
1
4

∫ T

0

∫ T

0
[Zu

− Z v]t du dv

so that the paths of At can be written as a difference between two increasing functions and are
thus of finite variation on compacts. Furthermore, since 0 ≤ [Zu

± Z v]t ≤ [Zu
± Z v]u∨v for all

t ≥ 0 and [Zu
± Z v]t is increasing in t , pathwise left limits and right continuity follow from

the monotone convergence theorem applied to the preceding decomposition.
Since [Zu, Z v]t is bounded in L1, uniformly in u, v, t , and uniformly integrable in t , it

ollows as in the proof of (3.2) that

At− =

∫ T

0

∫ T

0
[Zu, Z v]t− du dv

o that

∆At =

∫ T

0

∫ T

0
∆[Zu, Z v]t du dv =

∫ T

0
∆Zu

t du
∫ T

0
∆Z v

t dv =
(
∆MT

t

)2
.

To show the martingale part of the characterization, recall that an adapted càdlàg process Y is
a uniformly integrable martingale if for all stopping times τ , E |Y |τ < ∞ and EYτ = 0. Now,
for any stopping time τ , by our preliminary estimates above we get the integrability so that we
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can use Fubini’s theorem and optional stopping to obtain

E
[(

MT
τ

)2
− Aτ

]
=

∫ T

0

∫ T

0
E
(
Zu

τ Z v
τ − [Zu, Z v]τ

)
du dv = 0

hich finishes the proof that [MT ]t = At .
It remains to identify ⟨MT

⟩ as the compensator of [MT ], i.e. the unique finite variation
redictable process Ã such that A − Ã is a local martingale. Let

Ãt =

∫ T

0

∫ T

0
⟨Zu, Z v

⟩t du dv.

hen Ã is predictable since measurability is preserved by sums and limits, and thus by integrals.
sing polarization, we see that Ã is the difference between two increasing processes and

herefore of finite variation. Finally, for all stopping times τ , we again get from our preliminary
estimates that E|Aτ − Ãτ | < ∞ and by optional stopping

E[Aτ − Ãτ ] =

∫ T

0

∫ T

0
E
(
[Zu, Z v]τ − ⟨Zu, Z v

⟩τ

)
du dv = 0

hich shows that A − Ã is a martingale and thereby concludes the proof of the theorem. □

roposition 3.2. If there exist real-valued processes σt , Jt and a constant κ ≥ 0 such that for
ll 0 ≤ t ≤ u ≤ T

d⟨Zu
⟩t ≤ σ 2

t e−2κ(u−t)dt,

|∆Zu
t | ≤ |∆Jt |e−κ(u−t)

hen

⟨MT
⟩t ≤

∫ t

0

σ 2
s

κ2

(
1 − e−κ(T −s))2

ds,

|∆MT
t | ≤

|∆Jt |

κ

(
1 − e−κ(T −t))

here the case κ = 0 is to be understood in the sense of the limit as κ → 0.

roof. The second inequality is immediate from Theorem 3.1 and the observation that
Zu

t = 0 for t > u. We now proceed to prove the first one. For t ≤ u ∧ v we have

⟨Zu
⟩t d⟨Z v

⟩t ≤ e−2κu
∫ t

0
σ 2

s e2κsds e−2κvσ 2
t e2κt

=
1
2

d
(∫ t

0
σ 2

s e−κ(u−s)e−κ(v−s)ds
)2

which is symmetric in u and v. Using Cauchy–Schwarz for the predictable quadratic variation,
the fact that Zu

t is constant for t ≥ u and integration by parts together with the previous
inequality we get

⟨Zu, Z v
⟩t ≤ (⟨Zu

⟩⟨Z v
⟩)1/2

t∧u∧v =

(∫ t∧u∧v

0
⟨Zu

⟩sd⟨Z v
⟩s +

∫ t∧u∧v

0
⟨Z v

⟩sd⟨Zu
⟩s

)1/2

≤

∫ t

1{s≤u∧v}σ
2
s e−κ(u−s)e−κ(v−s)ds.
0
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Therefore by Fubini, for any 0 ≤ t ≤ T

⟨MT
⟩t =

∫ T

0

∫ T

0
⟨Zu, Z v

⟩t dudv

≤

∫ T

0

∫ T

0

∫ t

0
1{s≤u∧v}σ

2
s e−κ(u−s)e−κ(v−s)ds du dv

=

∫ t

0
σ 2

s

(∫ T

s
e−κ(u−s)du

)2

ds.

which is the result. □

3.2. Martingales

Proposition 3.3. If X is a square integrable real-valued martingale then

d MT
t = (T − t) d X t

∆MT
t = (T − t)∆X t

d[MT ]t = (T − t)2 d[X ]t

d⟨MT
⟩t = (T − t)2 d⟨X⟩t

Proof. Since

Zu
t = EFt Xu = X t∧u

we have by (3.1)

MT
t =

∫ T

0
X t∧u du =

∫ t

0
Xu du + (T − t)X t .

Using integration by parts

d MT
t = X t dt + (−X t dt + (T − t) d X t ) = (T − t)d X t

nd the remaining equalities now follow directly from stochastic calculus. □

emark 3.4. From integration by parts (and similarly for ⟨MT
⟩)

[MT ]T = 2
∫ T

0
(T − t)[X ]t dt.

From the fact that the Doléans–Dade exponential is a positive local martingale and therefore
supermartingale we immediately get the following corollary.

orollary 3.5. If the martingale X is continuous and X0 = x ∈ R then for all λ ∈ C and
T > 0

E exp
(

λ(ST − EST ) − λ2
∫ T

0
(T − u)2 d⟨X⟩u

)
≤ 1.

emark 3.6 (Central Limit Theorem). From the Doléans–Dade exponential it is also possible
o derive a central limit theorem for a suitably normalized family of random variables GT =

1√
∫ T

0 X t dt . A thorough investigation is beyond the scope of this work, but an outline

E[MT ]T
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of the argument goes as follows. Suppose that X is continuous. Denote E the Doléans–Dade
exponential and for two families of random variables XT , YT write XT

P
∼ YT if XT /YT → 1 in

probability as T → ∞. Now suppose that [MT ]T
P
∼ E[MT ]T , which can for example follow

from an ergodic theorem since [MT ]T is usually an additive functional itself. Then for λ ∈ R
e have for the characteristic function of GT that

eiλGT = exp

(
iλ

MT
T√

E[MT ]T

+
λ2

2E[MT ]T
[MT ]T −

λ2

2E[MT ]T
[MT ]T

)

= E
(

iλMT
T√

E[MT ]T

)
exp

(
−

λ2[MT ]T

2E[MT ]T

)
P
∼ E

(
iλMT

T√
E[MT ]T

)
e−

λ2
2 .

ow if the Doléans–Dade exponential (which can be negative since we have complex exponent)

s a true martingale and the family E
(

iλMT
T√

E[MT ]T

)
is uniformly integrable then for all λ ∈ R

lim
T →∞

EeiλGT = lim
T →∞

E E
(

iλMT
T√

E[MT ]T

)
e−

λ2
2 = e−

λ2
2

so that GT converges in distribution to a standard normal random variable.

3.3. Markov processes

Consider a continuous-time Markov process (Yt )t≥0 with natural filtration (Ft )t≥0, taking
alues in a Polish space E and with trajectories that are right-continuous with left limits. Denote
B the set of Borel functions on R+

× E .
Fix a function f ∈ B such that supt E f (t, Yt )2 < ∞ so that we are in the setting

f Section 3.1 with X t = f (t, Yt ), ST =
∫ T

0 f (u, Xu)du and MT
t = EFt ST . Define the

two-parameter semigroup (Pt,u f )0≤t≤u on E by

Pt,u f (y) = E[ f (u, Yu)|Yt = y].

Suppose that there is a set D(Γ ) ⊂ B × B and a map Γ : D(Γ ) → B such that for each
f, g) ∈ D(Γ ) we have, setting Ft = f (t, Yt ), G t = g(t, Yt ), that

⟨F, G⟩t = 2
∫ t

0
Γ ( f, g)(s, Ys) ds, 0 ≤ t ≤ T . (3.6)

Usually, Γ corresponds to (an extension of) the squared field operator Γ ( f, g) =
1
2 (L f g −

f Lg − gL f ), see Remark 3.8.

Proposition 3.7. If (P·,u f, P·,v f )0≤u,v≤T ∈ D(Γ ) we have for 0 ≤ t ≤ T

d⟨MT
⟩t = 2

∫ T

t

∫ T

t
Γ (Pt,u f, Pt,v f )(t, Yt ) du dv dt, (3.7)

∆MT
t =

∫ T

t

(
Pt,u f (Yt ) − Pt,u f (Yt−)

)
du. (3.8)

roof. For all 0 ≤ t ≤ u ≤ T we have

Zu
= EFt f (u, Y ) = P f (Y ).
t u t,u t

117



B. Pepin Stochastic Processes and their Applications 135 (2021) 103–138

w

F

a

B

T
o

R
Γ

S

Since f can depend on u we can always consider f (u, y)− P0,u f (y) instead of f and therefore
ithout loss of generality suppose that Zu

0 = P0,u f (Y0) = 0. By (3.6) for 0 ≤ t ≤ u ∧ v ≤ T

d⟨Zu, Z v
⟩t = 2Γ (Pt,u f, Pt,v f )(t, Yt )dt, 0 ≤ t ≤ u ∧ v ≤ T .

or t ≥ v ∧ u either Zu
t or Z v

t is constant so that

d⟨Zu, Z v
⟩t = 0, u ∧ v ≤ t ≤ T,

nd thus

⟨Zu, Z v
⟩t =

∫ t

0
1{s≤u∧v}2Γ (Ps,u f, Ps,v f )(s, Ys)ds.

y (3.4) and Fubini’s theorem

⟨MT
⟩t =

∫ T

0

∫ T

0

∫ t

0
1{s≤u∧v}2Γ (Ps,u f, Ps,v f )(s, Ys) ds du dv

=

∫ t

0

∫ T

s

∫ T

s
2Γ (Ps,u f, Ps,v f )(s, Ys) du dv ds.

his proves the first equality (3.7). Equality (3.8) follows directly from (3.2) together with the
bservation that Zu

t is constant for t ≥ u and the fact that Pt,u f is continuous in t . □

emark 3.8. When Y is a Markov process with infinitesimal generator (L ,D(L) ⊂ B) then
in (3.7) corresponds to the usual squared field operator whenever the latter is well-defined,

Γ ( f, g) =
1
2

(L f g − f Lg − gL f ), f ∈ D(L), g ∈ D(L), f g ∈ D(L).

Indeed, suppose that for f ∈ D(L)

f (t, Yt ) − f (0, Y0) −

∫ t

0
(∂s f + L f (s, ·))(s, Ys) ds (3.9)

is a local martingale. As before we can assume P0,u f (Y0) = 0. Now if Pt,u f , Pt,v f and their
product Pt,u f Pt,v f is in D(L) then

Pt,u f (Yt )Pt,v f (Yt ) −

∫ t

0
(∂s(Ps,u f Ps,v f ) + L(Ps,u f Ps,v f ))(s, Ys) ds (3.10)

is a local martingale. Since we assumed Pt,u f to be in D(L) it solves the Kolmogorov backward
equation

∂t Pt,u f (y) = −L Pt,u(t, y), y ∈ E, 0 ≤ t ≤ u

and the same holds true for Pt,v f . Thus

∂t (Pt,u f Pt,v f ) = Pt,u f ∂t Pt,v f + Pt,v f ∂t Pt,u f = −Pt,u f L Pt,v f − Pt,v f L Pt,u f.

ubstituting this into the integral in (3.10) shows that indeed

Pt,u f (Yt )Pt,v f (Yt ) − 2
∫ t

0

1
2

(L(Ps,u f Ps,v f ) − Ps,u f L Ps,v f − Ps,v f L Ps,u f )(s, Ys) ds

is a local martingale.
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Corollary 3.9. If Y has continuous trajectories and Y0 is constant then we have the following
nequality for all λ ∈ C and T > 0 fixed:

E exp
[
λ (ST f − EST f ) − λ2

∫ T

0

∫ T

t

∫ T

t
Γ (Pt,u f, Pt,v f )(t, Yt ) du dv dt

]
≤ 1.

roof. This follows directly from the Chernoff bound and the fact that the Doléans–Dade
xponential is a supermartingale. □

emark 3.10 (Central Limit Theorem). The considerations in Remark 3.6 for deriving a central
imit theorem for additive functionals of martingales apply to continuous Markov processes as
ell.

.4. Martingale inequalities

Let

ST =

∫ T

0
Xu du

or some square integrable càdlàg process X and MT
t = EFt ST as in the previous sections.

ur key observation is that ST − EF0 ST = MT
T − MT

0 . Concentration inequalities for ST then
ollow from concentration inequalities for martingales. The goal of this section is to show how
o pass from EF0 ST to EST and to recall some concentration inequalities for martingales.

For a real-valued random variable Y , denote ΨY (λ) the logarithm of the moment-generating
unction of Y and Ψ ∗

Y (x) its associated Cramér transform:

ΨY (λ) = logEeλY , λ ∈ R,

Ψ ∗

Y (x) = sup
λ∈R

(λx − ΨY (λ)), x ∈ R.

Denote Λ(λ) the logarithm of the moment-generating function of the centered random
ariable EF0 ST − EST and I its domain:

Λ(λ) = ΨEF0 ST −EST
= logE

[
exp λ

(
EF0 ST − EST

)]
,

I = {λ ∈ R : Λ(λ) < ∞}.

n particular if X0 = x ∈ R is a deterministic constant then EF0 ST = EST and Λ(λ) = 0.
Following [14], define

ϕ(x) = ex
− 1 − x,

ϕa(x) = ϕ(ax)/a2, a ≥ 0,

H a
t =

∑
s≤t

(∆MT
s )21

{|∆MT
s |>a}

+ ⟨MT
⟩t , a, t ≥ 0

where for a = 0 we set ϕ0(x) = x2/2 and we have H 0
t =

∑
s≤t

(
∆MT

s

)2
+ ⟨MT

⟩t .
The next lemma allows us to extend our framework from processes with initial measures

concentrated on a single point to more general classes of initial measures when we can control
Λ.
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Lemma 3.11. For a ≥ 0, λ ∈ I

E exp
(
λ(ST − EST ) − ϕa(|λ|)H a

T − Λ(λ)
)

≤ 1.

Proof. In [14] Corollary 3.1 it is shown that for any square integrable martingale M and for
all a ≥ 0, λ ≥ 0 the process

exp
(
λMt − ϕa(|λ|)H a

t

)
is a supermartingale. Applying this to MT and −MT together with the supermartingale property
yields that for a ≥ 0, λ ∈ R

EF0 exp
(

λ(MT
t − MT

0 ) − ϕa(|λ|)H a
t

)
≤ 1.

By definition we have furthermore that for λ ∈ I

E exp(λ(MT
0 − EMT

0 )) = expΛ(λ).

Therefore for λ ∈ I and all t ∈ [0, T ]

E exp
(
λ(MT

t − EMT
t ) − ϕa(|λ|)H a

t − Λ(λ)
)

= E
{
EF0

[
exp

(
λ(MT

t − MT
0 ) − ϕa(|λ|)H a

t

)]
exp

(
λ(MT

0 − EMT
0 ) − Λ(λ)

)}
≤ E exp

(
λ(MT

0 − EMT
0 ) − Λ(λ)

)
= 1.

We conclude by taking the inequality at t = T and noting that MT
T = ST ,EMT

T = EST . □

In the previous sections, we saw how to estimate the quantities ∆MT and ⟨MT
⟩, and thus

H a , for different classes of processes X . We will now recall some martingale inequalities
involving H a , which then lead directly to inequalities for ST − EST .

From Markov’s inequality applied to eλY we immediately get Chernoff’s inequality

P{Y ≥ x} ≤ exp(−Ψ ∗

Y (x)).

By combining this with Lemma 3.11 and bounds on Λ we can immediately deduce the
following Hoeffding, Bennett and Bernstein-type inequalities. The approach is classical and
we follow [4].

Corollary 3.12. If Λ(λ) ≤
λ2

2 ρ2 for some ρ ≥ 0 then

P
(
ST − EST ≥ R ; H 0

T ≤ σ 2)
≤ exp

(
−

R2

2(ρ2 + σ 2)

)
.

roof. On the set {H 0
T ≤ σ 2

}, using ϕ0(λ) =
λ2

2 , ΨST −EST is upper bounded by the
logarithmic MGF of a centered Gaussian random variable with variance ρ2

+σ 2: ΨST −EST (λ) ≤

(ρ2
+σ 2)λ2

2 . This implies that Ψ ∗

ST −EST
is lower bounded by the corresponding Cramér transform,

∗

ST −EST
(x) ≥

x2

2(ρ2+σ 2)
, and the result follows immediately from Chernoff’s inequality. □

orollary 3.13. If Λ(λ) ≤ νϕa(λ) for some a, ν ≥ 0 then

P
(
ST − EST ≥ R ; H a

T ≤ µ
)

≤ exp
(

−
µ + ν

2 h
(

a R
))
a µ + ν
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with

h(x) = (1 + x) log(1 + x) − x, x ≥ −1.

roof. On the set {H a
T ≤ µ}, ΨST −EST (·/a) is upper bounded by the logarithmic MGF of a

centered Poisson random variable with parameter µ+ν

a2 : ΨST −EST (λ/a) ≤
(µ+ν)ϕ(λ)

a2 . This implies
hat

Ψ ∗

ST −EST
(ax) = sup

λ≥0
(λax − ΨST −EST (λ)) = sup

λ≥0
(λx − ΨST −EST (λ/a))

s lower bounded by the corresponding Cramér transform, Ψ ∗

ST −EST
(ax) ≥

µ+ν

a2 h
(

a2x
µ+ν

)
, and

he result follows from Chernoff’s inequality after rescaling by a. □

orollary 3.14. If Λ(λ) ≤
λ2ν

2(1−bλ) for some b, ν ≥ 0 and all λ < 1/b then

P
(
ST − EST ≥ R ; H 0

T ≤ µ
)

≤ exp
(

−
µ + ν

b2 h1

(
bR

µ + ν

))
with

h1(x) = 1 + x −
√

1 + 2x .

Proof. On the set {H 0
T ≤ µ} using ϕ0(λ) =

λ2

2 ≤
λ2

2(1−λb) , ΨST −EST is upper bounded by the
(rescaled) logarithmic MGF of a sub-Gamma random variable (using the terminology of [4])
with parameter (µ+ ν, b): ΨST −EST (λ) ≤

(µ+ν)λ2

2(1−bλ) . This implies that Ψ ∗

ST −EST
is lower bounded

y the corresponding Cramér transform, Ψ ∗

ST −EST
(x) ≥

µ+ν

b2 h1

(
bx

µ+ν

)
, and the result follows

s before from Chernoff’s inequality. □

Going beyond the Chernoff inequality, we have for example the following result which
ollows directly from Lemma 3.11 and an inequality on self-normalized processes in [32]
heorem 2.1.

orollary 3.15. If Λ(λ) ≤
λ2

2 ρ2 for some ρ ≥ 0 and all λ ∈ R then

P

⎛⎝ |ST − EST |√
3
2 (H 0

T + EH 0
T + 2ρ2)

≥ R

⎞⎠ ≤ min{21/3, (2/3)2/3 R−2/3
} exp

(
−

R2

2

)
.

roof. By Theorem 2.1 in [32], for a pair of random variables (A, B) with B > 0 satisfying

E
[

exp
(

λA −
λ2

2
B2
)]

≤ 1, λ ∈ R

nd EB2
= EA2 < ∞ we have

P

⎛⎝ |A|√
3
2 (B2 + E[A2])

≥ R

⎞⎠ ≤ min{21/3, (2/3)2/3 R−2/3
}e−R2/2. (3.11)

he corollary is now a direct consequence of Lemma 3.11 (with a = 0). □
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Corollary 3.16. If Λ(λ) ≤
λ2

2 ρ2 for some ρ ≥ 0 and all λ ∈ R then

P
(
|ST − EST | ≥ R ; H 0

T + EH 0
T + 2ρ2

≤ C |ST − EST | + D
)

≤ 21/3
(

1 ∧
C R + D

3R2

)1/3

exp
(

−
R2

3(C R + D)

)
, C, D ≥ 0.

Proof. On the set {|ST − EST | ≥ R} we have by monotonicity of x ↦→
x

1+x that

|ST − EST |√
3
2 (C |ST − EST | + D)

≥
R√

3
2 (C R + D)

and on {H 0
T + EH 0

T + 2ρ2
≤ C |ST − EST | + D} we have

|ST − EST |√
3
2 (H 0

T + EH 0
T + 2ρ2)

≥
|ST − EST |√

3
2 (C |ST − EST | + D)

.

Together with the previous corollary we get the result

P
(
|ST − EST | ≥ R ; H 0

T + EH 0
T + 2ρ2

≤ C |ST − EST | + D
)

≤ P

⎛⎝ |ST − EST |√
3
2 (H 0

T + EH 0
T + 2ρ2)

≥
R√

3
2 (C R + D)

⎞⎠
≤ 21/3

(
1 ∧

C R + D
3R2

)1/3

exp
(

−
R2

3(C R + D)

)
. □

Corollary 3.17. If Λ(λ) ≤
λ2

2 ρ2 for some ρ ≥ 0 and all λ ∈ R then

P
(
|ST − EST | ≥ R ; H 0

T ≤ C |ST | + D
)

≤ 21/3
(

1 ∧
C R + D′

3R2

)1/3

exp
(

−
R2

3(C R + D′)

)
, C, D ≥ 0

with D′
= D + C |EST | + EH 0

T + 2ρ2

roof. On the set {H 0
T ≤ C |ST | + D} we have

H 0
T ≤ C(|ST | − |EST |) + C |EST | + D ≤ C |ST − EST | + C |EST | + D

o that

H 0
T + EH 0

T + 2ρ2
≤ C |ST − EST | + D + C |EST | + EH 0

T + 2ρ2

nd the result follows directly from the previous Corollary. □

. Applications

.1. Polyak–Ruppert averages

In this section, we use the notation ∆X t = X t − X t−1 for a discrete-time process X . The
ymbols t, s, u, T will always denote time variables taking values in Z+.

Consider the real-valued process X defined by the recursion

X = X − α g(X , W ), X = x (4.1)
t t−1 t t−1 t 0
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with x ∈ R, (αt )t∈N a sequence in R, Wt a sequence of independent identically distributed
random variables with common law µ such that µ has compact support, and g : R × R → R
s a function such that

0 < m(w) ≤ ∂x g(x, w) ≤ M(w) < ∞, x, w ∈ R (4.2)

or some functions m : R → R and M : R → R.
The recursion (4.1) is an instance of the Robbins–Monroe algorithm for finding a root of

he function ḡ(x) =
∫

g(x, w)µ(dw). In our case, the assumption (4.2) implies that ḡ is the
erivative of some strongly convex function and that ḡ is Lipschitz continuous with Lipschitz
onstant M̄ =

∫
M(w)µ(dw). We also denote m̄ =

∫
m(w)µ(dw).

Under certain assumptions on g and the sequence of step sizes αt , it can be shown that
X t converges almost surely to a limit x∗ such that ḡ(x∗) = 0 [24,34]. It was later shown that
he convergence rate of the algorithm could be improved by considering the Polyak–Ruppert
verages 1

T

∑T −1
t=0 X t [33].

Using the approach developed in Section 2.3 we now show how to obtain concentration
inequalities for the Polyak–Ruppert averages around their expected value in the sense that
if αt = λt−p for λ sufficiently small and p < 1/2 then (see Corollary 4.4 for the precise
statement)

P

(
1
T

T −1∑
t=0

X t − E

[
1
T

T −1∑
t=0

X t

]
≥ R ; sup

t≤T
sup
w

|g(X t , w)| ≤ G

)

≤ exp
(

−
(1 − 2p) m̄2 R2 T

32 G2

)
.

n particular, the order in T , the dependence of the numerator on ∂x g and of the denominator
on g match the central limit theorem in [18]. By [24] we also have under some additional
conditions that for t ≥ 1, E |X t − x∗| ≤ Ct−p/2 for some constant C , so that

E

[
1
T

T −1∑
t=0

X t

]
− x∗

≤
X0 − x∗

T
+

C
T

T −1∑
t=1

t−p/2
≤

X0 − x∗

T
+

C
T

(T − 1)1−p/2

1 − p/2

≤
X0 − x∗

T
+

2C
T p/2

nd E
[

1
T

∑T −1
t=0 X t

]
→ x∗ as T → ∞.

Lemma 4.1. Let g∗(x) = supw∈supp(µ) g(x, w) and set Ct = |αt g∗(X t−1)|. The process Ct

efines a sequence of Ft−1-measurable bounded random variables such that |∆X t | ≤ Ct .

roof. The Ft−1-measurability is clear, as is the inequality |∆X t | = |αt g(X t−1, Wt )| ≤

αt g∗(X t−1)|. Since g is continuous, in order to show that g∗(X t−1) is bounded it is sufficient
o show that X t−1 is bounded. This follows from a simple induction. Indeed, for an arbitrary
> 0, suppose that |Xs | ≤ Rs < ∞ and let Rs+1 = Rs + αs+1 sup|x |≤Rs g∗(x). Then |Xs+1| ≤

Rs + αs+1|g(Xs, Ws+1)| ≤ Rs + αs+1 sup|x |≤Rs g∗(x) = Rs+1 < ∞. Since R0 = |x | < ∞ the
onclusion follows by induction. □
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Lemma 4.2. For any Lipschitz function f with Lipschitz constant ∥ f ∥Lip and x, y ∈ R,
0 ≤ s ≤ t we have⏐⏐Ps,t f (x) − Ps,t f (y)

⏐⏐ ≤ ∥ f ∥Lip |x − y|

t∏
u=s+1

√
1 − 2αum̄ + α2

u M̄

roof. Let X x
t , X y

t be the values at time t of the recursion (4.1) started from Xs = x
espectively Xs = y. Then by definition Ps,t f (x) = E f (X x

t ) so that⏐⏐Ps,t f (x) − Ps,t f (y)
⏐⏐ =

⏐⏐E ( f (X x
t ) − f (X y

t )
)⏐⏐ ≤ ∥ f ∥Lip

√
E
(
X x

t − X y
t
)2

.

ow from summation by parts and the bounds on ∂x g that we assumed we get

∆(X x
− X y)2

t = 2(X x
t−1 − X y

t−1)∆(X x
− X y)t +

[
∆(X x

− X y)t
]2

≤ −2 αt m(Wt )(X x
t−1 − X y

t−1)2
+ α2

t M(Wt )2(X x
t−1 − X y

t−1)2

= −(2 αt m(Wt ) − α2
t M(Wt )2)(X x

t−1 − X y
t−1)2

o that by developing the recursion we obtain

(X x
− X y)2

t ≤ (x − y)2
t∏

u=s+1

(
1 − (2 αu m(Wu) − α2

u M(Wu)2)
)

nd the result follows by taking expectation, using the fact that the Wt are i.i.d. Note that the
quare root is well-defined since 1 − (2 αu m̄ − α2

u M̄2) ≥ 1 − 2 αu M̄ + α2
u M̄2

= (1 − αu M̄)2
≥

. □

orollary 4.3. If α1 +αT ≤
2m̄
M̄2 and αt+1 ≤ αt for all t ≥ 1 then for any 1-Lipschitz function

f ⏐⏐Ps,t f (x) − Ps,t f (y)
⏐⏐ ≤ |x − y|

(
1 − αT m̄ +

1
2α2

T M̄2)t−s

Proof. Let βt =

√
1 − 2αt m̄ + α2

t M̄2. Since β2
u − β2

T = (αu − αT )((αu + αT )M̄2
− 2m̄), the

ssumptions on α imply that βu ≤ βT for all 1 ≤ u ≤ T so that
t∏

u=s+1

βu ≤ β t−s
T .

Since
√

1 − x ≤ 1 − x/2 we also have

βT ≤ 1 − αT m̄ +
1
2α2

T M̄2.

ogether with the preceding Lemma we finally obtain⏐⏐Ps,t f (x) − Ps,t f (y)
⏐⏐ ≤ ∥ f ∥Lip |x − y|

t∏
u=s+1

βu

≤ |x − y|
(
1 − αT m̄ +

1
2α2

T M̄2)t−s
. □

orollary 4.4. For any T ∈ N fixed, if αt = λt−p for p < 1/2 and λ such that

λ ≤
2m̄ T p
M̄2 1 + T p
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we have

P

(
1
T

T −1∑
t=0

X t − E

[
1
T

T −1∑
t=0

X t

]
≥ R ; sup

t≤T
sup
w

|g(X t , w)| ≤ G

)

≤ exp
(

−
(1 − 2p) m̄2 R2 T

32 G2

)
.

roof. We are in the situation of Proposition 2.12 with σ 2
t = 1, Ct = λt−pg∗(X t ) from

emma 4.1 and κt = κT = λT −p(m̄ −
1
2λT −p M̄2) from Corollary 4.3. We also have by

Lemma 4.1 that for all t ∈ N

E|X t | ≤ t max
u≤t

E|∆Xu | ≤ t max
u≤t

E|Cu | < ∞.

n the set {supt≤T |g∗(X t )| ≤ G} we have C2
t ≤ λ2G2t−2p and

T∑
t=1

σ 2
t C2

t

κ2
t

≤
λ2G2

κ2
T

T∑
t=1

t−2p
≤

λ2G2

κ2
T

∫ T

0
t−2pdt =

λ2G2T 1−2p

(1 − 2p)κ2
T

≤
4G2T

(1 − 2p)m̄2

where the last inequality follows from the assumption that λ ≤
2m̄
M̄2

T p

1+T p ≤
m̄

M̄2 T p so that

κT = λT −p(m̄ −
1
2λT −p M̄2) ≥

1
2λT −pm̄.

t remains to apply Proposition 2.12:

P

(
T −1∑
t=0

X t − E
T −1∑
t=0

X t ≥ RT ; sup
t≤T

⏐⏐g∗(X t )
⏐⏐ ≤ G

)

≤ P

(
T −1∑
t=0

X t − E
T −1∑
t=0

X t ≥ RT ;

T∑
t=1

σ 2
t C2

t

κ2
t

≤
4G2T

(1 − 2p)m̄2

)

≤ exp
(

−
(1 − 2p) m̄2 R2 T

32 G2

)
. □

.2. Lipschitz observables and SDEs contractive at infinity

We use the notations ∥ f ∥Lip = supx ̸=y
| f (x)− f (y)|

|x−y|
for the Lipschitz seminorm,

W1(ν1, ν2) = sup
f :∥ f ∥Lip≤1

(∫
f dν1 −

∫
f dν2

)
or the L1 transportation distance, µPs,t =

∫
Ps,t (x, ·)µ(dx) and µ( f ) =

∫
f dµ for a function

f , measures µ, ν1, ν2 and a transition kernel Ps,t .
Consider the SDE

d X t = b(t, X t ) dt + d Bt , X0 ∼ ν

ith b : [0, ∞) × Rd
→ Rd a locally Lipschitz continuous function, B a d-dimensional

rownian motion and ν a probability measure on Rd .
We make the following additional assumption on “contractivity at infinity”: there exist

onstants D, K > 0 such that for all t ≥ 0 and x, y ∈ Rd with |x − y| > D we have

(x − y) · (b(t, x) − b(t, y)) ≤ −K |x − y|
2.
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In [15] it was shown (in the time-homogeneous setting, but the methods extend directly
o the time-inhomogeneous case [10]) that the assumption on b implies the exponential
ontractivity of the transition kernels Ps,t associated to X in L1 transportation distance: there
xist constants ρ, κ > 0 such that for any two probability measures ν1 and ν2 on Rd we have

W1(ν1 Ps,t , ν2 Ps,t ) ≤ ρe−κ(t−s) W1(ν1, ν2) (4.3)

r equivalently [27] for all Lipschitz functions f

∥∇ Ps,t f ∥∞ ≤ ρe−κ(t−s)
∥ f ∥Lip.

The key estimate (4.3), and the results of this section, hold in fact for a large class of SDEs
contractive at infinity”. The work [15] already includes the case of a diffusion coefficient
hich is not the identity as well as explicit values for the constants, see also [8]. The paper [38]

reats the case with a non-constant diffusion matrix and generalizes the results to Riemannian
anifolds. For the non-autonomous situation, in the general context of Riemannian manifolds
ith possibly time-dependent metric and with explicit constants, see [10]. Another approach,
hich provides exponential gradient estimates for SDEs with highly degenerate diffusion
atrices, can be found in [11].
We assume furthermore that ν satisfies a T1 inequality [40]: there exists a constant C such

that for any 1-Lipschitz function f and λ > 0, we have∫
eλ( f −

∫
f dν)dν ≤ e

λ2C
2 . (4.4)

ote that for ν = δx the T1 inequality holds with constant C = 0.
We are going to show that whenever (4.3) and (4.4) hold then for all Lipschitz functions f

nd R > 0

P
(

1
T

∫ T

0
f (X t ) dt − E

[
1
T

∫ T

0
f (X t ) dt

]
≥ R

)

≤ exp

⎛⎝−
κ2 R2T

2ρ2∥ f ∥
2
Lip

(
1 + C 1−e−κT

T

)
⎞⎠ .

In the time-homogeneous setting, X has a unique stationary measure µ and we have

P
(

1
T

∫ T

0
f (X t ) dt −

∫
f dµ ≥ R + ρ∥ f ∥Lip

1 − e−κT

κT
W1(µ, ν)

)

≤ exp

⎛⎝−
κ2 R2T

2ρ2∥ f ∥
2
Lip

(
1 + C 1−e−κT

T

)
⎞⎠ .

In the time-inhomogeneous setting, we have the existence of a unique evolution system of
easures µt [13] such that

P
(

1
T

∫ T

0
f (X t ) dt −

1
T

∫ T

0
µt ( f ) dt ≥ R + ρ∥ f ∥Lip

1 − e−κT

κT
W1(µ0, ν)

)

≤ exp

⎛⎝−
κ2 R2T

2ρ2∥ f ∥
2
Lip

(
1 + C 1−e−κT

T

)
⎞⎠ .
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Lemma 4.5. For any two continuously differentiable functions f, g on Rn

⟨ f (X ), g(X )⟩t =
1
2

∫ t

0
∇ f (Xs) · ∇g(Xs) ds.

Proof. By polarization it is sufficient to show that

⟨ f (X )⟩t =
1
2

∫ t

0
|∇ f (Xs)|2 ds.

For f twice continuously differentiable, the result follows directly from Itô’s formula. To
extend the result to general f by approximation, define the sequence of stopping times
τk = inf{t ≥ 0 : |X t | ≥ k}. For each k fixed, choose a sequence of smooth, compactly
supported functions fn such that fn → f and |∇ fn| → |∇ f | uniformly on {x : |x | ≤ k}. Then
fn(X t∧τk ) converges to f (X t∧τk ) uniformly on compacts in probability (u.c.p.), meaning that
supt∈[0,T ]| f (X t∧τk ) − fn(X t∧τk )| → 0 in probability for any T ≥ 0. Indeed, supt | f (X t∧τk ) −

fn(X t∧τk )| ≤ sup|x |≤k | f (x)− fn(x)| → 0 as n → ∞. By continuity of the predictable quadratic
variation

⟨ fn(X )⟩t∧τk → ⟨ f (X )⟩t∧τk u.c.p.

n the other hand, by the uniform convergence of |∇ fn| to |∇ f | on {x : |x | ≤ k},

⟨ fn(X )⟩t∧τk =
1
2

∫ t∧τk

0
|∇ fn(Xs)|2 ds →

1
2

∫ t∧τk

0
|∇ f (Xs)|2 ds a.s.

o that

⟨ f (X )⟩t∧τk =
1
2

∫ t∧τk

0
|∇ f (Xs)|2 ds.

ow the result follows by letting k → ∞. □

Lemma 4.6. For a 1-Lipschitz function f , let MT
t = EFt

∫ T
0 f (Xs) ds. Then

⟨MT
⟩T ≤

ρ2T
κ2 .

Proof. From (4.3) it follows that Pt f is continuously differentiable and the Lipschitz
condition on f ensures that E f (X t )2 < ∞ for all t . By the preceding Lemma we can apply
Proposition 3.7 with Γ ( f, g) =

1
2∇ f · ∇g. Since by Cauchy–Schwarz 2Γ ( f, g) ≤ |∇ f ||∇g|

e get

d⟨MT
⟩t =

∫ T

t

∫ T

t
2Γ (Pt,u f, Pt,v f )(X t ) du dv

≤

(∫ T

t

⏐⏐∇ Pt,u f (X t )
⏐⏐ du

)2

dt ≤ ρ2
(∫ T −t

0
e−κu du

)2

dt ≤
ρ2

κ2 dt

and ⟨MT
⟩T ≤

ρ2T
κ2 . □

emma 4.7. For all 1-Lipschitz functions f we have

Λ(λ) ≤
λ2Cρ2 (1 − e−κT )2
2 κ
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where

Λ(λ) = logE eλ
(
EF0 ST −EST

)
.

nd

ST =

∫ T

0
f (X t )dt.

roof. We have by Theorem 3.1 and the Markov property

EF0 ST − EST =

∫ T

0
P0,t f (X0) dt − E

∫ T

0
P0,t f (X0) dt = F(X0) −

∫
Fdν

ith

F(x) =

∫ T

0
P0,t f (x) dt.

rom the triangle inequality for the Lipschitz seminorm and (4.3) we get

∥F∥Lip ≤

∫ T

0
∥P0,t f ∥Lip dt ≤

∫ T

0
ρe−κt dt = ρ

1 − e−κT

κ

nd the result follows directly from (4.4). □

roposition 4.8. For all Lipschitz functions f and R > 0 we have

P
(

1
T

∫ T

0
f (X t ) dt − E

[
1
T

∫ T

0
f (X t ) dt

]
≥ R

)

≤ exp

⎛⎝−
κ2 R2T

2ρ2∥ f ∥
2
Lip

(
1 + C 1−e−κT

T

)
⎞⎠ .

roof. The result follows directly from the preceding Lemmas and Corollary 3.12. Indeed,
noting that f/∥ f ∥Lip is 1-Lipschitz and that H 0

T = ⟨MT
⟩T ,

P
(

1
T

∫ T

0
f (X t ) dt − E

[
1
T

∫ T

0
f (X t ) dt

]
≥ R

)
= P

(∫ T

0
f (X t )/∥ f ∥Lip dt − E

∫ T

0
f (X t )/∥ f ∥Lip dt ≥ RT/∥ f ∥Lip ; H 0

T ≤
ρ2T
κ2

)

≤ exp

⎛⎝−
κ2 R2T

2ρ2∥ f ∥
2
Lip

(
1 + C 1−e−κT

T

)
⎞⎠ . □

emma 4.9. The process X admits an evolution system of measures µt such that for any
1-Lipschitz function f we have

E
[

1
T

∫ T

0
f (X t ) dt

]
−

1
T

∫ T

0
µt ( f ) dt ≤ ρ

1 − e−κT

κT
W1(ν, µ0).

n the time-homogeneous case µt = µ is the stationary measure associated to X.
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Proof. Existence and uniqueness of an evolutionary system of measures is a special case of
Theorem 3.5 in [10]. In the time-homogeneous case existence and uniqueness of a stationary
measure is also shown in [15] and is a direct consequence of (4.3).

Since from the definition of an evolutionary system of measures µt = µ0 P0,t we have
by (4.3)

E
[

1
T

∫ T

0
f (X t ) dt −

1
T

∫ T

0
µt ( f ) dt

]
=

1
T

∫ T

0

(
ν P0,t f − µ0 P0,t f

)
dt ≤

1
T

∫ T

0
W1(ν P0,t , µ0 P0,t ) dt

≤
1
T

∫ T

0
ρe−κt W1(ν, µ0) dt ≤ ρ

1 − e−κT

κT
W1(ν, µ0). □

roposition 4.10. For all Lipschitz functions f and R > 0 we have

P
(

1
T

∫ T

0
f (X t ) dt −

1
T

∫ T

0
µt ( f ) dt ≥ R + ρ∥ f ∥Lip

1 − e−κT

κT
W1(µ0, ν)

)

≤ exp

⎛⎝−
κ2 R2T

2ρ2∥ f ∥
2
Lip

(
1 + C 1−e−κT

T

)
⎞⎠ .

roof. By the preceding Lemma

P
(

1
T

∫ T

0
f (X t ) dt −

1
T

∫ T

0
µt ( f ) dt ≥ R + ρ∥ f ∥Lip

1 − e−CT

CT
W1(µ0, ν)

)
≤ P

(
1
T

∫ T

0
f (X t ) dt − E

[
1
T

∫ T

0
f (X t ) dt

]
≥ R

)
nd the result follows immediately from the preceding Proposition. □

.3. Martingale integrands

roposition 4.11. For a Brownian motion B we have for all R, T ≥ 0

P
(

1
T 2

∫ T

0
Bt dt ≥ R

)
≤ exp(−3R2T ).

roof. Let MT
t = EFt

∫ T
0 Bu du. Then by Proposition 3.3 we have

⟨MT
⟩T =

∫ T

0
(T − t)2 d⟨B⟩t =

∫ T

0
(T − t)2 dt =

T 3

3

and by Corollary 3.12 with H 0
T = ⟨MT

⟩T

P
(

1
T 2

∫ T

0
Bt dt ≥ R

)
= P

(∫ T

0
Bt dt ≥ RT 2

; H 0
T ≤

T 3

3

)
≤ exp(−3R2T ). □
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Proposition 4.12. For a Poisson process N we have for all R, T > 0

P
(

1
T 2

∫ T

0
Nt dt −

1
2

≥ R
)

≤ exp
(

−
T
3

h
(
3R
))

≤ exp
(

−
3R2T

2(1 + R)

)
ith

h(x) = (1 + x) log(1 + x) − x .

roof. Let X t = Nt − t and MT
t = EFt

∫ T
0 X t dt . We have by Proposition 3.3

∆MT
t = (T − t)∆X t ≤ T, 0 ≤ t ≤ T

nd

⟨MT
⟩T =

∫ T

0
(T − t)2 d⟨X⟩t =

∫ T

0
(T − t)2 dt =

T 3

3

o that

H T
T = ⟨MT

⟩T +

T∑
0

(∆MT
t )21{∆MT

t > T } = ⟨MT
⟩T =

T 3

3

nd by Corollary 3.13

P
(

1
T 2

∫ T

0
Nt dt −

1
2

≥ R
)

= P
(∫ T

0
X t dt ≥ RT 2

; H T
T ≤

T 3

3

)
≤ exp

(
−

T
3

h
(
3R
))

.

The second inequality in the result follows immediately from the elementary inequality h(x) ≥
x2

2(1+x/3) for x > 0. □

Proposition 4.13. For a Brownian motion B we have for all R, T ≥ 0

P
(⏐⏐⏐⏐ 1

T 2

∫ T

0
B2

t dt −
1
2

⏐⏐⏐⏐ ≥ R
)

≤ 21/3
(

1 ∧
4R + 3/4

3R2

)
exp

(
−

R2

3(4R + 3/4)

)
.

roof. Consider the local martingale X t = B2
t − t . We have using integration by parts that

X t = 2
∫ t

0
Bs d Bs

o that

⟨X⟩t = 4
∫ t

0
B2

s ds = 4
∫ t

0
(Xs + s) ds.

y (2.4) and Remark 3.4 we have

⟨MT
⟩T =

∫ T

0
(T − t)2 d⟨X⟩t = 4

∫ T

0
(T − t)2 (X t + t) dt

nd

E⟨MT
⟩T = 4

∫ T

(T − t)2 t dt.

0
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Finally

⟨MT
⟩T + E⟨MT

⟩T = 4
∫ T

0
(T − t)2 X t dt + 8

∫ T

0
(T − t)2 t dt

≤ 4T 2
∫ T

0
X t dt + (3/4)T 4

nd the result follows from Corollary 3.16 with C = 4T 2 and D = (3/4)T 4. □

.4. Squared Ornstein–Uhlenbeck process

Let X x be the Ornstein–Uhlenbeck process on Rd , solution to the SDE

d X x
t = −κ X x

t + d Bt , X x
0 = x

ith κ > 0 and Bt a d-dimensional Brownian motion.
In this section, we will derive concentration inequalities for additive functionals with the

quare of X x as integrand. This case is challenging since for φ(x) = |x |
2, ∇ Ptφ(x) cannot be

ounded uniformly in x . We will make use of the special properties of the Ornstein–Uhlenbeck
emigroup. In the next section we will extend the approach to a slightly more general situation,
hich however does not recover the bound developed in this section. The case of the squared
rnstein–Uhlenbeck process was previously studied in [28] (Example 4.2) and [19] (Example
.1) using analytic methods, which require the initial law of X to be absolutely continuous
ith respect to the stationary measure of X .

roposition 4.14. We have for all R, T > 0, x ∈ Rd

P
(⏐⏐⏐⏐ 1

T

∫ T

0
|X x

t |
2 dt − E

[
1
T

∫ T

0
|X x

t |
2 dt

]⏐⏐⏐⏐ ≥ R
)

≤ 21/3
(

1 ∧
R + D

3κ2 R2T

)1/3

exp
(

−
κ2 R2T

3(R + D)

)
with

D =
|x |

2

κT
+

d
κ

roof. We have component-wise (X x
t )i = xi e−κt

+
∫ t

0 e−κ(t−s) d Bi
s . Let φ(x) = |x |

2 and for
≥ 0 set Ptφ(x) = Eφ(X t ) = E|X t |

2. Then for |x | < 1/ε for some arbitrary ε > 0, we can
ifferentiate under the expectation

∂iEφ(X x
t ) = E∂iφ(X x

t ) = 2xi e−2κt , |x | < 1/ε

o that

∇ Ptφ(x) = 2xe−2κt , |x | ≤ 1/ε. (4.5)

y Lemma 4.5, for any two continuously differentiable f, g we have

⟨ f (X x ), g(X x )⟩t =
1
∫ t

∇ f (X x
s )∇g(X x

s ) ds

2 0
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so that by Proposition 3.7, on Aε := {sup0≤t≤T |X x
t | < 1/ε},

d⟨MT
⟩t =

∫ T

t

∫ T

t
(∇ Pu−tφ · ∇ Pv−tφ)(X x

t ) du dv dt

= 4|X x
t |

2
(∫ T −t

0
e−2κudu

)2

dt

=
(X x

t )2

κ2

(
1 − e−2κ(T −t))2

dt.

ntegrating, we get

⟨MT
⟩T =

1
κ2

∫ T

0
|X x

t |
2 (1 − e−2κ(T −t))2

dt ≤
1
κ2

∫ T

0
|X x

t |
2 dt

o that Corollary 3.17 applies with C =
1
κ2 and D = 0:

P
(⏐⏐⏐⏐∫ T

0
|X x

t |
2 dt − E

∫ T

0
|X x

t |
2 dt

⏐⏐⏐⏐ ≥ RT ; Aε

)
= P

(⏐⏐⏐⏐∫ T

0
|X x

t |
2 dt − E

∫ T

0
|X t |

2 dt
⏐⏐⏐⏐ ≥ RT ; H 0

T ≤
1
κ2

∫ T

0
|X x

t |
2 dt

)
≤ 21/3

(
1 ∧

R + D′

3κ2 R2T

)1/3

exp
(

−
κ2 R2T

3(R + D′)

)
with D′

= |EST |/T + (κ2/T )EH 0
T ≤ 2|EST |/T .

Since

E|X x
t |

2
= |x |

2e−2κt
+ d

1 − e−2κt

2κ

e have that

D′
≤

2
T

∫ T

0
E|X x

t |
2 dt ≤

|x |
2

κT
+

d
κ

.

e can lift the restriction to Aε by noting that by Markov’s inequality and Doob’s maximal
nequality

P(Ac
ε) = P(sup

t
|X x

t | > 1/ε) ≤ P( sup
0≤t≤T

eκt
|X x

t | > 1/ε) = P
(

sup
0≤t≤T

⏐⏐⏐⏐∫ t

0
eκsd Bs

⏐⏐⏐⏐ > 1/ε

)
≤ ε2E sup

0≤t≤T

⏐⏐⏐⏐∫ t

0
eκsd Bs

⏐⏐⏐⏐2 ≤ 4ε2 e2κT
− 1

κ

o that finally

P
(⏐⏐⏐⏐∫ T

0
|X x

t |
2 dt − E

∫ T

0
|X t |

2 dt
⏐⏐⏐⏐ ≥ RT

)
≤ P

(⏐⏐⏐⏐∫ T

0
|X x

t |
2 dt − E

∫ T

0
|X t |

2 dt
⏐⏐⏐⏐ ≥ RT ; Aε

)
+ P(Ac

ε)

≤ 21/3
(

1 ∧
R + D

3κ2 R2T

)1/3

exp
(

−
κ2 R2T

3(R + D)

)
+ O(ε2)
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t

with

D =
|x |

2

κT
+

d
κ

nd the result follows by letting ε → 0. □

emark 4.15. From the previous proposition, we also get that

lim
T →∞

T −1 logP
(

1
T

∫ T

0
|X x

t |
2

≥ R
)

≤ −I (R) (4.6)

ith

I (R) =
(d − 2κ R)2

12(R + d/(2κ))
.

ccording to large deviation estimates from [5], the optimal bound in the right-hand side of
4.6) is obtained by replacing I with the good rate function

J (R) =
(d − 2κ R)2

8R
.

racing back the computations, we see that the discrepancy between the denominators of I
nd J , namely the factor 12 instead of 8 and the extra term d/(2κ) for I , can be directly

attributed to the factor 2/3 and term E[A2] in the self-normalized martingale inequality (3.11).
This discrepancy is the same as the one observed between the sharp bound for normal random
variables and the self-normalized bound in [32], see also Remark 2.2 in that paper. This
suggests that the martingale MT belongs to a subclass of martingales for which the bound
in [32] can be sharpened.

4.5. Squared Lipschitz integrands

Let X be a Markov process with generator L , transition kernel Ps,t and squared field operator
Γ , i.e. Γ ( f ) =

1
2 (L f 2

− 2 f L f ).
We assume the following commutation property between the squared field operator and the

ransition kernel:

Γ (Ps,t f ) ≤ σ 2
(

Ps,t

√
Γ ( f )

)2
e−2κ(t−s)

or some σ, κ ≥ 0.
Using the inequalities on self-normalized martingales, we can derive a Bernstein-type

nequality for time averages of positive functions g2 such that Γ (g2) ≤ 2g2.

roposition 4.16. For all twice continuously differentiable g2 such that Γ (g2) ≤ 2g2 and
Lg2

≤ −2Cg2
+ D2 for some constants C ∈ R, D ≥ 0 we have for

ST =

∫ T

0
g2(X t ) dt

he following Bernstein-type inequality:

P (|ST − EST | ≥ RT )

≤ 21/3 exp

(
−

R2T
2
(

2 2 2
))
24σ Cκ (T )R + 2Cκ (T )E(ST /T ) + 2Dκ,C (T )

133



B. Pepin Stochastic Processes and their Applications 135 (2021) 103–138

a

N

s

w
C

R
a
d
p

with

Cκ (T ) =

∫ T

0
e−(κ+C)u du

Dκ,C (T ) = D
∫ T

0
e−κu

∫ u

0
e−C(u−v) dv du.

Proof. Since g2 is assumed twice continuously differentiable, we have ∂u Pt,u g2
= Pt,u Lg2

and we get from our assumption Lg2
≤ −2Cg2

+ D2 by Gronwall’s lemma that

Pt,u g2
≤ g2e−2C(u−t)

+ D2
∫ u

t
e−2C(u−v) dv.

Together with the assumption that Γ (g2) ≤ 2g2 we have

Pt,u(2Γ (g2)) ≤ 4Pt,u(g2) ≤ 4g2e−2C(u−t)
+ D2

∫ u

t
e−2C(u−v) dv

nd by applying the assumption on commutation of Γ and P

2Γ (Pt,u g2) ≤ σ 2(Pt,u

√
2Γ (g2))2e−2κ(u−t)

≤ σ 2 Pt,u(2Γ (g2))e−2κ(u−t)

≤ 4σ 2g2 e−2(κ+C)(u−t)
+ 4σ 2 D2 e−2κ(u−t)

∫ u

t
e−2C(u−v) dv.

ow from Proposition 3.7 we have for all T > 0

d⟨MT
⟩t =

∫ T

t

∫ T

t
2Γ (Pt,u g2, Pt,vg2)(X t ) dv du dt

≤

(∫ T

t

√
2Γ (Pt,u g2)(X t ) du

)2

dt

≤ 4σ 2
(√

g2(X t )
∫ T

t
e−(κ+C)(u−t) du + D

∫ T

t
e−κ(u−t)

∫ u

t
e−C(u−v) dv du

)2

dt

≤ 8σ 2 (C2
κ (T )g2(X t ) + D2

κ,C (T )
)

dt

o that

⟨MT
⟩T ≤ 8σ 2C2

κ (T )
∫ T

0
g2(X t ) dt + 8σ 2 D2

C,κ (T ) T

ith Cκ (T ), DC,κ (T ) as in the statement of the Proposition. The result now follows from
orollary 3.15. □

emark 4.17. If X is a diffusion in the sense that Γ (Φ( f1), f2) = Φ ′( f1)Γ ( f1, f2) for
ll continuously differentiable Φ and f1, f2 in the domain of Γ , then for all continuously
ifferentiable functions g such that 2Γ (g) ≤ 1, we have Γ (g2) = (2g)2Γ (g) ≤ 2g2. In
articular, if Γ (g) =

1
2∥∇g∥

2, then this holds when g is differentiable and 1-Lipschitz.

The preceding proposition applies in particular to the Ornstein–Uhlenbeck process on Rd

with g(x)2
= |x |

2. Indeed, for κ > 0, consider the d-dimensional Ornstein–Uhlenbeck process
with generator

L f (x) = −κx · ∇ f +
1
∆ f.
2
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By a direct calculation we have Lg2
= −2κg2

+ d. The corresponding squared field operator
s Γ ( f ) =

1
2 |∇ f |

2 so that Γ (g2) = 2g2. We also have

Γ (Ps,t f ) ≤

(
Ps,t (

√
Γ ( f ))

)2
e−2κ(t−s),

see for example [2]. From the expression for Lg2 we get furthermore ∂t P0,t g2
= P0,t Lg2

=

2κ P0,t g2
+ d so that for X0 = 0 we have Eg2(X t ) = P0,t g2(X0) = d/(2κ) (1 − e−2κt )

nd EST =
∫ T

0 Eg2(X t ) dt ≤ d/(2κ)T . In the notation of the preceding Proposition, we have
κ ≤ 1/(2κ), Dκ,C ≤ d/(κ2) so that

P
(⏐⏐⏐⏐ 1

T

∫ T

0
|X t |

2 dt − E
[

1
T

∫ T

0
|X t |

2 dt
]⏐⏐⏐⏐ ≥ R

)
≤ 21/3 exp

(
−

κ2 R2T
6
(
R + d/κ + 8d2/(κ2)

)) .

This bound is looser than the one obtained in Proposition 4.14 above, which relies on the
special property of the Ornstein–Uhlenbeck process (4.5) to obtain the tighter bound.

4.6. SDEs with degenerate diffusion matrix

For α, β > 0 let (X x,y, Y x,y)x,y∈R be the family of solutions to

d X x,y
t = −αX x,y

t dt + d Bt , X x,y
0 = x,

dY x,y
t = −βY x,y

t dt + X x,y
t dt, Y x,y

0 = y.

n other words, X x,y is an Ornstein–Uhlenbeck process and Y x,y
t can be written Y x,y

t =

y e−βt
+
∫ t

0 e−β(t−s) X x
s ds. The associated semigroup is Pt f (x, y) = E f (X x,y

t , Y x,y
t ) and the

squared field operator is

Γ ( f )(x, y) = |∂x f (x, y)|2.

In particular, since Y has differentiable trajectories, this example illustrates that our concentra-
tion inequalities do not rely on “roughness” of the trajectories.

Proposition 4.18. For all 1-Lipschitz functions f and R, T > 0

P
(

1
T

∫ T

0
f (Y x,y

t ) dt − E
[

1
T

∫ T

0
f (Y x,y

t ) dt
]

≥ R
)

≤ exp

(
−R2 T (α ∧ β)2

|α − β|
2

4
(
1 − e−(α∧β)T

)2 (1 − e−|α−β|T
)2

)
.

roof. We have by Itô’s formula that

eβt Y x,y
t = y +

∫ t

0
e(β−α)seαs X x,y

s ds

= y + x
∫ t

0
e(β−α)sds +

∫ t

0
e(β−α)s

(∫ s

0
eαr d Br

)
ds
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so that for all h, x, y ∈ R, by canceling terms that do not depend on x , integrating and
earranging,

Y x+h,y
− Y x,y

h
=

e−αt
− e−βt

β − α
=

e−(α∧β)t (1 − e−|α−β|t )
|α − β|

.

n particular, for a 1-Lipschitz function f (y), using the Lipschitz property and the bound from
bove√

Γ (Pt f )(x, y) = |∂x Pt f (x, y)| = lim
h→0

1
|h|

|E f (Y x+h,y
t ) − f (Y x,y

t )|

≤ lim
h→0

E
|Y x+h,y

t − Y x,y
t |

|h|

=
e−(α∧β)t (1 − e−|α−β|t )

|α − β|
.

y Proposition 3.7, time-homogeneity of Pt and the Cauchy–Schwartz inequality for Γ

⟨MT
⟩T =

∫ T

0

∫ T

t

∫ T

t
Γ (Pt,u f, Pt,v f )(X x,y

t , Y x,y
t ) du dv dt

≤ 2
∫ T

0

(∫ T −t

0

√
Γ (Pu f )(X x,y

t , Y x,y
t ) du

)2

dt.

e have from the bound on
√
Γ (Pt f )(x, y) derived above∫ T −t

0

√
Γ (Pu f )(X x,y

t , Y x,y
t )du ≤

∫ T

0
e−(α∧β)udu

(1 − e−|α−β|T )
|α − β|

≤

(
1 − e−(α∧β)T

)
(α ∧ β)

(
1 − e−|α−β|T

)
|α − β|

o that finally

⟨MT
⟩T ≤ 2T

(
1 − e−(α∧β)T

)2

(α ∧ β)2

(
1 − e−|α−β|T

)2

|α − β|2

nd the result follows. □
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