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Abstract

We introduce a new domain expert mixture001
(DEMIX) layer that enables conditioning a lan-002
guage model (LM) on the domain of the in-003
put text. A DEMIX layer is a collection of004
expert feedforward networks, each specialized005
to a domain, that makes the LM modular: ex-006
perts can be mixed, added, or removed after007
initial training. Extensive experiments with008
autoregressive transformer LMs (up to 1.3B009
parameters) show that DEMIX layers reduce010
perplexity, increase training efficiency, and en-011
able rapid adaptation. Mixing experts during012
inference, using a parameter-free weighted en-013
semble, enables better generalization to hetero-014
geneous or unseen domains. Adding experts015
incorporates new domains without forgetting016
older ones, and removing experts restricts ac-017
cess to unwanted domains without additional018
training. Overall, these results demonstrate019
benefits of explicitly conditioning on textual020
domains during language modeling.021

1 Introduction022

Conventional language model (LM) training algo-023

rithms assume data homogeneity: all parameters024

are updated to minimize the loss on all of the data.025

We refer to this approach as dense training. Dense026

training leaves variation in the data, or domains, to027

be implicitly discovered (Aharoni and Goldberg,028

2020), assuming that models will be able to fit all029

domains equally well.030

While dense training is convenient, and densely031

trained LMs achieve impressive results (Brown032

et al., 2020), the approach has drawbacks with re-033

spect to generalization, efficiency, and flexibility.034

Even if training data is sourced from many do-035

mains, dense training can in practice emphasize036

subsets of the data in proportion to their ease of037

access (Oren et al., 2019; Fan et al., 2020), limiting038

generalization to less prevalent domains. Updat-039

ing all parameters of the network gets substantially040

more expensive as model size grows (Strubell et al.,041
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Figure 1: Illustration of a DEMIX layer in a single
transformer block. During training, expert feedfor-
ward networks are conditionally activated based on the
domain (here, document provenance) of the input se-
quence (i.e., scientific papers or court opinions). At
inference time, the language model has new modular
functions: domain experts can be mixed to handle het-
erogeneous domains (e.g., COVID-19 papers), added
to adapt to novel domains (e.g., Github code), or re-
moved to reduce the influence of unwanted domains
(e.g., social media). Image attribution in §A.1.

2019), making fine-tuning or domain adaptation 042

hard to perform with smaller computational bud- 043

gets. It is also difficult to adapt to new domains 044

without forgetting the original data (McCloskey 045

and Cohen, 1989; Aghajanyan et al., 2021) or re- 046

strict access to certain domains the LM has been 047

exposed to during training (e.g., those that contain 048

hatespeech; Bender et al. 2021), leading to risks of 049

unwanted behavior (Gehman et al., 2020). 050

To address these limitations of dense training, we 051

argue that LMs should be designed with modularity. 052

We propose a modular LM that has components 053

specialized to distinct domains in the training data, 054
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and can be customized at inference-time by mixing,055

adding, or removing these separated components056

as needed. This design principle emphasizes the057

ability to rapidly adapt the LM after training, a058

need that has been broadly advocated for language059

systems (Dinan et al., 2021; Lazaridou et al., 2021).060

We introduce modularity into an LM with a new061

domain expert (DEMIX) layer that explicitly condi-062

tions the LM on the domain of the input text (when063

it is known), or estimates the input domain during064

inference (when it is not known). A DEMIX layer065

is a drop-in substitute for a feedforward layer in066

a transformer LM (e.g., GPT-3), creating a spe-067

cialized version of the layer (or expert) per domain068

(see Figure 1; §3).1069

We identify domains using coarse provenance070

categories (e.g., whether a document is a medi-071

cal research paper or a Reddit post; §2). Train-072

ing on data from eight different domains, we find073

that replacing every feedforward layer in the trans-074

former with a DEMIX layer consistently improves075

in-domain performance (§4). To improve perfor-076

mance in settings in which the target data does077

not clearly align with a single domain, we intro-078

duce a parameter-free probabilistic approach to dy-079

namically estimate a weighted mixture of domains080

during inference (§5). Mixing experts improves081

DEMIX performance not only on novel test-time082

domains, but also on test data from the training083

domains, which may themselves be heterogeneous.084

Our results suggest that introducing modularity into085

an LM need not come at a cost to generalization.086

Because DEMIX forces experts to specialize to087

domains, the overall model can be (partially) disen-088

tangled after training. Beyond mixing, we can add089

(§6) or remove (§7) domain experts, predictably090

changing model behavior at inference time. Adding091

experts allows for model adaptation without up-092

dating all parameters (hence avoiding forgetting),093

and removing experts allows for simulating the re-094

moval of training domains without additional train-095

ing. These results demonstrate benefits of moving096

away from treating data homogeneously during lan-097

guage modeling. Our code is publicly available.2098

1This is an example of conditional computation (Fedus
et al., 2021; Lepikhin et al., 2020; Lewis et al., 2021; Roller
et al., 2021), which follows prior literature on mixture of
experts (Jacobs et al., 1991; Shazeer et al., 2017). Unlike
dense training, conditional computation activates different
parameters for different inputs. Instead of learning how to
route data to experts, the DEMIX layer routing mechanism
follows from a natural, observable segmentation of the data.

2anonymous.com

Domain Corpus

T
R

A
IN

IN
G

1B (Chelba et al., 2014)
CS (Lo et al., 2020)
LEGAL (Caselaw Access Project)
MED (Lo et al., 2020)
WEBTEXT† (Gokaslan and Cohen, 2019)
REALNEWS† (Zellers et al., 2019)
REDDIT (Baumgartner et al., 2020)
REVIEWS† (Ni et al., 2019)

N
O

V
E

L

ACL PAPERS♦ (Dasigi et al., 2021)
BREAKING NEWS†♦ (Baly et al., 2018)
CONTRACTS†♦ (Hendrycks et al., 2021)
CORD-19 (Wang et al., 2020)
GITHUB (Github Archive Project)
GUTENBERG (Project Gutenberg)
TWEETS†♦ (Twitter Academic API)
YELP REVIEWS† (Yelp Reviews)

Table 1: Domains that make up our multi-domain train-
ing corpus. See §A.2 for specific token counts and
details on how these data were collected. † indicates
domains that we (partially) anonymize (§A.3). ♦ indi-
cates smaller domains for which we use 1M (instead of
10M) tokens for evaluation.

2 Multi-Domain Corpus 099

We center this study around a large multi-domain 100

corpus we constructed with document-level meta- 101

data that describe provenance, or the dataset used 102

to access each document (Table 1). Defining do- 103

mains in this way is intuitive and conveys a great 104

deal about the language variation in a document. 105

Other accounts of domains (e.g., Lucy and Bam- 106

man, 2021; Gururangan et al., 2020) may be studied 107

in future work. While other multi-domain corpora 108

(Koh et al., 2021; Gao et al., 2020) cover many 109

more domains and tasks, our corpus contains sub- 110

stantial metadata-tagged text for language model- 111

ing, and datasets with friendly licensing to support 112

reproducibility. 113

Our multi-domain corpus consists of two parts. 114

The first is a collection of training domains: text 115

from eight domains of largely English text (top of 116

Table 1), each of which varies in complexity and 117

coverage and has been the subject of study in NLP. 118

The training domains consist of 73.8B whitespace- 119

separated tokens in total (§A.2). 120

The second part is a collection of novel domains: 121

text from eight domains also of largely English text 122

(bottom of Table 1), which may or may not align 123

with the training domains. The novel domains al- 124

low us to measure how models generalize to a more 125

challenging data distribution shift, where domain 126

boundaries may be less clear. 127
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§A.2 has more details on how these data were128

collected, as well as per-domain token counts. For129

larger domains, we use an additional 10M tokens130

for the validation and test sets each. Smaller do-131

mains have 1M tokens in each (Table 1). To support132

future work with the data, we also release an API133

to download and preprocess it into a format com-134

patible with Fairseq (Ott et al., 2019).3135

3 DEMIX Layer136

3.1 Background: Mixture-of-Experts137

Transformers138

The transformer architecture is comprised of inter-139

leaved multi-head self-attention, layer-norms, and140

feedforward networks (Vaswani et al., 2017). Each141

of these layers produces a vector representation142

for each of the input tokens. Our focus is on the143

feedforward component:144

ht,` = FFN(ht,`−1), (1)145

where ht,` is the vector for the tth token produced146

by layer `.147

Shazeer et al. (2017) propose to replace dense148

feedforward layers with an ensemble of n experts149

FFN1, . . . ,FFNn, assigned weights respectively150

by functions g1, . . . , gn:151

FFN(ht,`−1) =

n∑
j=1

gj(ht,`−1) · FFNj(ht,`−1)

(2)

152

The g function routes tokens to different experts,153

usually each a separate dense feedforward network.154

If g routes to a single expert, then the computational155

cost (in floating-point operations; FLOPs) will be156

same as the original network, even though it has157

more than n times as many parameters.158

3.2 DEMIX Routing159

Previous approaches learn the weighting functions160

g at a token-level, and either assign at most one161

(Fedus et al., 2021) or two (Lepikhin et al., 2020)162

experts per token. This necessitates load balancing163

to encourage the model to use all experts instead164

of relying on just a few (Lewis et al., 2021).165

We instead use domain metadata provided with166

training documents to route data to experts at the167

document (i.e., sequence) level. During training,168

3anonymous.com

Parameters per GPU
125M 350M 760M 1.3B

D
E

N
SE

GPUs 32 64 128 128
Total Experts 0 0 0 0
GPUs/expert 0 0 0 0
Total params 125M 350M 760M 1.3B

TFLOPs/update 556 3279 13,637 23,250
TFLOPs/GPU 31 37 45 51

D
E

M
IX

GPUs 32 64 128 128
Total Experts 8 8 8 8
GPUs/expert 4 8 16 16
Total params 512M 1.8B 3.8B 7.0B

TFLOPs/update 556 3279 13,637 23,250
TFLOPs/GPU 31 37 48 55

Table 2: Our specifications for training DENSE and
DEMIX LMs. All models are trained for about 48
hours on V100 GPUs. DEMIX layers increase the total
parameters of the LM while maintaining (or increasing)
throughput, measured in TFLOPs/GPU. We use the for-
mula described in Narayanan et al. (2021) to calculate
these metrics. See §A.4 for more details.

every token in the same sequence is assigned to the 169

same expert based on the domain label. 170

Let D denote the set of domain labels (i.e., the 171

eight labels in Table 8). If we index the experts by 172

D and d ∈ D is the domain label for the current 173

training instance, then 174

gj(ht,`) =

{
1 if j = d
0 otherwise

(3) 175

While we assume that each training document is 176

associated with a single domain label, we relax this 177

requirement at inference time (§5), which improves 178

model performance in heterogeneous domains. 179

3.3 DEMIX Architecture 180

Our design results in one expert in a DEMIX layer 181

per domain (i.e., eight experts for eight training 182

domains in our multi-domain corpus). 183

We replace every feedforward layer in the trans- 184

former with a separate DEMIX layer, in contrast to 185

previous work (Fedus et al., 2021; Lepikhin et al., 186

2020) that interleaves shared and expert layers. 187

Preliminary experiments showed that interleaving 188

led to worse in-domain performance (see §A.5 for 189

more details). Future work may comprehensively 190

compare different architectural choices. 191

Each expert FFNj is a two-layer MLP with the 192

same dimensions as the original FFN layer of the 193

transformer. This means that the effective number 194

of parameters in the overall DEMIX LM increases 195

(Table 2), despite using the equivalent FLOP count 196

of a significantly smaller model. 197

3

anonymous.com


3.4 DEMIX Training198

To train an LM with DEMIX layers, we partition199

the GPUs among the domains, so that each GPU200

is assigned a single domain (along with its cor-201

responding expert). We fill a mini-batch with k202

sequences from a particular domain, and we send203

each mini-batch to its dedicated expert. We use204

larger batch sizes with distributed data parallel be-205

tween expert parameters on GPUs assigned to the206

same domain; we assign n/8 GPUs to each domain207

(Table 2). To reduce overfitting, we ensure that208

each of these n/8 GPUs is assigned to different209

shards of the training data for their domain.210

Compared to DENSE LMs, DEMIX layers211

achieve the same or slightly higher throughput212

(measured in TFLOPs/GPU) for the same total213

FLOPs per update, despite adding significantly214

more parameters (Table 2). DEMIX achieves215

higher throughput because we while we sync216

shared parameters across all GPUs, we only sync217

expert parameters allocated to the same domain.218

DENSE models sync all parameters across all GPUs.219

As we increase model size, this reduces latency220

costs between GPUs, and hence, faster training.221

4 In-Domain Performance222

Our first set of experiments considers the impact of223

replacing the feedforward layers in a transformer224

LM with DEMIX layers. We run all experiments225

in this section with the training domains (Table 1).226

4.1 Experimental Setup227

Architecture, Input and Hyperparameters228

The model architecture is a randomly-initialized229

LM with the GPT-3 (Brown et al., 2020) archi-230

tecture (i.e., small, medium, large, and XL) im-231

plemented in Fairseq (Ott et al., 2019). We use232

the GPT-2 (Radford et al., 2019) vocabulary of233

50,264 BPE types, and train with 1,024-token se-234

quences, across document boundaries. We prepend235

a beginning-of-sentence token to each document.236

See §A.6 for training hyperparameters.237

Evaluation We follow previous work by using238

runtime as our computational budget (Lewis et al.,239

2021). We report test perplexities after 48 hours240

of training on NVIDIA V100 32GB GPUs. We241

display the number of GPUs used for each model242

size in Table 2. For all experiments, we report each243

result with respect to parameters per GPU.244

Parameters per GPU
125M 350M 760M 1.3B

DENSE 20.6 16.5 14.5 13.8
DENSE (balanced) 19.9 15.8 14.3 13.6

+DOMAIN-TOKEN 19.2 15.9 14.3 13.4
DEMIX (naive) 18.4 15.5 14.2 13.8

DEMIX (cached; §5.4) 17.8 14.7 13.9 13.4

Table 3: Average in-domain test-set perplexity across
the 8 domains in the training data. We discuss the last
row in §5.4. See §A.7 for per-domain results.

4.2 Compared Models 245

DENSE The first baseline is a DENSE LM, im- 246

plemented with distributed data parallel (Li, 2021). 247

There is no explicit conditioning on domain. 248

DENSE (balanced) Under this setting, we train 249

densely but ensure that the model is exposed to an 250

equal amount of data from each domain. While 251

there is still no explicit conditioning on domain, 252

the gradient updates that the model makes during 253

training are an average of those computed across 254

all domains represented in a batch. 255

+DOMAIN-TOKEN This model is trained identi- 256

cally to DENSE (balanced), but we prepend a token 257

to every sequence indicating its domain (during 258

training and test time). We ignore the domain to- 259

ken when computing perplexity during evaluation. 260

DEMIX (naive) We replace every feedforward 261

layer in the transformer with a DEMIX layer, and 262

employ DEMIX training (§3). Under this naive set- 263

ting, the test data’s domain is known and revealed 264

(e.g., the CS expert is used for CS test data). We 265

relax this assumption in the next section. 266

4.3 Results 267

Table 3 shows test perplexities, averaged across the 268

eight training domains. First, we observe that do- 269

main balancing is consistently helpful for DENSE 270

training. Next, we observe that the benefits of ad- 271

ditional domain information (i.e, domain tokens or 272

DEMIX layers) are clearest for the smaller mod- 273

els; for larger models, the benefits are smaller but 274

consistent. These results suggest that domain in- 275

formation enables the model to better specialize to 276

different training domains. However, as the model 277

size grows, the DENSE baseline improves, catch- 278

ing up to the DEMIX (naive) model, at least when 279

considering the average perplexity across domains. 280
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1.3B parameters per GPU

Domain DENSE DEMIX DEMIX
(naive) (cached prior; §5.4)

1B 11.8 11.5 11.3
CS 13.5 12.2 12.1

LEGAL 6.8 6.7 6.7
MED 9.5 9.2 9.1

WEBTEXT 13.8 14.6 14.3
REALNEWS 12.5 13.3 13.1

REDDIT 28.4 30.6 28.1
REVIEWS 14.0 12.6 12.5

Average 13.8 13.8 13.4

Table 4: Test perplexity by domain for largest models.
We discuss the last column in §5.4.
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Figure 2: Heatmap of expert performance ratios, using
the largest DEMIX LM (1.3B parameters per GPU).
The diagonal indicates that expert specialization to
their own domain. While some experts (e.g., 1B, MED)
do not transfer well to most domains in the training cor-
pus, WEBTEXT and REALNEWS experts transfer much
better, confirming the heterogeneity of those domains.

4.4 Domain Hetereogeneity281

However, a more complete view of the experiments282

with the largest model is shown in Table 4. We see283

that even at scale, most training domains benefit284

from DEMIX layers in a naive setting (where the285

domain label is revealed at test time), but some do286

not; WEBTEXT, REALNEWS, and REDDIT fare287

worse than the DENSE baseline. We hypothesize288

that DENSE training is advantageous for hetere-289

ogenous domains. Heterogeneous domains have290

a higher overlap with other training domains, and291

therefore, benefit from parameter sharing.292

We support this explanation with a matrix of293

performance ratios across all domain experts (Fig-294

ure 2), comparing the performance of all experts295

against the expert explicitly trained for each do-296

main. We generally find that experts perform best297

on their assigned domain. However, the experts as-298

signed to domains that benefit from DENSE training299

perform relatively well on many training domains. 300

Expert affinity to a target domain correlates posi- 301

tively with the bigram overlap between the expert 302

and target domains (r=0.40, t=3.45, p=0.001). 303

These findings suggest that a discrete notion of 304

domain, while helpful on average, is too rigid. In 305

the next section, we mitigate this issue by softening 306

Equation 3 into a mixture of domain experts. 307

5 Mixing Experts at Inference Time 308

The previous section establishes that incorporating 309

DEMIX layers improves LM performance on test 310

data from known training domains. In practice, 311

however, text may not come with a domain label, 312

may straddle multiple domains, or may not belong 313

to any of the domains constructed at training time. 314

In these cases, rather than a hard choice among 315

experts (Equation 3), we propose to treat g1, . . . , gn 316

as mixture coefficients, transforming the domain 317

membership of an input text into a matter of proba- 318

bilistic belief. Unlike previously proposed mixture- 319

of-experts formulations (Shazeer et al., 2017; Lep- 320

ikhin et al., 2020), this approach is parameter-free 321

and computed only at test time. 322

5.1 Dynamically Estimating Domain 323

Membership 324

Consider the probabilistic view of language model- 325

ing, where we estimate p(xt | x<t). We introduce 326

a domain variable, Dt, alongside each word. We 327

assume that this hidden variable depends on the 328

history, x<t, so that: 329

p(xt | x<t)=

n∑
j=1

p(xt | x<t, Dt = j) · p(Dt = j | x<t)︸ ︷︷ ︸
gj

(4)

330

This model is reminiscent of class-based n-gram 331

LMs (Brown et al., 1992; Saul and Pereira, 1997). 332

We have already designed the DEMIX LM to 333

condition on a domain label, giving a form for 334

p(Xt | x<t, Dt = j). The modification is to treat 335

g1, . . . , gn as a posterior probability over domains, 336

calculated at each timestep, given the history so far. 337

To do this, we apply Bayes’ rule: 338

p(Dt = j | x<t)=
p(x<t | Dt = j) · p(Dt = j)

p(x<t)
(5) 339

=
p(x<t | Dt = j) · p(Dt = j)∑n

j′=1 p(x<t | Dt = j′) · p(Dt = j′)

(6)

340

The conditional probabilities of word sequences 341

given a domain label, as noted above, are already 342

5



1B C
S

Le
ga

l

M
ed

W
eb

te
xt

R
ea

ln
ew

s

R
ed

di
t

R
ev

ie
w

s

x< 102, 400

1B
CS

Legal
Med

Webtext
Realnews

Reddit
Reviews

D
10

2,
40

0
Training Domains

C
O

R
D

-1
9

G
ith

ub

G
ut

en
be

rg

B
re

ak
in

g 
N

ew
s

C
on

tra
ct

s

A
C

L

Tw
ee

ts

Y
el

p

x< 102, 400

1B
CS

Legal
Med

Webtext
Realnews

Reddit
Reviews

D
10

2,
40

0

Novel Domains

0.0

0.5

1.0

P(
D

t|x
<

t)

0.0

0.5

1.0

P(
D

t|x
<

t)

Figure 3: Estimates of posteriors p(Dt | x<t) with
a DEMIX LM (1.3B parameters per GPU), after 100
sequences (i.e., 102,400 tokens) of data in training (top
heatmap) and novel domains (bottom heatmap).

defined by the DEMIX LM. For the prior over343

domain labels, we consider three alternatives:344

Uniform Set a uniform prior across domains.345

Updating Set the prior at timestep t to be an346

exponentially-weighted moving average of the pos-347

teriors from previous timesteps:348

p(Dt = j) ∝
t−1∑
t′=1

λt−t′ · p(Dt′ = j | x<t′) (7)349

During evaluation, this moving average is calcu-350

lated over the posterior at the end of each sequence.351

The decay factor avoids putting too much weight352

on calculations made early in the dataset, when353

posterior calculations are noisier (§A.8). We per-354

formed a small grid search to set the value λ, and355

found that λ = 0.3 worked well.356

Cached We calculate the posterior over domain357

labels from additional data from the test distribu-358

tion, and fix the prior to that estimate. We use 100359

sequences from the validation set to estimate the360

prior, which we found to result in stable posterior361

probabilities. See §A.8 for more details, and Figure362

7 for an illustration of expert mixing.363

Parameters per GPU
125M 350M 760M 1.3B

DENSE 25.9 21.4 18.4 17.8
DENSE (balanced) 25.3 19.6 18.3 17.1

+DOMAIN-TOKEN 24.8 20.4 18.4 18.0

DEMIX (naive) 28.8 23.8 21.8 21.1
DEMIX (average) 27.2 22.4 21.5 20.1
DEMIX (uniform) 24.5 20.5 19.6 18.7

DEMIX (updating) 21.9 18.7 17.6 17.1
DEMIX (cached) 21.4 18.3 17.4 17.0

Table 5: Average perplexity on novel domains. Mix-
ing domain experts with a prior estimated using a small
amount of data in the target domain outperforms all
other baselines. See §A.7 for per-domain results.

5.2 Visualizing Domain Membership 364

In Figure 3, we plot domain posteriors calculated 365

using the largest DEMIX LM from §4 and the up- 366

dating prior, after 100 sequences of validation data. 367

For training domains, the associated domain label 368

has the highest probability, but some of the do- 369

mains are more hetereogeneous than we assumed. 370

More variation is observed for the novel domains. 371

5.3 Experimental Setup 372

Here, we experiment with the corpus of novel do- 373

mains (Table 1). We evaluate the three mixture 374

treatments of DEMIX layers (§5.1) against five 375

baselines. No new models are trained for this ex- 376

periment beyond those used in §4. 377

DENSE and DENSE (balanced) These are the 378

basic baselines from §4. 379

+DOMAIN-TOKEN Here test data is evaluated 380

using each domain label token, and we choose the 381

lowest among these perplexity values per test set. 382

DEMIX (naive) Similar to +DOMAIN-TOKEN, 383

we evaluate the data separately with each of the 384

eight experts, and report the lowest among these 385

perplexity values per test set. 386

DEMIX (average) At every timestep, we take a 387

simple average of the eight experts’ predictions. 388

5.4 Results 389

Novel Domain Performance Ensembling 390

DEMIX experts outperforms DENSE baselines 391

and using experts individually (i.e., the “naive” 392

baseline), and caching a prior before evaluation 393

results in the best average performance (Table 5). 394

Ensembling DEMIX experts with a cached prior 395

allows smaller models to match or outperform 396
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much larger DENSE models. Weighted ensembling397

outperforms simple averaging, confirming the398

importance of specificity in the expert mixture.399

These results demonstrate that modularity need not400

come at a cost to generalization to new domains.401

In-Domain Performance We can also apply the402

expert mixture variant of inference (using a cached403

prior) to the training domains; see the last line of404

Table 3. We see performance improvements across405

all training domains for every scale, though the406

largest gains come from hetereogeneous domains407

(Table 4 and §A.7; across all model sizes, RED-408

DIT improves on average 10.7%, WEBTEXT 2.4%,409

REALNEWS 1.9%), confirming that domain labels410

may not align with the most effective boundaries.411

6 Domain Adaptation with New Experts412

Domain-adaptive pretraining (DAPT)4 is an ef-413

fective method for adapting LMs to new domains414

(Gururangan et al., 2020). However, DAPT with415

DENSE training (DENSE-DAPT) can be expensive416

and susceptible to forgetting older domains.417

DEMIX layers allow for cheap adaptation with-418

out forgetting through a technique we call DEMIX-419

DAPT (see Figure 8 for an illustration). To adapt420

to a new domain, we initialize a new expert in each421

DEMIX layer using the parameters of the nearest422

pretrained expert, which we identify using the pos-423

terior calculations from §5 on a held-out sample.424

We then train the added expert on target data, updat-425

ing only the new expert parameters. For inference,426

we mix experts with a cached prior (§5).427

6.1 Experimental Setup428

We compare DEMIX-DAPT to DENSE-DAPT on429

the novel domains. We report test perplexity after430

adapting to each domain for 1 hour with 8 NVIDIA431

V100 32GB GPUs, tracking validation perplexity432

every 10 minutes for early stopping. We adapt to433

each novel domain with the same hyperparame-434

ters as §4, except with a 10x smaller learning rate.435

DEMIX-DAPT updates about 10% of the total pa-436

rameters in the DEMIX LM, while DENSE-DAPT437

updates all parameters of the DENSE LM.438

6.2 Results439

Adding One Expert We display examples of440

DEMIX-DAPT and DENSE-DAPT on a single do-441

4This approach involves continued training on data from
the new domain, and typically precedes supervised fine-tuning
on task data, hence pretraining.
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Figure 4: Adapting an LM (125M parameters per GPU)
to CORD-19 or GUTENBERG. Top row: with DENSE-
DAPT, average perplexity on all training domains de-
grades. Bottom row: DEMIX-DAPT avoids forgetting
while achieving close (for GUTENBERG) or better (for
CORD-19) performance on the target domain.

Parameters per GPU
Domains # Experts 125M 350M 760M 1.3B

TRAINING
8 17.8 14.7 13.9 13.4
16 17.7 14.6 13.7 13.4

NOVEL
8 21.4 18.3 17.4 17.0
16 16.0 14.0 13.5 12.5

Table 6: Average perplexity in training and novel do-
mains before and after adding 8 experts adapted to the
novel domains (via DEMIX-DAPT). Adding experts
reduces perplexity on novel and training domains.

main in Figure 4. As DENSE-DAPT proceeds, its 442

performance on the training domains progressively 443

worsens (see §A.11 for results with larger LMs). In 444

contrast, DEMIX-DAPT reduces perplexity on the 445

novel domain without forgetting. 446

Adding Eight Experts We find that adding all 447

eight experts adapted to novel domains to the 448

DEMIX model from §4 reduces perplexity on novel 449

and previously seen domains (Table 6). For exam- 450

ple, across all model sizes, on average, we see a 451

2.4% reduction on MED, 1.8% reduction on RE- 452

ALNEWS, and 2% reduction on REDDIT (§A.7). 453

These gains are small, which is not surprising given 454

our small budget for adaptation. Even so, these re- 455

sults suggest DEMIX-DAPT can support continual 456

learning (Chen et al., 2018). 457
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125M Parameters per GPU

Domain +EXPERT –EXPERT –DOMAIN

1B 13.7 25.5 30.4
CS 15.7 22.4 25.4
LEGAL 8.9 20.9 22.7
MED 12.4 18.6 21.9
WEBTEXT 20.9 27.3 25.4
REALNEWS 18.9 26.7 25.0
REDDIT 34.4 47.8 51.3
REVIEWS 20.5 39.0 43.0

Average 18.2 28.5 30.6

Table 7: Removing a domain expert (–EXPERT) de-
grades perplexity on the corresponding domain, ap-
proaching the performance of an LM that has not been
exposed to that domain (–DOMAIN). Here we bold the
worst performing model for each domain.

7 Language Models with Removable458

Parts459

LM training data contain undesirable content such460

as hatespeech (Gehman et al., 2020). DENSE train-461

ing precludes the ability to restrict model access to462

these domains during inference, as may be desired463

for user-facing tasks (Xu et al., 2020).464

DEMIX layers offer a simple solution: since do-465

main experts specialize (Figure 2), experts assigned466

to unwanted domains can be disabled at test-time.5467

7.1 Experimental Setup468

Does disabling an expert simulate a model that has469

not been exposed to a particular training domain?470

To answer this question, we compare three settings:471

+EXPERT, a DEMIX LM with all experts active,472

–EXPERT, a DEMIX LM with a domain expert473

deactivated, and –DOMAIN, a DEMIX LM trained474

from scratch without a particular domain.6475

For all settings, we use a DEMIX LM (125M476

parameters per GPU) from §4 and expert mixing477

with a cached prior (§5) for inference.478

7.2 Results479

Removing a domain expert harms model perfor-480

mance on the associated domain, in most cases ap-481

proaching the performance of a model that has not482

been exposed to data from that domain (Table 7).483

In some cases (e.g., WEBTEXT and REALNEWS),484

–EXPERT even underperforms –DOMAIN. This485

5Removing an expert offers no guarantee of having fully
forgotten content from the removed domain, since there are
shared parameters in the model.

6We replace the removed domain with GUTENBERG, since
our cluster allocates training jobs via 8-GPU nodes.

leads us to conjecture that most domain-specific 486

learning happens within the DEMIX layer. 487

8 Related Work 488

Document metadata has been used to improve topic 489

models (Mimno and McCallum, 2012), adapt RNN- 490

based LMs (Jaech and Ostendorf, 2018), learn doc- 491

ument representations (Card et al., 2018), and im- 492

prove text generation control (Zellers et al., 2019; 493

Keskar et al., 2019). Other inference-time methods 494

(Dathathri et al., 2020; Liu et al., 2021) may be 495

used to steer text generation with DEMIX experts. 496

Related to variation across domains is crosslin- 497

gual variation, and multilingual models benefit 498

from language-specific parameters (Fan et al., 499

2020; Pfeiffer et al., 2020; Chau et al., 2020). Fu- 500

ture work might explore a compositional approach 501

with language and domain experts. 502

DEMIX-DAPT is closely related to model ex- 503

pansion techniques used to incorporate new rein- 504

forcement learning or visual tasks (Rusu et al., 505

2016; Draelos et al., 2017) as well as adapter mod- 506

ules for pretrained LMs (Houlsby et al., 2019; 507

Pfeiffer et al., 2020). Other continual learning 508

methods, include regularization (Kirkpatrick et al., 509

2017), meta-learning (Munkhdalai and Yu, 2017), 510

episodic memory (de Masson d’Autume et al., 511

2019), and data replay (Sun et al., 2019) may be 512

combined with DEMIX-DAPT. 513

Multi-domain models have been studied in ma- 514

chine translation (Pham et al., 2021), or with 515

smaller LMs using explicit supervision (e.g., 516

Wright and Augenstein, 2020) or dense training 517

(e.g., Maronikolakis and Schütze, 2021). Previous 518

studies have shown the importance considering do- 519

mains when adapting LMs (Ramponi and Plank, 520

2020; Gururangan et al., 2020). Our study estab- 521

lishes the importance of considering domains when 522

training LMs from scratch. 523

9 Conclusion 524

We introduce DEMIX layers, which provide modu- 525

larity to an LM at inference time, addressing lim- 526

itations of dense training by providing a rapidly 527

adaptable system. DEMIX layers experts can be 528

mixed to handle heterogeneous or unseen domains, 529

added to iteratively incorporate new domains, and 530

removed to restrict unwanted domains. Future 531

work may combine domain and token-level routing, 532

discover domains automatically with unsupervised 533

learning, or scale the number of training domains. 534
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A Appendix855

A.1 Image attribution856

Images retrieved from emojipedia.org or857

istockphoto.com.858

A.2 Collecting Domains859

For most domains, we use the associated860

sources, listed in Table 8, without modifica-861

tion. For GUTENBERG, we use the scrap-862

ing tool provided in https://github.com/863

aparrish/gutenberg-dammit. For BREAKING864

NEWS, we identify a list of factually reli-865

able English news sources, using the list cu-866

rated by Baly et al. (2018). Specifically,867

we filter on "high" factuality in the data868

provided in this repository: https://github.869

com/ramybaly/News-Media-Reliability. We870

then use Newspaper3K (https://newspaper.871

readthedocs.io/en/latest/) to scrape the lat-872

est 1000 articles from each site. After dropping873

duplicates, we arrive at about 20K articles from874

400 news sources. We provide downloading links875

and general instructions at anonymous.com.876

A.3 Dataset Anonymization877

To anonymize certain datasets, we apply a suite878

of regexes that aim to identify common patterns879

of user-identifiable data and substitute them with880

dummy tokens. We display anonymization regexes881

and associated dummy tokens in Table 9.882

A.4 Calculating TFLOPs/GPU883

We use the formula presented in Narayanan884

et al. (2021) to calculate TFLOPs/GPU and885

TFLOPs/update. The spreadsheet that contains886

the calculations and formula can be accessed here:887

anonymous.com888

A.5 Interleaving Experiments889

We hypothesize that shared layers may serve as a890

bottleneck to find shared features between domains,891

and may impact performance adversely when train-892

ing domains are highly different from one another.893

Indeed, preliminary experiments suggest that in-894

terleaving expert layers causes large performance895

hits in the most distinct domains, i.e., those with896

lower vocabulary overlap with other domains in the897

corpus.898

A.6 Hyperparameter Assignments 899

We display hyperparameter assignments for LM 900

pretraining in Tables 11, 12,13, and 14. We set the 901

total number of training steps based on this allo- 902

cated runtime, set 8% of these steps to be warm- 903

up, and use the Adam optimizer (Kingma and Ba, 904

2017) with a polynomial learning rate decay. Learn- 905

ing rates are tuned for each model separately over 906

{0.0001, 0.0003, 0.0005}, taking the fastest learn- 907

ing rate that avoids divergence. Each worker pro- 908

cesses two sequences of length 1,024, and gradients 909

are accumulated over 8 updates. We clip gradients 910

if their L2 norm exceeds 0.1. These settings are 911

inspired by Lewis et al. (2021). 912

A.7 Per-Domain Results 913

We display the rest of the per-domain test results in 914

the spreadsheets at the following link: anonymous. 915

com 916

A.8 Domain Posterior Calculations 917

We track calculated domain posteriors over se- 918

quences of development data in Figure 5 (train- 919

ing domains) and Figure 6 (novel domains). The 920

calculate domain posteriors are noisier for earlier 921

sequences, stabilizing usually after around 50 se- 922

quences. For all experiments, we conservatively 923

use 100 sequences of data to compute the domain 924

posterior, though one may be able to accurately 925

calcuate the domain posterior for some domains 926

with less data. 927

A.9 Illustration of Expert Mixing 928

See Figure 7 for an illustration of expert mixing. 929

A.10 Illustration of DEMIX-DAPT 930

See Figure 8 for an illustration of DEMIX-DAPT. 931

A.11 Perplexity changes after DENSE-DAPT 932

In Table 10, we display the average perplexity 933

change after performing DENSE-DAPT on a new 934

domain. We observe that across all model sizes, 935

DENSE-DAPT improves performance in the novel 936

domain, at the cost of a large performance hit in 937

the training domains. 938
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Figure 5: Calculated domain posteriors for 8 training domains.
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Figure 6: Calculated domain posteriors for 8 novel domains.
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Domain Corpus # Train (Eval.) Tokens
T

R
A

IN
IN

G

1B 30M NewsWire sentences (Chelba et al., 2014) 700M (10M)
CS 1.89M full-text CS papers from S2ORC (Lo et al., 2020) 4.5B (10M)
LEGAL 2.22M U.S. court opinions, 1658 to 2018 (Caselaw Access Project) 10.5B (10M)
MED 3.2M full-text medical papers from S2ORC (Lo et al., 2020) 9.5B (10M)
WEBTEXT† 8M Web documents (Gokaslan and Cohen, 2019) 6.5B (10M)
REALNEWS† 35M articles from REALNEWS (Zellers et al., 2019) 15B (10M)
REDDIT Reddit comments from pushshift.io (Baumgartner et al., 2020) 25B (10M)
REVIEWS† 30M Amazon product reviews (Ni et al., 2019) 2.1B (10M)

Total 73.8B (80M)

Domain Corpus # Train (Eval.) Tokens

N
O

V
E

L

ACL PAPERS 1.5K NLP papers from ACL (Dasigi et al., 2021) 1M (1M)
BREAKING NEWS† 20K latest articles from 400 English news sites (Baly et al., 2018) 11M (1M)
CONTRACTS† 500 commercial legal contracts (Hendrycks et al., 2021) 1.5M (1M)
CORD-19 400K excerpts from COVID-19 research papers (Wang et al., 2020) 60M (10M)
GITHUB 230K public Github repository contents (Github Archive Project) 200M (10M)
GUTENBERG 3.2M copyright-expired books (Project Gutenberg) 3B (10M)
TWEETS† 1M English tweets from 2013-2018 8M (1M)
YELP REVIEWS† 6M Yelp restaurant reviews (Yelp Reviews) 600M (10M)

Table 8: Domains that make up our multi-domain training corpus, including the size of our training and eval-
uation (i.e. validation and test) data, in whitespace-separated tokens. † indicates datasets that we (partially)
anonymize (§2). REDDIT was extracted and obtained by a third party and made available on pushshift.io,
and was anonymized by Xu et al. (2020); we use their version. See Appendix §A.2 for more details on how these
data were collected.

Category Link to Regex Dummy Token

Email https://regex101.com/r/ZqsF9x/1 <EMAIL>
DART https://regex101.com/r/0tQ6EN/1 <DART>
FB User ID https://regex101.com/r/GZl5EZ/1 <FB_USERID>
Phone Number https://regex101.com/r/YrDpPD/1 <PHONE_NUMBER>
Credit Card Number https://regex101.com/r/9NTO6W/1 <CREDIT_CARD_NUMBER>
Social Security Number https://regex101.com/r/V5GPNL/1 <SSN>
User handles https://regex101.com/r/vpey04/1 <USER>

Table 9: Anonymization schema. We anonymize text using the regexes provided in the above links for the cate-
gories listed.

Parameters
125M 350M 760M 1.3B

DENSE-
DAPT

T +70.1% +21.4% +16.7% +20.6%
N –55.1% –46.6% –38.3% –44.4%

Table 10: Average change in perplexity in training (T) and novel (N) domains after DENSE-DAPT. Negative values
indicate better performance relative to the original DENSE LM. While average perplexity in the novel domains
decreases more for DENSE-DAPT, this comes at the cost of a significant deterioration in performance in training
domains.

14

pushshift.io
https://regex101.com/r/ZqsF9x/1
https://regex101.com/r/0tQ6EN/1
https://regex101.com/r/GZl5EZ/1
https://regex101.com/r/YrDpPD/1
https://regex101.com/r/9NTO6W/1
https://regex101.com/r/V5GPNL/1
https://regex101.com/r/vpey04/1


Computing Infrastructure 32 Volta 32GB GPUs

Hyperparameter Assignment

architecture GPT-3 small

tokens per sample 1024

batch size 2

number of workers 2

learning rate [5e–4, 3e–4, 1e–4]

clip norm 0.1

gradient acculumation steps 8

number of steps 300,000

save interval updates 6,000

validation interval 3,000

number of warmup steps 24,000

learning rate scheduler polynomial decay

learning rate optimizer Adam

Adam beta weights (0.9, 0.95)

Adam epsilon 10e-8

weight decay 0.1

Table 11: Hyperparameters for pretraining the LM with 125M parameters per GPU. All hyperparameters are the
same for DEMIX and DENSE training.

Computing Infrastructure 64 Volta 32GB GPUs

Hyperparameter Assignment

architecture GPT-3 medium

tokens per sample 1024

batch size 2

number of workers 2

learning rate [5e–4, 3e–4, 1e–4]

clip norm 0.1

gradient acculumation steps 8

number of steps 120,000

save interval updates 3,000

validation interval 2,000

number of warmup steps 9,600

learning rate scheduler polynomial decay

learning rate optimizer Adam

Adam beta weights (0.9, 0.95)

Adam epsilon 10e-8

weight decay 0.1

Table 12: Hyperparameters for pretraining the LM with 350M parameters per GPU. All hyperparameters are the
same for DEMIX and DENSE training.
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Computing Infrastructure 128 Volta 32GB GPUs

Hyperparameter Assignment

architecture GPT-3 large

tokens per sample 1024

batch size 2

number of workers 2

learning rate [5e–4, 3e–4, 1e–4]

clip norm 0.1

gradient acculumation steps 8

number of steps 65,000

save interval updates 2,000

validation interval 1,000

number of warmup steps 5,200

learning rate scheduler polynomial decay

learning rate optimizer Adam

Adam beta weights (0.9, 0.95)

Adam epsilon 10e-8

weight decay 0.1

Table 13: Hyperparameters for pretraining the LM with 760M parameters per GPU. All hyperparameters are the
same for DEMIX and DENSE training.

Computing Infrastructure 128 Volta 32GB GPUs

Hyperparameter Assignment

architecture GPT-3 XL

tokens per sample 1024

batch size 2

number of workers 2

learning rate [5e–4, 3e–4, 1e–4]

clip norm 0.1

gradient acculumation steps 8

number of steps 50000

save interval updates 2,000

validation interval 500

number of warmup steps 4000

learning rate scheduler polynomial decay

learning rate optimizer Adam

Adam beta weights (0.9, 0.95)

Adam epsilon 10e-8

weight decay 0.1

Table 14: Hyperparameters for pretraining the LM with 1.3B parameters per GPU. All hyperparameters are the
same for DEMIX and DENSE training.
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x<t

“ The COVID-19 pandemic is 
caused by severe acute  

respiratory syndrome 
coronavirus-2 (SARS-CoV-2)  
and has spread worldwide…”

xt

P(Dt |x<t)

Dt

FFN 2 FFN 3 FFN 4FFN 1

Figure 7: Illustration of inference with domain expert
mixing. For a given input text x<t from CORD-19, we
estimate a posterior domain probabilities p(Dt | x<t),
informed by a prior that is either iteratively updated dur-
ing inference, or is precomputed and cached on held-
out data. In this example, the model assigns highest
domain probabilities to the medical and news domains.
We use these probabilities in a weighted mixture of ex-
pert outputs to compute the output xt.

3. Adapt new expert, freezing all other parameters

x<t

1. Calculate Domain Posteriors

2. Copy “closest” expert

FFN 1 FFN 2 FFN 3 FFN 4 FFN 5

FFN 1 FFN 2 FFN 3 FFN 4 FFN 5

P(Dt |x<t)

Dt

COVID-19 
Papers

COVID-19 
Papers

Figure 8: Illustration of DEMIX-DAPT. First, we esti-
mate domain posteriors on a held out sample of the tar-
get domain (in this case, CORD-19). We then initial-
ize a new expert with the parameters of the most prob-
able expert under the domain posterior distribution. Fi-
nally, we adapt the parameters of the newly initialized
expert to the target domain, keeping all other parame-
ters in the LM frozen.
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