
Active Learning with Label Comparisons

Gal Yona1,2 Shay Moran1,3 Gal Elidan1,4 Amir Globerson1,5

1Google
2Weizmann Institute of Science

3Technion
4Hebrew University
5Tel Aviv University

Abstract

Supervised learning typically relies on manual an-
notation of the true labels. When there are many
potential classes, searching for the best one can be
prohibitive for a human annotator. On the other
hand, comparing two candidate labels is often
much easier. We focus on this type of pairwise
supervision and ask how it can be used effectively
in learning, and in particular in active learning. We
obtain several insightful results in this context. In
principle, finding the best of k labels can be done
with k − 1 active queries. We show that there is a
natural class where this approach is sub-optimal,
and that there is a more comparison-efficient active
learning scheme. A key element in our analysis is
the “label neighborhood graph” of the true distri-
bution, which has an edge between two classes if
they share a decision boundary. We also show that
in the PAC setting, pairwise comparisons cannot
provide improved sample complexity in the worst
case. We complement our theoretical results with
experiments, clearly demonstrating the effect of
the neighborhood graph on sample complexity.

1 INTRODUCTION

Supervised learning is a central paradigm in the empirical
success of machine learning in general, and deep learning
in particular. Despite the recent advances in unsupervised
learning, and in particular self-training, large amounts of
annotated data are still required in order to achieve high
accuracy in many tasks. The main difficulty with supervised
learning is, of course, the manual effort needed for annotat-
ing examples. Annotation becomes particularly challenging
when there are many classes to consider. For example, in a
text summarization task, we can ask an annotator to write
a summary of the source text, but this will likely not result

in the “best” summary. We could also present the annotator
a summary and ask for feedback (e.g. is it good), but the
quality could be difficult to judge in isolation. We could
also ask the annotator to select the best summary out of a
set of candidates (e.g. produced by a language model), but
this could be taxing if not infeasible when there are many
candidates.

Motivated by the above scenario, previous works [e.g., see
Stiennon et al., 2020, Ouyang et al., 2022, for a recent
application to large language models] have considered an al-
ternative, and arguably natural, form of supervision: “Label
Comparisons”. Instead of presenting many potential labels
to the annotator (e.g., candidate text summaries), we only
present two candidates and ask the annotator to choose the
better one. For example, when summarizing Snow White,
we can ask to compare the summaries “A story about an
evil step-mother” and “A story about a girl who is driven
to the forest by an evil step-mother and ends up living with
dwarves”. Most annotators would easily choose the latter as
a better summary.

Label comparisons clearly require a much lighter cognitive
load than considering all alternatives, and thus have high
potential as an annotation mechanism. However, our theoret-
ical understanding of this mechanism is fairly limited. While
there has been work on learning to rank, which also uses
comparisons, the goal of label comparisons is typically not
to learn a complete ranking, but rather to build a model that
outputs optimal predictions. Here we set out to analyze label
comparisons from this perspective, and we obtain several
surprising results and a new algorithm.

Our key question is what is the best way to learn with label
comparisons. We assume that during learning we can only
ask an annotator for label comparisons and not, for example,
for the ground-truth label of the input, which we refer to
as an argmax query. We then ask how one can design al-
gorithms that make effective use of such queries, and what
is the corresponding query complexity. Namely, how many
queries are needed to achieve a given test error. Perhaps the

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<amir.globerson@gmail.com>?Subject=Your UAI 2022 paper

most natural way of using comparisons is simply for finding
the argmax label, which can be done via k−1 active queries.
However, as we shall see, this is a suboptimal approach.

The first question we ask is whether access to comparisons
is more informative than access to the argmax. If we know
all

(
k
2

)
comparisons for x, we can also infer the argmax and

so it would seem like the answer to this should be in the
affirmative. Our first result shows that in the PAC setting,
this is in fact not the case, and that knowing all comparisons
may result in the same sample complexity as knowing only
the argmax. The intuition for this negative result is that for
1D classifiers, the informative points are those that lie close
to the decision boundaries between classes, and the argmax
label for these points can also be used to find the boundaries,
so that comparisons do not provide further advantage.

The negative result above may seem to suggest that compar-
isons are only useful for inferring the argmax. However, we
show that in the case of active learning, comparisons can
be used more effectively. We consider the setting where the
active learner can choose which label comparison queries
to request for a given input x (including not requesting any
queries at all). A natural approach here is to take a “stan-
dard” active learning algorithm based on argmax queries,
and implement it using pairwise comparisons, by using k−1
active comparisons for each input x to obtain the argmax.
This strategy results in an algorithm that asks γ(k− 1) com-
parisons, where γ is the number of argmax queries used.

Here we show that one can in fact do better than simulating
argmax, by asking the “right” comparisons in an active fash-
ion. These beneficial comparisons are closely related to the
“Label Neighborhood Graph” (see Figure 2) where labels
are neighbors if they share a decision boundary. We show
that it is sufficient to ask queries only about neighbor pairs
in this graph. Thus, if this graph is sparse, active learning
can be implemented with fewer queries. In particular, for
linear classifiers in R, each class has at most two neigh-
bors, and thus the neighborhood graph is very sparse, and
our proposed active learning approach is highly effective.
Taken together, our results demonstrate the richness of the
label-comparison setting, and the ways in which its query
complexity depends on the structure of the data.

2 RELATED WORK

Several lines of works have addressed alternative modes of
supervision for multi-class learning.

Bandit Feedback: In this setting (e.g., Kakade et al. [2008],
Crammer and Gentile [2013]) the learner only observes
whether its predicted class is correct or not. On the one hand,
this feedback is stronger than label comparisons, because
positive bandit feedback implies knowledge of the argmax.
On the other hand, label comparisons provide more infor-
mation than bandit feedback, because comparisons provide

knowledge about relative ordering of non-argmax labels.

Maxing from pairwise comparisons. Maximum selection
(maxing) from noisy comparisons is well-studied problem.
Falahatgar et al. [2018] give an overview of known results
under various noise models. Here, we show that for multi-
class learning, using comparisons to first learn the global
structure of the problem is more efficient than only using
them for maxing. Daskalakis et al. [2011] consider maxing
in partially ordered sets, where some pairs may be incompa-
rable, which is interesting to explore in our setting.

Dueling Bandits: In online learning, learning from pairwise
comparisons is studied under the dueling bandits setting
[Saha et al., 2021, Dudík et al., 2015], in which the learner
“pulls” a pair of arms and observes the result of a noisy
comparison (duel) between them. The objective in these
cases is to minimize the regret w.r.t a solution-concept from
the social choice literature, such as the Condorcet winner
[Yue et al., 2012], Borda winner, Copeland winner, or the
Von Neuman winner [Dudík et al., 2015]. The focus on such
regret minimization objectives is principally different from
ours, since our primary goal is to minimize the number of
queries made, rather than minimizing an online loss.

Active Learning with rich supervision: Several works
have explored alternative forms of supervision. Balcan and
Hanneke [2012] explore class-conditional queries, where
the annotator is given a target label and a pool of examples,
and must say whether one of the examples matches the tar-
get label. Several works [Kane et al., 2017, Hopkins et al.,
2020, Xu et al., 2017] have studied comparison queries on
instances, where the annotator receives two inputs x1, x2

and reports which one is more positive (for binary classifi-
cation). Ben-Eliezer et al. [2022] study active learning of
polynomial threshold functions in d = 1 using derivative
queries (e.g., is a patient getting sicker or healthier?). Our
supervision is conceptually different from all of these, as it
compares between several labels on the same example x.

Learning Ranking as a Reward Signal: A recent line of
work demonstrated that pairwise label-comparisons elicited
from humans can be used to improve the performance of
LLMs. Stiennon et al. [2020] collect a dataset of human
comparisons between summaries of a given text, and use it
to obtain better summarization policies, and Ouyang et al.
[2022] extend this idea to aligning LLMs with user intent.
Our focus here is to understand the theoretical properties of
such label comparisons, which we expect will result in more
effective ways of collecting and using such comparisons.

3 PRELIMINARIES

Multi-class learning. Let X ⊂ Rd denote the feature space
and Y denote the label space, consisting of k classes. We
use D to denote an (unknown) distribution on X andH to
denote a class of target functions, f : X → Rk. In this

work, our focus is on a realizable setting in which the target
function is some (unknown) f⋆ ∈ H. For x ∈ Rd and a
class i ∈ [k], fi(x) is the score assigned to class i on in-
stance x. Given a target function f⋆, the loss of a candidate
classifier f is the standard (multiclass) 0-1 loss: L(f) =
Prx∼D[argmaxi∈[k] fi(x) ̸= argmaxi∈[k] f

⋆
i (x)].

Since we are interested in how the difficulty of learn-
ing scales with the number of classes k, we will ex-
plicitly parameterize hypothesis classes in terms of k,{
Hk

}
k∈N. For example, the class of homogeneous linear

classifiers1 over k ∈ N classes in dimension d is Hk,d
lin ={

h(·;W) : W ∈ Rk×d
}

, where h(x;W) = Wx ∈ Rk.

Supervision Oracles. Pertinent to this work is a distinction
between two types of access to the target multiclass function:
argmax (i.e. label) queries and label-comparison queries.

Definition 3.1 (Supervision Oracles). Given a target func-
tion f⋆ : X → Rk, we define the following oracles:

Af⋆

(x) = argmax
i∈[k]

f⋆
i (x)

Af⋆

(x, j1, j2) = 1[f⋆
j1(x) > f⋆

j2(x)]

In the rest of the manuscript we simply use Af⋆

to denote the
supervision oracle, where it’s understood that if it receives
an input x it invokes the argmax oracle and if it receives a
triplet x, j1, j2 it invokes the comparisons oracle.

4 PASSIVE LEARNING

We define the sample and query complexities of PAC learn-
ability using both argmax and label-comparisons supervi-
sion.2 We begin with the usual passive learning setup, and
differentiate between the situation in which every example
arrives with its argmax (i.e., the standard PAC setup), and
where every example arrives with all the

(
k
2

)
pairwise label

comparisons (essentially, the total order on the classes).

Definition 4.1 (Sample complexity of passive learning with
argmax supervision). Fix a distributionD over X and a tar-
get function f⋆ : X → Rk. Let Df⋆

denote the distribution
on X × Y in which a sample (x, y) ∼ Df⋆

is generated by
drawing x ∼ D and taking y = Af⋆

(x).

We say that the sample complexity of passively learning a
class

{
Hk

}
k∈N is mH : (0, 1) × N → N if there exists a

learning algorithm with the following property: for every
distribution D on X , for every k ∈ N, for every f⋆ ∈ Hk,
and for every ε ∈ (0, 1), given m ≥ mH(ε, k) i.i.d samples
from Df⋆

, the algorithm returns an hypothesis h s.t w.p at
least 1− 1/15, LD(h) ≤ ε.

1Our convention will be to use homogeneous linear classifiers.
Thus when we refer to our results for 1d, we mean the class Hk,2

lin .
2For simplicity, we consider a PAC notion where the goal is to

return ϵ-accurate solutions with constant probability (e.g. 14/15).

Figure 1: Equivalent view of non-homogeneous linear clas-
sifiers in 1d in terms of 1NN classification.

Definition 4.2 (Sample complexity of passive learning with
label-comparisons.). Fix a distribution D over X and a tar-
get function f⋆ : X → Rk. LetDf⋆

denote a distribution on
X×{±1}k

2

where a sample (x, {bij}ki,j=1) is generated by
drawing x ∼ D and for i, j ∈ [k], taking bij = Af (x; i, j).
We say that the sample complexity of passively learning a
class

{
Hk

}
k∈N is mH : (0, 1) × N → N if there exists a

learning algorithm with the following property: for every
distribution D on X , for every k ∈ N, for every f⋆ ∈ Hk,
and for every ε ∈ (0, 1), given m ≥ mH(ε, k) i.i.d samples
from Df⋆

, the algorithm returns an hypothesis h s.t w.p at
least 1− 1/15, LD(h) ≤ ε.

Note that in the latter setting, the learner receives strictly
more information about every example than in the argmax
supervision setting. Namely, the argmax can always be in-
ferred from the total order on the classes. We will therefore
consider label-comparisons as helpful in this setup if know-
ing all comparisons results in improvement to the sample
complexity. Our first result is negative: in general, label-
comparisons may not be helpful in the passive regime.

Theorem 4.3. Any algorithm that PAC learns Hk,2
lin must

use mH(ϵ, k) ∈ Ω(k/ϵ) samples, irrespective of whether it
has access to argmax or label-comparison supervision.

Proof. For regular PAC learning (with argmax supervision),
the standard approach for lower bounding the sample com-
plexity is to lower bound the Natarajan dimension [Natara-
jan, 1989]. To extend this result to the setting of Definition
4.2, we employ a suitable variant of the dimension intro-
duced in Daniely and Shalev-Shwartz [2014]. Following
Brukhim et al. [2022], we refer to it as the Daniely-Shwartz
dimension. It provides a tighter lower bound on the sam-
ple complexity, and it is also easier to adapt to our label
comparison setting.

To emphasize the difference between functions mapping
x ∈ X to a single class y ∈ [k] and functions mapping
x ∈ X to a total order over the k classes, we will denote
the former with f and the latter with f∇ (and likewise for

hypotheses classes). We write argmax f∇(x) ∈ [k] for the
class ranked first in the total order f∇(x).

Definition 4.4. Given a set {x1, . . . ,xn} ⊂ X , we say that
f∇ and g∇ are xi-close if:{

f∇(xj) = g∇(xj) j ̸= i

argmax f∇(xj) ̸= argmax g∇(xj) j = i

With this we can define a variant of Definition 12 in Daniely
and Shalev-Shwartz [2014] for the case of extra supervision.

Definition 4.5 (The Daniely-Shwartz dimension for label
comparisons.). A set {x1, . . . ,xn} is shattered by H∇ if
there exists a finite subset of functions H′

∇ ⊂ H∇ with
the following property: for every f∇ ∈ H′

∇ and for every
i ∈ [n], there exists g∇ ∈ H′

∇ such that f∇, g∇ are xi-
close. The Daniely-Shwartz dimension ofH∇, dim(H∇), is
the maximal cardinality of a shattered set.

In the Supplementary Material we prove that the sample
complexity of passively learning a class H with label-
comparisons (Definition 4.2) is Ω(dim(H)/ε). Thus, our
objective is to prove that dim(H2,k

lin) ∈ Ω(k).

To show this, we will construct a shattered set of size k
forH2,2k

lin . Consider 2k labels of the form (b, i), where b ∈
{0, 1} and i ∈ {1, . . . , k}. Partition the numbers 1, . . . , 3k
to k triples: {1, 2, 3}, {4, 5, 6}, . . . {3k − 2, 3k − 1, 3k}.
We claim that k middle points, S = {2, 5, . . . 3k − 1}
are shattered by H2,2k

lin . Showing this requires defining a
subset F of H2,2k

lin with the property of Definition 4.5. To
define each function f∇ ∈ F we will use an equivalent
parametrization of linear classifiers in 1d as 1NN classifi-
cation. i.e., each total order in H2,2k

lin is parameterized by
c ∈ R2k, where the total order h(x; c) is the one implied by
sorting the classes according to the distance of their centers
c to x. See Figure 1 for an illustration. With this parame-
terization in mind, F consists of all functions which satisfy
the following: for each i ≤ k, the centers corresponding
to labels (0, i) and (1, i) are located in the i’th triplet, and
exactly one of them is located in the middle of the triplet,
on the point 3i− 1. By construction, |F| = 4k (for each of
the k triplets we need to specify which of the two centers
is located in the middle of the triplet, and whether to locate
the other center on the left or on the right of it).

To see that S is shattered, consider f∇ ∈ F and a point
3i−1 ∈ S. W.l.o.g, assume that the center located on 3i−1
is (0, i). We define g∇ ∈ F based on the location of the
center of (1, i), which by definition of F , could be either to
the right (on 3i) or to the left (on 3i−2). In the first case, g∇
is obtained by shifting both centers one unit to the left: in
g∇ the center (0, i) is located on 3i− 2 and the center (1, i)
is located on 3i− 1. In the second case, g∇ is obtained by
shifting both centers one unit to the right: in g∇ the center
(0, i) is located on 3i and the center (1, i) is located on

3i− 1. By the definition of F , g∇ ∈ F . Crucially, f∇ and
g∇ are {3i− 1}-close (Definition 4.4): moving from f∇ to
g∇ the center located on 3i− 1 (and therefore the argmax)
has changed, but the total order for every other point in S
is remained unchanged, per the requirement of Definition
4.4. This proves S is shattered, and so dim(H2,k

lin) ∈ Ω(k),
as required.

Remark. An interesting open question is whether this neg-
ative result can be extended to other classes (e.g. linear
classifiers in higher dimensions). Technically, this requires
lower bounding the the DS dimension of the class, as we did
here for H2,k

lin . We conjecture that for d ≫ 1 the negative
result can be extended in a distribution-specific manner (e.g.,
restricting to distributions with properties such as margin
and sparsity); see the discussion in the Supplementary Ma-
terial, where we report experimental results for the passive
learning setting.

5 ACTIVE LEARNING

Next, we consider the active learning setting. Specifically,
we focus on pool-based active learning, where the learner
has access to unlabeled samples and can decide which
queries to ask the oracle for (including not asking any
queries). The performance of the algorithm is now mea-
sured in terms of the query complexity, namely the number
of queries it makes to the labeling oracle in question.

Definition 5.1 (Query complexity of active learning.). The
query complexity of actively learning a class

{
Hk

}
k∈N

is qH : (0, 1) × N → N if there exists a function mH :
(0, 1)×N→ N and a learning algorithm with the following
property: for every distribution D on X , for every k ∈
N, for every f⋆ ∈ Hk, and for every ε ∈ (0, 1), given
m ≥ mH(ε, k) i.i.d samples from D and at most qH(ε, k)
queries to Af⋆

, the algorithm returns an hypothesis h s.t
w.p at least 7/8, LD(h) ≤ ε. We refer to qH as the query
complexity of learningH with argmax supervision or with
label-comparison supervision, depending the oracle Af⋆

.

We note that every active learning algorithm that uses
argmax queries can always be simulated using compari-
son queries: in the adaptive setting (where the choice of
query to ask at time t can depend on the previous answers),
k−1 label-comparison queries suffice to implement a “tour-
nament” that reveals the argmax. This provides a generic
way to use the label-comparison oracle: simply request the
label-comparison queries necessary for a “regular” active
learner. We therefore say that comparisons are useful for
active learning if the number of label-comparison queries
required to learn a classH is strictly lower than the number
of label-comparison queries required to simulate the best
active learner that uses argmax queries to learnH.

Figure 2: Decision regions of a linear classifier in 2d (left)
and its corresponding label neighborhood graph (right).

Algorithm 1 NbrGraphM2B: active learning ofHk,d
lin using

G.
Input: ε > 0, a binary active learning algorithm B with
query complexity qb(γ), a neighborhood graph G.
Output: f : X → Rk.
for (i, j) ∈ G do

Use B to learn a binary classifier that distinguishes class
i from class j with error at most ε/e(G).

end for
Let C denote the set of all the learned binary classifiers.
Return f (G,C) (Definition 5.4).

Interestingly, the distinction between passive and active
learning is important. Our main result is that when the
learner is allowed to decide which queries to request, label-
comparisons are helpful: we provide a learning algorithm
that uses label comparisons more efficiently than simply
using them to implement the best “regular” active learner.

Theorem 5.2. The label-comparison query complexity for
active learning Hk,2

lin is Õ(k · log 1
ε), whereas the query

complexity of simulating the best argmax active learner is
Ω̃(k2 · log 1

ε).

The proof of Theorem 5.2 will employ a specific multiclass
to binary reduction that uses the concept of the label neigh-
borhood graph of the target classifier. Intuitively, two classes
i and j are considered neighboring if they share a decision
boundary; i.e., there are two arbitrarily close points in Rd,
where for one the argmax is i and for the other the argmax
is j. See Figure 2 for an example of the label neighborhood
graph of a linear classifier in d = 2.

Definition 5.3 (Label Neighborhood graph). Fix a contin-
uous function f : Rd → Rk. The neighborhood graph
G = G(f) is an undirected graph on k vertices, with
an edge between vertices i ∈ [k] and j ∈ [k] if and
only if there exists x ∈ Rd for which for every r ∈ [k],
fi(x) = fj(x) ≥ fr(x).

To simplify notation, we use (i, j) ∈ G to refer to an edge
in G, and e(G) for the total number of edges. The degree of
i ∈ [k] is the number of neighbors i has in G.

We next define NbrGraphM2B (Neighborhood Graph
Multiclass-to-Binary), a procedure for actively learning a

multiclass classifier f using a neighborhood graph G (see
Algorithm 1). Given as input a binary active learning algo-
rithm and a neighborhood graph, it uses comparison queries
to learn a binary classifier for distinguishing every pair of
neighboring classes i, j in G. It then aggregates these into a
multi-class classifier using the following scheme:

Definition 5.4 (Binary to multiclass aggregation.). Fix
(G,C), where G is a neighborhood graph and C =
{hij}(i,j)∈G,i<j is a collection of binary classifiers, one
for every edge in G. The graph-based aggregation of (G,C)
is a function f (G,C) : X → Rk defined as follows:

f
(G,C)
i (x) =

∑
(i,j)∈G 1[hij(x) ≥ 0]∑

(i,j)∈G 1

Namely, the label of x is the class in [k] that won the largest
fraction of “duels” against its neighbors in the graph G.

An important component in analyzing NbrGraphM2B is the
following lemma. It establishes that when invoked w.r.t
the true neighborhood graph G⋆, if the binary classifiers
are sufficiently accurate, then so is the resulting multiclass
classifier. See the Supplementary Material for the proof.

Lemma 5.5. Fix a distribution D on X and a classifier
W ⋆. Fix (G,C). If G = G(W ⋆) and every hij ∈ C has
error at most ε/e(G), then f (G,C) has error at most ε.

From this, we obtain the following upper bound on the query
complexity of learningHk,d

lin using label comparisons.

Corollary 5.6. If the target neighborhood graph G⋆ is
known, the label-comparison query complexity of learning
Hk,d

lin is O(e(G⋆) · qb(ε/e(G⋆)), where qb(γ) is the query
complexity of active learning in the binary case (i.e. k = 2).

Corollary 5.6 suggests that label-comparisons will be useful
when (i) the target neighborhood graph is sparse (has low
degree), and (ii) it can be learned with relatively few label-
comparisons. We are now ready to prove Theorem 5.2: we
will show that for learning Hk,2

lin (the class for which we
demonstrated comparisons are not useful in the passive
setting), both these conditions hold. Hence, comparisons
indeed provide a provable gain over argmax supervision.

Proof of Theorem 5.2: We will begin by instantiating the
bound from Corollary 5.6 for d = 1. Consider the degree of
the neighborhood graph. Using the equivalent parameteriza-
tion of linear classifiers in d = 1 (see Figure 1), it follows
that every class i ∈ [k] has at most 2 neighbors: exactly
the preceding and succeeding classes in the sorted order of
the classes. Thus, for every f⋆ ∈ Hk,2

lin , e(G(f⋆)) = O(k).
Second, active learning in d = 1 is well-understood: unlike
higher dimensions, the distribution-free query complexity
of active learning for two classes is qb(γ) = log(1γ) using
binary search over R [Dasgupta, 2004]. Plugging both of

Algorithm 2 Learning G(f⋆) for f⋆ ∈ Hk,2
lin .

Input: n i.i.d samples from D, x1, . . . , xn.
Output: A neighborhood graph G.
Set xL = mini xi and xR = maxi xi.
Use a comparison sorting procedure to obtain a total
order over the k classes, i1 ≻ · · · ≻ ik. Every time
the sorting procedure requires the comparison between
classes i, j ∈ [k], determine that i appears before j if and
only if (i) Af (xL, i, j) = 1 and Af (xR, i, j) = 0, or (ii)
Af (xL, i, j) = 1 and Af (xR, i, j) = 1.
Define a neighborhood graph G with an edge between i
and j iff classes are consecutive in the learned total order.

Return G.

these facts into the upper bound of Corollary 5.6, we con-
clude that the query complexity for learningHk,2

lin when the
target neighborhod graph is known is O(k · log k

ε).

Next, we turn to the question of learning G⋆ using label-
comparison queries. Towards this, consider Algorithm 2.
The algorithm receives a sample of n = O(1/ε) points
from D and uses exactly 2k log k label comparisons to re-
turn a neighborhood graph G. As we claim below the graph
G will be identical to G⋆, except for possibly a set of edges
pertaining to classes outside S whose overall probability
under D is smaller than ε. The key observation behind Al-
gorithm 2 is that we can use exactly two label-comparison
queries to infer whether a class i appears before a class j, as
long as both classes are “represented” in S.3 We can there-
fore use a total of 2k log k queries to infer the total order of
all the “represented” classes.

It remains to argue why O(1/ε) samples suffice to guarantee
that with high probability, classes that are not “represented”
by S have mass at most ε. To see this, fix D on R and
denote F (z) = Prx∼D[x < z]. Let z be such that F (z) = ε.
We are interested in the number of samples n required to
guarantee that PrS∼Dn [min(S) > z] < δ. Now,

Pr
S
[min(S) > z] = ((1− F (z))

n
= (1−ε)n ≤ exp(−n·ε)

And exp(−n · ε) ≤ δ ⇐⇒ n ≥ 1
ε log

1
δ . Similarly, the

same number of samples can be used to bound the the "tail"
beyond max(S). Union-bounding over both events yields
the required result.

To summarize, the full procedure for actively learningHk,2
lin

is to run NbrGraphM2B with the neighborhood graph G that
is returned by Algorithm 2. Combining Lemma 5.5 and the
analysis of Algorithm 2, we conclude that this procedure has

3We say a class i is represented in X if the position of i in the
total order of all the classes is greater-equal than the position of
min(S) and smaller-equal than the position of max(S).

an overall unlabeled sample complexity of O(1/ε), and an
overall query complexity of O(k log k + k log k

ε) = Õ(k ·
log 1

ε).

To conclude the proof of Theorem 5.2, it remains to lower
bound the complexity of learning with argmax queries. We
will prove that Ω(k

log k log k
ε) argmax queries are needed.

This will imply that simulating any argmax active learning
requires at least Ω̃(k2 · log 1

ε) label-comparisons. We will
prove this via the label revealing task [e.g., see Kane et al.,
2017], where the goal is to reveal the correct labels of a given
(realizable) sample of n points, and show that O(k

log k log n)
argmax queries are needed to reveal all n labels.

Towards this, fix n points and consider a tree that denotes
the run of an active learning algorithm (with nodes being
the queries asked and the children the possible answers).
Note that the number of unique labelings corresponds to
the number of leaves in the tree and the query complexity
corresponds to the depth of the tree, which we denote q.
The number of ways to arrange n points into k classes in
1d is k!

(
n

k−1

)
(k! options for ordering the classes and then(

n
k−1

)
options for locating the thresholds). Since the degree

of the tree is k for argmax queries, it must be that the kq ≥
k!
(

n
k−1

)
, which implies4 a lower bound q ≥ O(k

log k · log n).

Together, this concludes the proof of Theorem 5.2. □

Our analysis suggests that when we can efficiently learn
G⋆ and it is sparse, label-comparisons provide a gain over
argmax queries. We showed this when d = 1, and it is
natural to ask to what happens for d > 1. This requires
addressing both the question of what is the binary active
learning primitive that we use, as well as the questions
of sparsity and learning the graph. See the Supplementary
Material for a discussion of these aspects.

6 A GENERAL PURPOSE ACTIVE
LEARNING ALGORITHM

The approach of Algorithm 1 is to explicitly learn e(G)
binary classifiers and aggregate them into a single classifier,
that is not inHk,d

lin . For simplicity of optimization, we will
prefer to work with models inHk,d

lin . To do so, in Algorithm 3
we present the NbrGraphSGD algorithm, a natural variation
which can work directly with such models.

It works as follows: we first initialize a multiclass model
h(·;W) : Rd → Rk (e.g. W ∈ Rk,d for a linear model,
but h can also be a neural network). For every data point
x, we sample an edge (i, j) in the graph G. This edge is a
candidate label comparison. To decide whether to query it or
not, we evaluate the difference in logits between labels i and
j. If this difference is smaller than τ we query the pair (i, j)

4Using the fact that log
(
k!
(

n
k−1

))
= log k! + log

(
n

k−1

)
=

k log k + log
([

n
k

]k)
= k log k + k(logn− log k) = k logn

Algorithm 3 NbrGraphSGD

Input: Label neighborhood graph G, buffer size R, steps
T , confidence parameter τ , learning rate η, comparison
oracle Af⋆

.
Output: classifier h(·;W), number of comparisons q.

Initialize W (0) , L = 0, q = 0, b = 0.
for t = 1, 2, . . . , T do

Sample x ∼ D.
Sample (i, j) uniformly from the edges of G.
if

∣∣∣hi(x;W
(t−1))− hj(x;W

(t−1))
∣∣∣ < τ then

Obtain oracle comparison c = 2(Af∗(x, i, j)− 0.5)

L += log(1 + e−c(hi(x;W)−hj(x;W))).
q += 1, b += 1.

end if
if b ≥ r then

Update W (t) ←W (t−1) − η · ∂L
∂W

Clear buffer: L = 0, b = 0.
end if

end for

and add a binary cross entropy term that encourages the logit
difference to have the correct sign. Once we accumulate
sufficiently many comparisons, we perform an update step.

The remaining practical question is which graph G to use.
Recall that G⋆ has an edge (i, j) iff ∃x where j was the 2nd
best label and i was the argmax. For 1d, we showed this
could be learned from data effectively. We leave the general
case open, and consider here practical recipes for G. The
simplest approach is to base G on prior knowledge regard-
ing which classes are expected to be neighbors (e.g., via
distances on their word embeddings, or other co-occurrence
statistics). Another practical case is when first and second
best labels are available without the x values (e.g., consider
asking individuals what are their first and second most fa-
vorite products, without keeping user info). Note that in this
case, we will receive evidence of edges only for x values
sampled from D. This corresponds to an empirical notion
of the neighborhood graph, which we define below.

Definition 6.1 (Empirical Label Neighborhood graph). For
a target function f⋆ : Rd → Rk, the neighborhood graph
GD(f) is an undirected graph on k vertices, where there is
an edge between vertices i and j if and only if there exists
x ∈ Rd whose probability under D is non-zero, and for
which for every r ∈ [k], f⋆(x)i = f⋆(x)j ≥ f⋆(x)r.

By definition, G⋆
D ⊆ G⋆. One might hope that the discarded

edges will not impact accuracy w.r.t D. However, in the
worst-case this is not true. Specifically, in proving Lemma
5.5 we used the fact that when B is given by the true binary
classifiers (i.e. hij = W ⋆

i −W ⋆
j), the aggregated classi-

fier f (G⋆,C) has perfect accuracy on D. This may fail for

G⋆
D: f (G⋆

D,C) may err on examples supported in D; See the
Supplementary Material for an example. In Section 7 we
observe that the performance of both graphs is comparable.

7 EXPERIMENTS

In this section we evaluate our label-comparisons algorithm
NbrGraphSGD on synthetic as well as real data.

We consider the online active learning scenario. At each
round t ∈ [T] = {1, ..., T}, the learner receives a batch of
points drawn i.i.d. according to D and must decide which
queries to request from the oracle Af⋆

(including not re-
questing any queries). We compare the following methods:

• NbrGraphSGD(G): This is our algorithm which takes as
input a graph G and, for a given x, only considers label
pairs in G as possible pairs to query. For the given x,
we iterate over all (i, j) ∈ G. For each pair we check
if |Wix −Wjx| is smaller than a fixed threshold. If it
is, we query this pair. We consider different versions of
NbrGraphSGD(G), that use different graphs.

• PassiveTour: This baseline uses label comparisons to
simulate a standard argmax-based active learning algo-
rithm [Joshi et al., 2009]. Namely, for each x, we evaluate
the logits Wyx and query x if the difference between the
first and second best logits is below some threshold. In
the standard argmax setting, we would have requested the
label of x. With label comparisons, we need to do this
using k − 1 active comparisons. Namely, we perform a
tournament between labels to reveal the maximizer.

• ActiveTour: It may seem wasteful to ask for k − 1 com-
parisons as above, since we may be sufficiently confident
in some of these comparisons. We thus consider an “ac-
tive tournament” algorithm: whenever the current model
is sufficiently confident in a given pair in the tournament,
we take the model’s answer, and do not query for it.

Evaluation. In online active learning, the quality of an
algorithm is measured by its accuracy after T rounds, and
the total number of comparisons requested within these T
rounds. We use a linear teacher model to simulate the com-
parison oracle (Definition 3.1), and measure accuracy as
the categorical accuracy5 on the test set, w.r.t the teacher’s
argmax. We use an accumulating buffer mechanism to con-
trol for the number of parameter updates across methods
(each method accumulates the requested comparisons until
the buffer is full, and only then performs a gradient update).

7.1 SYNTHETIC DATA

In this section we validate our theoretical findings from
Sections 4 and 5 on synthetic data. Specifically, for d ∈ N

5Specifically, use Top-K accuracy, where K = 0.1 · k.

20 30 40 50 60 70 80
Number of classes

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Sp
ar

sit
y

d=5, G*_D
d=5, G*
d=7, G*_D
d=7, G*

Figure 3: Sparsity level for a random linear model as a
function of the number of effective classes k for d = 5, 7

and k̂ ∈ N we consider D to be the uniform distribution on
a unit sphere in Rd and draw a random linear target model
W ⋆ ∈ Rk̂,d. This yields a multiclass classifier with k ≤ k̂
distinct decision regions (“effective classes”). We draw data
from D and divide it into training and test sets.

Sparsity of the neighborhood graph. We begin by com-
puting the sparsity level of both the true neighborhood
graph G⋆ = G(W ⋆) and the empirical neighborhood graph
G⋆

D = GD(W
⋆), where the latter is computed w.r.t the

training set. We define the sparsity level as the number of
edges in G, divided by

(
k
2

)
(i.e,. the number of edges in a

complete graph). In Figure 3 we plot the sparsity level as
a function of k and d, as averaged over 25 random target
models. We see that the empirical sparsity level tracks the
true sparsity level, and that for a fixed dimension d, both de-
crease with the number of effective classes k. This confirms
that we expect the sparsity to “kick in” when k ≫ d.

Comparisons of Active Learning Methods. We next
compare the different baselines described above. For
NbrGraphSGD(G) we consider multiple variations, that use
different versions of the graph G. In Figure 4 we report
the performance of NbrGraphSGD relative to several natural
baselines. First, it can be seen that the active tournament
outperforms the passive one, suggesting that indeed some
tournament queries can be avoided. Yet NbrGraphSGD out-
performs the tournament baselines, indicating that tourna-
ment comparisons are generally not the optimal approach.
Within the NbrGraphSGD methods, using the true graph (ei-
ther G∗ or G∗

D) provides the best performance, indicating
that the graph plays an important role in active learning
efficacy, and that NbrGraphSGD can use this structure.

7.2 REAL DATA

The QuickDraw dataset [Ha and Eck, 2017], is a collection
of 50 million drawings across 345 categories, contributed
by players of the game “Quick, Draw!”. We use the bitmap
version of the dataset, which contains these drawings con-
verted from vector format (keystrokes) into 28x28 grayscale
images. We randomly select 70, 000 examples from this

0 200 400 600 800 1000 1200 1400
Number of comparisons

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

dimension = 5, edges = 3560 (out of 59340)
NbrGraphSGD(G_full)
NbrGraphSGD(G*_D)
NbrGraphSGD(G*)
PassiveTour
ActiveTour

Figure 4: Comparing algorithm NbrGraphSGD w.r.t G⋆
D

(green) and G⋆ (purple) against three baselines: passive tour-
nament (yellow), active tournament (blue) and algorithm
NbrGraphSGD with respect to a complete graph (black).

Figure 5: Comparing the performance of NbrGraphSGD

w.r.t G⋆
D (green) against the baselines on the QuickDraw

dataset. In the plot titles, d denotes the dimension of low-
dimensional projection of the data and edges is e(G⋆), the
number of edges in the true neighborhood graph of W ⋆.

large data and use 60, 000 as our training set and the rest
as the test set. We train a linear teacher on the data after
randomly projecting it into Rd. We then use the resulting
model W ⋆ to implement the label-comparison oracle (see
Definition 3.1). We denote the true graph of W ⋆ (Definition
5.3) as G⋆ and the empirical graph of W ⋆ (Definition 6.1,
as computed w.r.t the training set) as G⋆

D.

We begin by comparing the performance of NbrGraphSGD
w.r.t G⋆

D with the same baselines from Section 7.1. We
explore the relationship between the sparsity of the true
graph G⋆ and the performance of NbrGraphSGD w.r.t G⋆

D
as a function of the dimension d and k = 345. In Figure
5 we report the query complexities w.r.t d = 5 (left) and
d = 15 (right). Note that this is a realizable learning task
since the models are measured in terms of their accuracy
w.r.t the teacher’s predictions, and the teacher is also a linear
model. In line with our theoretical results from Section 5,
we observe that the gain from using our method (over e.g.
the passive or active tournament baselines) is smaller when
the true neighborhood graph is less sparse.

8 CONCLUSIONS

We studied the setting where annotators are asked to provide
only pairwise label comparisons. We believe this is a natural
setting as it is both easy for humans to provide, and still
results in sufficient information for learning. Our results
provide several key characterizations of how this informa-
tion should be gathered and used. We show that, perhaps
counter-intuitively, there are cases for which having all the
class comparisons per training point does not yield a sam-
ple complexity advantage over just receiving the one true
class label. On the other hand, in the active setting, we show
that comparisons can be used in an effective way that goes
beyond obtaining the argmax training labels.

Many interesting open questions remain. First, our focus
was on linear classification, and it would be interesting to
generalize the result to other classes (such as neural net-
works). Second, one can consider a mixture of comparisons
and true-labels, since the latter may be easy to obtain in
some instances, and hence query-complexity should count
these cases differently. Finally, here we assumed that anno-
tators can provide answers to all queries. In practice, some
queries may not be answerable (e.g., labels are too “close” or
both are equally bad), and it would be interesting to extend
the formalism and practical algorithm to these cases.

Acknowledgements

We thank Ami Wiesel for contributing many ideas through-
out the development of this work and for helpful feedback
on this manuscript.

References

Maria Florina Balcan and Steve Hanneke. Robust interactive
learning. In Conference on Learning Theory, pages 20–1.
JMLR Workshop and Conference Proceedings, 2012.

Omri Ben-Eliezer, Max Hopkins, Chutong Yang, and Han-
tao Yu. Active learning polynomial threshold functions.
arXiv preprint arXiv:2201.09433, 2022.

Nataly Brukhim, Daniel Carmon, Irit Dinur, Shay Moran,
and Amir Yehudayoff. A characterization of multiclass
learnability. arXiv preprint arXiv:2203.01550, 2022.

Koby Crammer and Claudio Gentile. Multiclass classifica-
tion with bandit feedback using adaptive regularization.
Machine learning, 90(3):347–383, 2013.

Amit Daniely and Shai Shalev-Shwartz. Optimal learners
for multiclass problems. In Conference on Learning
Theory, pages 287–316. PMLR, 2014.

Sanjoy Dasgupta. Analysis of a greedy active learning strat-
egy. Advances in neural information processing systems,
17, 2004.

Constantinos Daskalakis, Richard M Karp, Elchanan Mos-
sel, Samantha J Riesenfeld, and Elad Verbin. Sorting and
selection in posets. SIAM Journal on Computing, 40(3):
597–622, 2011.

Miroslav Dudík, Katja Hofmann, Robert E Schapire, Alek-
sandrs Slivkins, and Masrour Zoghi. Contextual dueling
bandits. In Conference on Learning Theory, pages 563–
587. PMLR, 2015.

Moein Falahatgar, Ayush Jain, Alon Orlitsky, Venkatad-
heeraj Pichapati, and Vaishakh Ravindrakumar. The lim-
its of maxing, ranking, and preference learning. In In-
ternational conference on machine learning, pages 1427–
1436. PMLR, 2018.

David Ha and Douglas Eck. A neural representation of
sketch drawings. CoRR, abs/1704.03477, 2017. URL
http://arxiv.org/abs/1704.03477.

Max Hopkins, Daniel Kane, and Shachar Lovett. The power
of comparisons for actively learning linear classifiers.
Advances in Neural Information Processing Systems, 33:
6342–6353, 2020.

Ajay J Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos.
Multi-class active learning for image classification. In
2009 ieee conference on computer vision and pattern
recognition, pages 2372–2379. IEEE, 2009.

Sham M Kakade, Shai Shalev-Shwartz, and Ambuj Tewari.
Efficient bandit algorithms for online multiclass predic-
tion. In Proceedings of the 25th international conference
on Machine learning, pages 440–447, 2008.

Daniel M Kane, Shachar Lovett, Shay Moran, and Jiapeng
Zhang. Active classification with comparison queries. In
2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pages 355–366. IEEE, 2017.

Balas K Natarajan. On learning sets and functions. Machine
Learning, 4(1):67–97, 1989.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L
Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, et al. Training lan-
guage models to follow instructions with human feedback.
Preprint, 2022.

Aadirupa Saha, Tomer Koren, and Yishay Mansour. Adver-
sarial dueling bandits. In International Conference on
Machine Learning, pages 9235–9244. PMLR, 2021.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler,
Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei,
and Paul F Christiano. Learning to summarize with hu-
man feedback. Advances in Neural Information Process-
ing Systems, 33:3008–3021, 2020.

http://arxiv.org/abs/1704.03477

Yichong Xu, Hongyang Zhang, Kyle Miller, Aarti Singh,
and Artur Dubrawski. Noise-tolerant interactive learning
using pairwise comparisons. Advances in neural informa-
tion processing systems, 30, 2017.

Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten
Joachims. The k-armed dueling bandits problem. Jour-
nal of Computer and System Sciences, 78(5):1538–1556,
2012.

	Introduction
	Related Work
	Preliminaries
	Passive learning
	Active Learning
	A general purpose active learning algorithm
	Experiments
	Synthetic data
	Real data

	Conclusions

