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Fig. 1: Teaching by demonstration with XAl feedback. Three layers of information are displayed: 1) Object-related information,
e.g., a label, which includes object name (bread) and its state (’cold” icon), appears whenever the human teacher’s gaze is on
the bread; 2) action-related information, e.g., human teachers “picking” action is shown on the hand of the teacher; and 3)
Robot-reasoning information, e.g., the summary of the observed sequence appears after the demonstration.

Abstract—In learning by demonstration with social robots,
fluid and coordinated interaction between human teacher and
robotic learner is particularly critical and yet often difficult to
assess. This is even more so if robots are to learn from non-
expert users. In such cases, it is sometimes troublesome for the
teacher to get a grasp of what the robot knows or to assess if a
correct representation of the task has been formed even before the
robot demonstrates it back. Here, we introduce a new feedback
modality making use of Augmented Reality to visualize the
perceptual beliefs of the robot in an interactive way. Such cues are
indeed overlaid directly on the shared workspace, as perceived
by the teacher, without the need for an explicit inquiry. This
allows the teacher to access the robot’s situation understanding
and adapt their demonstration online, while finally reviewing
the observed sequence. We further propose an experimental
framework to assess the benefits of such feedback modality -
as compared to more established modalities such as gaze and
speech - and to collect dyadic data in a quick, integrated, and
relatively realistic way. The planned user study will help to assess
human-robot coordination across communicative cues and the
combination of different modalities for explainable robotics.

Index Terms—Explainable robotics, Augmented Reality,
human-robot interaction, behavioral user studies

I. INTRODUCTION

The current spread of social and assistive robotics appli-
cations is increasingly highlighting the need for robots that
can be easily taught and interacted with, even by users with

no technical background. Indeed, even when an autonomous
discovery or learning from knowledge bases (e.g., [1], [2]) will
be commonplace, specific and personalized tasks will need to
be learned by robots in interaction with their primary users.
Although some proposed approaches rely on language (e.g.,
[3]), this modality still represents a major challenge for smooth
human-robot interaction (HRI), and learning by demonstration
remains the preferred form of interactive learning. Such a
teacher-learner scenario has been long explored in HRI, mostly
focusing on acquiring human demonstrations via kinesthetic
teaching, teleoperation, or passive observation [4], [5]. Still,
such approaches will not be suitable for social robots deployed
in homes or other human-centered environments. In these
situations, learning from a human will be a form of social
interaction, with the two partners relying on a model of
each other’s intents and capabilities. Tutoring is a form of
communication where both the tutor and the learner exchange
information with multi-modal signals on a social and on a
task level [6], via instructions, feedback, and physical actions.
Users should receive feedback from robots, so to structure the
demonstration according to their representation capabilities,
while also being able to review and correct what the robot
is learning. This means that there are feedback loops by
which both partners shape their behaviors respectively [7].



Such interdependence needs to be investigated in an integrated
system to assess the best ways to develop teachable robots [6],
[8].

As recently put forward by [9], often the very first obstacle
in HRI is that we cannot assume similar perception and
situation understanding capabilities as ours when interacting
with a robot. Especially during a demonstration, a user needs
to be aware of what perceptual beliefs the robot holds at
the moment. As a solution, [9] propose that people either
observe the robot interacting with the environment to con-
struct a detailed mental model of its functioning or the robot
actively signals its perceptual beliefs to guide the tutor. This
latter would allow a user to interact with the robot without
specific training and observation. In this paper, we propose
such a solution based on wearable Augmented Reality (AR)
and tailored to teaching scenarios. To assess its effectiveness
and compatibility with other established feedback modalities
we devised an experimental framework comparing different
modalities in isolation and combination. Results from such a
user study will shed light on the perspective use of AR and
eXplainable Artificial Intelligence (XAI) cues to teach robots
new tasks intuitively and effectively, while enhancing trust and
acceptance towards robotic systems.

II. RELATED WORK

With computational improvements and availability of re-
lated cheaper hardware in the last decade, the use of AR as
a new interface to ease communication between humans and
robots has rapidly increased [10]-[12]. Further, the spread of
robotics in public scenarios has intensified the need for trans-
parency and legibility, already addressed in HRI (e.g., [13]),
leading to the emergence of deeper interpretability instances
somehow similar to those of XAI. Within social robotics yet
the focus is more on making embodied agents understandable
not just in their behavior and decision-making, but more in
general in their knowledge, intentions, and perceptions [14].
According to a recent review [15], not many approaches have
assessed experimentally the benefits of designs for explainable
agency, or testbeds were rather simplistic. Further, while
most application scenarios are in the domain of human-robot
collaboration, none thus far seems to address a teaching by
demonstration scenario where the robot is the learner. As to
the perceptual belief problem introduced above, even when
the user can assume from previous experience that certain
objects in the shared workspace are known to the robot,
the robot could still not recognize a specific instance with
sufficient confidence because of occlusions or light conditions.
The user needs to be timely informed about this, if possible
without interfering with their current perception or execution.
As suggested by [9], [14], this could be done by gaze cueing
or by leveraging new XR possibilities, as in our proposal
explained next.

III. XAI CUES FOR LEARNING BY DEMONSTRATION

During teaching, the human teacher needs to ensure that
correct data is fed to the robot. Many interactive machine

learning (iML) interfaces assist the human teacher in achieving
this goal by clearly showing the collected data [16]-[18].
We target here semantic learning, where a robot needs to
collect two types of information: 1) the sequence of actions to
complete a certain task, and 2) the object state change due to a
certain action. Often AR can enhance HRI by showing robots’
internal states [19]-[21]. For the above reasons, 3 layers of
information including both collected data and social cues are
integrated into the XAI interface design:

o Object-related information: A label shows the recog-
nition of an object and its state (Figure 1-1). When the
teacher looks at the object, the label pops up.

o Action-related information: A label shows the recog-
nized actions of the teacher, such as ”pick up”, ’drop” or
“switch on/off” (Figure 1-2), whenever they manipulate
an object in the scene.

o Robot reasoning information: This layer can show
information to the teacher during direct social interaction
with the learner, e.g., the action sequence recorded by the
robot (Figure 1-3). In the future, more complex reasoning
and learning output might be visualized in this way.

IV. EXPERIMENTAL FRAMEWORK
A. Proposed experimental design and procedure

To validate the benefits provided by the proposed XAl
cues, this modality needs to be compared to more explored,
human-like modalities. Gaze cueing and joint attention have
been tackled extensively in HRI (see [22] for a review). They
belong to the most basic social cues usually implemented in
robots, especially in teaching scenarios (e.g., [23], [24]) and
have been demonstrated to affect human partners [25]. To
make the gaze and XAI channels comparable independently
of the information content, the gaze modality is integrated
with some utterances. Our assumption here is that gaze is a
more human-like feedback modality, hence more familiar to
express attention and engagement in an embodied way, still
XAI cues are more expressive and offer a more direct insight
into the robot’s mental state, without the need for the user to
actively monitor the robot. Still, these two modalities are by
design different in their communicative use and they also target
different perceptual channels in the users, hence it might be
the case that users find the combination of the two better. Our
hypotheses for the experimental study are thus the following:

o HI1: the XAI modality improves the user experience,
coordination and user’s awareness of the robot state.

o H2: combining XAI with other feedback modalities fur-
ther improves the experience.

Different modalities are planned to be tested in an AR
environment. The user wearing a Head Mounted Display
(HMD) will demonstrate simple kitchen tasks to the robot
observing the demonstration and reacting to certain cues
from the teacher. Fundamentally, three kinds of feedback are
conveyed by the robot to the user during the demonstration:

e social attunement: the robot sees that the user wants to
interact with it and signals it is attending;
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Fig. 2: System architecture. The right block shows the front-end interface with the AR setup, the left block the exchange with

the robot simulation and the behavior state machine via ROS.

o demonstration observation: the user demonstrates the task
and the robot follows by focusing on relevant objects;

« review: the robot reports the observed sequence at the end
of the demonstration.

To verify our hypotheses, we compare three conditions
(factor modality): gaze-speech, where the robot follows the
demonstration orienting its gaze and uttering what it sees;
XAI, where XAI cues are displayed directly on the attended
object holograms; a combined condition, expressing feedback
through both gaze, speech, and XAI. These behaviors are
further described in section IV-B.

In each condition, three different physical tasks will be
demonstrated. Envisioning a scenario where a naive user will
teach the robot to prepare or warm up food, we considered
for variability in the demonstrations the following tasks (factor
task): toasting bread in the toaster (easy), heating up milk in
the microwave (medium), boiling eggs in a pot on the stove
(difficult). Please note, that the task difficulty has been rated
just by the authors and not by independent raters. The three
levels are only meant to distinguish the tasks and we do not
have a specific hypothesis regarding this factor.

The experiment will be conducted within participants. Each
participant will experience each modality condition in blocks,
randomized in order. In each block all three demonstrations
will be performed, again in randomized order. Participants
will be instructed that purpose of the experiment is evaluating
different feedback modalities in a teaching scenario, where the
robot can see, hear and react to what they are doing but cannot
make a conversation. They will be explained what to expect in
the different conditions and that the robot knows about objects
and actions.

Fig. 3: Left: real object recognition via AR markers; Middle:
AR marker anchoring the virtual robot in the real world;
Right: the position and orientation of the virtual robot w.r.t. the
teacher is used to control the reaction to teacher’s behaviour.

B. Setup

The system consists of two components: 1) front-end inter-
face and 2) back-end state machine. Between the two compo-
nents, a ROS-based communication channel is established to
transfer human-input/system-output data (see Figure 2).

Front-end interface: virtual objects, a virtual robot, and
XAI cues are displayed in the mixed-reality environment via
the HoloLens!. HoloLens can scan the surroundings, build
up 3D meshes of the environment objects and locate itself
in the room, which enables it to stably overlay graphics in the
environment considering occlusions with real objects. In this
study, several fully virtual objects, such as a microwave, a
cup, or a piece of bread were created and implemented in
the AR world. Each object has a corresponding mass and
collider, enabling human teachers to pick up, rotate and lay
down them on real-world surfaces (e.g. table and floor, see
Figure 1). Besides fully virtual objects, real objects can also be

Uhttps://www.microsoft.com/en-us/hololens



recognized by the HoloLens via vuforia AR marker?, allowing
users to also manipulate those while teaching (Figure 3).

A virtual robot, which is the duplication of the physical
robot ”Johnny” [26], [27] with certain modifications, is in-
tegrated into the holographic environment (Figure 3 right).
Same as the real world Johnny, the virtual robot’s head can
rotate along two axes (pitch and yaw). Two kinova arms® are
also present in the virtual robot with the same degrees of
freedom as the real ones. A vuforia AR-marker, which can
be recognized by the HoloLens camera, is used to anchor the
virtual robot in the physical space (Figure 3 middle).

Besides, hololLens is also responsible for detecting the
human teacher’s behaviour as input to the back-end system.
This includes the teacher’s head position/orientation, gaze-ray
and speech input. More importantly, as holoLens can track the
teacher’s hand and fingers then the corresponding action (e.g.,
”pick” or “drop”) can also be detected based on rule-based
algorithms. Finally, the user behaviour and related manipulated
object information is sent as ROS topics to the backend.

Back-end state machine: a finite state machine regulates
the reactive behavior of the robot. Across all conditions, the
system relies on the detection of certain multimodal events
from the user to evaluate if the interaction is currently in a
social context (e.g., during social attunement) or in a teach-
ing context (during task demonstration). The robot (via the
Hololens) can detect on which hologram the user is fixating,
including the robot itself, recognize certain actions (picking,
placing, switching on/off), recognize the utterance of known
objects in the scene, as well as the user greeting (“Hello,
Johnny!”) or stating the end of the task ("Done”). The finite
state machine regulating the robot’s behavior consists hence of
three states: idle, social coordination, and teaching. Switching
from one state to another is regulated by two activation
functions ®., related to each context ¢ = {social, teaching}.
Similarly to [28], the value of these functions is determined
by a weighted sum of the currently detected social cues in the
set C(m), for each modality in M = {gaze, speech, action}:

D.(t) = Z Z Winic - cue;(t). (1

meM ieC(m)

where cue; € {0,1}, > > wmic = 1. The weights
are determined heuristically depending on the context. For
example, in the social context, a fixation on the robot is
weighted more than any utterance or action movement. In
each state, the robot can display a gaze behavior, an XAI
behavior, or both behaviors, depending on the experimental
condition. Idle is the default state the robot is in when not
interacting. Here, the robot randomly selects an object to focus
on. As soon as the robot detects that the human is looking at it
and addressing it ®,.;4; Would raise over a certain threshold
and also over ®;cqching, determining the switch to the social
context. Here, the robot gazes back at the user (mutual gaze)
in the gaze conditions or greets the user with an XAI cue

Zhttps://developer.vuforia.com/
3armshttps://www.kinovarobotics.com/product/gen2-robots

in the XAI conditions. As the user starts the demonstration
by looking at relevant objects and naming them, the robot
switches to the teaching context, and focuses on the same
objects as the tutor, either with its gaze or with the XAI cues.
In the gaze condition, the first time an object is mentioned the
robot repeats its name back, while in the XAl the object label
appears directly on the object anytime the user looks at it.

C. Data collection and analysis

With the Hololens and its connection to ROS, we plan to
acquire timestamped data from the gaze and speech behavior
of the interacting partners, the detected actions performed by
the user, and the XAI cues displayed by the robot. As an
objective measure, we consider overall demonstration times
across feedback modalities, expecting shorter times in the
XAI condition w.r.t. the gaze and speech condition (H1). In
the combined condition, times might be longer but possibly
still shorter than in the gaze condition (H2). As to behavioral
measures, we consider the percentage of time spent by the
user looking at the robot, expecting this to be shorter in the
XAl/combined conditions. Conversely, the proportion of time
spent looking at demonstration objects should be larger for the
conditions with XAI cues. Further, we consider coordinated
attention, that is, the time spent by user and robot on the same
object or in mutual gaze (in the XAl only condition this would
amount to the time the label is shown on the object). Here, the
XAI conditions are expected to produce larger coordination,
reducing the time spent by the user checking on the robot to
follow the demonstration. Finally, after each condition block,
participants will be administered the RoSAS questionnaire
[29] to evaluate the social perception of the robot according to
the three scales of competence, warmth, and discomfort. We
expect the XAI condition to be rated higher on competence
items, still, it might be possible that for the combined condition
both competence and warmth are rated higher since gaze is a
more human-like cue.

V. DISCUSSION AND OUTLOOK

We presented a design for novel XAI cues in AR, to
facilitate interactive learning by demonstration. Such interface
is devised to solve the perceptual belief problem [9] making
the tutor aware of the robot’s current focus of attention, the
label under which the robot knows the considered object and
its state. Such cues also inform about the robot’s understanding
of the situation, i.e, recognizing actions and presenting a final
report of the observed sequence. We reckon that this feedback
modality should streamline demonstrations, allowing the user
to build a mental model of the robot without explicit inquiry or
longer observation. A pilot study will test the integration of all
modules and tune the robot behavior heuristically in the differ-
ent conditions, before proceeding with a user study. A positive
evaluation of the XAI modality, also in integration with other
modalities, will allow the development of a pragmatic frame
[8], i.e., a teaching interaction protocol, where both tutor and
learner share a common ground and the user can tailor the
demonstration on the learner knowledge and capabilities.
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