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Abstract

While normalization techniques are widely used in deep learning, their theoretical understanding
remains relatively limited. In this work, we establish the benefits of (generalized) weight normal-
ization (WN) applied to the overparameterized matrix sensing problem. We prove that WN with
Riemannian optimization achieves linear convergence, yielding an exponential speedup over stan-
dard methods that do not use WN. Our analysis further demonstrates that both iteration and sample
complexity improve polynomially as the level of overparameterization increases. To the best of our
knowledge, this work provides the first characterization of how WN leverages overparameterization
for faster convergence in matrix sensing.

1. Introduction

Normalization schemes, such as layer, batch, and weight normalization, are essential in modern
deep networks and have proven highly effective for stabilizing training in both vision and language
models [4, 19, 34]. Despite their practical success, theoretical explanations of why they work remain
elusive, even for relatively simple problems.

This work focuses on weight normalization (WN), which decouples parameters (i.e., variables) into
directions and magnitudes, and then optimizes them separately. It has recently regained consid-
erable attention because of the seamless integration with LoRA [18], leading to several powerful
strategies for parameter-efficient fine-tuning of large language models; see e.g., [27, 28]. Yet, the-
oretical support for WN remains relatively limited. Prior results in [44] show that WN applied to
overparameterized least squares induces implicit regularization towards the minimum ℓ2-norm so-
lution. The implicit regularization of WN on diagonal linear neural networks is studied in [13]. WN
is also observed to reduce Hessian spectral norm and improve generalization in deep networks [14].

Our work broadens the understanding of WN by establishing its merits in overparameterized matrix
sensing. The goal here is to recover a low-rank positive semi-definite (PSD) matrix A ∈ Rm×m

from linear measurements. In the vanilla formulation without WN, one can exploit the low-rankness
of ground-truth matrix, i.e., rA := rank(A) ≪ m for efficient parameterization. Specifically, we
can optimize on Y ∈ Rm×r such that YY⊤ ≈ A [7]. The overparameterized regime r > rA
is of interest due to the need of exact recovery without knowing rA a priori. This problem has
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Table 1: Comparison with existing algorithms for overparameterized matrix sensing. “E.C.” denotes
“exact convergence”, i.e., whether the reconstruction error bound will go to zero when t → ∞. UB,
LB and OP are short for upper bound, lower bound, and overparameterization, respectively.

Algorithm WN E.C. Initialization Convergence Rate Faster with OP

GD (UB) [38] ✗ ✗ Small & random N/A -

GD (LB) [45] ✗ ✓ Small & random Ω
(

κ2

log(mr2
A
)t

)
✗

RGD (Theorem 2) ✓ ✓ Random exp
(
−O

( (r−rA)4

κ4m2r2rA
t
))

✓

wide applications in machine learning and signal processing [9], and serves as a popular testbed for
theoretical deep learning given its non-convexity and rich loss landscape; see e.g., [3, 20, 25].

Without WN, prior work [45] establishes a sublinear lower bound on the convergence rate when the
above sensing problem is optimized via gradient descent (GD), even with infinite data samples. We
circumvent this lower bound by i) extending WN for coping with matrix variables; and, ii) prov-
ing that applying this generalized WN with Riemannian gradient descent (RGD) enables a linear
convergence rate in the finite sample regime, leading to an exponential improvement. Remarkably,
WN leverages higher level of overparameterization to achieve both faster convergence and lower
sample complexity. To the best of our knowledge, this is the first theoretical result demonstrating
that normalization benefits from overparameterization.

More concretely, our contributions are summarized as follows:

❖ Exponentially faster rate. For overparameterized matrix sensing problems, we prove that ran-
domly initialized WN achieves a linear convergence rate of exp(−O( (r−rA)4

κ4m2r2rA
t)), where κ is the

condition number of the ground-truth matrix A. This linear rate is exponentially faster than the
sublinear lower bound Ω

(
κ2

log(mr2A)t

)
obtained without WN. Moreover, additional overparameteriza-

tion in WN provides quantifiable benefits: the iteration complexity scales down polynomially as the
overparameterization level r increases; see Table 1 for a summary.

❖ Empirical validation. We conduct experiments on overparameterized matrix sensing and the
numerical results corroborate our theoretical findings.

Notation. Bold lowercase (capital) letters denote column vectors (matrices); (·)⊤ and ∥ · ∥F refer
to transpose and Frobenius norm of a matrix; ∥ · ∥ denotes the ℓ2 norm for vectors and the spectral
norm for matrices; ⟨A,B⟩ = Tr(A⊤B) represents the standard matrix inner product; σi(·) and λi(·)
denote the i-th largest singular value and eigenvalue, respectively. Sm and Sm+ denote symmetric
and positive semi-definite (PSD) matrices of size m×m, respectively.

2. WN for overparameterized matrix sensing

We focus on applying WN to the symmetric low-rank matrix sensing problem. The objective is to
recover a low-rank and positive semi-definite (PSD) matrix A ∈ Sm+ from a collection of n data
{(Mi, yi)}ni=1, where each feature matrix Mi ∈ Sm is symmetric and the corresponding label is
yi = Tr(M⊤

i A). For notational conciseness, we let y = [y1, . . . , yn]
⊤ ∈ Rn and define a linear
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mapping M : Sm 7→ Rn with [M(A)]i = Tr(M⊤
i A). As mentioned in the introduction, for the

vanilla formulation, we optimize on Y∈Rm×r such that YY⊤ ≈ A [7]. This leads to

min
Y∈Rm×r

1

4
∥M(YY⊤)− y∥2. (1)

Despite its seemingly simple formulation, the loss landscape contains saddle points, hence achieving
a global optimum from a random initialization is nontrivial. Moreover, overparameterization, i.e.,
r > rA, is often considered in practice to ensure exact recovery of A without prior knowledge of its
rank. It is established in [45] that such overparameterization induces optimization challenges even
in the population setting (n → ∞). In particular, a lower bound of GD shows that ∥YtY

⊤
t −A∥F

converges no faster than Ω(1/t), where t is the iteration number. This rate is exponentially slower
than the linear one when rA is known to employ r = rA [48].

Applying WN to problem (1). For a vector variable, WN decouples it into direction and magnitude,
and optimizes them separately. Extending this idea to matrix variables in (1), we leverage polar
decomposition to write Y = XΘ̃, where X ∈ St(m, r) lies in a Stiefel manifold and Θ̃ ∈ Sr+.
Here, the Stiefel manifold St(m, r) is defined as {X ∈ Rm×r|X⊤X = Ir}. One can geometrically
interpret X as orthonormal bases for an r-dimensional subspace, thus representing “directions”, and
Θ̃ captures the “magnitude” of a matrix. Substituting Y in (1), we arrive at

min
X,Θ̃

1

4
∥M(XΘ̃Θ̃⊤X⊤)− y∥2 s.t. X ∈ St(m, r), Θ̃ ∈ Sr+.

The above problem can be further simplified by i) merging Θ̃Θ̃⊤ into a single matrix Θ ∈ Sr+;
and ii) relaxing the PSD constraint on Θ to only symmetry, i.e., Θ ∈ Sr. This relaxation achieves
the same global objective in the overparameterized regime, yet significantly improves computational
efficiency by avoiding SVDs or matrix exponentials needed for optimizing over PSD cones [39, 41].
In sum, applying WN gives the objective

min
X,Θ

f(X,Θ) :=
1

4
∥M(XΘX⊤)− y∥2 s.t. X ∈ St(m, r), Θ ∈ Sr. (2)

For convenience, we continue to refer to this generalized variant as WN, since it aligns with the
direction-magnitude decomposition paradigm. Similar reformulations of (1) have appeared in [23,
31]. The former empirically studies the faster convergence on matrix completion problems, while
the latter tackles local geometry around stationary points. Our work, on the other hand, characterizes
the optimization benefits of WN and clarifies its interaction with overparameterization.

2.1. Solving WN via Riemannian optimization

Generalizing the vector WN1 on matrix problems, Riemannian optimization is adopted for coping
with the manifold constraint X ∈ St(m, r). We simply treat the manifold as an embedded one
in Euclidean space. Extensions to other geometry are straightforward. To optimize the direction
variable Xt, let G̃t := ∇Xf(Xt,Θt) denote the Euclidean gradient on Xt (a detailed expression is
given in (5) of Appendix A). The Riemannian gradient for Xt can be written as

Gt := (Im −XtX
⊤
t )G̃t +

Xt

2
(X⊤

t G̃t − G̃⊤
t Xt). (3)

1. While the practical update rule of WN [34, eq. (4)] lies between Riemannian and Euclidean optimization, [44,
Lemma 2.2] shows that the limiting flow is Riemannian flow.
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Algorithm 1 Riemannian gradient descent (RGD) for solving WN (2)
Input: Initial point X0 ∈ St(m, r), Θ0 ∈ Sr, step sizes η, µ
for t = 0, 1, . . . T do

Compute Gt (Riemannian gradient of Xt) via (3)
Update Xt+1 via (4) // direction variable
Compute Kt (gradient of Θt) via (6)
Update Θt+1 via (7) // magnitude variable

end
Output: XT+1, ΘT+1

Further applying the polar retraction2 to ensure feasibility, the update for Xt is given by

Xt+1 = (Xt − ηGt)(Ir + η2G⊤
t Gt)

−1/2 (4)

where η > 0 is the stepsize. Detailed derivations of (3) and (4) are deferred to Appendix A. Note
that polar retraction is used here for theoretical simplicity. Shown in Appendix C, other retractions
for Stiefel manifolds such as QR and Cayley3 share almost identical performance numerically.

An alternative update method is adopted for the magnitude variable Θt. Denote the gradient as
Kt := ∇Θf(Xt+1,Θt), whose expression can be found in (6) in Appendix A. We use GD with a
step size µ > 0 to optimize Θt

Θt+1 = Θt − µKt.

This update ensures feasibility of the symmetric constraint Θt ∈ Sr,∀t whenever initialized with
Θ0 ∈ Sr; see a proof in Lemma 22. The step-by-step procedure for solving (2) is summarized in
Algorithm 1, and it is termed as RGD for future reference.

3. On the benefits of WN

This section demonstrates that WN delivers exact convergence at a linear rate for overparameterized
matrix sensing (2) and leverages additional overparameterization to yield faster optimization and
lower sample complexity. Recall that the rank of A is denoted by rA. Let the compact SVD of
A be A = UΣU⊤, where U ∈ Rm×rA and Σ ∈ SrA+ . Without loss of generality, we assume
σ1(Σ) = 1 and σrA(Σ) = 1/κ with κ ≥ 1 denoting the condition number. We will use the
restricted isometry property (RIP) [32], a standard assumption in matrix sensing, in our proofs; see
more in, e.g., [38, 45, 47, 49].

Definition 1 (Restricted Isometry Property (RIP)) The linear mapping M(·) is (r, δ)-RIP, with
δ ∈ [0, 1), if for all matrices A ∈ Sm of rank at most r, it satisfies

(1− δ)∥A∥2F ≤ ∥M(A)∥2 ≤ (1 + δ)∥A∥2F.

RIP ensures that the linear measurement approximately preserves the Frobenius norm of low-rank
matrices. A detailed discussion and illustrative examples of RIP are provided in Appendix D.2.
With these preparations, we are ready to uncover the merits of WN.

2. Let X ∈ St(m, r) and a point in its tangent space G ∈ TXSt(m, r). The polar retraction for X + G is given by
RX(G) = (X+G)(Ir +G⊤G)−1/2.

3. See e.g., [1], for more detailed discussions on retractions.
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3.1. Main results

We consider WN under random initialization, meaning that X0 is chosen uniformly at random from
the manifold St(m, r). One possible approach is to set X0 = Z0(Z

⊤
0 Z0)

−1/2, where the entries of
Z0 ∈ Rm×r are i.i.d. Gaussian random variables N (0, 1) [12].

Theorem 2 Consider solving the WN-aided sensing problem (2) initialized with random X0 ∈
St(m, r) and Θ0 ∈ Sr satisfying ∥Θ0∥ ≤ 2. Assume that rA ≤ m

2 and M(·) is (r+rA+1, δ)-RIP

with δ = O
( (r−rA)6

κ2m3r4rA

)
. Algorithm 1 using stepsizes η = O

( (r−rA)4

κ2m2r2rA

)
and µ = 2 generates a

sequence {Xt,Θt}∞t=0. With high probability over the initialization, this sequence proceeds in two

distinct phases, separated by a burn-in time t0 with an upper bound O
(κ4m4r4r2A

(r−rA)8

)
:

i) Initial phase. For some universal constant c2 ∈ (0, 1), it follows that

∥XtΘtX
⊤
t −A∥F ≤ 2

√
rA − c2(r − rA)8t

κ4m4r4rA
+ 1, 1 ≤ t ≤ t0.

ii) Linearly convergent phase. For some universal constant c3 ∈ (0, 1), it is guaranteed that

∥XtΘtX
⊤
t −A∥F ≤ 3

(
1− c3(r − rA)

4

κ4m2r2rA

)t−t0

, ∀ t ≥ t0 + 1.

We refer to ∥XtΘtX
⊤
t −A∥F as the reconstruction error since it measures the distance to our target

matrix. Next, we break down Theorem 2 to demonstrate the benefits of generalized WN for the
overparameterized matrix sensing problem from two different perspectives.

Optimization benefits of WN include i) faster convergence rate, and ii) less stringent initialization
requirements. Theorem 2 shows that WN achieves exact convergence with a linear rate. In contrast,
without WN, the convergence behavior of randomly initialized GD on (1) is weaker. Specifically,
[38] shows that GD can only attain a constant reconstruction error with early stopping, but not
guarantee last-iteration convergence. On the other hand, [45] establishes a lower bound for exact
recovery of GD, giving a sublinear dependence on t; see a detailed comparison in Table 1. In
addition, our guarantee of this linear rate is obtained without strict requirements on initialization,
which stands in stark contrast to the non-WN setting, where the magnitude of random initialization
must be carefully controlled, often inversely proportional to κ [20, 38, 47].

WN makes overparameterization a friend. Because the additional parameters induce computa-
tion and memory overheads, it is natural to expect more gains from overparameterization. It can be
seen from Table 1 that GD does not benefit from overparameterization, while the benefits of over-
parameterization for WN are twofold. Setting r = prA for some p > 1, one can rewrite the upper
bound of the burn-in time t0 as O

( κ4m4p4

(p−1)8r2A

)
, which decreases polynomially with p. In the linearly

convergent phase, WN achieves a convergence rate of exp
(
− O

( (p−1)4rA
κ4m2p2

t
))

, which is also faster
with a larger p. In terms of iteration complexity, this translates into a polynomial improvement with
the level of overparameterization. To quantitatively understand the merits of overparameterization,
we consider two cases. In the mildly overparameterized regime, where r = rA+c for some constant
c = O(1), the convergence rate reads exp

(
−O( t

κ4m2r3A
)
)
. When the level of overparameterization

increases to r = crA, the rate improves to exp
(
− O( rAt

κ4m2 )
)
. Through comparison, we see that
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(a) small κ (b) large κ (c) small r (d) large r

Figure 1: Comparison of RGD on WN and GD on (1) (squared reconstruction error vs. iteration).

additional overparameterization yields up to a factor of O(r4A) improvement in the exponent. On the
statistical side, the sample complexity of WN is determined by the RIP assumption on M(·). Under

the Gaussian design, as detailed in Appendix D.2, the RIP holds w.h.p. when n = O
(κ4m7r9r2A

(r−rA)12

)
.

Notably, the sample complexity n reduces polynomially as r increases. In particular, following the
same analysis as for the convergence rate, this reduction can reach up to a factor of O(r12A ).

4. Numerical experiments

Numerical experiments are conducted to validate our theoretical findings for WN on overparame-
terized matrix sensing problems. More details on experiments setup are deferred to Appendix I.1.

Faster convergence of WN. We compare RGD on WN with vanilla GD on (1) under different
condition numbers κ. For small κ instances with m = 10, r = 5, rA = 3, and n = 1000, we
consider κ ∈ {1, 3, 5}. For large κ instances where m, r, rA remain fixed, and n = 3000, we test
κ ∈ {10, 20, 30}. Figures 1(a), (b) demonstrate that WN converges to 0 in a linear convergence
rate after a small initial phase, while vanilla GD slows down to a sub-linear rate.

On the benefit of overparameterization. We further examine the impact of the level of overpa-
rameterization r. For small r instances with m = 10, rA = 3, κ = 1, and n = 1000, we test
r ∈ {4, 5, 6}. For large r instances with m = 20, rA = 3, κ = 10, and n = 3000, we consider
r ∈ {5, 10, 15}. Figures 1(c), (d) show that larger r leads to a quicker escape from the initial phase
and a higher convergence rate for WN, consistent with our theoretical findings.

5. Conclusion

This work provides new theoretical insights into the role of weight normalization (WN) in over-
parameterized matrix sensing. We prove that randomly initialized WN with proper Riemannian
optimization guarantees a linear rate, yielding an exponential improvement on overparameterized
sensing problems without WN. Moreover, we show that overparameterization can be exploited un-
der WN to achieve faster optimization and lower sample complexity. Numerical experiments further
validate our findings. Future work includes extending these results to broader non-convex learning
settings, such as tensor problems [40], and developing new algorithms that build on WN.
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Appendix A. Algorithm 1 derivation

We consider the overparameterized setting r > rA and apply a joint update on both Xt and Θt

in an alternating manner. Let M∗ : Rn 7→ Sm denote the adjoint of M with explicit form
M∗(y) =

∑n
i=1 yiMi. The Stiefel manifold St(m, r) is embedded in the Euclidean space, then we

first compute the Euclidean gradient of Xt as

G̃t =
[
M∗M(XtΘtX

⊤
t −A)

]
XtΘt (5)

= (XtΘtX
⊤
t −A)XtΘt +

[
(M∗M−I)(XtΘtX

⊤
t −A)

]
XtΘt.

Projecting it onto the tangent space of St(m, r) yields the Riemannian gradient

Gt := (Im −XtX
⊤
t )G̃t +

Xt

2
(X⊤

t G̃t − G̃⊤
t Xt).

Using polar retraction, the update of Xt along the direction Gt with stepsize η is given by

Xt+1 = (Xt − ηGt)(Ir + η2G⊤
t Gt)

−1/2.

For the magnitude variable Θt, the Euclidean gradient is

Kt =
1

2
X⊤

t+1

[
M∗M(Xt+1ΘtX

⊤
t+1 −A)

]
Xt+1. (6)

Denoting the identity mapping by I, the update of Θt with stepsize µ becomes

Θt+1 = Θt −
µ

2
X⊤

t+1

[
M∗M(Xt+1ΘtX

⊤
t+1 −A)

]
Xt+1 (7)

= X⊤
t+1AXt+1 −X⊤

t+1

[
(M∗M− µ

2
I)(Xt+1ΘtX

⊤
t+1 −A)

]
Xt+1.

Appendix B. Diving deeper into the initial phase

In this section, we take a closer look at the convergence of RGD on WN in the initial phase, that is
t ≤ t0, or equivalently Tr(ΦtΦ

⊤
t ) ≤ rA − 0.5. Here, Φt := U⊤Xt depicts the alignment between

span(U) and span(Xt) and its singular values coincide with the cosine of the principle angles be-
tween these two subspaces [5]. Our numerical experiments in Figure 2 indicate that RGD traverse
a sequence of saddles. The saddle-to-saddle behavior is known for GD on (1) [20, 26]. This section
shows that this behavior persists for (2), yet can be faster with a higher level of overparameteriza-
tion. To bypass the randomness associated with Mi, we begin by pinpointing the saddles for the
population loss, i.e., problem (2) in the infinite data limit n → ∞. More precisely, the objective is
given by f∞(X,Θ) = 1

4

∥∥XΘX⊤ −A
∥∥2
F
.

Lemma 3 For a given ρ ∈ {0, 1, . . . , rA − 1}, let Aρ be the best rank-ρ approximation of A, i.e.,
Aρ = argminrank(Â)≤ρ ∥Â−A∥2F. In particular, we let A0 = 0. A point (X,Θ) is a saddle of the

population loss f∞ if XΘX⊤ = Aρ and Tr(X⊤UU⊤X) = ρ.

11
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Figure 2: The saddle-to-saddle (i.e., sequential learning) behaviors in WN. The x-axis corresponds
to the iteration number. (a) Each plateau signifies a saddle; (b) gradient norm at saddles drops by
orders; (c) saddles strongly relate to the best rank-ρ approximation of A; (d) sequential learning
in the alignment between Xt and U; (e) sequential learning in the alignment between Xt and U⊥;
and, (f) sequential pattern in the magnitude variable Θt.

Lemma 3 indicates that the saddles of f∞ are closely related to the best rank-ρ approximation of
A. It further suggests that a saddle-to-saddle dynamic is aligned with incremental learning4: the
algorithm successively learns Aρ for increasing ρ until the ground-truth matrix is recovered. Lemma
4 below shows that in the finite-sample regime, the saddles of f∞ also have small gradient norm on
f , i.e., no larger than O( (r−rA)6

κ2m2r4rA
) under the parameter choices of Theorem 2.

Lemma 4 Assume that M(·) is (r + rA + 1, δ)-RIP, and ∥Θ∥ ≤ 2, the finite sample loss in (2)
satisfies ∥∇R

Xf∞(X,Θ)−∇R
Xf(X,Θ)∥F ≤ 12mδ and ∥∇Θf∞(X,Θ)−∇Θf(X,Θ)∥F ≤ 3

2mδ.
Here, ∇R

X denotes the Riemannian gradient with respect to X.

Having characterized the saddles, we now turn to the saddle-to-saddle trajectory in Figure 2. This
figure traces the optimization trajectory of Algorithm 1 on WN with m = 300, rA = 5, r = 10, and
κ = 3, with more details shown in Appendix I.2. Figure 2(a) plots the squared reconstruction error
across iterations. Each plateau marks escape from a saddle, as confirmed by the small gradient norm
shown in Figure 2(b). Figure 2(c) further shows that these saddles are exactly those characterized
in Lemma 3, where ∥XtΘtX

⊤
t −Aρ∥2F for ρ ∈ {0, 1, . . . , rA − 1} stays close to 0 sequentially. In

other words, each saddle escape corresponds to leaving the neighborhood of Aρ.

4. Also known as deflation; see e.g., [2, 16, 36]

12
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(a) Various retractions (b) Noisy measurement (c) Faster when r = m

Figure 3: Additional numerical results. X-axis: squared reconstruction error; Y-axis: iteration.

In addition, the optimization variables, geometrically interpretable as direction and magnitude, also
exhibit a sequential learning behavior. For the direction variable Xt, the singular values of ΦtΦ

⊤
t

(which characterize the squared cosine of the principle angles between Xt and U) are visualized in
Figure 2(d). Further, let U⊥ ∈ Rm×(m−rA) be an orthonormal basis for the orthogonal complement
of span(U). The alignment of Xt and U⊥ is plotted in Figure 2(e), with the alignment matrix
defined as Ψt := U⊤

⊥Xt. The singular values of the magnitude variable Θt are plotted in Figure
2(f). A clear sequential learning pattern is observed among all these figures.

Lastly, we highlight that polynomial time is needed to escape all saddles: Theorem 2 bounds the
duration of this phase to be at most O

(κ4m4r4r2A
(r−rA)8

)
iterations. This bound decreases with larger r,

indicating that overparameterization facilitates saddle escape under WN.

Appendix C. Additional experiments

In this section, we take additional experiments to reveal other interesting behaviors of WN with both
synthetic and real-world data. More details on experiments setup are deferred to Appendix I.3.

Alternative manners of retraction. Although our algorithm for WN tackles only the polar retrac-
tion, other popular retractions share similar performance. In Figure 3(a), we plot the performance
of RGD with different manners for retraction, such as Cayley and QR, on an instance of (2) with
m = 10, r = 5, rA = 3, κ = 2, n = 1000. The three curves of squared reconstruction errors nearly
coincide. For better visualization, we scale the errors of Cayley and QR by 3 and 1/3, respectively.

Noisy measurements. To examine the robustness of WN, we consider a setting with corrupted
labels, i.e., yi = Tr(M⊤

i A) + bi for i.i.d. Gaussian noise bi ∼ N (0, ξ2). Figure 3(b) compares
WN with the vanilla problem (1) under the choices of ξ = 10−1, ξ = 10−3, and ξ = 10−5. It can
be seen that RGD holds a linear rate under all choices of ξ, and the final squared reconstruction
error stabilizes around O(ξ2). On the other hand, the error of GD is mainly confined by its slow
convergence rate. This demonstrates that the power of WN carries to noisy settings as well.

Full rank case with r = m. WN shows remarkable effectiveness in the special setting with r = m.
Instances with three different choices of m = r ∈{5, 25, 50}, rA ∈{2, 10, 20}, κ ∈{1, 15, 50}, and
n = 5000 are plotted in Figure 3(c). The faster convergence arises from the fact that at initialization,
X0 ∈ St(m,m) already aligns with the target subspace spanned by U, i.e., Tr(IrA −Φ0Φ

⊤
0 ) = 0.

13
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(a) Ground truth (b) RGD reconstruction (c) GD reconstruction

(d) Ground truth (e) RGD reconstruction (f ) GD reconstruction

Figure 4: The advantages of WN on image reconstruction tasks.

Equivalently, this is the case where only the magnitude Θ is optimized. The faster convergence in
this case implies that learning the correct direction (i.e., U) is more challenging than magnitude.

Image reconstruction experiments. Beyond the above synthetic experiments, we further evaluate
the advantages of WN with real-world data on two image reconstruction tasks.

The first experiment follows [15] to consider a generalized phase retrieval problem on a 32 × 32
horse image from the CIFAR-10 dataset [22]. The image is converted to grayscale and vectorized as
a ∈ R1024. Standard lifting reformulation converts this problem to a sensing problem on a rank-one
ground-truth matrix A = aa⊤ ∈ S1024+ ; see [8]. The second considers direct matrix sensing of a
structured image given by A ∈ S128+ with rA = 2. In both cases, we set the overparameterization
level to r = 100 and use n = 50000 feature matrices. RGD and GD are randomly initialized and run
for tRGD = 100, tGD = 200 iterations in both experiments to make the overall runtime comparable;
see Appendix I.3.2 for details.

The reconstructions from the two experiments are presented in Figure 4. As shown, WN enables
RGD to achieve more accurate recovery of the ground truth compared to GD. These results demon-
strate that WN provides a significant improvement for image reconstruction problems.

Appendix D. More on backgrounds

D.1. Polar decomposition

The definition of the polar decomposition is provided below; see [17, Section 9.4.3] for a detailed
discussion and theoretical background.
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Definition 5 The polar decomposition of a matrix X ∈ Rm×r with m ≥ r is defined as

X = UP,

where U ∈ Rm×r has orthonormal columns and P ∈ Sr+ is a positive semi-definite matrix.

This decomposition can be interpreted as expressing X as the product of directions (U) and a
magnitude part (P). It is unique when X has full column rank.

D.2. Restricted Isometry Property (RIP)

The RIP condition [32] in Definition 1 is a standard assumption in matrix sensing, ensuring that
the linear measurement operator approximately preserves the Frobenius norm of low-rank matrices.
This property has been verified to hold with high probability for a wide variety of measurement
operators. The following lemma establishes RIP for Gaussian design measurements.

Lemma 6 [10] If M(·) is a Gaussian random measurement ensemble, i.e., the entries of {Mi}ni=1 ⊂
Sm are independent up to symmetry with diagonal elements sampled from N (0, 1/n) and off-
diagonal elements from N (0, 1/2n), then with high probability, M(·) is (r, δr)-RIP, as long as
n ≥ Cmr/δ2r for some sufficiently large universal constant C > 0.

Appendix E. Related work

Overparameterized matrix sensing. Overparameterized matrix sensing arises from many machine
learning and signal processing applications such as collaborative filtering and phase retrieval [9, 15,
35, 37]. The problem is now a canonical benchmark in theoretical deep learning, mainly because the
loss landscape is riddled with saddle points and lacks global smoothness or a global PL condition.
Convergence analyses for various algorithms on its population loss, i.e., matrix factorization, can be
found in [21, 24, 43, 50]. Small random initialization in overparameterized matrix sensing has been
studied in [20, 38, 45, 47], while [11, 29, 52] are based on spectral initialization. Besides saddle
escaping under small initialization, another intriguing phenomenon is that overparameterization can
exponentially slow the convergence of GD compared to the exactly parameterized case [45, 52]. Our
work proves that WN avoids this slowdown and achieves an improved rate. Moreover, additional
overparameterization leads to faster convergence and lower sample complexity.

Overparameterization in other nonconvex estimation problems. Beyond matrix sensing, the role
of overparameterization has also been examined in several nonconvex estimation problems. For ma-
trix completion, [30] proves that the vanilla gradient descent with small initialization converges to
the ground truth without requiring any explicit regularization, even in the overparameterized sce-
nario. In Gaussian mixture learning, [51] establishes that Gradient EM achieves global convergence
at a polynomial rate with polynomial samples, when the model is mildly overparameterized. For
neural network training, [46] shows that in the problem of learning a single neuron with ReLU ac-
tivation, randomly initialized gradient descent can suffer from an exponential slowdown when the
model is overparameterized. These studies illustrate that overparameterization appears in diverse
problem settings, while its precise influence on the convergence behavior is problem-dependent.

Riemannian optimization. Riemannian optimization is naturally connected to WN because the set
of directions of a vector forms a unit sphere, which is a smooth manifold. It extends gradient-based
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methods to problems with smooth manifold constraints [1, 6]. We rely on standard notions. In its
simplest form, Riemannian gradient descent (RGD) iteratively moves along the negative direction
of Riemannian gradient, which can be thought as gradient projected to the tangent space, and then
maps the iterate back to the manifold via a retraction.

Appendix F. Proof strategies and supporting lemmas

F.1. Proof strategies

To establish convergence of Theorem 2, we analyze the evolution of the principle angles between
span(U) and span(Xt). Specifically, we track the quantity Tr(IrA − ΦtΦ

⊤
t ). This term reflects

the subspace alignment error between span(U) and span(Xt). For notational convenience, we set
µ = 2, which is consistent with our choice in Theorem 2.

Our proof is structured into two phases:

• Phase I (Initial phase): When the alignment error is large, i.e., Tr(IrA − ΦtΦ
⊤
t ) ≥ 0.5, we

rely on the fact that σ2
rA
(Φt) remains bounded away from zero. This property guarantees that

the alignment error decreases by at least a constant amount at each iteration.

• Phase II (Linearly convergent phase): Once Tr(IrA −ΦtΦ
⊤
t ) < 0.5, we enter a contraction

regime. In this regime, we establish that the reconstruction error and the alignment error
decrease jointly, governed by a coupled inequality system.

Throughout both phases, two error terms caused by the limited number of measurements must be
carefully controlled. Formally, we introduce the following definitions:

∆t := (M∗M−I)(Xt+1ΘtX
⊤
t+1 −A),

Ξt := (M∗M−I)(XtΘtX
⊤
t −A).

Incorporating these two error terms, we can rewrite G̃t and Θt+1 as follows:

G̃t = (XtΘtX
⊤
t −A)XtΘt +ΞtXtΘt,

Θt+1 = X⊤
t+1AXt+1 −X⊤

t+1∆tXt+1.

These two terms will be used repeatedly throughout the proofs in the following sections.

F.2. Supporting lemmas

Since Theorem 2 considers random initialization, it is conditioned on the following high-probability
event F , which gives a lower bound on the smallest singular value of Φ0 = U⊤X0:

F = {σ2
rA
(U⊤X0) ≥

(r − rA)
2

c1mr
},

where c1 > max{1, 36C2
1} is a universal constant, with C1 given in Lemma 20.
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Lemma 7 With respect to the randomness in X0, event F occurs with probability at least

1− exp(−m/2)− Cr−rA+1
3 − exp(−C2r),

where C2 > 0 and C3 =
6C1√
c1

∈ (0, 1) are universal constants.

This lemma ensures that the smallest singular value of the initial alignment between U and X0 is
bounded away from zero with high probability, which is critical to initialize Phase I.

Lemma 8 Suppose that at iteration t, the alignment error satisfies that

Tr(IrA −ΦtΦ
⊤
t ) ≤ ρ,

then the reconstruction error at iteration t satisfies that

∥XtΘtX
⊤
t −A∥F ≤ 2

√
ρ+ ∥∆t−1∥F.

The lemma above connects the reconstruction error ∥XtΘtX
⊤
t − A∥F with the alignment error

Tr(IrA − ΦtΦ
⊤
t ) and the measurement error ∥∆t−1∥F. It means that the reconstruction error is

small once Xt and U are sufficiently aligned and the measurement error is small.

Lemma 9 Assuming η < 1
300κ2rA

, M(·) is (r + rA + 1, δ)-RIP with δ = ξ√
mr

, ξ ∈ [0, 1), and
∥Θt∥ ≤ 2. Then, the measurement errors satisfy that

∥∆t∥F ≤ ξ∥XtΘtX
⊤
t −A∥F,

∥Ξt∥F ≤ ξ∥XtΘtX
⊤
t −A∥F.

This provides upper bounds on the norm of the measurement error terms ∆t,Ξt by the reconstruc-
tion error ∥XtΘtX

⊤
t −A∥F, which is guaranteed by the RIP property of M(·).

Lemma 10 Let χt := (∥∆t−1∥+ ∥Ξt∥)2 +
√
Tr(IrA −ΦtΦ⊤

t )(∥∆t−1∥+ ∥Ξt∥),

βt := σ1(IrA −ΦtΦ
⊤
t ),

Ht := (Im −XtX
⊤
t )(AXtX

⊤
t ∆t−1Xt +ΞtXtΘt)

+
1

2
(XtX

⊤
t ΞtXtΘt −XtΘtX

⊤
t ΞtXt)

+
1

2
(XtX

⊤
t AXtX

⊤
t ∆t−1Xt −XtX

⊤
t ∆t−1XtX

⊤
t AXt).

Assuming ∥∆t−1∥F, ∥Ξt∥F ≤ 1, η ≤ 1
10rA

, and ∥Θt∥ ≤ 2, then the following inequality holds:

Tr(IrA −Φt+1Φ
⊤
t+1)− Tr(IrA −ΦtΦ

⊤
t ) (8)

≤ η2(βt + 16χt)Tr(ΦtΦ
⊤
t )−

2η(1− η2βt − 16η2χt)σ
2
rA
(Φt)

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
+ 2η

√
Tr(IrA −ΦtΦ⊤

t )(∥∆t−1∥F + 2∥Ξt∥F)

+ 2η2
√
Tr(IrA −ΦtΦ⊤

t )∥Ht∥F.
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This lemma quantifies how the alignment error Tr(IrA −ΦtΦ
⊤
t ) evolves between iterations. This

is the key lemma that drives the reduction of the alignment error.

Lemma 11 Assuming M(·) is (r + rA + 1, δ)-RIP with δ ≤ 1
3
√
m

. If ∥Θt∥ ≤ 2, then it is
guaranteed that

∥Θt+1∥ ≤ 2.

As shown in Lemmas 9 and Lemma 10, the analyses require that ∥Θt∥ is upper bounded by 2. This
condition has already been guaranteed at initialization. Moreover, based on the update rule of Θt

given in (7), we observe that ∥Θt∥ remains close to ∥X⊤
t AXt∥ in each iteration.

Lemma 12 Assuming η ≤ 1,M(·) is (r + rA + 1, δ)-RIP, and ∥Θt−1∥, ∥Θt∥ ≤ 2, we have that

Ψt+1Ψ
⊤
t+1 ⪯

(
1+6η(

√
rA+2

√
r)δ

)2
ΨtΨ

⊤
t +

(
4η(

√
rA+2

√
r)δ+28η2(

√
rA+2

√
r)2δ2

)
Im−rA .

Moreover, it is also guaranteed that

Ψ1Ψ
⊤
1 ⪯

(
1+2η+2η(

√
rA+2

√
r)δ

)2
Ψ0Ψ

⊤
0 +

(
12η(

√
rA+2

√
r)δ+8η2(

√
rA+2

√
r)2δ2

)
Im−rA .

This lemma establishes an upper bound on the growth of ΨtΨ
⊤
t . Together with Lemma 15, we can

ensure that σ2
rA
(Φt) remains adequately large throughout Phase I.

Lemma 13 Assuming η ≤ 1
500rA

, M(·) is (r+ rA+1, δ)-RIP with δ ≤ 1√
m

, and ∥Θt∥ ≤ 2. Then
for any t ≥ 0, the alignment error satisfies that

Tr(IrA −Φt+1Φ
⊤
t+1) ≤ Tr(IrA −ΦtΦ

⊤
t ) + 0.1.

This guarantees that the alignment error Tr(IrA − ΦtΦ
⊤
t ) does not increase too much in one step

when we choose suitable stepsize η, which is crucial for bridging Phase I and Phase II.

Appendix G. Proofs

G.1. Proof of Lemma 7

Proof Since the initialization X0 satisfies the conditions stated in Lemma 21, we can apply the
lemma directly. In particular, substituting τ = 6√

c1
yields the desired result.

G.2. Proof of Lemma 8

Proof Directly substituting the expression of Θt into the Frobenius norm term, we have that

∥XtΘtX
⊤
t −A∥F = ∥XtX

⊤
t AXtX

⊤
t −A−XtX

⊤
t ∆t−1XtX

⊤
t ∥F

≤ ∥XtX
⊤
t AXtX

⊤
t −A∥F + ∥XtX

⊤
t ∆t−1XtX

⊤
t ∥F

≤ ∥XtX
⊤
t AXtX

⊤
t −AXtX

⊤
t ∥F + ∥AXtX

⊤
t −A∥F + ∥XtX

⊤
t ∆t−1XtX

⊤
t ∥F

(a)

≤ 2∥Σ∥∥(Im −XtX
⊤
t )U∥F + ∥∆t−1∥F
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= 2∥Σ∥
√
Tr(IrA −ΦtΦ⊤

t ) + ∥∆t−1∥F
≤ 2∥Σ∥√ρ+ ∥∆t−1∥F
= 2

√
ρ+ ∥∆t−1∥F,

where (a) is by the inequality ∥AB∥F ≤ ∥A∥∥B∥F that is valid for any conformable matrices.

G.3. Proof of Lemma 9

Proof We first prove that ∥Gt∥F ≤ 2∥G̃t∥F. Indeed,

∥Gt∥F = ∥(Im −XtX
⊤
t )G̃t +

Xt

2
(X⊤

t G̃t − G̃⊤
t Xt)∥F

≤ ∥Im −XtX
⊤
t ∥∥G̃t∥F + ∥XtX

⊤
t ∥∥G̃t∥F

≤ 2∥G̃t∥F.

We now proceed to estimate the update distance ∥Xt+1 −Xt∥F.

∥Xt+1 −Xt∥F = ∥(Xt − ηGt)(Ir + η2G⊤
t Gt)

−1/2 −Xt∥F
≤ ∥Xt((Ir + η2G⊤

t Gt)
−1/2 − Ir)∥F + ∥ηGt(Ir + η2G⊤

t Gt)
−1/2∥F

≤ ∥Xt∥∥(Ir + η2G⊤
t Gt)

−1/2 − Ir∥F + η∥(Ir + η2G⊤
t Gt)

−1/2∥∥Gt∥F
≤

√
r∥(Ir + η2G⊤

t Gt)
−1/2 − Ir∥+ η∥Gt∥F

≤
√
r∥(Ir + η2G⊤

t Gt)
−1/2 − Ir∥+ 2η∥G̃t∥F

≤
√
r(1− (1 + η2σ1(G

⊤
t Gt))

−1/2) + 2η∥G̃t∥F
(a)

≤
√
r(1− 1

1 + (η2∥Gt∥2F)1/2
) + 2η∥G̃t∥F

≤
√
rη∥Gt∥F + 2η∥G̃t∥F,

where (a) is by
√
1 + x ≤ 1 +

√
x for any x ≥ 0. Since ∥Gt∥F ≤ 2∥G̃t∥F, we arrive at

∥Xt+1 −Xt∥F ≤ 2η(
√
r + 1)∥G̃t∥F

= 2η(
√
r + 1)∥(XtΘtX

⊤
t −A)XtΘt +ΞtXtΘt∥F

(b)

≤ 2η(
√
r + 1)∥Θt∥∥Xt∥∥(XtΘtX

⊤
t −A) +Ξt∥F

(c)

≤ 4η(
√
r + 1)

(
∥Ξt∥F + ∥XtΘtX

⊤
t −A∥F

)
≤ 4η(

√
r + 1)

(√
m∥(M∗M−I)(XtΘtX

⊤
t −A)∥+ ∥XtΘtX

⊤
t −A∥F

)
(d)

≤ 4η(
√
r + 1)(

√
mδ + 1)∥XtΘtX

⊤
t −A∥F,

where (b) is from ∥AB∥F ≤ ∥A∥∥B∥F; (c) is due to ∥Θt∥ ≤ 2, ∥Xt∥ ≤ 1; and (d) follows from
Lemma 24 and rank(XtΘtX

⊤
t −A) ≤ rank(XtΘtX

⊤
t ) + rank(A) ≤ r + rA.
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Finally, we turn to estimating ∥∆t∥F and ∥Ξt∥F.

∥∆t∥F = ∥(M∗M−I)(Xt+1ΘtX
⊤
t+1 −A)∥F

≤
√
m∥(M∗M−I)(Xt+1ΘtX

⊤
t+1 −A)∥

(e)

≤
√
mδ∥Xt+1ΘtX

⊤
t+1 −A∥F

≤
√
mδ(∥XtΘtX

⊤
t −A∥F + ∥Xt+1Θt(X

⊤
t+1 −X⊤

t )∥F + ∥(Xt+1 −Xt)ΘtX
⊤
t ∥F)

(f)

≤
√
mδ(∥XtΘtX

⊤
t −A∥F + 4∥Xt+1 −Xt∥F)

≤
√
mδ

(
1 + 16η(

√
r + 1)(

√
mδ + 1)

)
∥XtΘtX

⊤
t −A∥F

(g)

≤ ξ
√
m√
mr

(1 +
64

300

√
r)∥XtΘtX

⊤
t −A∥F

≤ ξ∥XtΘtX
⊤
t −A∥F,

∥Ξt∥F = ∥(M∗M−I)(XtΘtX
⊤
t −A)∥F

≤
√
m∥(M∗M−I)(XtΘtX

⊤
t −A)∥

(h)

≤
√
mδ∥XtΘtX

⊤
t −A∥F

(g)

≤ ξ∥XtΘtX
⊤
t −A∥F,

where (e) is by Lemma 24 and rank(Xt+1ΘtX
⊤
t+1 − A) ≤ rank(Xt+1ΘtX

⊤
t+1) + rank(A) ≤

r + rA; (f) is from ∥Xt+1∥ ≤ 1 and ∥Θt∥ ≤ 2; (g) is due to η ≤ 1
300κ2rA

and δ ≤ ξ√
mr

; and (h)

follows from Lemma 24 and rank(XtΘtX
⊤
t −A) ≤ rank(XtΘtX

⊤
t ) + rank(A) ≤ r + rA.

G.4. Proof of Lemma 10

Proof Noting that ∥Xt∥ ≤ 1, ∥A∥ ≤ 1, ∥Θt∥ ≤ 2, ∥Im −XtX
⊤
t ∥ ≤ 1, we obtain

∥Ht∥F ≤ ∥(Im −XtX
⊤
t )AXtX

⊤
t ∆t−1Xt∥F + ∥(Im −XtX

⊤
t )ΞtXtΘt∥F

+
1

2
(∥XtX

⊤
t ΞtXtΘt∥F + ∥XtΘtX

⊤
t ΞtXt∥F)

+
1

2
(∥XtX

⊤
t AXtX

⊤
t ∆t−1Xt∥F + ∥XtX

⊤
t ∆t−1XtX

⊤
t AXt∥F)

≤ 2∥∆t−1∥F + 4∥Ξt∥F. (9)

In the same way, it follows that ∥Ht∥ ≤ 2∥∆t−1∥+ 4∥Ξt∥.

From the update of Xt, we have Xt+1X
⊤
t+1 = (Xt − ηGt)(Ir + η2G⊤

t Gt)
−1(Xt − ηGt)

⊤. Pre-
multiplying by U⊤ and postmultiplying by U, it follows that

Φt+1Φ
⊤
t+1

= (Φt − ηU⊤Gt)(Ir + η2G⊤
t Gt)

−1(Φ⊤
t − ηG⊤

t U)

(a)
=

([
IrA + η(IrA −ΦtΦ

⊤
t )ΣΦtΦ

⊤
t Σ

]
Φt − ηU⊤Ht

)
(Ir + η2G⊤

t Gt)
−1
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([
IrA + η(IrA −ΦtΦ

⊤
t )ΣΦtΦ

⊤
t Σ

]
Φt − ηU⊤Ht

)⊤

(b)

⪰
([

IrA + η(IrA −ΦtΦ
⊤
t )ΣΦtΦ

⊤
t Σ

]
Φt − ηU⊤Ht

)
(Ir − η2G⊤

t Gt)([
IrA + η(IrA −ΦtΦ

⊤
t )ΣΦtΦ

⊤
t Σ

]
Φt − ηU⊤Ht

)⊤
,

where (a) is from directly expanding Gt; and (b) is by Lemma 14.

We next derive an upper bound for G⊤
t Gt. Substituting the expression of Gt, we obtain

G⊤
t Gt = X⊤

t AXtX
⊤
t A(Im −XtX

⊤
t )AXtX

⊤
t AXt +H⊤

t Ht

−X⊤
t AXtX

⊤
t A(Im −XtX

⊤
t )Ht

−H⊤
t (Im −XtX

⊤
t )AXtX

⊤
t AXt

(c)

⪯ σ1(IrA −ΦtΦ
⊤
t )Ir + (∥Ht∥2 + 2∥(Im −XtX

⊤
t )U∥∥Ht∥)Ir

(d)

⪯ σ1(IrA −ΦtΦ
⊤
t )Ir + 16χtIr,

where (c) follows from Lemma 25, ∥Xt∥ ≤ 1 and ∥A∥ ≤ 1; and (d) is due to ∥(Im−XtX
⊤
t )U∥ ≤

∥(Im −XtX
⊤
t )U∥F =

√
Tr(IrA −ΦtΦ⊤

t ), and ∥Ht∥ ≤ 2∥∆t−1∥+ 4∥Ξt∥ ≤ 6.

Combining the lower bound on Φt+1Φ
⊤
t+1, the upper bound on G⊤

t Gt derived above, and the
inequality 1− η2βt − 16η2χt ≥ 1− 1

100(1 + 96) > 0, we derive

1

1− η2βt − 16η2χt
Φt+1Φ

⊤
t+1

⪰
([

IrA + η(IrA −ΦtΦ
⊤
t )ΣΦtΦ

⊤
t Σ

]
Φt − ηU⊤Ht

)
(10)([

IrA + η(IrA −ΦtΦ
⊤
t )ΣΦtΦ

⊤
t Σ

]
Φt − ηU⊤Ht

)⊤
.

Let the compact SVD of Φt be QtΛtP
⊤
t , where Qt ∈ RrA×rA , Λt ∈ RrA×rA , and Pt ∈ Rr×rA .

Denote St := Q⊤
t ΣQt. It is a positive definite matrix. This gives that

Tr
([

IrA + η(IrA −ΦtΦ
⊤
t )ΣΦtΦ

⊤
t Σ

]
ΦtΦ

⊤
t

[
IrA + η(IrA −ΦtΦ

⊤
t )ΣΦtΦ

⊤
t Σ

]⊤)
= Tr

(
Qt

[
IrA + η(IrA −Λ2

t )StΛ
2
tSt

]
Λ2

t

[
IrA + ηStΛ

2
tSt(IrA −Λ2

t )
]
Q⊤

t

)
(e)

≥ Tr
(
Qt

[
Λ2

t + η(IrA −Λ2
t )StΛ

2
tStΛ

2
t + ηΛ2

tStΛ
2
tSt(IrA −Λ2

t )
]
Q⊤

t

)
= Tr(QtΛ

2
tQ

⊤
t ) + ηTr

(
(IrA −Λ2

t )StΛ
2
tStΛ

2
t +Λ2

tStΛ
2
tSt(IrA −Λ2

t )
)

(f)

≥ Tr(QtΛ
2
tQ

⊤
t ) +

2ησrA(Λ
2
t )

κ2
Tr
(
(IrA −Λ2

t )Λ
2
t

)
= Tr(ΦtΦ

⊤
t ) +

2ησrA(Λ
2
t )

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
,
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where (e) follows from the fact that η2Qt(IrA −Λ2
t )StΛ

2
tStΛ

2
tStΛ

2
tSt(IrA −Λ2

t )Q
⊤
t is PSD; and

(f) is by Lemma 16 and Lemma 17. More precisely, we use σrA(StΛ
2
tSt) ≥ σ2

rA
(St)σrA(Λ

2
t ) =

σrA(Λ
2
t )/κ

2.

Taking trace on both sides of (10), we arrive at

1

1− η2βt − 16η2χt
Tr(Φt+1Φ

⊤
t+1) (11)

≥ Tr(ΦtΦ
⊤
t ) +

2ησrA(Λ
2
t )

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
− 2ηTr

([
IrA + η(IrA −ΦtΦ

⊤
t )ΣΦtΦ

⊤
t Σ

]
ΦtH

⊤
t U

)
+ η2Tr(U⊤HtH

⊤
t U)

≥ Tr(ΦtΦ
⊤
t ) +

2ησrA(Λ
2
t )

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
− 2ηTr

(
ΦtH

⊤
t U+ η(IrA −ΦtΦ

⊤
t )ΣΦtΦ

⊤
t ΣΦtH

⊤
t U

)
(g)
= Tr(ΦtΦ

⊤
t ) +

2ησrA(Λ
2
t )

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
− 2ηTr

(
U⊤(Im −XtX

⊤
t )AXtX

⊤
t ∆t−1XtΦ

⊤
t

)
− 2ηTr(U⊤(Im −XtX

⊤
t )ΞtXtΘtΦ

⊤
t )

− ηTr
(
ΦtX

⊤
t ΞtXtΘtΦ

⊤
t −ΦtΘtX

⊤
t ΞtXtΦ

⊤
t

)
− ηTr

(
ΦtX

⊤
t AXtX

⊤
t ∆t−1XtΦ

⊤
t −ΦtX

⊤
t ∆t−1XtX

⊤
t AXtΦ

⊤
t

)
− 2η2Tr

(
(IrA −ΦtΦ

⊤
t )ΣΦtΦ

⊤
t ΣΦtH

⊤
t U

)
(h)
= Tr(ΦtΦ

⊤
t ) +

2ησrA(Λ
2
t )

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
− 2ηTr

(
U⊤(Im −XtX

⊤
t )UΣU⊤XtX

⊤
t ∆t−1XtΦ

⊤
t

)
− 2ηTr(U⊤(Im −XtX

⊤
t )ΞtXtΘtΦ

⊤
t )

− 2η2Tr
(
(IrA −ΦtΦ

⊤
t )ΣΦtΦ

⊤
t ΣΦtH

⊤
t U

)
where (g) is by substituting Ht in; and (h) arises from Tr(M) = Tr(M⊤) for any M ∈ RrA×rA .
By the Cauchy–Schwarz inequality, we can upper bound the three trace terms as follows.

For the first term, we have that

Tr
(
U⊤(Im −XtX

⊤
t )UΣU⊤XtX

⊤
t ∆t−1XtΦ

⊤
t

)
(12)

≤ ∥U⊤(Im −XtX
⊤
t )UΣU⊤∥F∥XtX

⊤
t ∆t−1XtΦ

⊤
t ∥F

(i)

≤ ∥(Im −XtX
⊤
t )U∥F∥∆t−1∥F

=
√
Tr(IrA −ΦtΦ⊤

t )∥∆t−1∥F.

For the second term, we can obtain that

Tr(U⊤(Im −XtX
⊤
t )ΞtXtΘtΦ

⊤
t ) (13)
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≤ ∥U⊤(Im −XtX
⊤
t )∥F∥ΞtXtΘtΦ

⊤
t ∥F

(i)

≤ 2∥U⊤(Im −XtX
⊤
t )∥F∥Ξt∥F

= 2
√

Tr(IrA −ΦtΦ⊤
t )∥Ξt∥F.

For the third term, it holds that

Tr
(
(IrA −ΦtΦ

⊤
t )ΣΦtΦ

⊤
t ΣΦtH

⊤
t U

)
(14)

≤ ∥IrA −ΦtΦ
⊤
t ∥F∥ΣΦtΦ

⊤
t ΣΦtH

⊤
t U∥F

= ∥U⊤(Im −XtX
⊤
t )U∥F∥ΣΦtΦ

⊤
t ΣΦtH

⊤
t U∥F

(i)

≤ ∥(Im −XtX
⊤
t )U∥F∥Ht∥F

=
√

Tr(IrA −ΦtΦ⊤
t )∥Ht∥F.

Here (i) is from ∥U∥ ≤ 1, ∥Σ∥ ≤ 1, ∥Xt∥ ≤ 1, ∥Φt∥ ≤ 1, and ∥Θt∥ ≤ 2. Combining inequalities
(11), (12), (13), and (14), it follows that

1

1− η2βt − 16η2χt
Tr(Φt+1Φ

⊤
t+1) ≥Tr(ΦtΦ

⊤
t ) +

2ησrA(Λ
2
t )

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
− 2η

√
Tr(IrA −ΦtΦ⊤

t )(∥∆t−1∥F + 2∥Ξt∥F)

− 2η2
√
Tr(IrA −ΦtΦ⊤

t )∥Ht∥F.

Reorganizing the terms, we arrive at

Tr(IrA −Φt+1Φ
⊤
t+1)− Tr(IrA −ΦtΦ

⊤
t )

≤ η2(βt + 16χt)Tr(ΦtΦ
⊤
t )−

2η(1− η2βt − 16η2χt)σrA(Λ
2
t )

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
+ (2η − 2η3βt − 32η3χt)

√
Tr(IrA −ΦtΦ⊤

t )(∥∆t−1∥F + 2∥Ξt∥F)

+ (2η2 − 2η4βt − 32η4χt)
√
Tr(IrA −ΦtΦ⊤

t )∥Ht∥F

≤ η2(βt + 16χt)Tr(ΦtΦ
⊤
t )−

2η(1− η2βt − 16η2χt)σrA(Λ
2
t )

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
+ 2η

√
Tr(IrA −ΦtΦ⊤

t )(∥∆t−1∥F + 2∥Ξt∥F)

+ 2η2
√

Tr(IrA −ΦtΦ⊤
t )∥Ht∥F.

Together with σrA(Λ
2
t ) = σrA(Q

⊤
t ΦtΦ

⊤
t Qt) = σ2

rA
(Φt), we conclude the proof.

G.5. Proof of Lemma 11

Proof From the update formula of Θt, we obtain

∥Θt+1∥ = ∥X⊤
t+1AXt+1 −X⊤

t+1∆tXt+1∥
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≤ ∥X⊤
t+1AXt+1∥+ ∥X⊤

t+1∆tXt+1∥
(a)

≤ 1 + ∥∆t∥
= 1 + ∥(M∗M−I)(Xt+1ΘtX

⊤
t+1 −A)∥

(b)

≤ 1 +
1

3
√
m
∥Xt+1ΘtX

⊤
t+1 −A∥F

≤ 1 +

√
m

3
√
m
∥Xt+1ΘtX

⊤
t+1 −A∥

≤ 1 +
1

3
(∥Θt∥+ ∥A∥)

≤ 2,

where (a) is by ∥Xt∥, ∥A∥ ≤ 1; and (b) follows from Lemma 24 and rank(Xt+1ΘtX
⊤
t+1 −A) ≤

rank(Xt+1ΘtX
⊤
t+1) + rank(A) ≤ r + rA.

G.6. Proof of Lemma 12

Proof Let Lt := X⊤
t AXtX

⊤
t ∆t−1Xt +X⊤ΞtXtΘt +

1
2(ΘtX

⊤
t ΞtXt −X⊤

t ΞtXtΘt)
+1

2(X
⊤
t ∆t−1XtX

⊤
t AXt −X⊤

t AXtX
⊤
t ∆t−1Xt).

Applying the triangular inequality, we obtain

∥Lt∥ ≤ ∥X⊤
t AXtX

⊤
t ∆t−1Xt∥+ ∥X⊤ΞtXtΘt∥+

1

2
(∥ΘtX

⊤
t ΞtXt∥+ ∥X⊤

t ΞtXtΘt∥)

+
1

2
(∥X⊤

t ∆t−1XtX
⊤
t AXt∥+ ∥X⊤

t AXtX
⊤
t ∆t−1Xt∥) (15)

(a)

≤ 2∥∆t−1∥+ 4∥Ξt∥,

where (a) is from ∥Xt∥ ≤ 1, ∥A∥ ≤ 1 and ∥Θt∥ ≤ 2. Multiplying the update formula (4) on the
left by U⊤

⊥, we have that

Ψt+1 = U⊤
⊥(Xt − ηGt)(Ir + η2G⊤

t Gt)
−1/2

(b)
=

(
Ψt − ηΨtX

⊤
t AXtX

⊤
t AXt + ηΨtLt − ηU⊤

⊥ΞtXtΘt

)
(Ir + η2G⊤

t Gt)
−1/2

=
(
Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
− ηU⊤

⊥ΞtXtΘt

)
(Ir + η2G⊤

t Gt)
−1/2,

where (b) is by expanding Gt directly. Consequently, we have the following upper bound for
Ψt+1Ψ

⊤
t+1:

Ψt+1Ψ
⊤
t+1 =

(
Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
− ηU⊤

⊥ΞtXtΘt

)
(Ir + η2G⊤

t Gt)
−1(

Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
− ηU⊤

⊥ΞtXtΘt

)⊤

(c)

⪯
(
Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
− ηU⊤

⊥ΞtXtΘt

)
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(
Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
− ηU⊤

⊥ΞtXtΘt

)⊤

= Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)⊤
Ψ⊤

t

− ηU⊤
⊥ΞtXtΘt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)⊤
Ψ⊤

t (16)

− ηΨt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
ΘtX

⊤
t ΞtU⊥

+ η2U⊤
⊥ΞtXtΘ

2
tX

⊤
t ΞtU⊥,

where (c) is from that (Ir + η2G⊤
t Gt)

−1 is PSD and all of its eigenvalues are smaller than 1. Since
YY⊤ ⪯ ∥Y∥2Ir holds for any symmetric matrix Y ∈ Rr×r and by Lemma 25, we can upper
bound the three terms as follows.

For the first term, we can obtain that

Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)⊤
Ψ⊤

t (17)

⪯ ∥Ir − ηX⊤
t AXtX

⊤
t AXt + ηLt∥2ΨtΨ

⊤
t .

For the second term, it holds that

U⊤
⊥ΞtXtΘt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)⊤
Ψ⊤

t

+Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
ΘtX

⊤
t ΞtU⊥ (18)

⪯ 2∥Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
∥∥ΘtX

⊤
t ΞtU⊥∥Im−rA .

For the third term, we have that

U⊤
⊥ΞtXtΘ

2
tX

⊤
t ΞtU⊥ ⪯ ∥U⊤

⊥ΞtXtΘ
2
tX

⊤
t ΞtU⊥∥Im−rA . (19)

Combining inequalities (16), (17), (18) and (19), it follows that

Ψt+1Ψ
⊤
t+1 ⪯ ∥Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt∥2ΨtΨ

⊤
t

+ 2η∥Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
∥∥ΘtX

⊤
t ΞtU⊥∥Im−rA

+ η2∥U⊤
⊥ΞtXtΘ

2
tX

⊤
t ΞtU⊥∥Im−rA

(d)

⪯ (∥Ir − ηX⊤
t AXtX

⊤
t AXt∥+ η∥Lt∥)2ΨtΨ

⊤
t

+ 2η∥Ψt∥(∥Ir − ηX⊤
t AXtX

⊤
t AXt∥+ η∥Lt∥)∥ΘtX

⊤
t ΞtU⊥∥Im−rA

+ η2∥U⊤
⊥ΞtXtΘ

2
tX

⊤
t ΞtU⊥∥Im−rA

(e)

⪯ (1 + η∥Lt∥)2ΨtΨ
⊤
t + 4η(1 + η∥Lt∥)∥Ξt∥Im−rA + 4η2∥Ξt∥2Im−rA ,
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where (d) is by triangular inequality; and (e) is from that all the eigenvalues of the PSD matrix
X⊤

t AXtX
⊤
t AXt are smaller than 1, along with ∥Ψt∥ ≤ 1, ∥Xt∥ ≤ 1, ∥U⊥∥ ≤ 1 and ∥Θt∥ ≤ 2.

From (15), we obtain ∥Lt∥ ≤ 2∥∆t−1∥+ 4∥Ξt∥. Then, we can further simplify the inequality as

Ψt+1Ψ
⊤
t+1 ⪯

(
1 + 2η(∥∆t−1∥+ 2∥Ξt∥)

)2
ΨtΨ

⊤
t

+
(
4η∥Ξt∥+ 4η2(5∥Ξt∥2 + 2∥∆t−1∥∥Ξt∥)

)
Im−rA . (20)

From Lemma 24 and our assumption of the RIP property of M(·), we obtain upper bounds for the
two error terms.

∥∆t−1∥ = ∥(M∗M−I)(XtΘt−1X
⊤
t −A)∥

≤ δ∥XtΘt−1X
⊤
t −A∥F

≤ δ(∥XtΘt−1X
⊤
t ∥F + ∥A∥F)

(f)

≤ (2
√
r +

√
rA)δ,

∥Ξt∥ = ∥(M∗M−I)(XtΘtX
⊤
t −A)∥

≤ δ∥XtΘtX
⊤
t −A∥F

≤ δ(∥XtΘtXt∥F + ∥A∥F)
(f)

≤ (2
√
r +

√
rA)δ,

where (f) is from ∥Xt∥ ≤ 1, ∥Θt−1∥F ≤
√
r∥Θt−1∥ ≤ 2

√
r, ∥Θt∥F ≤

√
r∥Θt∥ ≤ 2

√
r, and

∥A∥F ≤ √
rA∥A∥ ≤ √

rA. Plugging these two upper bounds into (20), we arrive at

Ψt+1Ψ
⊤
t+1 ⪯

(
1+6η(

√
rA+2

√
r)δ

)2
ΨtΨ

⊤
t +

(
4η(

√
rA+2

√
r)δ+28η2(

√
rA+2

√
r)2δ2

)
Im−rA .

We now consider the relationship between Ψ1Ψ
⊤
1 and Ψ0Ψ

⊤
0 .

Let L̃0 :=
1
2(X

⊤
0 AX0Θ0 +Θ0X

⊤
0 AX0)− 1

2(X
⊤
0 Ξ0X0Θ0 +Θ0X0Ξ0X0).

Multiplying the update formula (4) at t = 0 on the left by U⊤
⊥, we have that

Ψ1 = U⊤
⊥(X0 − ηG0)(Ir + η2G⊤

0 G0)
−1/2.

Consequently, we derive the following upper bound on Ψ1Ψ
⊤
1 :

Ψ1Ψ
⊤
1 = U⊤

⊥(X0 − ηG0)(Ir + η2G⊤
0 G0)

−1(X0 − ηG0)
⊤U⊥

(g)

⪯ U⊤
⊥(X0 − ηG0)(X0 − ηG0)

⊤U⊥
(h)
=

(
Ψ0(Ir − ηL̃0)− ηU⊤

⊥Ξ0X0Θ0

)(
Ψ0(Ir − ηL̃0)− ηU⊤

⊥Ξ0X0Θ0

)⊤
= Ψ0(Ir − ηL̃0)(Ir − ηL̃0)

⊤Ψ⊤
0 − ηΨ0(Ir − ηL̃0)Θ0X

⊤
0 Ξ0U⊥ (21)

− ηU⊤
⊥Ξ0X0Θ0(Ir − ηL̃0)

⊤Ψ⊤
0 + η2U⊤

⊥Ξ0X0Θ
2
0X

⊤
0 Ξ0U⊥,

26



WEIGHT NORMALIZATION FOR OVERPARAMETERIZED MATRIX SENSING

where (g) is from that (Ir + η2G⊤
0 G0)

−1 is PSD and all of its eigenvalues are smaller than 1; and
(h) is by expanding the expression of G0 directly. Since YY⊤ ⪯ ∥Y∥2Ir holds for any symmetric
matrix Y ∈ Rr×r and by Lemma 25, we can upper bound the three terms as follows.

For the first term, it holds that

Ψ0(Ir − ηL̃0)(Ir − ηL̃0)
⊤Ψ⊤

0 ⪯ ∥Ir − ηL̃0∥2Ψ0Ψ
⊤
0 . (22)

For the second term, we have that

Ψ0(Ir − ηL̃0)Θ0X
⊤
0 Ξ0U⊥ +U⊤

⊥Ξ0X0Θ0(Ir − ηL̃0)
⊤Ψ⊤

0

⪯ 2∥Ψ0(Ir − ηL̃0)∥∥Θ0X
⊤
0 Ξ0U⊥∥Im−rA . (23)

For the third term, we can obtain that

U⊤
⊥Ξ0X0Θ

2
0X

⊤
0 Ξ0U⊥ ⪯ ∥U⊤

⊥Ξ0X0Θ
2
0X

⊤
0 Ξ0U⊥∥Im−rA . (24)

Combining inequalities (21), (22), (23) and (24), it follows that

Ψ1Ψ
⊤
1 ⪯ ∥Ir − ηL̃0∥2Ψ0Ψ

⊤
0 + 2η∥Ψ0(Ir − ηL̃0)∥∥Θ0X

⊤
0 Ξ0U⊥∥Im−rA

+ η2∥U⊤
⊥Ξ0X0Θ

2
0X

⊤
0 Ξ0U⊥∥Im−rA

(i)

⪯ (1 + η∥L̃0∥)2Ψ0Ψ
⊤
0 + 4η(1 + η∥L̃0∥)∥Ξ0∥Im−rA + 4η2∥Ξ0∥2Im−rA , (25)

where (i) is by ∥X0∥ ≤ 1, ∥U⊥∥ ≤ 1, and ∥Θ0∥ ≤ 2.

From Lemma 24 and our assumption of the RIP property of M(·), we have that

∥Ξ0∥ = ∥(M∗M−I)(X0Θ0X
⊤
0 −A)∥

≤ δ∥X0Θ0X
⊤
0 −A∥F

≤ δ(∥X0Θ0X
⊤
0 ∥F + ∥A∥F)

≤ (2
√
r +

√
rA)δ.

Then, we can bound ∥L̃0∥ as follows:

∥L̃0∥ =
1

2
∥X⊤

0 AX0Θ0 +Θ0X
⊤
0 AX0 − (X⊤

0 Ξ0X0Θ0 +Θ0X0Ξ0X0)∥

≤ 2 + 2∥Ξ0∥
≤ 2 + 2(2

√
r +

√
rA)δ.

Plugging theses two upper bounds into inequality (25), we finally arrive at

Ψ1Ψ
⊤
1 ⪯ (1+2η+2η(

√
rA+2

√
r)δ)2Ψ0Ψ

⊤
0 +

(
12η(

√
rA+2

√
r)δ+8η2(

√
rA+2

√
r)2δ2

)
Im−rA .
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G.7. Proof of Lemma 13

Proof We first estimate ∥G̃t∥ and ∥Gt∥. From the expression of G̃t, we have that

∥G̃t∥ = ∥
[
M∗M(XtΘtX

⊤
t −A)

]
XtΘt∥

(a)

≤ 2∥M∗M(XtΘtX
⊤
t −A)∥

≤ 2(∥(M∗M−I)(XtΘtX
⊤
t −A)∥+ ∥XtΘtX

⊤
t −A∥)

(b)

≤ 2√
m
∥XtΘtX

⊤
t −A∥F + 2∥XtΘtX

⊤
t −A∥

≤ 4∥XtΘtX
⊤
t −A∥

≤ 4(∥XtΘtX
⊤
t ∥+ ∥A∥)

(a)

≤ 12,

where (a) is due to ∥Xt∥ ≤ 1, ∥Θt∥ ≤ 2, and ∥A∥ ≤ 1; and (b) is from Lemma 24. Analogously,
we can upper bound ∥Gt∥ as follows:

∥Gt∥ = ∥(Im −XtX
⊤
t )G̃t +

Xt

2
(X⊤

t G̃t − G̃⊤
t Xt)∥

≤ ∥Im −XtX
⊤
t ∥∥G̃t∥+ ∥Xt∥∥G̃⊤

t Xt∥
(c)

≤ 2∥G̃t∥
≤ 24,

where (c) follows from ∥Xt∥ ≤ 1 and the fact that all the eigenvalues of the PSD matrix Im−XtX
⊤
t

are less than 1. Multiplying the update formula (4) on the left by U⊤, we obtain

Φt+1Φ
⊤
t+1 = U⊤Xt+1X

⊤
t+1U

= (Φt − ηU⊤Gt)(Ir + η2G⊤
t Gt)

−1(Φ⊤
t − ηG⊤

t U)

(d)

⪰ (Φt − ηU⊤Gt)(Ir − η2G⊤
t Gt)(Φ

⊤
t − ηG⊤

t U)

= ΦtΦ
⊤
t − η2ΦtG

⊤
t GtΦ

⊤
t − η(ΦtG

⊤
t U+U⊤GtΦ

⊤
t )

+ η3(ΦtG
⊤
t GtG

⊤
t U+U⊤GtG

⊤
t GtΦ

⊤
t )

− η4U⊤GtG
⊤
t GtG

⊤
t U+ η2U⊤GtG

⊤
t U

(e)

⪰ ΦtΦ
⊤
t −

(
η2∥ΦtG

⊤
t GtΦ

⊤
t ∥+ 2η∥ΦtG

⊤
t U∥

+ 2η3∥ΦtG
⊤
t GtG

⊤
t U∥+ η4∥U⊤GtG

⊤
t GtG

⊤
t U∥

)
IrA

(f)

⪰ ΦtΦ
⊤
t − 1

10rA
IrA ,

where (d) is from Lemma 14; (e) is by Lemma 25; and (f) is due to ∥Φt∥ ≤ 1, ∥U∥ ≤ 1, ∥Gt∥ ≤
24 and η ≤ 1

500rA
. By subtracting the inequality from IrA , it follows that

IrA −Φt+1Φ
⊤
t+1 ⪯ IrA −ΦtΦ

⊤
t +

1

10rA
IrA .
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Taking trace on both sides yields

Tr(IrA −Φt+1Φ
⊤
t+1) ≤ Tr(IrA −ΦtΦ

⊤
t ) + 0.1.

G.8. Proof of Theorem 2

Proof For the proof, we take η = (r−rA)4

975c21κ
2m2r2rA

and δ = c4(r−rA)6

κ2m3r4rA
, where c4 = O( 1

c31
). From

Lemma 11, we have that ∥Θt∥ ≤ 2 holds for all t ≥ 0 by mathematical induction. For later use, we
define the following three terms in the same way as in Lemma 10:

βt : = σ1(IrA −ΦtΦ
⊤
t ) ≤ 1,

χt : = (∥∆t−1∥+ ∥Ξt∥)2 +
√
Tr(IrA −ΦtΦ⊤

t )(∥∆t−1∥+ ∥Ξt∥),

Ht : = (Im −XtX
⊤
t )(AXtX

⊤
t ∆t−1Xt +ΞtXtΘt)

+
1

2
(XtX

⊤
t ΞtXtΘt −XtΘtX

⊤
t ΞtXt)

+
1

2
(XtX

⊤
t AXtX

⊤
t ∆t−1Xt −XtX

⊤
t ∆t−1XtX

⊤
t AXt).

Lemma 9 with the RIP property of M(·) implies that ∥∆t−1∥F, ∥Ξt∥F ≤ 1 for all t ≥ 1. Thus, the
assumptions of Lemma 10 are met, guaranteeing that inequality (8) holds for all iterations. Building
on inequality (8), we divide the convergence analysis into two phases.

Phase I (Initial phase). Tr(IrA −ΦtΦ
⊤
t ) ≥ 0.5.

We assume for now that σ2
rA
(Φt) ≥ (r−rA)

2/(2c1mr) holds in Phase I, which will be proved later.
Let the compact SVD of Φt be QtΛtP

⊤
t , where Qt ∈ RrA×rA , Λt ∈ RrA×rA , and Pt ∈ Rr×rA .

We can simplify (8) as follows:

Tr(IrA −Φt+1Φ
⊤
t+1)− Tr(IrA −ΦtΦ

⊤
t )

≤ η2(1 + 16χt)Tr(ΦtΦ
⊤
t )−

2η(1− η2 − 16η2χt)σ
2
rA
(Φt)

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
+ 2η

√
rA(∥∆t−1∥F + 2∥Ξt∥F) + 2η2

√
rA∥Ht∥F

(a)

≤ η2(1 + 16χt)rA −
2η(1− η2 − 16η2χt)σ

4
rA
(Φt)

κ2
Tr(IrA −ΦtΦ

⊤
t )

+ 2η
√
rA(∥∆t−1∥F + 2∥Ξt∥F) + 2η2

√
rA∥Ht∥F

(b)

≤ η2(1 + 16χt)rA − η(1− η2 − 16η2χt)(r − rA)
4

2c21κ
2m2r2

Tr(IrA −ΦtΦ
⊤
t ) (26)

+ 2η
√
rA(∥∆t−1∥F + 2∥Ξt∥F) + 2η2

√
rA∥Ht∥F,

where (a) is by Lemma 16 and Tr
(
(IrA − ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
= Tr

(
(IrA − Λ2

t )Λ
2
t

)
; and (b) is from

our assumption that σ2
rA
(Φt) ≥ (r − rA)

2/(2c1mr).
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Using Lemma 24 and the RIP property of M(·), we can control the quantities of the two error terms.
In particular, following inequalities imply that both ∥∆t−1∥F and ∥Ξt∥F are uniformly bounded by
a constant that depends only on m, r and rA but is independent of t.

Expanding the expression of ∆t−1 and applying Lemma 24, we have that

∥∆t−1∥F ≤
√
m∥(M∗M−I)(XtΘt−1X

⊤
t −A)∥

≤ c4(r − rA)
6

κ2m5/2r4rA
∥XtΘt−1X

⊤
t −A∥F

≤ c4(r − rA)
6

κ2m5/2r4rA
(2
√
r +

√
rA)

≤ 3c4(r − rA)
6

κ2m5/2r7/2rA
(c)

≤ min{ (r − rA)
4

48c21κ
2m2r2rA

,
1

48
√
rA

}. (27)

Applying the same reasoning to Ξt, it follows that

∥Ξt∥F ≤
√
m∥(M∗M−I)(XtΘtX

⊤
t −A)∥

≤ c4(r − rA)
6

κ2m5/2r4rA
∥XtΘtX

⊤
t −A∥F

≤ c4(r − rA)
6

κ2m5/2r4rA
(2
√
r +

√
rA)

≤ 3c4(r − rA)
6

κ2m5/2r7/2rA
(c)

≤ min{ (r − rA)
4

48c21κ
2m2r2rA

,
1

48
√
rA

}. (28)

Here, (c) is from c4 = O( 1
c31
), c1 > 1 and r− rA ≤ r ≤ m. Since Tr(IrA −ΦtΦ

⊤
t ) ≤ rA, together

with (27) and (28), we can upper bound χt as follows:

χt = (∥∆t−1∥+ ∥Ξt∥)2 +
√
Tr(IrA −ΦtΦ⊤

t )(∥∆t−1∥+ ∥Ξt∥)

≤ (∥∆t−1∥F + ∥Ξt∥F)2 +
√
rA(∥∆t−1∥F + ∥Ξt∥F)

≤ (
1

48
+

1

48
)2 +

√
rA(

1

48
√
rA

+
1

48
√
rA

)

≤ 1

16
.

From inequalities (9), (27), and (28), we obtain the following upper bound on ∥Ht∥F.

∥Ht∥F ≤ 2∥∆t−1∥F + 4∥Ξt∥F

≤ 2× 1

48
√
rA

+ 4× 1

48
√
rA

≤ 1

2
√
rA

.
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With these upper bounds, inequality (26) can be simplified as follows:

Tr(IrA −Φt+1Φ
⊤
t+1)− Tr(IrA −ΦtΦ

⊤
t )

≤ 2η2rA − η(1− 2η2)(r − rA)
4

2c21κ
2m2r2

Tr(IrA −ΦtΦ
⊤
t ) +

η(r − rA)
4

8c21κ
2m2r2

+ η2

(d)

≤
(
− η(r − rA)

4

2c21κ
2m2r2

+
η(r − rA)

4

4c21κ
2m2r2

+ 6η2rA +
η3(r − rA)

4

c21κ
2m2r2

)
Tr(IrA −ΦtΦ

⊤
t )

=
(
− η(r − rA)

4

4c21κ
2m2r2

+ 6η2rA +
η3(r − rA)

4

c21κ
2m2r2

)
Tr(IrA −ΦtΦ

⊤
t )

(e)

≤ 1

2

(
− η(r − rA)

4

4c21κ
2m2r2

+ 6η2rA +
η3(r − rA)

4

c21κ
2m2r2

)
,

where (d) is by Tr(IrA −ΦtΦ
⊤
t ) ≥ 0.5; and (e) holds if the expression in bracket is less than zero.

Recall that η = (r−rA)4

975c21κ
2m2r2rA

. The summation of the terms in bracket is negative, which implies

that at each step, Tr(IrA −ΦtΦ
⊤
t ) decreases at least by ∆ := (r−rA)8

7000c41κ
4m4r4rA

. Consequently, after

at most (rA − 0.5)/∆ ≤ 7000c41κ
4m4r4r2A

(r−rA)8
iterations, RGD leaves Phase I.

Let c2 := 1
7000c41

∈ (0, 1). Denote t0 ≥ 1 as the last iteration in this phase. The analysis above

implies that Tr(IrA −ΦtΦ
⊤
t ) ≤ rA − c2(r−rA)8t

κ4m4r4rA
for all 1 ≤ t ≤ t0 and t0 ≤

7000c41κ
4m4r4r2A

(r−rA)8
.

From Lemma 8 and inequality (27), we obtain the following bound for 1 ≤ t ≤ t0:

∥XtΘtX
⊤
t −A∥F ≤ 2

√
Tr(IrA −ΦtΦ⊤

t ) + ∥∆t−1∥F

≤ 2

√
rA − c2(r − rA)8t

κ4m4r4rA
+ ∥∆t−1∥F

≤ 2

√
rA − c2(r − rA)8t

κ4m4r4rA
+ 1.

We now prove that σ2
rA
(Φt) ≥ (r − rA)

2/(2c1mr) holds in Phase I. By Lemma 7, it holds w.h.p.,

σ2
rA
(Φ0) = σ2

rA
(U⊤X0) ≥

(r − rA)
2

c1mr
.

Moreover, by Lemma 15 and the assumption rA ≤ m
2 , it follows that

σ2
rA
(Ψ0) = 1− σ2

rA
(Φ0) ≤ 1− (r − rA)

2

c1mr
.

Since η = (r−rA)4

975c21κ
2m2r2rA

and δ = c4(r−rA)6

κ2m3r4rA
, we can deduce that

η(
√
rA + 2

√
r)δ ≤ c4(r − rA)

10

325c21κ
4m5r5r2A

.
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From Lemma 12 and the upper bound on η(
√
rA + 2

√
r)δ, we obtain the following inequality

Ψ1Ψ
⊤
1 ⪯ (1 +

4(r − rA)
4

975c21κ
2m2r2rA

)2Ψ0Ψ
⊤
0 +

4c4(r − rA)
10

65c21κ
4m5r5r2A

Im−rA .

Using Weyl’s inequality and c4 = O( 1
c31
), we have the following upper bound on σ2

rA
(Ψ1)

σ2
rA
(Ψ1) ≤ (1 +

4(r − rA)
4

975c21κ
2m2r2rA

)2σ2
rA
(Ψ0) +

4c4(r − rA)
10

65c21κ
4m5r5r2A

≤ (1 +
4(r − rA)

4

975c21κ
2m2r2rA

)2(1− (r − rA)
2

c1mr
) +

4c4(r − rA)
10

65c21κ
4m5r5r2A

(f)

≤ 1 +
16(r − rA)

4

195c21κ
2m2r2rA

− (r − rA)
2

c1mr

(f)

≤ 1− 2(r − rA)
2

3c1mr
,

where (f) is by r − rA ≤ r ≤ m and c1, κ, rA ≥ 1. Applying Lemma 12 with the upper bound on
η(
√
rA + 2

√
r)δ, we obtain

Ψt+1Ψ
⊤
t+1 ⪯

(
1 +

c4(r − rA)
10

40c21κ
4m5r5r2A

)2
ΨtΨ

⊤
t +

c4(r − rA)
10

40c21κ
4m5r5r2A

Im−rA , t ≥ 1.

Using Weyl’s inequality, we have the following relationship between σ2
rA
(Ψt+1) and σ2

rA
(Ψt)

σ2
rA
(Ψt+1) = σrA(Ψt+1Ψ

⊤
t+1) ≤

(
1 +

c4(r − rA)
10

40c21κ
4m5r5r2A

)2
σrA(ΨtΨ

⊤
t ) +

c4(r − rA)
10

40c21κ
4m5r5r2A

=
(
1 +

c4(r − rA)
10

40c21κ
4m5r5r2A

)2
σ2
rA
(Ψt) +

c4(r − rA)
10

40c21κ
4m5r5r2A

.

Denote ζ := c4(r−rA)10

40c21κ
4m5r5r2A

. By iterating the recursive inequality, the following upper bound holds

σ2
rA
(Ψt) ≤

(
1 + ζ

)2(t−1)
σ2
rA
(Ψ1) + ζ

t−2∑
i=0

(
1 + ζ

)2i
≤

(
1 + ζ

)2t
σ2
rA
(Ψ1) + ζ

t−1∑
i=0

(
1 + ζ

)2i
=

(
1 + ζ

)2t
σ2
rA
(Ψ1) + ζ

[(
1 + ζ

)2t − 1
]/[(

1 + ζ
)2 − 1

]
≤

(
1 + ζ

)2t
σ2
rA
(Ψ1) +

(
1 + ζ

)2t − 1,

for all 1 ≤ t ≤ 7000c41κ
4m4r4r2A

(r−rA)8
. Invoking Lemma 26 and noting that ζ ≤ 1

2t , which is ensured by

c4 = O( 1
c31
), we obtain

σ2
rA
(Ψt) ≤

(
1 + 6tζ

)
σ2
rA
(Ψ1) + 6tζ
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(g)

≤ σ2
rA
(Ψ1) +

2100c21c4(r − rA)
2

mr

≤ 1− 2(r − rA)
2

3c1mr
+

2100c21c4(r − rA)
2

mr
(h)

≤ 1− (r − rA)
2

2c1mr
,

where (g) is by tζ ≤ 175c21c4(r−rA)2

mr and σ2
rA
(Ψ1) ≤ 1; and (h) holds by c4 = O( 1

c31
). By Lemma

15 and the assumption rA ≤ m
2 , it can be seen that σ2

rA
(Φt) = 1 − σ2

rA
(Ψt) ≥ (r−rA)2

2c1mr holds for

all t ≤ t0 ≤
7000c21κ

4m4r4r2A
(r−rA)8

, i.e., throughout Phase I.

Phase II (Linearly convergent phase). Tr(IrA −ΦtΦ
⊤
t ) < 0.5.

This corresponds to a near-optimal regime. An immediate implication of this phase is that Tr(ΦtΦ
⊤
t ) ≥

rA − 0.5 ≥ rA − 0.6. Recall that t0 ≥ 1 is the last iteration in the first phase. We assume that
Tr(ΦtΦ

⊤
t ) ≥ rA − 0.6 for all t ≥ t0 + 1, and we will prove this later.

Given that the singular values of ΦtΦ
⊤
t lie in [0, 1], we have

0.4 ≤ σ2
rA
(Φt) = σrA(ΦtΦ

⊤
t ) ≤ σ2

1(Φt) ≤ 1.

Moreover, since βt = σ1(IrA −ΦtΦ
⊤
t ) ≤ Tr(IrA −ΦtΦ

⊤
t ) and βt ≤ 1, it follows that

βtTr(ΦtΦ
⊤
t ) ≤ rATr(IrA −ΦtΦ

⊤
t ), χtTr(ΦtΦ

⊤
t ) ≤ rAχt.

In addition, it can be derived that

4

25
Tr(IrA −ΦtΦ

⊤
t ) ≤ σ2

rA
(Φt)Tr

(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
≤ σ2

1(Φt)Tr(IrA −ΦtΦ
⊤
t )

≤ Tr(IrA −ΦtΦ
⊤
t ).

With the inequalities above, we can simplify (8) as follows:

Tr(IrA −Φt+1Φ
⊤
t+1) ≤ (1− 8η

25κ2
+ η2rA +

2η3

κ2
+

32η3

κ2
χt)Tr(IrA −ΦtΦ

⊤
t ) (29)

+ 16η2rAχt + 2η
√
Tr(IrA −ΦtΦ⊤

t )(∥∆t−1∥F + 2∥Ξt∥F + η∥Ht∥F).

Recall that χt = (∥∆t−1∥+∥Ξt∥)2+
√

Tr(IrA −ΦtΦ⊤
t )(∥∆t−1∥+∥Ξt∥) and ∥Ht∥F ≤ 2∥∆t−1∥F+

4∥Ξt∥F. Since ∥∆t−1∥ ≤ 1 and ∥Ξt∥ ≤ 1, (29) can be written as

Tr(IrA −Φt+1Φ
⊤
t+1) ≤ (1− 8η

25κ2
+ η2rA +

194η3

κ2
)Tr(IrA −ΦtΦ

⊤
t )

+ 16η2rA(∥∆t−1∥+ ∥Ξt∥)2

+
√
Tr(IrA −ΦtΦ⊤

t ) ·
(
16η2rA(∥∆t−1∥+ ∥Ξt∥)

)
+
√

Tr(IrA −ΦtΦ⊤
t ) · (4η2 + 2η)(∥∆t−1∥F + 2∥Ξt∥F).
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Substituting η = (r−rA)4

975c21κ
2m2r2rA

into the inequality above, it follows that

Tr(IrA −Φt+1Φ
⊤
t+1) ≤ qTr(IrA −ΦtΦ

⊤
t ) +

1

κ4rA
(∥∆t−1∥+ ∥Ξt∥)2

+
√

Tr(IrA −ΦtΦ⊤
t ) ·

1

κ4rA
(∥∆t−1∥+ ∥Ξt∥) (30)

+
√

Tr(IrA −ΦtΦ⊤
t ) · (

1

κ4r2A
+

1

κ2rA
)(∥∆t−1∥F + 2∥Ξt∥F),

where q := 1− (r−rA)4

8125c21κ
4m2r2rA

is a constant in (12 , 1).

From Lemma 9 and the RIP property of M(·) with δ = c4(r−rA)6

κ2m3r4rA
, it guarantees that

∥∆t−1∥ ≤ ∥∆t−1∥F ≤ c4(r − rA)
6

κ2m5/2r7/2rA
∥Xt−1Θt−1X

⊤
t−1 −A∥F

≤ c4(r − rA)
4

κ2m2r2
∥Xt−1Θt−1X

⊤
t−1 −A∥F,

∥Ξt∥ ≤ ∥Ξt∥F ≤ c4(r − rA)
6

κ2m5/2r7/2rA
∥XtΘtX

⊤
t −A∥F

≤ c4(r − rA)
4

κ2m2r2
∥XtΘtX

⊤
t −A∥F.

Together with c4 = O( 1
c31
), we can rewrite inequality (30) as

Tr(IrA −Φt+1Φ
⊤
t+1)

≤ qTr(IrA −ΦtΦ
⊤
t ) +

1− q

180

(
∥Xt−1Θt−1X

⊤
t−1 −A∥2F + ∥XtΘtX

⊤
t −A∥2F

+ 2∥Xt−1Θt−1X
⊤
t−1 −A∥F∥XtΘtX

⊤
t −A∥F (31)

+
√

Tr(IrA −ΦtΦ⊤
t )

(
∥Xt−1Θt−1X

⊤
t−1 −A∥F + ∥XtΘtX

⊤
t −A∥F

))
.

Denote bt := Tr(IrA −ΦtΦ
⊤
t ), at := ∥XtΘtX

⊤
t −A∥F. Inequality (31) can be expressed as

bt+1 ≤ qbt +
1− q

180

(
a2t−1 + a2t + 2at−1at +

√
bt(at−1 + at)

)
. (32)

Combining Lemma 8, Lemma 9 and the RIP property of M(·) with δ = c4(r−rA)6

κ2m3r4rA
, we obtain

at ≤ 2
√

bt +
1

6
at−1. (33)

Since t0 + 1 is the first iteration in Phase II, we have Tr(IrA −Φt0+1Φ
⊤
t0+1) ≤ 0.5. From Lemma

13, it follows that Tr(IrA −Φt0+2Φ
⊤
t0+2) ≤ 0.6. Hence, bt0+1, bt0+2 ∈ [0, 0.6].

From Lemma 27, to establish the linear convergence rate of at, it suffices to analyze the following
equality system of {b̃t}∞t=t0+1 and {ãt}∞t=t0+1:

b̃t+1 = qb̃t +
1− q

180

(
ã2t−1 + ã2t + 2ãt−1ãt +

√
b̃t(ãt−1 + ãt)

)
,
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ãt = 2

√
b̃t +

1

6
ãt−1, t = t0 + 2, t0 + 3, ...,

ãt0+1 = at0+1, b̃t0+1 = 0.6, b̃t0+2 = 0.6.

By Lemma 8 and the RIP property of M(·) with δ = c4(r−rA)6

κ2m3r4rA
, we derive

ãt0+1 = at0+1 ≤ 2
√

bt0+1 + ∥∆t0∥F
(i)

≤ 2
√
bt0+1 +

1

48
√
rA

≤ 3

√
b̃t0+1 ≤

3
√
2√

1 + q

√
b̃t0+2,

where (i) is from inequality (27). From the update of ãt at t = t0 + 2, it follows that

ãt0+2 = 2

√
b̃t0+2 +

1

6
ãt0+1 ≤ 2

√
b̃t0+2 +

1

3

√
bt0+1 +

1

288
√
rA

≤ 3

√
b̃t0+2.

Therefore, applying Lemma 27 and Lemma 28, we arrive at

at0+1+t ≤ ãt0+1+t ≤ 3

√
b̃t0+1

(
1 + q

2

)t/2

≤ 3

(
1− 1− q

4

)t+1

= 3

(
1− c3(r − rA)

4

κ4m2r2rA

)t+1

,

for all t ≥ 0, with c3 :=
1

32500c21
∈ (0, 1). This establishes the linear convergence rate of at.

We now prove that Tr(ΦtΦ
⊤
t ) ≥ rA − 0.6 for all t ≥ t0 + 1. This amounts to proving that

Tr(IrA −ΦtΦ
⊤
t ) = bt ≤ 0.6 for all t ≥ t0 + 1.

Since bt0+2 ≤ 0.6, inequality (32) holds for t = t0 + 2. Hence,

bt0+3 ≤ qbt0+2 +
1− q

180

(
a2t0+1 + a2t0+2 + 2at0+1at0+2 +

√
bt0+2(at0+1 + at0+2)

)
(j)

≤ 0.6q +
1− q

180
(9× 0.6 + 9× 0.6 + 18× 0.6 + 6× 0.6)

≤ 1 + q

2
× 0.6

≤ 0.6,

where (j) is from the fact that at0+1 ≤ 3
√

b̃t0+1 = 3
√
0.6, at0+2 ≤ ãt0+2 ≤ 3

√
b̃t0+2 = 3

√
0.6.

Therefore, inequality (32) holds for t = t0 + 3. From inequality (33), we have at0+3 ≤ 2
√
bt0+3 +

1
6at0+2 ≤ 3

√
0.6. By recursion, it follows that Tr(IrA −ΦtΦ

⊤
t ) = bt ≤ 0.6 for all t ≥ t0 + 1.

To conclude, by choosing stepsizes η = (r−rA)4

975c21κ
2m2r2rA

and µ = 2, we have that ∥XtΘtX
⊤
t −A∥F ≤

3
(
1− c3(r−rA)4

κ4m2r2rA

)t−t0
for all t ≥ t0 + 1, with high probability over the initialization.

G.9. Proof of Lemma 3

Proof Let UΣU⊤ be the compact SVD of A, where U = [u1,u2, . . . ,urA ] and Σ = diag(λ1, λ2, . . . , λrA),
with λ1 ≥ λ2 ≥ · · · ≥ λrA > 0. Here, diag(λ1, λ2, . . . , λrA) denotes the diagonal matrix whose
diagonal entries are λ1, λ2, . . . , λrA .
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We first consider ρ ≥ 1. From the Eckart–Young–Mirsky theorem, we have that the best rank − ρ
approximation of A under the Frobenius norm is Aρ = U1Σ1U

⊤
1 , where U1 = [u1,u2, . . . ,uρ]

and Σ = diag(λ1, λ2, . . . , λρ), without considering the ordering of the eigenvalues.

We begin by analyzing the form of X and Θ. Since rank(Aρ) = rank(U1) = ρ and range(Aρ) ⊆
range(U1), it follows that range(Aρ) = range(U1). Together with range(Aρ) = range(XΘX⊤) ⊆
range(X), we can obtain range(U1) ⊆ range(X). Therefore, there exsits a matrix Q ∈ Rr×ρ, such
that U1 = XQ. By the definition of U1, we derive that

U⊤
1 U1 = Q⊤X⊤XQ = Q⊤Q = Iρ,

which implies that Q is a column-orthonormal matrix.

We extend Q to an r × r orthogonal matrix Q̃ = [Q,P]. Let V1 = XP, then [U1,V1] =
[XQ,XP] = XQ̃. Since Q̃⊤X⊤XQ̃ = Q̃⊤Q̃ = Ir, then [U1,V1] is also a column-orthonormal
matrix, which means that

V1 = [v1,v2, . . . ,vr−ρ], withv1,v2, . . . ,vr−ρ ∈ U⊥
1 ; V

⊤
1 V1 = Ir−ρ.

Let U2 = [uρ+1,uρ+2, . . . ,urA ], and then U = [U1,U2]. By substituting U and X, we obtain

X⊤U = Q̃

[
U⊤

1

V⊤
1

]
[U1,U2]

(a)
= Q̃

[
Iρ 0
0 V⊤

1 U2

]
,

where (a) is from v1,v2, . . . ,vr−ρ ∈ U⊥
1 .

Since Tr(X⊤UU⊤X) = ρ, it follows that

ρ = Tr(X⊤UU⊤X)

= Tr

(
Q̃

[
Iρ 0
0 V⊤

1 U2

] [
Iρ 0
0 U⊤

2 V1

]
Q̃⊤

)
= Tr

([
Iρ 0
0 V⊤

1 U2U
⊤
2 V1

])
= ρ+ Tr(V⊤

1 U2U
⊤
2 V1).

After cancelling the term ρ on both sides, we obtain Tr(V⊤
1 U2U

⊤
2 V1) = ∥U⊤

2 V1∥2F = 0. Hence,
we have that U⊤

2 V1 = 0, which implies that v1,v2, . . . ,vr−ρ ∈ U⊥
2 . Moreover, since v1,v2, . . . ,vr−ρ ∈

U⊥
1 as well, we conclude that v1,v2, . . . ,vr−ρ ∈ U⊥.

Substituting X = [U1,V1]Q̃
⊤ into XΘX⊤ = Aρ, we can obtain

[U1,V1]Q̃
⊤ΘQ̃[U1,V1]

⊤ = Aρ

= U1diag(λ1, λ2, . . . , λρ)U
⊤
1

= [U1,V1]diag(λ1, λ2, . . . , λρ, 0, . . . , 0)[U1,V1]
⊤.
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Expanding both sides of the equation, together with v1,v2, . . . ,vr−ρ ∈ U⊥ , we can obtain

Q̃⊤ΘQ̃ = diag(λ1, λ2, . . . , λρ, 0, . . . , 0).

This implies that
Θ = Q̃diag(λ1, λ2, . . . , λρ, 0, . . . , 0)Q̃

⊤.

To proceed, we first verify that (X̃, Θ̃) := ([U1,V1], diag(λ1, λ2, . . . , λρ, 0, . . . , 0)) is indeed a
saddle point and then prove (X,Θ) is also a saddle point.

We compute the Euclidean gradients of f∞ with respect to X and Θ as follows:

∇Xf∞(X̃, Θ̃) = (X̃Θ̃X̃⊤ −A)X̃Θ̃ = X̃Θ̃2 −AX̃Θ̃,

∇Θf∞(X̃, Θ̃) =
1

2
X̃⊤(X̃Θ̃X̃⊤ −A)X̃ =

1

2
(Θ̃− X̃⊤AX̃).

By plugging the expression of (X̃, Θ̃) in, we obtain

∇Xf∞(X̃, Θ̃) = X̃Θ̃2 −AX̃Θ̃

= [λ2
1u1, λ

2
2u2, . . . , λ

2
ρuρ,0, . . . ,0]− [λ2

1u1, λ
2
2u2, . . . , λ

2
ρuρ,0, . . . ,0]

= 0,

∇Θf∞(X̃, Θ̃) =
1

2
(Θ̃− X̃⊤AX̃)

=
1

2
(diag(λ1, λ2, . . . , λρ, 0, . . . , 0)− diag(λ1, λ2, . . . , λρ, 0, . . . , 0))

= 0.

Then, the Riemannian gradient is

(Im − X̃X̃⊤)∇Xf∞(X̃, Θ̃) +
X̃

2
(X̃⊤∇Xf∞(X̃, Θ̃)−∇Xf∞(X̃, Θ̃)⊤X̃) = 0.

Therefore, (X̃, Θ̃) is a stationary point in the Riemannian sense.

We now show that (X̃, Θ̃) is neither a local minimum nor a local maximum of the objective function.

For any 0 < ν < λrA , we will construct a pair (X̃+, Θ̃+), such that f∞(X̃+, Θ̃+) > f∞(X̃, Θ̃),

d
(
(X̃+, Θ̃+), (X̃, Θ̃)

)
:=

√
∥X̃+ − X̃∥2F + ∥Θ̃+ − Θ̃∥2F ≤ ν and X̃⊤

+X̃+ = Ir.

Let X̃+ = X̃ = [U1,V1] and Θ̃+ = diag(λ1−ν, λ2, . . . , λρ, 0, . . . , 0). By construction, X̃⊤
+X̃+ =

Ir and d
(
(X̃+, Θ̃+), (X̃, Θ̃)

)
=

√
ν2 ≤ ν hold. The value of the objective function is

f∞(X̃+, Θ̃+) =
1

4
∥X̃+Θ̃+X̃

⊤
+ −A∥2F

=
1

4
∥(λ1 − ν)u1u

⊤
1 +

ρ∑
i=2

λiuiu
⊤
i −

rA∑
i=1

λiuiu
⊤
i ∥2F
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=
1

4
∥νu1u

⊤
1 +

rA∑
i=ρ+1

λiuiu
⊤
i ∥2F

(b)
=

1

4
(ν2∥u1u

⊤
1 ∥2F + ∥X̃Θ̃X̃⊤ −A∥2F)

> f∞(X̃, Θ̃),

where (b) is by the orthogonality of {u1,u2, . . . ,urA}.

We now try to construct a pair (X̃−, Θ̃−), such that f∞(X̃−, Θ̃−) < f∞(X̃, Θ̃), d
(
(X̃−, Θ̃−), (X̃, Θ̃)

)
:=√

∥X̃− − X̃∥2F + ∥Θ̃− − Θ̃∥2F ≤ ν, and X̃⊤
−X̃− = Ir.

Since vi ∈ U⊥ for any i ∈ {1, 2, . . . , r − ρ}, it follows that vi ∈ span{urA+1,urA+2, . . . ,um}.
Accordingly, we consider

X̃− = [U1, kv1 + suρ+1,v2, . . . ,vr−ρ],

Θ̃− = diag(λ1, λ2, . . . , λρ, ν0, 0, . . . , 0),

where k, s, ν0 > 0, k2 + s2 = 1 and k, s, ν0 will be given later. We can easily verify that X̃⊤
−X̃− =

Ir holds. The distance is

d
(
(X̃−, Θ̃−), (X̃, Θ̃)

)
=

√
∥X̃− − X̃∥2F + ∥Θ̃− − Θ̃∥2F

=
√

∥(k − 1)v1 + suρ+1∥2 + ν20

=
√
(k − 1)2 + s2 + ν20

=
√
2− 2k + ν20 .

Let k = 1 − ν2

4 , s =
√
1− k2 and ν0 ≤ ν

2 , then d
(
(X̃−, Θ̃−), (X̃, Θ̃)

)
≤

√
ν2

2 + ν2

4 ≤ ν. The
value of the objective function is

f∞(X̃−, Θ̃−)

=
1

4
∥X̃−Θ̃−X̃

⊤ −A∥2F

=
1

4
∥ν0(k2v1v

⊤
1 + ksuρ+1v

⊤
1 + ksv1u

⊤
ρ+1) + (ν0s

2 − λρ)uρ+1u
⊤
ρ+1 −

rA∑
i=ρ+2

λiuiu
⊤
i ∥2F

(c)
=

1

4

(
ν20(k

4 + k2s2∥uρ+1v
⊤
1 ∥2F + k2s2∥v1u

⊤
ρ+1∥2F) + (ν0s

2 − λρ)
2
)
+ f∞(X̃, Θ̃)− 1

4
λ2
ρ

=
1

4
ν20

(
k4 + 2k2s2 + s4

)
− 1

2
ν0λρs

2 + f∞(X̃, Θ̃),

where (c) is from the orthogonality of {u1,u2, . . . ,urA ,v1}. Let ν0 > 0 be sufficiently small.
Then 1

4ν
2
0

(
k4 + 2k2s2 + s4

)
− 1

2ν0λρs
2 < 0. This ensures that the perturbed pair leads to a strictly

smaller objective value, i.e., f∞(X̃−, Θ̃−) < f∞(X̃, Θ̃).
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Therefore, we have verified that (X̃, Θ̃) is a saddle point. Building upon this result, we now proceed
to show that (X,Θ) = (X̃Q̃⊤, Q̃Θ̃Q̃⊤) is also a saddle point.

Plugging in the expression of (X,Θ), we obtain the Euclidean gradients as follows:

∇Xf∞(X,Θ) = (XΘX⊤ −A)XΘ

= (X̃Q̃⊤Q̃Θ̃Q̃⊤Q̃X̃⊤ −A)X̃Q̃⊤Q̃Θ̃Q̃⊤

= (X̃Θ̃2 −AX̃Θ̃)Q̃⊤

= 0,

∇Θf∞(X,Θ) =
1

2
X⊤(XΘX⊤ −A)X

=
1

2
Q̃X̃⊤(X̃Q̃⊤Q̃Θ̃Q̃⊤Q̃X̃⊤ −A)X̃Q̃⊤

=
1

2
Q̃(Θ̃− X̃⊤AX̃)Q̃⊤

= 0.

Then, the Riemannian gradient is

(Im −XX⊤)∇Xf∞(X,Θ) +
X

2
(X⊤∇Xf∞(X,Θ)−∇Xf∞(X,Θ)⊤X) = 0.

Therefore, (X,Θ) is a stationary point in the Riemannian sense.

Let (X+,Θ+) = (X̃+Q̃
⊤, Q̃Θ+Q̃

⊤), (X−,Θ−) = (X̃−Q̃
⊤, Q̃Θ−Q̃

⊤). The distance is

d ((X+,Θ+), (X,Θ)) =
√
∥X+ −X∥2F + ∥Θ+ −Θ∥2F

=

√
∥(X̃+ − X̃)Q̃⊤∥2F + ∥Q̃(Θ̃+ − Θ̃)Q̃⊤∥2F

=

√
∥X̃+ − X̃∥2F + ∥Θ̃+ − Θ̃∥2F

= d
(
(X̃+, Θ̃+), (X̃, Θ̃)

)
.

In the same manner, we can obtain that d ((X−,Θ−), (X,Θ)) = d
(
(X̃−, Θ̃−), (X̃, Θ̃)

)
. By the

orthogonality of Q̃, the following three identities hold:

XΘX⊤ = X̃Q̃⊤Q̃Θ̃Q̃⊤Q̃X̃⊤ = X̃Θ̃X̃⊤,

X+Θ+X
⊤
+ = X̃+Q̃

⊤Q̃Θ̃+Q̃
⊤Q̃X̃⊤

+ = X̃+Θ̃+X̃
⊤
+,

X−Θ−X
⊤
− = X̃−Q̃

⊤Q̃Θ̃−Q̃
⊤Q̃X̃⊤

− = X̃−Θ̃−X̃
⊤
−.

Then, we have f(X,Θ) = f(X̃, Θ̃), f(X+,Θ+) = f(X̃+, Θ̃+) and f(X−,Θ−) = f(X̃−, Θ̃−).
Thus, we obtain the strict inequality f(X−,Θ−) < f(X,Θ) < f(X+,Θ+). Therefore, (X,Θ) is
also a saddle point.

We now turn to the case ρ = 0, i.e., XΘX⊤ = A0 = 0. Consequently, Θ = X⊤A0X = 0. Let X
be expressed as X = [x1,x2, . . . ,xr], where each xi is a column vector. Since Tr(X⊤UU⊤X) =
∥U⊤X∥2F = 0, it follows that U⊤X = 0. Hence, each xi lies in U⊥ for i ∈ {1, 2, . . . , r}.
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We compute the Euclidean gradient of the objective function f∞ with respect to X and Θ

∇Xf∞(X,Θ) = (XΘX⊤ −A)XΘ = XΘ2 −AXΘ = 0,

∇Θf∞(X,Θ) =
1

2
X⊤(XΘX⊤ −A)X =

1

2
(Θ−X⊤AX) = 0.

Then, the Riemannian gradient is

(Im −XX⊤)∇Xf∞(X,Θ) +
X

2
(X⊤∇Xf∞(X,Θ)−∇Xf∞(X,Θ)⊤X) = 0.

Therefore, (X,Θ) is a stationary point in the Riemannian sense.

For any 0 < ν < λrA , we construct the pair (X+,Θ+) as follows:

X+ = [kx1 + su1,x2, . . . ,xr],

Θ+ = diag(−ν1, 0, . . . , 0),

where k = 1− ν2

4 , s =
√
1− k2, and 0 < ν1 ≤ ν

2 . We can easily verify that X⊤
+X+ = Ir and the

distance is

d ((X+,Θ+), (X,Θ)) =
√

∥X+ −X∥2F + ∥Θ+ −Θ∥2F

=
√

∥(k − 1)x1 + su1∥2 + ν21

=
√

(k − 1)2 + s2 + ν21

≤
√

ν2

2
+

ν2

4

≤ ν.

The value of the objective function is

f∞(X+,Θ+) =
1

4
∥X+Θ+X

⊤
+ −A∥2F

=
1

4
∥ − ν1

(
k2x1x

⊤
1 + s2u1u

⊤
1

)
−

rA∑
i=1

λiuiu
⊤
i ∥2F

=
1

4
∥ν1k2x1x

⊤
1 + ν1s

2u1u
⊤
1 +

rA∑
i=1

λiuiu
⊤
i ∥2F

(d)
=

1

4

(
ν21k

4 + ν21s
4 + 2ν1λ1s

2 + ∥XΘX⊤ −A∥2F
)

> f∞(X,Θ),

where (d) is due to the orthogonality of {u1,u2, . . . ,urA ,x1}. Now consider the pair (X−,Θ−)
defined as:

X− = [kx1 + su1,x2, . . . ,xr],
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Θ− = diag(ν2, 0, . . . , 0),

where k = 1 − ν2

4 , s =
√
1− k2, and 0 < ν2 ≤ ν

2 . It can be verified that X⊤
−X− = Ir, and the

distance is

d ((X−,Θ−), (X,Θ)) =
√

∥X− −X∥2F + ∥Θ− −Θ∥2F

=
√

∥(k − 1)x1 + su1∥2 + ν22

=
√

(k − 1)2 + s2 + ν22

≤
√

ν2

2
+

ν2

4

≤ ν.

The value of the objective function is

f∞(X−,Θ−) =
1

4
∥X−Θ−X

⊤
− −A∥2F

=
1

4
∥ν2

(
k2x1x

⊤
1 + s2u1u

⊤
1

)
−

rA∑
i=1

λiuiu
⊤
i ∥2F

=
1

4
∥ν2k2x1x

⊤
1 + ν2s

2u1u
⊤
1 −

rA∑
i=1

λiuiu
⊤
i ∥2F

(e)
=

1

4

(
ν22k

4 + ν22s
4 − 2ν2λ1s

2 + ∥XΘX⊤ −A∥2F
)

=
1

4

(
ν22(k

4 + s4)− 2ν2λ1s
2
)
+ f∞(X,Θ),

where (e) is by the orthogonality of {u1,u2, . . . ,urA ,x1}. Let ν2 > 0 be sufficiently small. Then
1
4

(
ν22(k

4 + s4)− 2ν2λ1s
2
)
< 0. This guarantees that f∞(X−,Θ−) < f∞(X,Θ). Therefore,

(X,Θ) is also a saddle point when ρ = 0.

G.10. Proof of Lemma 4

Proof We begin by computing the Euclidean gradients of f∞ and f with respect to X and Θ:

∇Xf∞(X,Θ) = (XΘX⊤ −A)XΘ,

∇Θf∞(X,Θ) =
1

2
X⊤(XΘX⊤ −A)X,

∇Xf(X,Θ) = M∗M(XΘX⊤ −A)XΘ,

∇Θf(X,Θ) =
1

2
X⊤M∗M(XΘX⊤ −A)X.

Then, we can obtain that the gap between population gradient and sensing gradient is

∥∇Xf∞(X,Θ)−∇Xf(X,Θ)∥F = ∥(M∗M−I)(XΘX⊤ −A)XΘ∥F
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≤ ∥(M∗M−I)(XΘX⊤ −A)∥F∥X∥∥Θ∥
(f)

≤ 2∥(M∗M−I)(XΘX⊤ −A)∥F
≤ 2

√
m∥(M∗M−I)(XΘX⊤ −A)∥

(g)

≤ 2
√
mδ∥XΘX⊤ −A∥F

≤ 2mδ∥XΘX⊤ −A∥
≤ 2mδ(∥X∥∥Θ∥∥X∥+ ∥A∥)
(f)

≤ 6mδ,

∥∇Θf∞(X,Θ)−∇Θf(X,Θ)∥F =
1

2
∥X⊤(M∗M−I)(XΘX⊤ −A)X∥F

≤ 1

2
∥X∥∥(M∗M−I)(XΘX⊤ −A)∥F∥X∥

≤ 1

2
∥(M∗M−I)(XΘX⊤ −A)∥F

≤ 1

2

√
m∥(M∗M−I)(XΘX⊤ −A)∥

(g)

≤ 1

2

√
mδ∥XΘX⊤ −A∥F

≤ 1

2
mδ∥XΘX⊤ −A∥

≤ 1

2
mδ(∥X∥∥Θ∥∥X∥+ ∥A∥)

(f)

≤ 3

2
mδ,

where (f) is by ∥X∥ ≤ 1, ∥Θ∥ ≤ 2, ∥A∥ ≤ 1; and (g) is from Lemma 24. Then, the difference
between the two Riemannian gradients can be bounded as

∥∇R
Xf∞(X,Θ)−∇R

Xf(X,Θ)∥F = ∥(Im −XX⊤)(∇Xf∞(X,Θ)−∇Xf(X,Θ))

+
1

2
XX⊤(∇Xf∞(X,Θ)−∇Xf(X,Θ))

− 1

2
X(∇Xf∞(X,Θ)⊤ −∇Xf(X,Θ)⊤)X∥F

≤ ∥(Im −XX⊤)(∇Xf∞(X,Θ)−∇Xf(X,Θ))∥F

+
1

2
∥XX⊤(∇Xf∞(X,Θ)−∇Xf(X,Θ))∥F

+
1

2
∥X(∇Xf∞(X,Θ)⊤ −∇Xf(X,Θ)⊤)X∥F

≤ 6mδ(∥Im −XX⊤∥+ 1

2
∥X∥∥X∥+ 1

2
∥X∥∥X∥)

(h)

≤ 12mδ,
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where (h) is due to ∥Im −XX⊤∥, ∥X∥ ≤ 1.

Appendix H. Other useful lemmas

Lemma 14 Given a PSD matrix A, we have that (I+A)−1 ⪰ I−A.

Proof Diagonalizing both sides and using 1/(1 + λ) ≥ 1− λ, ∀λ ≥ 0 yields the result.

Lemma 15 Let X ∈ St(m, r) and U ∈ St(m, rA). Let U⊥ ∈ Rm×(m−rA) be an orthonormal
basis for the orthogonal complement of span(U). Denote Φ = U⊤X ∈ RrA×r and Ψ = U⊤

⊥X ∈
R(m−rA)×r. It is guaranteed that σ2

i (Φ) + σ2
i (Ψ) = 1 holds for i ∈ {1, 2, . . . , r}.

Proof Since X lies in the Stiefel manifold, we have that

Ir = X⊤X = X⊤ImX = X⊤[U,U⊥]

[
U⊤

U⊤
⊥

]
X (34)

= Φ⊤Φ+Ψ⊤Ψ.

Equation (34) shows that Ψ⊤Ψ and Φ⊤Φ commute, i.e.,

(Φ⊤Φ)(Ψ⊤Ψ) = (Φ⊤Φ)(Ir −Φ⊤Φ) = Φ⊤Φ−Φ⊤ΦΦ⊤Φ

= (Ir −Φ⊤Φ)(Φ⊤Φ) = (Ψ⊤Ψ)(Φ⊤Φ).

The commutativity shows that the eigenspaces of Φ⊤Φ and Ψ⊤Ψ coincide. As a result, we have
again from (34) that σ2

i (Φ) + σ2
i (Ψ) = 1 for i ∈ {1, 2, . . . , r}.

Lemma 16 Suppose that P and Q are m × m diagonal matrices, with non-negative diagonal
entries. Let S ∈ Sm be a positive definite matrix with smallest eigenvalue λmin, then we have that

Tr(PSQ) ≥ λminTr(PQ).

Proof Let pi and qi be the (i, i)-th entry of P and Q, respectively. Then we have that

Tr(PSQ) =
∑
i

piSi,iqi ≥ λmin

∑
i

piqi = λminTr(PQ),

where the last inequality comes from S being positive definite, i.e., Si,i = e⊤i Sei ≥ λmin.

Lemma 17 Let A ∈ Rm×n be a matrix with full column rank and B ∈ Rn×p be a non-zero
matrix. Let σmin(·) denote the smallest non-zero singular value. Then it holds that σmin(AB) ≥
σmin(A)σmin(B).
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Proof Using the min-max principle for singular values,

σmin(AB) = min
∥x∥=1,x∈ColSpan(B)

∥ABx∥

= min
∥x∥=1,x∈ColSpan(B)

∥∥∥A Bx

∥Bx∥

∥∥∥ · ∥Bx∥

(a)
= min

∥x∥=1,∥y∥=1,x∈ColSpan(B),y∈ColSpan(B)
∥Ay∥ · ∥Bx∥

≥ min
∥y∥=1,y∈ColSpan(B)

∥Ay∥ · min
∥x∥=1,x∈ColSpan(B)

∥Bx∥

≥ min
∥y∥=1

∥Ay∥ · min
∥x∥=1,x∈ColSpan(B)

∥Bx∥

= σmin(A)σmin(B),

where (a) is by changing of variables, i.e., y = Bx/∥Bx∥.

Lemma 18 (Theorem 2.2.1 of [12]) If Z ∈ Rm×r has entries drawn i.i.d. from Gaussian distri-
bution N (0, 1), then X = Z(Z⊤Z)−1/2 is a random matrix uniformly distributed on St(m, r).

Lemma 19 [42] If Z ∈ Rm×r is a matrix whose entries are independently drawn from N (0, 1).
Then for every τ ≥ 0, with probability at least 1− exp(−τ2/2), we have

σ1(Z) ≤
√
m+

√
r + τ.

Lemma 20 [33] If Z ∈ Rm×r is a matrix whose entries are independently drawn from N (0, 1).
Suppose that m ≥ r. Then for every τ ≥ 0, we have for two universal constants C1 > 0 and
C2 > 0 that

P
(
σr(Z) ≤ τ(

√
m−

√
r − 1)

)
≤ (C1τ)

m−r+1 + exp(−C2m).

Lemma 21 If U ∈ St(m, rA) is a fixed matrix, X ∈ St(m, r) is uniformly sampled from St(m, r)
using methods described in Lemma 18, and r > rA, then we have that with probability at least
1− exp(−m/2)− (C1τ)

r−rA+1 − exp(−C2r),

σrA(U
⊤X) ≥ τ(r − rA + 1)

6
√
mr

.

Proof Since X ∈ St(m, r) is uniformly sampled from St(m, r) using methods described in Lemma
18, we can write X = Z(Z⊤Z)−1/2, where Z ∈ Rm×r has entries i.i.d. sampled from N (0, 1). We
thus have

σrA(U
⊤X) = σrA

(
U⊤Z(Z⊤Z)−1/2

)
.

We now consider U⊤Z ∈ RrA×r. It is clear that the entries of U⊤Z are also i.i.d N (0, 1) random
variables. As a consequence of Lemma 20, we have that with probability at least 1−(C1τ)

r−rA+1−
exp(−C2r),

σrA
(
U⊤Z

)
≥ τ(

√
r −

√
rA − 1).
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We also have from Lemma 19 that with probability at least 1− exp(−m/2),

σ1(Z
⊤Z) = σ2

1(Z) ≤ (2
√
m+

√
r)2.

Taking union bound, we have with probability at least 1−exp(−m/2)−(C1τ)
r−rA+1−exp(−C2r),

σrA(U
⊤X)

(a)

≥
σrA

(
U⊤Z)

σ1(Z)
=

τ(
√
r −

√
rA − 1)

2
√
m+

√
r

≥ τ(r − rA + 1)

3
√
m · 2

√
r

=
τ(r − rA + 1)

6
√
mr

,

where (a) comes from Lemma 17.

Lemma 22 Suppose Θt ∈ Sr. Then the update rule (7) guarantees that Θt+1 also belongs to Sr.

Proof From the update rule, we have that

Θt+1 = X⊤
t+1AXt+1 −X⊤

t+1

[
(M∗M− µ

2
I)(Xt+1ΘtX

⊤
t+1 −A)

]
Xt+1.

Since Θt ∈ Sr and A ∈ Sm, it follows that Xt+1ΘtX
⊤
t+1 −A ∈ Sm and X⊤

t+1AXt+1 ∈ Sr.

By definition of M and M∗, the composition M∗M defines a self-adjoint operator in Sm. Hence,

X⊤
t+1

[
(M∗M− µ

2
I)(Xt+1ΘtX

⊤
t+1 −A)

]
Xt+1 ∈ Sr.

Thus, Θt+1 ∈ Sr, which completes the proof.

Lemma 23 Let M(·) : Sm → Rn be a linear mapping that is (r+ r′, δ)-RIP with δ ∈ [0, 1). Then
for any symmetric matrix Z of rank at most r and any symmetric matrix Y of rank at most r′, we
have that

|⟨(M∗M−I)(Z),Y⟩| ≤ δ∥Z∥F∥Y∥F.

Proof Denote ∆(Z,Y) := ⟨(M∗M − I)(Z),Y⟩ = ⟨M(Z),M(Y)⟩ − ⟨Z,Y⟩. The above
inequality trivially holds when ∥Z∥F = 0 or ∥Y∥F = 0. Without loss of generality, we assume that
∥Z∥F ̸= 0 and ∥Y∥F ̸= 0. Define Z̃ := Z

∥Z∥F and Ỹ := Y
∥Y∥F . It then follows that

∆(Z,Y) = ∆(Z̃, Ỹ) · ∥Z∥F∥Y∥F.

Using the polarization identity, we obtain

⟨M(Z̃),M(Ỹ)⟩ = 1

4
(∥M(Z̃+ Ỹ)∥2 − ∥M(Z̃− Ỹ)∥2),

⟨Z̃, Ỹ⟩ = 1

4
(∥Z̃+ Ỹ∥2F − ∥Z̃− Ỹ∥2F).
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Substituting the two equalities into the expression of ∆(Z̃, Ỹ), we have that

|∆(Z̃, Ỹ)| = |⟨M(Z̃),M(Ỹ)⟩ − ⟨Z̃, Ỹ⟩|

=
1

4
|(∥M(Z̃+ Ỹ)∥2 − ∥M(Z̃− Ỹ)∥2)− (∥Z̃+ Ỹ∥2F − ∥Z̃− Ỹ∥2F)|

≤ 1

4

(
|∥M(Z̃+ Ỹ)∥2 − ∥Z̃+ Ỹ∥2F|+ |∥M(Z̃− Ỹ)∥2 − ∥Z̃− Ỹ∥2F|

)
(a)

≤ δ

4
(∥Z̃+ Ỹ∥2F + ∥Z̃− Ỹ∥2F)

=
δ

2
(∥Z̃∥2F + ∥Ỹ∥2F)

= δ,

where (a) is from the facts that M(·) is (r+ r′, δ)-RIP with constant δ, rank(Z̃+ Ỹ) ≤ rank(Z̃)+
rank(Ỹ) ≤ r + r′, and rank(Z̃− Ỹ) ≤ rank(Z̃) + rank(Ỹ) ≤ r + r′. Therefore, we have that

|⟨(M∗M−I)(Z),Y⟩| = |∆(Z,Y)| = |∆(Z̃, Ỹ) · ∥Z∥F∥Y∥F| ≤ δ∥Z∥F∥Y∥F,

which completes the proof.

Lemma 24 (Lemma 7.3 of [38]) Let M(·) : Sm → Rn be a linear mapping that is (r+rA+1, δ)-
RIP with δ ∈ [0, 1), then ∥(M∗M − I)(A)∥ ≤ δ∥A∥F for all matrices A ∈ Sm of rank at most
r + rA.

Proof By Lemma 23, if A ∈ Sm has rank at most r + rA and Y ∈ Sm has rank at most 1, then it
holds that

|⟨(M∗M−I)(A),Y⟩| ≤ δ∥A∥F∥Y∥F.

Hence, it suffices to prove that there exists a matrix Y of rank 1, such that |⟨(M∗M−I)(A),Y⟩| =
∥(M∗M−I)(A)∥ and ∥Y∥F ≤ 1. Since (M∗M−I)(A) is a symmetric matrix, it follows that

∥(M∗M−I)(A)∥ = max
∥u∥=1

u⊤(M∗M−I)(A)u

= max
∥u∥=1

Tr((M∗M−I)(A)uu⊤)

= max
∥u∥=1

⟨(M∗M−I)(A),uu⊤⟩.

Let Y = ũũ⊤, where ũ ∈ argmax
∥u∥=1

⟨(M∗M − I)(A),uu⊤⟩. We then have that rank(Y) = 1,

Y ∈ Sm, |⟨(M∗M−I)(A),Y⟩| = ∥(M∗M−I)(A)∥, and ∥Y∥F ≤ 1.

Lemma 25 Let A ∈ Rn×m, B ∈ Rm×n be two real matrices, then the following inequality holds

AB+B⊤A⊤ ⪯ 2∥A∥∥B∥In.
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Proof For any unit vector x ∈ Rn with ∥x∥ = 1, we can obtain that

x⊤(AB+B⊤A⊤)x = x⊤ABx+ x⊤B⊤A⊤x
(a)
= 2x⊤ABx,

where (a) is from the fact that x⊤B⊤A⊤x is a scalar. By the Cauchy–Schwarz inequality and the
definition of the spectral norm, we have that

|x⊤ABx| ≤ ∥ABx∥ · ∥x∥ ≤ ∥A∥ · ∥B∥ · ∥x∥2 = ∥A∥∥B∥.

Hence, we obtain the following inequality:

x⊤(AB+B⊤A⊤)x ≤ 2∥A∥∥B∥.

Since this holds for any unit vector x, it follows that

AB+B⊤A⊤ ⪯ 2∥A∥∥B∥In.

Lemma 26 Let t ≥ 1 be a positive integer. For all real numbers x, satisfying 0 ≤ x ≤ 1
t , the

following inequality holds:
(1 + x)t ≤ 1 + 3tx.

Proof Let f(x) := 1 + 3tx− (1 + x)t, x ∈ [0, 1t ]. Then, for all x ∈ [0, 1t ], we obtain

f ′(x) = 3t− t(1 + x)t−1 ≥ 3t− t(1 +
1

t
)t−1 ≥ (3− e)t > 0.

Therefore, for all x ∈ [0, 1t ], f(x) ≥ f(0) = 0, which means (1 + x)t ≤ 1 + 3tx for all x ∈ [0, 1t ].

Lemma 27 Let k ∈ R≥1, q ∈ (12 , 1). Suppose that sequences {at}∞t=0, {bt}∞t=0 ⊂ R≥0 satisfy

bt+1 ≤ qbt +
1− q

180k2
(
a2t−1 + a2t + 2at−1at +

√
bt(at−1 + at)

)
, (35)

at ≤ 2k
√
bt +

1

6
at−1, t = 1, 2 . . . , (36)

and another pair of sequences {ãt}∞t=0, {b̃t}∞t=0 ⊂ R≥0 satisfy

b̃t+1 = qb̃t +
1− q

180k2
(
ã2t−1 + ã2t + 2ãt−1ãt +

√
b̃t(ãt−1 + ãt)

)
, (37)

ãt = 2k

√
b̃t +

1

6
ãt−1, t = 1, 2 . . . . (38)

If the initial conditions satisfy
a0 ≤ ã0, b0 ≤ b̃0, b1 ≤ b̃1,

then at ≤ ãt and bt ≤ b̃t hold for all t ≥ 0.
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Proof We proceed by mathematical induction. From inequality (35), we obtain

a1 ≤ 2k
√

b1 +
1

6
a0

(a)

≤ 2k

√
b̃1 +

1

6
ã0

(b)
= ã1,

where (a) is by initial conditions; and (b) is from equality (37). Analogously, inequality (36) implies

b2 ≤ qb1 +
1− q

180k2
(
a20 + a21 + 2a0a1 +

√
b1(a0 + a1)

)
(c)

≤ qb̃1 +
1− q

180k2
(
ã20 + ã21 + 2ã0ã1 +

√
b̃1(ã0 + ã1)

)
(d)
= b̃2,

where (c) is due to initial conditions and a1 ≤ ã1; and (d) is by equality (38). By induction, we
conclude that at ≤ ãt and bt ≤ b̃t for all t ≥ 0, which completes the proof.

Lemma 28 Let k ∈ R≥1, q ∈ (12 , 1). Suppose that sequences {ãt}∞t=0, {b̃t}∞t=0 ⊂ R≥0 satisfy:

b̃t+1 = qb̃t +
1− q

180k2
(
ã2t−1 + ã2t + 2ãt−1ãt +

√
b̃t(ãt−1 + ãt)

)
, (39)

ãt = 2k

√
b̃t +

1

6
ãt−1, t = 1, 2 . . . . (40)

If the initial conditions satisfy

ã0, ã1, b̃0, b̃1 ∈ R≥0, ã0 ≤ 3k

√
b̃0 ≤

3
√
2k√

1 + q

√
b̃1, ã1 ≤ 3k

√
b̃1,

then we have that ãt ≤ 3k
√

b̃0

(
1+q
2

)t/2
for all t ≥ 0.

Proof We proceed by mathematical induction. We first consider the following auxiliary system:

b̂t+1 = max{qb̂t +
1− q

180k2
(
â2t−1 + â2t + 2ât−1ât +

√
b̂t(ât−1 + ât)),

1 + q

2
b̂t}, (41)

ât = max{2k
√

b̂t +
1

6
ât−1, 3k

√
b̂t}, t = 1, 2, . . . . (42)

Let â0 = ã0, b̂0 = b̃0, and b̂1 = b̃1. It holds that â0 ≤ 3k
√

b̂0 ≤ 3
√
2k√

1+q

√
b̂1, and thus we have

2k

√
b̂1 +

1

6
â0 ≤ 2k

√
b̂1 +

√
2k

2
√
1 + q

√
b̂1 ≤ 3k

√
b̂1.
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From equality (42) at t = 1, we obtain â1 = 3k
√
b̂1. Since â0 ≤ 3

√
2k√

1+q

√
b̂1 and â1 = 3k

√
b̂1, it

follows that

qb̂1 +
1− q

180k2
(
â20 + â21 + 2â0â1 +

√
b̂1(â0 + â1))

≤ qb̂1 +
1− q

180k2
( 18k2
1 + q

b̂1 + 9k2b̂1 +
18
√
2k2√

1 + q
b̂1 +

3
√
2k√

1 + q
b̂1 + 3kb̂1

)
≤ qb̂1 +

1− q

180k2
(
18k2 + 9k2 + 18

√
2k2 + 3

√
2k2 + 3k2

)
b̂1

≤ qb̂1 +
1− q

2
b̂1

≤ 1 + q

2
b̂1.

From equality (41) at t = 1, we have b̂2 =
1+q
2 b̂1. Using the same reasoning for t = 2 yields

2k

√
b̂2 +

1

6
â1 = 2k

√
b̂2 +

k

2

√
b̂1 = 2k

√
b̂2 +

k

2

√
2

1 + q

√
b̂2 ≤ 3k

√
b̂2.

Equality (42) at t = 1 implies that â2 = 3k
√
b̂2. Since â1 = 3k

√
b̂1 and â2 = 3k

√
b̂2, we obtain

qb̂2 +
1− q

180k2
(
â21 + â22 + 2â1â2 +

√
b̂2(â1 + â2))

= qb̂2 +
1− q

180k2
(
9k2b̂1 + 9k2b̂2 + 18k2

√
b̂1b̂2 + 3k(

√
b̂1b̂2 + b̂2)

)
= qb̂2 +

1− q

180k2
( 18k2
1 + q

+ 9k2 +
18
√
2k2√

1 + q
+

3
√
2k√

1 + q
+ 3k

)
b̂2

≤ qb̂2 +
1− q

180k2
(
18k2 + 9k2 + 18

√
2k2 + 3

√
2k2 + 3k2

)
b̂2

≤ qb̂2 +
1− q

2
b̂2

≤ 1 + q

2
b̂2.

Applying equality (41) at t = 2, b̂3 = 1+q
2 b̂2 is derived. Therefore, we have that â1 = 3k

√
b̂1, â2 =

3k
√
b̂2, and b̂3 =

1+q
2 b̂2. Assume that ât−1 = 3k

√
b̂t−1, ât = 3k

√
b̂t, and b̂t+1 =

1+q
2 b̂t, we claim

that ât+1 = 3k

√
b̂t+1 and b̂t+2 =

1+q
2 b̂t+1. From equality (42), we obtain

ât+1 = max{2k
√
b̂t+1 +

1

6
ât, 3k

√
b̂t+1}

= max{2k
√
b̂t+1 +

1

2
k

√
b̂t, 3k

√
b̂t+1}

= max{2k
√
b̂t+1 +

k
√

2
1+q

2

√
b̂t+1, 3k

√
b̂t+1}

= 3k

√
b̂t+1.
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Analogously, equality (41) implies that

b̂t+2 = max{qb̂t+1 +
1− q

180k2
(
â2t + â2t+1 + 2âtât+1 +

√
b̂t+1(ât + ât+1)),

1 + q

2
b̂t+1}

= max{qb̂t+1 +
1− q

180k2
(9k2b̂t + 9k2b̂t+1 + 18k2

√
b̂tb̂t+1 +

√
b̂t+1(3k

√
b̂t + 3k

√
b̂t+1)),

1 + q

2
b̂t+1}

= max{qb̂t+1 +
1− q

20
(

2

1 + q
+ 1 + 2(

2

1 + q
)1/2 +

1

3k
(

2

1 + q
)1/2 +

1

3k
)b̂t+1,

1 + q

2
b̂t+1}

=
1 + q

2
b̂t+1.

Therefore, we have that {b̂t}t=∞
t=0 decreases in a linear rate and that ât = 3k

√
b̂t in the system (41)

and (42), which means that ât ≤ 3k
√
b̂0

(
1+q
2

)t/2
= 3k

√
b̃0

(
1+q
2

)t/2
for all t ≥ 0.

We now prove that ãt ≤ ât, b̃t ≤ b̂t for all t ≥ 0. Obviously, ã0 ≤ â0, ã1 ≤ â1, b̃0 ≤ b̂0, and
b̃1 ≤ b̂1 hold. Applying equality (39) at t = 1 and equality (40) at t = 2, we obtain

b̃2 = qb̃1 +
1− q

180k2
(
ã20 + ã21 + 2ã0ã1 +

√
b̃1(ã0 + ã1)

)
≤ qb̂1 +

1− q

180k2
(
â20 + â21 + 2â0â1 +

√
b̂1(â0 + â1))

≤ max{qb̂1 +
1− q

180k2
(
â20 + â21 + 2â0â1 +

√
b̂1(â0 + â1)),

1 + q

2
b̂1}

= b̂2,

ã2 = 2k

√
b̃2 +

1

6
ã1

≤ 2k

√
b̂2 +

1

6
â1

≤ max{2k
√

b̂2 +
1

6
â1, 3k

√
b̂2}

= â2.

Hence, ã2 ≤ â2, b̃2 ≤ b̂2 and recursively, we can obtain ãt ≤ ât, b̃t ≤ b̂t for all t ≥ 0. Consequently,
{ãt}t=∞

t=0 achieves at least a linear convergence rate in the system (39) and (40), which means that

ãt ≤ 3k
√

b̃0

(
1+q
2

)t/2
for all t ≥ 0.

Appendix I. Experimental setup

In this section, we provide experimental setup details for Section 4, Figure 2, and Appendix C .

I.1. Setup for Section 4

We apply RGD on WN and compare the convergence with vanilla GD on problem (1).
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In the “Faster convergence of WN” part, we divide our experiments into two sets. In the first set of
experiments, we consider target matrices with small condition numbers, i.e., κ ∈ {1, 3, 5}. Other
parameters are chosen as m = 10, r = 5, rA = 3, and n = 1000. In the second set of experiments,
we consider target matrices with large condition numbers of κ ∈ {10, 20, 30}, on a problem instance
with m = 10, r = 5, rA = 3, and n = 3000.

In the “On the benefit of overparameterization” part, we also divide our experiments into two sets.
The first set tests small r ∈ {4, 5, 6} with m = 10, rA = 3, and κ = 1. The number of measure-
ments is fixed at n = 1000. The second set comes with m = 20, rA = 3, κ = 10, and the level of
overparameterization is chosen as r ∈ {5, 10, 15}, and n = 3000 is leveraged.

In these experiments, the ground truth matrix A ∈ Rm×m is formed as A = UΣU⊤, where
U ∈ Rm×rA is a random orthonormal matrix and Σ ∈ SrA+ is a diagonal matrix with entries
evenly distributed on a logarithmic scale in the interval [1/κ, 1]. The independent feature matrices
{Mi}ni=1 ⊂ Sm are generated in the following manner. For each i ∈ {1, . . . , n}, we sample
Ri ∈ Rm×m with i.i.d. standard Gaussian entries and define Mi =

1
2
√
n
(Ri +R⊤

i ), which ensures
the symmetry of Mi.

We initialize RGD with X0 = Z0(Z
⊤
0 Z0)

−1/2 and Θ0 = Ir, where Z0 ∈ Rm×r has i.i.d. standard
Gaussian entries. This initialization ensures that X0 lies on the manifold St(m, r) and Θ0 ∈ Sr.
For GD, we use XGD

0 = 0.1Z0 as small random initialization.

In the “Faster convergence of WN” part, we set stepsizes η = 0.1 and µ = 2 for RGD and η = 0.1
for GD. In the “On the benefit of overparameterization” part, we set η = 0.1, 0.12, and 0.14 with
µ = 2 for RGD, and η = 0.1, 0.12, and 0.14 for GD, where η increases with r.

I.2. Setup for Figure 2

We apply RGD on WN and study the trajectory generated by the algorithm.

In this experiment, we set m = 300, r = 10, rA = 5, κ = 3, and use n = 50000 feature matrices
generated as in I.1. The ground-truth matrix A ∈ Rm×m is constructed as A = UΣU⊤, where
U ∈ Rm×rA is a random orthonormal matrix and Σ ∈ SrA+ is diagonal with entries generated

by a power spacing scheme. Specifically, the j-th entry of Σ is given by σj = κ
−( j−1

rA−1
)p for

j = 1, . . . , rA, where we set p = 0.6.

We initialize X0 = Z0(Z
⊤
0 Z0)

−1/2 and Θ0 = 0.5Ir, where Z0 ∈ Rm×r has i.i.d. standard Gaussian
entries. For this experiment, we set the stepsizes to η = 0.2 and µ = 2.

I.3. Setup for Appendix C

I.3.1. Setup for the experiments with synthetic data

We apply RGD on WN and vanilla GD on problem (1) to reveal other interesting behaviors of WN.

We set m, r, rA, κ, and n as specified in Appendix C. The ground truth matrix and feature matrices
are constructed following the procedure described in I.1.

We initialize X0 = Z0(Z
⊤
0 Z0)

−1/2 and Θ0 = Ir for RGD, where Z0 ∈ Rm×r is generated with
i.i.d. standard Gaussian entries. For GD, we use XGD

0 = 0.1Z0 as small random initialization. In
all experiments, we use step sizes η = 0.1, µ = 2 for RGD and η = 0.1 for GD.
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I.3.2. Setup for image reconstruction experiments

For the image reconstruction experiments, we conduct two setups:one bases on recovering a CIFAR-
10 image from linear measurements and the other on direct matrix sensing of a structured image.

For the CIFAR-10 experiment, we take the first horse image from CIFAR-10 dataset, convert it to
grayscale, and vectorize it as a ∈ R1024. The ground-truth matrix is set as A = aa⊤ ∈ S1024+ .
The overparameterization level is set to r = 100, with n = 50000 feature matrices generated as
in I.1. RGD is initialized with X0 = Z0(Z

⊤
0 Z0)

−1/2 and Θ0 = Ir, where Z0 ∈ Rm×r has i.i.d.
standard Gaussian entries. GD uses small random initialization: XGD

0 = 0.1Z0. We run RGD
for tRGD = 100 and GD for tGD = 200 iterations. For RGD, we adopt stepsizes of η = 0.01 for
updating X and µ = 2 for updating Θ. For GD, we apply stepsize η = 0.01 to update X.

After optimization, following the approach of [15, Section 4.1], we perform a rank-one truncated
SVD on the recovered matrix Â, and the estimate of the original signal is constructed as the leading
singular vector multiplied by the square root of its corresponding singular value. The resulting
vector is then reshaped into a 32× 32 reconstruction image.

For the structured image experiment, we generate a grayscale matrix A ∈ S128+ of rank rA = 2 using
block-wave basis functions. Specifically, we construct rA one-dimensional signals of length 128,
where each signal is a normalized block wave taking values in ±1 with a random period. Stacking
these signals forms a matrix U ∈ R128×rA . The ground-truth image is defined as A = UΛU⊤,
where Λ is a 2 × 2 diagonal matrix with diagonal entries 1 and 0.9. This diagonal matrix assigns
geometrically decaying weights to different block-wave modes.

We again fix r = 100 and use n = 50000 feature matrices generated as in I.1. Both RGD and GD
are randomly initialized as above. We run RGD for tRGD = 100 and GD for tGD = 200 iterations.
We adopt stepsizes of η = 0.03 and µ = 2 in RGD and a stepsize of η = 0.03 in GD.

The per-iteration computational complexity of both RGD and GD is O(nm2r), which is dominated
by the operation of sensing. Since each RGD iteration requires performing two sensing operations
while GD requires only one, we set the number of iterations as tGD = 2tRGD to make the overall
runtime roughly comparable between the two methods.
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