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Abstract

While normalization techniques are widely used in deep learning, their theoretical understanding
remains relatively limited. In this work, we establish the benefits of (generalized) weight normal-
ization (WN) applied to the overparameterized matrix sensing problem. We prove that WN with
Riemannian optimization achieves linear convergence, yielding an exponential speedup over stan-
dard methods that do not use WN. Our analysis further demonstrates that both iteration and sample
complexity improve polynomially as the level of overparameterization increases. To the best of our
knowledge, this work provides the first characterization of how WN leverages overparameterization
for faster convergence in matrix sensing.

1. Introduction

Normalization schemes, such as layer, batch, and weight normalization, are essential in modern
deep networks and have proven highly effective for stabilizing training in both vision and language
models [4, 19, 34]. Despite their practical success, theoretical explanations of why they work remain
elusive, even for relatively simple problems.

This work focuses on weight normalization (WN), which decouples parameters (i.e., variables) into
directions and magnitudes, and then optimizes them separately. It has recently regained consid-
erable attention because of the seamless integration with LoRA [18], leading to several powerful
strategies for parameter-efficient fine-tuning of large language models; see e.g., [27, 28]. Yet, the-
oretical support for WN remains relatively limited. Prior results in [44] show that WN applied to
overparameterized least squares induces implicit regularization towards the minimum #5-norm so-
lution. The implicit regularization of WN on diagonal linear neural networks is studied in [13]. WN
is also observed to reduce Hessian spectral norm and improve generalization in deep networks [14].

Our work broadens the understanding of WN by establishing its merits in overparameterized matrix
sensing. The goal here is to recover a low-rank positive semi-definite (PSD) matrix A € R™*™
from linear measurements. In the vanilla formulation without WN, one can exploit the low-rankness
of ground-truth matrix, i.e., 74 := rank(A) < m for efficient parameterization. Specifically, we
can optimize on Y € R™*" such that YY" ~ A [7]. The overparameterized regime r > 14
is of interest due to the need of exact recovery without knowing r4 a priori. This problem has
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Table 1: Comparison with existing algorithms for overparameterized matrix sensing. “E.C.” denotes
“exact convergence”, i.e., whether the reconstruction error bound will go to zero when ¢ — co. UB,
LB and OP are short for upper bound, lower bound, and overparameterization, respectively.

Algorithm WN E.C. Initialization Convergence Rate Faster with OP
GD (UB) [38] X X Small & random N/A -
2
GD (LB) [45] X v Small & random Q(log(fniri)t) X
RGD (Theorem2) v v Rand o(lr=ray v
(Theorem 2) andom exp(— (m ))

wide applications in machine learning and signal processing [9], and serves as a popular testbed for
theoretical deep learning given its non-convexity and rich loss landscape; see e.g., [3, 20, 25].

Without WN, prior work [45] establishes a sublinear lower bound on the convergence rate when the
above sensing problem is optimized via gradient descent (GD), even with infinite data samples. We
circumvent this lower bound by 1) extending WN for coping with matrix variables; and, ii) prov-
ing that applying this generalized WN with Riemannian gradient descent (RGD) enables a linear
convergence rate in the finite sample regime, leading to an exponential improvement. Remarkably,
WN leverages higher level of overparameterization to achieve both faster convergence and lower
sample complexity. To the best of our knowledge, this is the first theoretical result demonstrating
that normalization benefits from overparameterization.

More concretely, our contributions are summarized as follows:

« Exponentially faster rate. For overparameterized matrix sensing problems, we prove that ran-
domly initialized WN achieves a linear convergence rate of exp(—O(%t)), where & is the
condition number of the ground-truth matrix A. This linear rate is exponentially faster than the
sublinear lower bound €2 (m) obtained without WN. Moreover, additional overparameteriza-
tion in WN provides quantifiable benefits: the iteration complexity scales down polynomially as the

overparameterization level r increases; see Table 1 for a summary.

« Empirical validation. We conduct experiments on overparameterized matrix sensing and the
numerical results corroborate our theoretical findings.

Notation. Bold lowercase (capital) letters denote column vectors (matrices); (-)" and || - || refer
to transpose and Frobenius norm of a matrix; || - || denotes the /5 norm for vectors and the spectral
norm for matrices; (A, B) = Tr(A " B) represents the standard matrix inner product; o;(-) and \;(-)
denote the i-th largest singular value and eigenvalue, respectively. S™ and S'!' denote symmetric
and positive semi-definite (PSD) matrices of size m x m, respectively.

2. WN for overparameterized matrix sensing

We focus on applying WN to the symmetric low-rank matrix sensing problem. The objective is to
recover a low-rank and positive semi-definite (PSD) matrix A € S from a collection of n data
{(M;,y;)}I~,, where each feature matrix M; € S is symmetric and the corresponding label is
y; = Tr(M, A). For notational conciseness, we let y = [y1,...,y,]" € R" and define a linear
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mapping M : S™ — R™ with [M(A)]; = Tr(M; A). As mentioned in the introduction, for the
vanilla formulation, we optimize on Y € R™*" such that YY T ~ A [7]. This leads to

min fllM(YYU vl (1)
YeRrmxr 4

Despite its seemingly simple formulation, the loss landscape contains saddle points, hence achieving
a global optimum from a random initialization is nontrivial. Moreover, overparameterization, i.e.,
r > r4, is often considered in practice to ensure exact recovery of A without prior knowledge of its
rank. It is established in [45] that such overparameterization induces optimization challenges even
in the population setting (n — 00). In particular, a lower bound of GD shows that || Y; Y, — A||F
converges no faster than (1/t), where ¢ is the iteration number. This rate is exponentially slower
than the linear one when r 4 is known to employ r = 74 [48].

Applying WN to problem (1). For a vector variable, WN decouples it into direction and magnitude,
and optimizes them separately. Extending this idea to matrix variables in (1), we leverage polar
decomposition to write Y = X@, where X € St(m,r) lies in a Stiefel manifold and © € S
Here, the Stiefel manifold St(m, ) is defined as {X € R™*"|X X =1I,}. One can geometncally
interpret X as orthonormal bases for an r-dimensional subspace, thus representing “directions”, and
© captures the “magnitude” of a matrix. Substituting Y in (1), we arrive at

gginM(X(Z)G)TXT) “y|? st XeSt(m,r), © €S
The above problem can be further simplified by i) merging ©067 into a single matrix ® € S";
and ii) relaxing the PSD constraint on © to only symmetry, i.e., ® € S". This relaxation achieves
the same global objective in the overparameterized regime, yet significantly improves computational
efficiency by avoiding SVDs or matrix exponentials needed for optimizing over PSD cones [39, 41].
In sum, applying WN gives the objective

min f(X, ©) := %HM(X@XT) —y|?* st XeStim,r), @S ()

For convenience, we continue to refer to this generalized variant as WN, since it aligns with the
direction-magnitude decomposition paradigm. Similar reformulations of (1) have appeared in [23,
31]. The former empirically studies the faster convergence on matrix completion problems, while
the latter tackles local geometry around stationary points. Our work, on the other hand, characterizes
the optimization benefits of WN and clarifies its interaction with overparameterization.

2.1. Solving WN via Riemannian optimization

Generalizing the vector WN'! on matrix problems, Riemannian optimization is adopted for coping
with the manifold constraint X € St(m,r). We simply treat the manifold as an embedded one
in Euclidean space. Extensions to other geometry are straightforward. To optimize the direction
variable X4, let Gt = Vx f(X¢, ©;) denote the Euclidean gradient on X, (a detailed expression is
given in (5) of Appendix A). The Riemannian gradient for X; can be written as

- X - -
Gy = (I, — XX, )Gy + {(X:Gt - G/ Xy). 3)

1. While the practical update rule of WN [34, eq. (4)] lies between Riemannian and Euclidean optimization, [44,
Lemma 2.2] shows that the limiting flow is Riemannian flow.



WEIGHT NORMALIZATION FOR OVERPARAMETERIZED MATRIX SENSING

Algorithm 1 Riemannian gradient descent (RGD) for solving WN (2)
Input: Initial point Xy € St(m,r), @ € S', step sizes 7, u
fort=0,1,...7T do

Compute G; (Riemannian gradient of X;) via (3)

Update X1 via (4) // direction variable

Compute K; (gradient of @;) via (6)

Update © 1 via (7) // magnitude variable
end

Output: X741, O

Further applying the polar retraction® to ensure feasibility, the update for X is given by
X1 = (X = nGi)(L + n*G{ G;)/? “)

where n7 > 0 is the stepsize. Detailed derivations of (3) and (4) are deferred to Appendix A. Note
that polar retraction is used here for theoretical simplicity. Shown in Appendix C, other retractions
for Stiefel manifolds such as QR and Cayley® share almost identical performance numerically.

An alternative update method is adopted for the magnitude variable ®;. Denote the gradient as
K; := Ve f(Xi+1, ©;), whose expression can be found in (6) in Appendix A. We use GD with a
step size 1 > 0 to optimize ©,

O =0 — uK;.

This update ensures feasibility of the symmetric constraint @; € S”,Vt whenever initialized with
O € S"; see a proof in Lemma 22. The step-by-step procedure for solving (2) is summarized in
Algorithm 1, and it is termed as RGD for future reference.

3. On the benefits of WN

This section demonstrates that WN delivers exact convergence at a linear rate for overparameterized
matrix sensing (2) and leverages additional overparameterization to yield faster optimization and
lower sample complexity. Recall that the rank of A is denoted by r4. Let the compact SVD of
Abe A = UXUT, where U € R™ " and ¥ € S'/*. Without loss of generality, we assume
01(¥) = 1 and 0,,(¥) = 1/k with K > 1 denoting the condition number. We will use the
restricted isometry property (RIP) [32], a standard assumption in matrix sensing, in our proofs; see
more in, e.g., [38, 45, 47, 49].

Definition 1 (Restricted Isometry Property (RIP)) The linear mapping M(-) is (r,d)-RIP, with
d € [0,1), if for all matrices A € S™ of rank at most r, it satisfies

(L =)A< [IM(A)|* < (1+8)[AF
RIP ensures that the linear measurement approximately preserves the Frobenius norm of low-rank

matrices. A detailed discussion and illustrative examples of RIP are provided in Appendix D.2.
With these preparations, we are ready to uncover the merits of WN.

2. Let X € St(m,r) and a point in its tangent space G € TxSt(m,r). The polar retraction for X + G is given by
Rx(G) = (X +G)(I.+G'G)" /2
3. See e.g., [1], for more detailed discussions on retractions.
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3.1. Main results

We consider WN under random initialization, meaning that X is chosen uniformly at random from
the manifold St(m, ). One possible approach is to set Xo = Zo(ZJ Zo)~'/2, where the entries of
Zy € R™*" are i.i.d. Gaussian random variables A/(0, 1) [12].

Theorem 2 Consider solving the WN-aided sensing problem (2) initialized with random Xq €
St(m,r) and ®q € S” satisfying ||©ol| < 2. Assume that ro < %5 and M(-) is (r4+ra+1,0)-RIP

with 6 = O(%). Algorithm 1 using stepsizes 1 = O(%) and |1 = 2 generates a
sequence {Xy, ©;}7°,. With high probability over the initialization, this sequence proceeds in two

o e . . . n4m4r4r?4
distinct phases, separated by a burn-in time to with an upper bound O (W) :

i) Initial phase. For some universal constant cy € (0, 1), it follows that

_ St
_elrmral’t oy

.
[X:@: X, —Alf < 2\/7“A Ay,

ii) Linearly convergent phase. For some universal constant c3 € (0, 1), it is guaranteed that

N4
1 c3(r—ra)

X:0:X/] — A <3
xiox] - Ale <3 (1- 272

t—to
) , Vt>ty+1.
We refer to || X;©; X, — A||F as the reconstruction error since it measures the distance to our target
matrix. Next, we break down Theorem 2 to demonstrate the benefits of generalized WN for the
overparameterized matrix sensing problem from two different perspectives.

Optimization benefits of WN include i) faster convergence rate, and ii) less stringent initialization
requirements. Theorem 2 shows that WN achieves exact convergence with a linear rate. In contrast,
without WN, the convergence behavior of randomly initialized GD on (1) is weaker. Specifically,
[38] shows that GD can only attain a constant reconstruction error with early stopping, but not
guarantee last-iteration convergence. On the other hand, [45] establishes a lower bound for exact
recovery of GD, giving a sublinear dependence on ¢; see a detailed comparison in Table 1. In
addition, our guarantee of this linear rate is obtained without strict requirements on initialization,
which stands in stark contrast to the non-WN setting, where the magnitude of random initialization
must be carefully controlled, often inversely proportional to « [20, 38, 47].

WN makes overparameterization a friend. Because the additional parameters induce computa-
tion and memory overheads, it is natural to expect more gains from overparameterization. It can be
seen from Table 1 that GD does not benefit from overparameterization, while the benefits of over-
parameterization for WN are twofold. Setting » = pr4 for some p > 1, one can rewrite the upper
bound of the burn-in time ¢ as O( wtmp”

(p—1)%r%
—_ 4 . .
convergent phase, WN achieves a convergence rate of exp ( — O(%t)), which is also faster

with a larger p. In terms of iteration complexity, this translates into a polynomial improvement with

the level of overparameterization. To quantitatively understand the merits of overparameterization,

we consider two cases. In the mildly overparameterized regime, where r = r 4 + ¢ for some constant
_ t . .

¢ = O(1), the convergence rate reads exp ( — O(W))' When the level of overparameterization

), which decreases polynomially with p. In the linearly

increases to r = cr4, the rate improves to exp ( — O(H2ﬁ2 )) Through comparison, we see that
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Figure 1: Comparison of RGD on WN and GD on (1) (squared reconstruction error vs. iteration).

additional overparameterization yields up to a factor of (’)(rj) improvement in the exponent. On the
statistical side, the sample complexity of WN is determined by the RIP assumption on M(-). Under

40007292
nm'r'rA)

the Gaussian design, as detailed in Appendix D.2, the RIP holds w.h.p. when n = O(W
Notably, the sample complexity n reduces polynomially as 7 increases. In particular, following the
same analysis as for the convergence rate, this reduction can reach up to a factor of O(r'?).

4. Numerical experiments

Numerical experiments are conducted to validate our theoretical findings for WN on overparame-
terized matrix sensing problems. More details on experiments setup are deferred to Appendix I.1.

Faster convergence of WN. We compare RGD on WN with vanilla GD on (1) under different
condition numbers . For small s instances with m = 10, r = 5, r4 = 3, and n = 1000, we
consider x € {1,3,5}. For large ~ instances where m, r, 7 4 remain fixed, and n = 3000, we test
x € {10,20,30}. Figures 1(a), (b) demonstrate that WN converges to 0 in a linear convergence
rate after a small initial phase, while vanilla GD slows down to a sub-linear rate.

On the benefit of overparameterization. We further examine the impact of the level of overpa-
rameterization r. For small r instances with m = 10, r4 = 3, k = 1, and n = 1000, we test
r € {4,5,6}. For large r instances with m = 20, r4 = 3, k = 10, and n = 3000, we consider
r € {5,10,15}. Figures 1(c), (d) show that larger r leads to a quicker escape from the initial phase
and a higher convergence rate for WN, consistent with our theoretical findings.

5. Conclusion

This work provides new theoretical insights into the role of weight normalization (WN) in over-
parameterized matrix sensing. We prove that randomly initialized WN with proper Riemannian
optimization guarantees a linear rate, yielding an exponential improvement on overparameterized
sensing problems without WN. Moreover, we show that overparameterization can be exploited un-
der WN to achieve faster optimization and lower sample complexity. Numerical experiments further
validate our findings. Future work includes extending these results to broader non-convex learning
settings, such as tensor problems [40], and developing new algorithms that build on WN.
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Appendix A. Algorithm 1 derivation

We consider the overparameterized setting » > r4 and apply a joint update on both X; and ®;
in an alternating manner. Let M* : R™ +— S™ denote the adjoint of M with explicit form
M*(y) = >, yiM,. The Stiefel manifold St(m, ) is embedded in the Euclidean space, then we
first compute the Euclidean gradient of Xy as
G; = [M*M(X,0,X] — A)]X;0, (5)
= (X:0;X] — A)X;0; + [M*'M - T)(X;0;X, — A)]X;0:,.

Projecting it onto the tangent space of St(m, r) yields the Riemannian gradient

~ X . -
Gy = (I, — XX )Gy + {(XIGt -G/ X,).

Using polar retraction, the update of X; along the direction G; with stepsize 7 is given by

Xii1 = (Xi = 1G)(L + n°G{ Gy) 712,
For the magnitude variable @, the Euclidean gradient is
1 *
K, = §Xj+1 [(MM(X 410X — A)] X1 (6)

Denoting the identity mapping by Z, the update of ®; with stepsize u becomes
©41 =0 — gXtTJrl [M*M(Xt+1®tXtT+1 - A)| X1 (7)

= X[ AX 1 — X (MM - %I)(XtHG)tXtT = A)] X

Appendix B. Diving deeper into the initial phase

In this section, we take a closer look at the convergence of RGD on WN in the initial phase, that is
t < tg, or equivalently Tr(<I>1t<I>tT ) <14 —0.5. Here, ®; := U'X, depicts the alignment between
span(U) and span(X;) and its singular values coincide with the cosine of the principle angles be-
tween these two subspaces [5]. Our numerical experiments in Figure 2 indicate that RGD traverse
a sequence of saddles. The saddle-to-saddle behavior is known for GD on (1) [20, 26]. This section
shows that this behavior persists for (2), yet can be faster with a higher level of overparameteriza-
tion. To bypass the randomness associated with IM;, we begin by pinpointing the saddles for the
population loss, i.e., problem (2) in the infinite data limit n — co. More precisely, the objective is
given by fo(X,©) = 1 HX(;-)XT - AHi

Lemma 3 Foragiven p € {0,1,...,r4 — 1}, let A, be the best rank-p approximation of A, i.e.,

A, =argming, A<, |A - A% In particular, we let Ay = 0. A point (X, ©) is a saddle of the
population loss f if XOXT = A, and Tr(XTUUTX) = p.

11
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Figure 2: The saddle-to-saddle (i.e., sequential learning) behaviors in WN. The x-axis corresponds
to the iteration number. (a) Each plateau signifies a saddle; (b) gradient norm at saddles drops by
orders; (c) saddles strongly relate to the best rank-p approximation of A; (d) sequential learning
in the alignment between X; and U (e) sequential learning in the alignment between X; and U | ;
and, (f) sequential pattern in the magnitude variable ©,.

Lemma 3 indicates that the saddles of f., are closely related to the best rank-p approximation of
A. Tt further suggests that a saddle-to-saddle dynamic is aligned with incremental learning*: the
algorithm successively learns A, for increasing p until the ground-truth matrix is recovered. Lemma

4 below shows that in the finite-sample regime, the saddles of f., also have small gradient norm on

(r=ra)°
K2m2rir 4

f, i.e., no larger than O( ) under the parameter choices of Theorem 2.

Lemma 4 Assume that M(-) is (r +r4 + 1,0)-RIP, and ||®|| < 2, the finite sample loss in (2)
satisfies ||V foo (X, ©) = VR f(X, O)|[F < 12md and | Ve f- (X, ©) — Ve f(X, ©)[|r < 3md.
Here, V§ denotes the Riemannian gradient with respect to X.

Having characterized the saddles, we now turn to the saddle-to-saddle trajectory in Figure 2. This
figure traces the optimization trajectory of Algorithm 1 on WN with m = 300, r4 = 5, r = 10, and
k = 3, with more details shown in Appendix I.2. Figure 2(a) plots the squared reconstruction error
across iterations. Each plateau marks escape from a saddle, as confirmed by the small gradient norm
shown in Figure 2(b). Figure 2(c) further shows that these saddles are exactly those characterized
in Lemma 3, where ||X;©; X, — A,||2 for p € {0,1,...,74 — 1} stays close to 0 sequentially. In
other words, each saddle escape corresponds to leaving the neighborhood of A ,.

4. Also known as deflation; see e.g., [2, 16, 36]

12
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Figure 3: Additional numerical results. X-axis: squared reconstruction error; Y-axis: iteration.

In addition, the optimization variables, geometrically interpretable as direction and magnitude, also
exhibit a sequential learning behavior. For the direction variable X, the singular values of <I>t<I>tT
(which characterize the squared cosine of the principle angles between X, and U) are visualized in
Figure 2(d). Further, let U € R™* (m=74) be an orthonormal basis for the orthogonal complement
of span(U). The alignment of X; and U is plotted in Figure 2(e), with the alignment matrix
defined as ¥y := UIXt. The singular values of the magnitude variable ®, are plotted in Figure
2(f). A clear sequential learning pattern is observed among all these figures.

Lastly, we highlight that polynomial time is needed to escape all saddles: Theorem 2 bounds the

4,442
duration of this phase to be at most (9( %) iterations. This bound decreases with larger r,

indicating that overparameterization facilitates saddle escape under WN.

Appendix C. Additional experiments

In this section, we take additional experiments to reveal other interesting behaviors of WN with both
synthetic and real-world data. More details on experiments setup are deferred to Appendix I.3.

Alternative manners of retraction. Although our algorithm for WN tackles only the polar retrac-
tion, other popular retractions share similar performance. In Figure 3(a), we plot the performance
of RGD with different manners for retraction, such as Cayley and QR, on an instance of (2) with
m = 10,r = 5,74 = 3,k = 2,n = 1000. The three curves of squared reconstruction errors nearly
coincide. For better visualization, we scale the errors of Cayley and QR by 3 and 1/3, respectively.

Noisy measurements. To examine the robustness of WN, we consider a setting with corrupted
labels, i.e., y; = Tr(M] A) + b; for i.i.d. Gaussian noise b; ~ N(0,&2). Figure 3(b) compares
WN with the vanilla problem (1) under the choices of ¢ = 107!, ¢ = 1073, and £ = 107°. It can
be seen that RGD holds a linear rate under all choices of &, and the final squared reconstruction
error stabilizes around O(£2). On the other hand, the error of GD is mainly confined by its slow
convergence rate. This demonstrates that the power of WN carries to noisy settings as well.

Full rank case with » = m. WN shows remarkable effectiveness in the special setting with » = m.
Instances with three different choices of m = r € {5,25,50},74 €{2,10,20},x €{1,15,50}, and
n = 5000 are plotted in Figure 3(c). The faster convergence arises from the fact that at initialization,
X € St(m,m) already aligns with the target subspace spanned by U, i.e., Tr(I., — ®o®]) = 0.

13
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Figure 4: The advantages of WN on image reconstruction tasks.

Equivalently, this is the case where only the magnitude © is optimized. The faster convergence in
this case implies that learning the correct direction (i.e., U) is more challenging than magnitude.

Image reconstruction experiments. Beyond the above synthetic experiments, we further evaluate
the advantages of WN with real-world data on two image reconstruction tasks.

The first experiment follows [15] to consider a generalized phase retrieval problem on a 32 x 32
horse image from the CIFAR-10 dataset [22]. The image is converted to grayscale and vectorized as
a € R'0?4, Standard lifting reformulation converts this problem to a sensing problem on a rank-one
ground-truth matrix A = aa' € SEFOM; see [8]. The second considers direct matrix sensing of a
structured image given by A € 8}38 with r4 = 2. In both cases, we set the overparameterization
level to » = 100 and use n = 50000 feature matrices. RGD and GD are randomly initialized and run
for trgp = 100, tgp = 200 iterations in both experiments to make the overall runtime comparable;

see Appendix 1.3.2 for details.

The reconstructions from the two experiments are presented in Figure 4. As shown, WN enables
RGD to achieve more accurate recovery of the ground truth compared to GD. These results demon-
strate that WN provides a significant improvement for image reconstruction problems.

Appendix D. More on backgrounds
D.1. Polar decomposition

The definition of the polar decomposition is provided below; see [17, Section 9.4.3] for a detailed
discussion and theoretical background.

14
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Definition 5 The polar decomposition of a matrix X € R™*" with m > r is defined as
X =UP,

where U € R™*" has orthonormal columns and P € S',_is a positive semi-definite matrix.

This decomposition can be interpreted as expressing X as the product of directions (U) and a
magnitude part (P). It is unique when X has full column rank.

D.2. Restricted Isometry Property (RIP)

The RIP condition [32] in Definition 1 is a standard assumption in matrix sensing, ensuring that
the linear measurement operator approximately preserves the Frobenius norm of low-rank matrices.
This property has been verified to hold with high probability for a wide variety of measurement
operators. The following lemma establishes RIP for Gaussian design measurements.

Lemma 6 [10]If M(-) is a Gaussian random measurement ensemble, i.e., the entries of {M;}I" | C
S™ are independent up to symmetry with diagonal elements sampled from N (0,1/n) and off-
diagonal elements from N (0,1/2n), then with high probability, M(-) is (r,0,)-RIP, as long as
n > Cmr /62 for some sufficiently large universal constant C' > 0.

Appendix E. Related work

Overparameterized matrix sensing. Overparameterized matrix sensing arises from many machine
learning and signal processing applications such as collaborative filtering and phase retrieval [9, 15,
35, 37]. The problem is now a canonical benchmark in theoretical deep learning, mainly because the
loss landscape is riddled with saddle points and lacks global smoothness or a global PL condition.
Convergence analyses for various algorithms on its population loss, i.e., matrix factorization, can be
found in [21, 24, 43, 50]. Small random initialization in overparameterized matrix sensing has been
studied in [20, 38, 45, 47], while [11, 29, 52] are based on spectral initialization. Besides saddle
escaping under small initialization, another intriguing phenomenon is that overparameterization can
exponentially slow the convergence of GD compared to the exactly parameterized case [45, 52]. Our
work proves that WN avoids this slowdown and achieves an improved rate. Moreover, additional
overparameterization leads to faster convergence and lower sample complexity.

Overparameterization in other nonconvex estimation problems. Beyond matrix sensing, the role
of overparameterization has also been examined in several nonconvex estimation problems. For ma-
trix completion, [30] proves that the vanilla gradient descent with small initialization converges to
the ground truth without requiring any explicit regularization, even in the overparameterized sce-
nario. In Gaussian mixture learning, [51] establishes that Gradient EM achieves global convergence
at a polynomial rate with polynomial samples, when the model is mildly overparameterized. For
neural network training, [46] shows that in the problem of learning a single neuron with ReLU ac-
tivation, randomly initialized gradient descent can suffer from an exponential slowdown when the
model is overparameterized. These studies illustrate that overparameterization appears in diverse
problem settings, while its precise influence on the convergence behavior is problem-dependent.

Riemannian optimization. Riemannian optimization is naturally connected to WN because the set
of directions of a vector forms a unit sphere, which is a smooth manifold. It extends gradient-based

15
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methods to problems with smooth manifold constraints [1, 6]. We rely on standard notions. In its
simplest form, Riemannian gradient descent (RGD) iteratively moves along the negative direction
of Riemannian gradient, which can be thought as gradient projected to the tangent space, and then
maps the iterate back to the manifold via a retraction.

Appendix F. Proof strategies and supporting lemmas
F.1. Proof strategies

To establish convergence of Theorem 2, we analyze the evolution of the principle angles between
span(U) and span(X;). Specifically, we track the quantity Tr(I,, — ®;®,). This term reflects
the subspace alignment error between span(U) and span(X;). For notational convenience, we set
= 2, which is consistent with our choice in Theorem 2.

Our proof is structured into two phases:

* Phase I (Initial phase): When the alignment error is large, i.e., Tr(I,, — <I’t<I>tT ) > 0.5, we
rely on the fact that o2 (@) remains bounded away from zero. This property guarantees that
the alignment error decreases by at least a constant amount at each iteration.

* Phase II (Linearly convergent phase): Once Tr(I,, — ®;®,) < 0.5, we enter a contraction
regime. In this regime, we establish that the reconstruction error and the alignment error
decrease jointly, governed by a coupled inequality system.

Throughout both phases, two error terms caused by the limited number of measurements must be
carefully controlled. Formally, we introduce the following definitions:

A= (MM - I)( X410 X/, — A),
B = (MM - I)(X:©,X; — A).

Incorporating these two error terms, we can rewrite G, and ®¢ as follows:
G = (X/®.X] - )X, + EX,O,
O =X/ AKX — X AX

These two terms will be used repeatedly throughout the proofs in the following sections.

F.2. Supporting lemmas

Since Theorem 2 considers random initialization, it is conditioned on the following high-probability
event I, which gives a lower bound on the smallest singular value of ®; = U X:

2
F=1{c2 (U 'Xq) > M
{O_TA( 0) e cymr }7

where ¢; > max{1,36C?} is a universal constant, with C; given in Lemma 20.
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Lemma 7 With respect to the randomness in Xg, event F' occurs with probability at least

1 —exp(—m/2) — C5 A *! — exp(—Car),

where Cy > 0 and Cs3 = 51 ¢ (0,1) are universal constants.

Jer
This lemma ensures that the smallest singular value of the initial alignment between U and X is

bounded away from zero with high probability, which is critical to initialize Phase I.

Lemma 8 Suppose that at iteration t, the alignment error satisfies that
T
Tr(L, — ®:®, ) <p,
then the reconstruction error at iteration t satisfies that

IX:©:X[ — Allr < 2y/p+ | A1

The lemma above connects the reconstruction error || X;®;X, — A||r with the alignment error
Tr(I., — ®;®,) and the measurement error ||A;_1||f. It means that the reconstruction error is
small once X; and U are sufficiently aligned and the measurement error is small.

Lemma 9 Assuming n < m, M()is (r +ra+ 1,0)-RIP with § = \/%, ¢ €10,1), and

|1©¢|| < 2. Then, the measurement errors satisfy that
1AF < €1X:©: X, — Allr,
I1Ed]lF < £1Xi©X[] — Allr.

This provides upper bounds on the norm of the measurement error terms Ay, =; by the reconstruc-
tion error ||X;©;X,” — A||r, which is guaranteed by the RIP property of M(-).

Lemma 10 Let x; == (| A + [Z])? + /Tr(L,, — 2@ )(|A ] + 2,

)y
Bt == UI(ITA - <th);r)y
H; .= (I, — X; X )(AX: X[ A1 X + E:X,0;)

1
+ 5(XtX;r 2,X,:0; — X;0,X/ E,;X;)

1
+ 5(xtxtT AX, XA, X, - X XA X XTAX,).

1

Assuming | A¢[|r, [|EtllF <17 < 557

, and ||®¢|| < 2, then the following inequality holds:

Tr(IL, — @1 ®/ ) - Tr(L, — &:®/) (®)

2n(1 — n?By — 16n*x¢)02, (®1)
2
K

<2 (Br + 16x:) Tr(®,®] ) — Tr (1, — &8 )®,®])

+ 2y Tr(L, — 2] ) (18l + 2] F)

+ 22 Tr(T,, — 2@ [Hr.

17



WEIGHT NORMALIZATION FOR OVERPARAMETERIZED MATRIX SENSING

This lemma quantifies how the alignment error Tr(I,, — ®;®, ) evolves between iterations. This
is the key lemma that drives the reduction of the alignment error.

Lemma 11 Assuming M(-) is (r + 14 + 1,6)-RIP with § < ﬁ If |®| < 2, then it is

guaranteed that
1©:41] < 2.

As shown in Lemmas 9 and Lemma 10, the analyses require that ||®,|| is upper bounded by 2. This
condition has already been guaranteed at initialization. Moreover, based on the update rule of ©,
given in (7), we observe that ||©;|| remains close to || X, AX;|| in each iteration.

Lemma 12 Assuming n < 1, M(-) is (r +ra + 1,0)-RIP, and ||®;_1||, ||®¢|| < 2, we have that

U0 < (1460(/ra+2v7)8) 00, + (4n(y/Fa+2v7r) 5+ 2802 (Via+2v7)26) Ly,

Moreover, it is also guaranteed that
0] < (1420+20(y/Fa+2v7)8) *Ro ¥ +(120(y/Ta+2v/7) 0480 (T a+2v/7)202) Ly,

This lemma establishes an upper bound on the growth of ¥, ¥, . Together with Lemma 15, we can
ensure that o2 ', (®) remains adequately large throughout Phase I.

Lemma 13 Assuming n < W, M()is(r+ra+1,0)-RIP with§ < \/—% and ||®¢|| < 2. Then

foranyt > 0, the alignment error satisfies that

T, — ®1®) ) < Tr(L,, — &,®/) +0.1.

This guarantees that the alignment error Tr(I,, — ®;®,) does not increase too much in one step
when we choose suitable stepsize 7, which is crucial for bridging Phase I and Phase II.

Appendix G. Proofs
G.1. Proof of Lemma 7

Proof Since the initialization X satisfies the conditions stated in Lemma 21, we can apply the
lemma directly. In particular, substituting 7 = \/—% yields the desired result. |

G.2. Proof of Lemma 8

Proof Directly substituting the expression of ®; into the Frobenius norm term, we have that

1X:0: X, —Alf = XX/ AX, X — A - X, XA, 1 XX/ ||
< XX AXX] — Allr + XX A XX ||
<X X[ AX X — AX X ||F+ [AXG X, — Allp + |1 XX A XX e

()
< 2 2[[(Ln — XX )UlF + | A1 ]F
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= 2|8/ Tr(L,, — @] ) + | A r
< 2 Bv7 + 1A
=2Vp+ [ ArallF,

where (a) is by the inequality |AB||r < ||A||||B||F that is valid for any conformable matrices. W

G.3. Proof of Lemma 9

Proof We first prove that ||G¢||r < 2|/G¢||r. Indeed,

. X L
1GllF = ||(Tn — XuX/ )Gy + {(X:Gt — G/ X))l
<L — XX Gl + 11X X, |Gl
< 2||Gel[f.

We now proceed to estimate the update distance || X1 — X¢||¢.

X1 — XellF = |(Xe — nGe) (e + 7°Gyf Gy) ™2 — Xyl
<X (I + 7°G{ Go) 72 = L) [ + [InGe (I + n*G{ G) 72|
<Xl + G Go) ™2 = Lofle + 0l (T + n*G{ Go)~2(|[| G|
<V +7° G G) T2 — L] + )Gl
<V 4+ 7° G Gy) ™2 — L || + 20| G F
< V(L= (14 0?01(G] Gy)72) + 21| G|

(a) 1
< Vr(l-
L+ (n2(|Ge )2

< Vrl|Gelle + 277HétHF,

) +20||Gelr

where (a) is by /I + 2 < 1+ /z for any z > 0. Since ||G¢||r < 2||G4|

F, We arrive at

X1 — Xillp < 20(v7r +1)[| Gl
=2(Vr +1)[|(Xe©0; X/ — A)X,0; + ;X0

(0)
< 20(Vr + )01 X[ (X @ X[ — A) + Eer

()
< dn(vr + D (|1Ee|r + || X:©: X, — Allr)
< dn(vr+ 1) (V| MM - I)(X:0, X, — A)|| + | X:©:X] — Allr)

d)
< dn(vr + 1)(vVmd + 1)[|X© X — AllF,

where (b) is from ||[AB||r < ||A||||B||r; (¢) is due to ||©;]] < 2, [|X¢|| < 1; and (d) follows from
Lemma 24 and rank(X;©; X, — A) < rank(X;©;X/) + rank(A) <7+ r4.
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Finally, we turn to estimating || A¢||r and ||Z||¢.

[A|F = [[(M*M = I)(Xe 110, X[, — A)|lF
< Vm|(MM = I) (X1 0:X[, , — A)|

(e)
< Vm6|| X110 X[ — Allr
< Vmd(| X0 X{ — Allr + [ Xen1©(X [y — X))k + [[(Xes1 — X0)©:X{ ||f)

(f)

< Vmd(|| X0, X[ — Allr + 4l Xer1 — XelF)

< Vmd(1+16n(y/r +1)(vmé + 1)) |X0,X] — Al
(9)

< §\/ﬁ(1 + %\/77)

- ymr 300
< ¢IX0, X/ — AllF,

IEdlle = (MM - T)(X,©,X] — A)|
< Vml[(M*M - T)(X,0,X] — A)|

1X:©: X, — Al

(h)
< Vmd| X0, X! — All

(9) T
< €Xi©: X, — AllF,

r+74; (f)is from || Xy41]] < 1and ||©y]| < 2; (g) isdue ton < m

where (e) is by Lemma 24 and rank(X;110;X, ; — A) < rank(X11©:X/,) + rank(A) <
—andd < \/%; and (h)
follows from Lemma 24 and rank(X;©;X, — A) < rank(X;0;X, ) + rank(A) <r+7r,. N

G.4. Proof of Lemma 10
Proof Noting that |X|| < 1, ||A[| < 1,]|©:]| < 2, [T, — X4 X || < 1, we obtain
IHelle < [[(Ln — XeXDAX X A1 X[l + [[(Tn — XX, )E X O
+ %(thxjatxt@tHF + |1 X:©: X, E Xy ||F)
+ %(HXtXtTAXtXtTAt_lxtHF + IXe X A XX AX|F)
< 2 At r + 4l e ©

In the same way, it follows that [|[Hy|| < 2||As—1|| + 4||Z¢|.

From the update of X;, we have Xt+1X:+1 = (X; — nGy)(I, + n’G] Gy) "Xy — nGy)T. Pre-
multiplying by UT and postmultiplying by U, it follows that
®1 1P/
= (@, — UG (I, +1°G{ G,) ' (®] —nG/ U)
D ([, + 0T, - 2,2])S®®] 5] — U H, ) (L +7°G] G,)
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.
([Im 4L, — 8,8)58,8 %| D, nUTHt)
®)
> ([IM +(I,, — 8,9 )28, 3], nUTHt> (I, — 112G Gy)
.
([IM +(I,, — 8,8 )P, %] D, — nUTHt> ,

where (a) is from directly expanding G¢; and (b) is by Lemma 14.

We next derive an upper bound for G,' G. Substituting the expression of G, we obtain

G/ G, =X/ AX, XA, - X, X )AX,X]AX, + HH,
- X AX X[ AL, — X, X/ )H;
—H/ (1, - X;X])AX; X AX,

(c)
< 01(L, — 2@/ )L + ([ Hel|* + 2/l (L — XX ) U Hel )L,

(d)
< o1(I,, — ®,®) )L, + 16x,1,,

where (c) follows from Lemma 25, || X;|| < 1and ||A|| < 1; and (d) is due to || (I, — X, X, )U|| <
[T — XX Ule = \/Tr(L,, — @), and [H,| < 2| A, + 4]/ < 6.

Combining the lower bound on ®;,1®/ 1> the upper bound on G,/ G derived above, and the
inequality 1 — 1?8, — 16n*y: > 1 — 155(1 + 96) > 0, we derive

1
L =028 — 16n°x:
- ([Im +(I,, — &8 )P, 2| D, nUTHt) (10)

.
D1 Py

.
([Im +(,, — 8] )5, )P, — nUTHt) .

Let the compact SVD of ®; be Q;A;P,, where Q; € R™4*"4, A, € R"4*74 and P; € R"*"4,
Denote S; := Q;' £Qq. It is a positive definite matrix. This gives that

.
Tr([ITA 4, — 8,8 )28, %]8,®/ [I,, + (1., — &, )58,3, 3] )

= TH( QLo + 11, — ADSAIS AL, +1SAZSI (1., — AD] Q)

(e)
> Tr(Qt [A? + (L, — A7)SiAFSA] + nA7SAS (T, — A?)] QI)

= Tr(Q:A7Q/ ) + nTr((X,, — A])SIAISA] + A7SiA7S, (I, — A7)

2noy , (A%)

)
> Tr(QATQ)) + =5 —Tr((L, — ADAY)

2no,.  (A?
= Tr(®,®, ) + WTr((IM ~3,8)®,®]),
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where () follows from the fact that n?Qq (I, — A?)S;A2S;A2S;A?S, (I, — A?)Q/ is PSD; and
(f) is by Lemma 16 and Lemma 17. More precisely, we use o, ,(S;A7S;) > o2, (S¢)or, (A7) =
ora (A7) /K.

Taking trace on both sides of (10), we arrive at

- n%a 6P, Tr(®11®, ) (11)
> Te(@@]) + 221, - @,00)@,9])
- 2nTr([ITA + (1, — &, )50, %] ®,H, U)
+7°Tr(UTH/H, U)
> Tr(®®@]) + WW((IM ~ 9/ )®, P/ )

- 277Tr(<I’thT U+, — &8 )S®,3, S6,H/ U)

2noy, (A? )
/€2

—2Tr(UT (1, — XX )AX, X/ A1 X ®))

— 2 Tr(UT (I, — X, X/ )E:X,0:®,)

—nTr(®. X/ 2X,0, 2] — ,0,X, E,X;®/)

—nTr(® X, AX X! A1 X @) — &, X A1 X X[ AX D] )
—2*Tr((L,, — @] )X®,®, Z®,H/ U)

2nor , (A%)
2

(9)

= Tr(®,;®,) + Tr((,, — 2. )®:®,)

W T @,®]) +

Tr((I,, — &2 )®®/)
—2Tr(UT (1, — XX, ) USU ' X, X/ A1 X, D))
—2Tr(U (I, — XX/ )EX,0,®, )
-2’ Tr (1, — @] )28, @/ =®,H/ U)
where (g) is by substituting H; in; and (h) arises from Tr(M) = Tr(M ") for any M € R"4*X"4,
By the Cauchy—Schwarz inequality, we can upper bound the three trace terms as follows.
For the first term, we have that
Tr(UT (I, - XX/ ) USU X, X[ A1 X[ ) (12)
< U (L~ XX JUSUT [ XX A1 Xo®] [

()
< 1@ = XX )U[E Arar

= JTr(L,, — ®,8])| A s

For the second term, we can obtain that

Tr(UT (1, — X X])E:X,0,®,) (13)

22



WEIGHT NORMALIZATION FOR OVERPARAMETERIZED MATRIX SENSING

< [UT (T — X X)) [FIZ X O @] |
(4)
< 2| U (Tn — X X))[|FlIZe ]I

= 2\/Tr(1m o 5 l=n2

For the third term, it holds that

T (1, — &2 )X8,®/ =®,H/ U) (14)
<L, - @@ | =9, @/ 2®,H, Ul
= U (1, - X X)) U=, @/ 2®,H,/ Ul
(@)
< (@ — XX ) Ul He |l
= Tr(L,, — 2@ ) [HIr-

Here (i) is from ||U|| < 1, [|Z|| < 1, |X¢]| < 1, || ®¢]] < 1, and ||©,]| < 2. Combining inequalities
(11), (12), (13), and (14), it follows that

1 210, (A?)
T @ B ) STr( D, B ral\g
1— 028 — 16n%x; (Pi1Ppsy) 2Tr(®: 2y ) K2

— oy Te(L, — @8] )(|A1]lF +2]E: )

— 2P\ Te(L,, — @, 2] ) L.

Tr(1,, — &2 )8, /)

Reorganizing the terms, we arrive at
Tr(L, — @ 1@ ,) — Tr(L, — &,®))
< 02(Bs + 16x0) Tr(®:1B] ) — 2n(1 — 1?6 _;26772Xt)(77',4 (A?)Tr((Im 5,8 )3,8))
(20— 28— 3200 Tr(L, — @] (| A | + 20/ ])

+ (207 =206, — 32774Xt)\/Tr(Im —®,®/)|Hr

2n(1 — n?B; — 16n*x:)or, (A7
S 772(/8t + 16Xt)Tr((I)t¢:) _ Tl( n Bt Hzn Xt) "’A( t)TI’((ITA _ ‘i)tq);l')@t@;l')

+ 2y Tr(L, — @8] )(|A1]lF + 2] ]f)

2P Te(L,, — ®,2] )L

Together with o, (A7) = 0,,(Q/ ®:® Q;) = 02, (®;), we conclude the proof. |

G.5. Proof of Lemma 11

Proof From the update formula of ®;, we obtain

100 = [IX]2 AX i1 — X[, AKX |
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<X AX ||+ (X A X |

(a)
< 1+ A
=1+ (MM~ I)(Xe410:X/, — Al

i L L — A
<1+ m||Xt+1@tXt+1 IF

3vm

m
<1+ \/;||Xt+1@tX;r+1 — Al

3vm
1
<1+ gde:d +[Al)
<2,
where (a) is by ||Xq||, [|A|| < 1; and (b) follows from Lemma 24 and rank(X;11©:X/,; — A) <
rank(X¢41©: X/, 1) + rank(A) <7+ ry. [

G.6. Proof of Lemma 12

Proof LetL, := X/ AX, X/ A, 1X; + XTEX,0, + (0,X/ EX; — X/ EX,0,)
+3(XT AL X XTAX, — XTAX X A1 X).

Applying the triangular inequality, we obtain
1
Lol < 11X¢ AXX] A1 Xe|| + [ XTEX O] + 5(”975XtTEtXtH +[1X¢ Z X0 ))
1
+ X A XX AX | + X AX X, A X)) (15)
(a) _
< 20| Ap ] + 4f1E,

where (a) is from || X;|| < 1,[|A|| < 1 and ||©;| < 2. Multiplying the update formula (4) on the
left by UI, we have that

Uy = UL(X; — 1G) (L +n°Gy Gy) /2

—

b (\Ilt 0, X AX, X AX, + ®,L, — nUIEtXth) (I, + 172G Gy) =L/
_ (\I!t (IT ~ X AX X AX, + 77Lt> _ nUIEtXt®t> (I + 172Gy G~ V2,

where (b) is by expanding Gy directly. Consequently, we have the following upper bound for
U W/

W@l = (@ (L - nXTAXX]AX; + L) = 7ULEX,0, ) (I, + 1G] Gy) ™!
T T Tre T
(\I't (IT — X} AX, X[ AX, + nLt) — U thxt(at)

Cc

g (xpt (IT _ X AX X AX; + nLt) _ nUIEtXt(at)

—
~
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T T Tre T
(\Ilt (IT X AX X[ AX, + 77Lt> U Latxt(at)

— ¥, (IT _ X[, AX, X[ AX, + nLt>
.
(I,, ~ X AX X AX, + nLt> o)
T
_gUlEX,O, (Ir X AX X[ AX, + nLt) o)

0, (I — X} AX, X[ AX, + nLt> 0.X,/E,U,
+n UJ_HtXtQtQX;rEtUJ_,

(16)

where (c) is from that (I, + n?G, G;)~! is PSD and all of its eigenvalues are smaller than 1. Since
YY' < |Y||?I, holds for any symmetric matrix Y € R™" and by Lemma 25, we can upper

bound the three terms as follows.

For the first term, we can obtain that
v, (Ir X[ AX, X[ AX, + nLt)
(IT X AX X[ AX, + nLt> Tar
< I, — nX] AX, X AX, + 9L, ||>®, ¥, .
For the second term, it holds that
UlEX,0, (IT ~XTAX,X] AX, + 77Lt) Ter

W, (IT ~X]AX X AX, + nLt) 0.X,/ 58U,

= 201w, (T — X AXX] AX; + 7Ly ) 10X/ EU L [T
For the third term, we have that

U] EX0X,/E,U, <|U[EX,0X/EU,|L, .,

Combining inequalities (16), (17), (18) and (19), it follows that
TP <L — X AX X AX; + Ly 2@, 0,
+ 2@ (1, = X, AXX] AX; + L) [[©:X] EU L[| T,
+ 7% U EX@X/) 5 U |1 sy
L (L, — nXT AXX] AX| 4 Lo ])2 2, %]

+ 277||‘I’t||(\|1 — X, AX X AX | + || L)) [©:X EU | Tyry
+ 7 |UBXeO7X/ BU | | Tinr

e)
(14 il T2 + 40 (1 + Lol | Eel Ty + 477 2L s

25
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(18)

19)



WEIGHT NORMALIZATION FOR OVERPARAMETERIZED MATRIX SENSING

where (d) is by triangular inequality; and (e) is from that all the eigenvalues of the PSD matrix
X, AX,; X AX; are smaller than 1, along with || ¥, || < 1,[|X;]| < 1,||UL| < 1 and ||©,]| < 2.

From (15), we obtain ||Lq|| < 2||A¢_1]| + 4||Z¢||. Then, we can further simplify the inequality as

_ 1) 2
VoW < (L 2n(A ]+ 20=) e
+ (4nl|Eel] + 40 GIEe* + 2l e [[1Ee])) T v - (20)
From Lemma 24 and our assumption of the RIP property of M (-), we obtain upper bounds for the
two error terms.
1Al = (MM = T)(X:©,-1 X, — A)|
<0Xi@ X[ — Al
< 0(I1X:©1 X/ |IF + [ AlF)

D ovr + s,

IZe]| = [(M*M - T)(X, 0, X, — A)|
5|X:©: X/ — Allr
0([[Xe©:XelF + [[AllF)

<
<
()
<

(2v7 + V/ra)d,

where (f) is from [|X¢|| < 1,{|0;1][r < V7[[@pa]l < 2v/7 [[©flF < V7| < 24/r, and
A |lr < /Tal|Al < /Ta. Plugging these two upper bounds into (20), we arrive at

WO = (146n(y/ra+2v/r)6) @] + (dn(ra+2vr)5+ 2802 (Vra+2vr) 26 Ly,

We now consider the relationship between ¥ \IllT and ¥ \IIOT.
Let Ly := (X AX(0g + X | AXp) — 3(X{ EoX0Op + O XEoX).
Multiplying the update formula (4) at t = 0 on the left by U |, we have that

W, = U[(Xg —nGo)(T, +1°Gg Go) /2.

Consequently, we derive the following upper bound on \Ill\IflT:

O, 0] = U] (X —nGo)(I, +17°G{ Go) (X — 1Go) U

g T T
= U, (X0 —nGo)(Xo —nGo) UL

h = _ = _ T
= (¥o(I, — nLo) — U [ EgX¢O0) (o (I, — nLo) — nU [ EpXOp)

= Wo(I, — nLo)(I, — nLo) " ¥ — n®o(I, — nLo)O®uX] ZoU (21)
— U [E0X0O (I, — nLo) " ¥] + 7’ U EeX003X EU |,

—
=

—
N
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where (g) is from that (L. + 72G Go)~! is PSD and all of its eigenvalues are smaller than 1; and
(h) is by expanding the expression of G directly. Since YY" < ||Y I, holds for any symmetric
matrix Y € R"*" and by Lemma 25, we can upper bound the three terms as follows.

For the first term, it holds that
W (I, — nLo)(I, — nLo) ' ¥ =< [T, — nLo|*®o ¥, . (22)
For the second term, we have that

Wy (I, — nLo)©®X] EgU, + U[EeXO0(I, — nLo) ¥,
< 2| ®o (I, — nLo)|||@X( EoU L [Ty, - (23)

For the third term, we can obtain that
U[E0X003X) EU, < |U]EeXe02X] ZoU L || L vy (24)
Combining inequalities (21), (22), (23) and (24), it follows that
U0 <L = nLo[*¥o®q + 2] ¥o(L — 7Lo)||[|©0Xg EoU L Ly
+ 7% U] Eo X005 X EgUL|[Lnr,
< (Ut L% + (1 + Lol [Zo L+ 4720y @5)

where () is by || Xo|| < 1, [|U_|| < 1, and ||Og]| < 2.

From Lemma 24 and our assumption of the RIP property of M(-), we have that

1Zoll = (MM — I)(Xo©X; — A)]
< 3| X0®Xy — Allr
< 6(/X0®0Xy [|F + [|AlF)
< (21 +/Ta)d.

Then, we can bound ||Lg | as follows:

~ 1
Lol = §HX(—)FAX0®O + 00Xy AXj — (X§ EoX0Op + O XEXo)||

< 24 2(|Zo|
<24 2(2¢/r + /Ta)d.

Plugging theses two upper bounds into inequality (25), we finally arrive at
U W] < (14+20+20(y/Ta+2v/7)0) 2 B ® | + (120(y/ra+2vT)6+80* (Vra+2y/7)26%) Ly .
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G.7. Proof of Lemma 13
Proof We first estimate ||G|| and ||G;||. From the expression of G, we have that
Gl = [[MM(X© X, — A)]| X, O

(a)
< 2AMFM(X©0:X, — A
<2([[(M*M - I)(X©, X[ — A)[| + [ X0, X, — Al])

()
X, — Al +2|X:©:X; — A

INS |

2
—||X
\/m” t
41X,0, X/ — A
4(1X.0, X/ || + [|A])

IN

NS IA

12,

where (a) is due to || X¢|| < 1, ||©¢]| <2, and ||A|| < 1; and (b) is from Lemma 24. Analogously,
we can upper bound ||G¢|| as follows:

- X - 5
[Gill = 1T = XX )Gy + TH(X[ Ge = G X
< [T = XX Y IGell + [Xell1G X

(©
< 2| G|l
< 24,
where (c) follows from || X;|| < 1 and the fact that all the eigenvalues of the PSD matrix I,,, — X; X,
are less than 1. Multiplying the update formula (4) on the left by U, we obtain
® 1@, =U'X 11X/, U
= (@ — U Gy)(I, +11°Gy Gy) (@] — G/ U)

2 (@, - UT G, — PG G)(®] — Gl U)

= &,®, — *®,G/ G®] — (G U+U'Gd))
+17*(®,G/ GG,/ U+ U'G,G/ G;®,)
-7'UTG{G;/ GG/ U +7*UTG,G/U

(e)
- &,®) — (1%)|®:G] G:®/ || + 21| ®,G/ U|

+21°|| @Gy GG/ U|| +1'|U" GG/ GG/ U||)I,,
(£ 1
=@ — —1
- tEt 10TA TA>
where (d) is from Lemma 14; (e) is by Lemma 25; and (f) is due to ||®;|| < 1, ||U|| < 1,||G¢|| <

24 and n < ﬁ. By subtracting the inequality from I, ,, it follows that

1
T T
L,—®4+:1%, L, - 2% + mlm-
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Taking trace on both sides yields

Tr(I, — ®1®) ) < Tr(L,, — &,®/)) +0.1.

G.8. Proof of Theorem 2

_ _ (r—ra)t _ ca(r—ra)® Yan
Proof For the proof, we take n = 7B TmE T, and § = Ity > Where ¢y = O(C?). From

Lemma 11, we have that ||©;|| < 2 holds for all ¢ > 0 by mathematical induction. For later use, we
define the following three terms in the same way as in Lemma 10:

Bi:=o1(1,, —®®) <1,

xe: = ([Aeall +[12e)* + \/Tr(lm — 22 ) (Al + (1),

H;: = (I, — X, X (AX X[ A1 X, + E,X;0)
1

+ (X X/ E:X,0; - X,0,X/]Z:X,)

+ (XX AX X A X - XX A XX AX).

N =N

Lemma 9 with the RIP property of M (-) implies that | A_1]|r, ||E¢||r < 1 forall ¢ > 1. Thus, the
assumptions of Lemma 10 are met, guaranteeing that inequality (8) holds for all iterations. Building
on inequality (8), we divide the convergence analysis into two phases.

Phase I (Initial phase). Tr(I,, — ®,®,) > 0.5.
We assume for now that o2, (®;) > (r—r4)?/(2cymr) holds in Phase I, which will be proved later.
Let the compact SVD of ®; be Q;A;P,, where Q; € R™4*"4, A; € R"4*74 and P; € R"*"4,
We can simplify (8) as follows:

Tr(L, — @1 ®) ) — Tr(L, — 2:8,))

(1 —n? —16n%x.)o2 (P
< P14 16y, Tr(@y ) — 27 — LAY

+ 20y /ra (| Ae-illr + 2l|EelF) + 20 /ral He e

() 2n(1 —n?* — 16n*x¢)or, (P
2 P+ 16y — 2L p x)or, (%)

+20y/ra (| Ae-illr + 2l ]lF) + 20 /ral He e

() 1—n%—16n°x:)(r —ra)?
< n?(1 4 16x,)ra — n( = 5 277 ﬁt)z( 4) Tr(L,, — ‘I’ti’;r) (26)
2cik=m=r

+ 20y /ra([| Aeillr + 2l ) + 20 Vral B[,

where (a) is by Lemma 16 and Tr((I,, — ®:®,)®;®/) = Tr((I,, — A?)A?); and (b) is from
our assumption that 2 (®;) > (r —r4)?/(2cymr).

Tr((T,, — &2 )®:®/)

Tr(I,, — @, )
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Using Lemma 24 and the RIP property of M (-), we can control the quantities of the two error terms.
In particular, following inequalities imply that both ||A;_1||r and | Z;||r are uniformly bounded by
a constant that depends only on m, r and r4 but is independent of ¢.

Expanding the expression of A;_; and applying Lemma 24, we have that
HAt—IHF < \/TTLH(M*M —I)(Xt®t_1XtT - A)”

ca(r —ra)°
< W“Xte)t IXt AHF

ca(r — )
3eq(r — T’A)
= K2mb/2 T2,
(c) (r—mra)? 1

< mi . 27
- mln{480%/i2m27"27‘14’ 48\/H} 27

Applying the same reasoning to =, it follows that
I1E:|F < VM| (MM -T)(X:0,X, — A)|

ca(r — ) T
< 7/1 -y IX:0:X, — All¢

c

< Chv OV VD
3cq(r —ra)b

= 2md/277/2r

(©) (r—ra)t 1

< mi . 28
- mm{480%ﬁ2m2r2r,4’ 48,/7“A} (28)

Here, (c) is from ¢4 = (’)(C%),cl >1landr—r4 <r <m. Since Tr(I,, — &, ) < ry, together
1
with (27) and (28), we can upper bound x; as follows:

= ([ Al + [IE]]) +\/Tr Ly — 2@ )(|| Al + [[Eel)

< (lAae- 1HF+H~tHF) +\/7“A(HAt 1llF + [IEx]lF)
1 1

<Gt VialEs )
< 1

From inequalities (9), (27), and (28), we obtain the following upper bound on || H;||.

Hellr < 2| Aeallr + 4]Z: ]

<2x 1 +4 x 1
48./r 4 48./r 4

< 1 .

T 2yra
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With these upper bounds, inequality (26) can be simplified as follows:

Tr(L, — &9, ) — Tr(I,, — &,®))

(1 —20%)(r —ra)*

2
STa 22 Kk2m?2r2

T 77(7’—7”A)4 2
Tr(ITA - (I)t(ﬁt ) + 8C%:‘ﬂ)2m27'2 + n

@ n(r—ra)*  nlr—ra)? n}(r —ra)? T
= (_ 2c%ﬁ2m2r2 402/~€2m2 2 677 rat 1n2m2r2 )Tr(ITA - &%)
n(r —ra)? n3(r —ra)? T
(-1 _"2 416 _—)Tr(I,, — ;P
( A K2m2r? +6ra + CrZm?r? ) Tr(Lr P )
O1, nir—ra)’ W = ra)?
< (=MrZrA) L g, T T TA)
- 2( 4c3Kk2m2r? oAt cAk2m?2r? )’

where (d) is by Tr(I,, — ®;®,) > 0.5; and (e) holds if the expression in bracket is less than zero.

_ (r—ra)t . . . . S
Recall that n = TR, The summation of the terms in bracket is negative, which implies
that at each step, Tr(I,, — ®;®/) decreases at least by A := W Consequently, after
404,42
atmost (14 —0.5)/A < 7000&}&# iterations, RGD leaves Phase I.
Let co := W € (0,1). Denote ty > 1 as the last iteration in this phase. The analysis above
1

. . T co(r—r t 7000t k4mArir?
implies that Tr(IL,, — ®,®, ) <74 — ,34(7714772) forall1 <t <tgandty < W

From Lemma 8 and inequality (27), we obtain the following bound for 1 < ¢ < #y:

1X,©,X] — Allr < 2\/Tr(L, - ®:8]) + | A r

8
co(r —1rp)°t
< 2\/7",4 _ calr—ra)tt + [[A—1|lF

kAmArir 4

_ 8t
Sz\/m_cz@“m)H

kAmArir,
We now prove that 02, (®;) > (r — r4)?/(2cymr) holds in Phase I. By Lemma 7, it holds w.h.p.,

(r—rA)Z.

®)) = U'X,) >
(0) 0’( 0)_ mt

Moreover, by Lemma 15 and the assumption 4 < Zt, it follows that

_ 2
2 (W) =1—07, (Pg) < 1_M_
comr
Since n = —=ra) _ ang = calrora) deduce th
n= 9750%,§2m2r2 an = EmSrira , We can deduce that

10

W7a + 2V < )

= 3252 KkAmbrin? 4
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From Lemma 12 and the upper bound on 7(,/74 + 21/7)d, we obtain the following inequality

4(r —ra)t deg(r —ra)to
Uw <(1 200+ L,
1 (14 975c%m2m27“2r,4) 0%o + 65c2kAmSror? A

Using Weyl’s inequality and ¢4 = O(C%,) we have the following upper bound on o2 L (P)
1

o2 () < (1 0T gz gy b )

975 k2m2r2r,’ A 652 KkAmPror?
1+ 4(r —ra)t 201 (’I“—T‘A)Q) deg(r —ra)to
- 975¢3Kk2m2r2r 4 cimr 65c7k4mOror?
(f)1+ 16(r —ra)*  (r—ra)
- 195¢2Kk2m2r2r 4 comr
(2) . 2(r —14)?
- 3cimr

where (f)isbyr —r4 <r <mand c1,k,74 > 1. Applying Lemma 12 with the upper bound on
n(y/TA + 2+/1)0, we obtain
ca(r —ra)t0

) \I't\IlT ca(r —ra)t®
403 kAmOrory

v, 0 < (1 _—
1 F e _( + 406%/’%477157“57"214

Lo ., t>1.
Using Weyl’s inequality, we have the following relationship between o2, (¥, 1) and 072, (¥)
5 _ T ca(r —ra)' 12 Ty calr—ra)'?
ora(ent) = ona (el < (U4 sz ) on (W) + s s

_ (1+ 04(r—rA)10 )2 9 (@) 04(7'—7“,4)10
40cikAmbr5rs ) T4 40ckAmPr5ry

Denote ¢ := %. By iterating the recursive inequality, the following upper bound holds

t—2
2 (@) < (1402 (@) +¢S (140
t— IZ:0
< (14002, (T) +¢Y (1+¢)°
=0

(1+¢)"02, (\Ir1)+<[( +c)2t—1]/[(1+g)2_1]

2t 2t
< (1+0) 707, () + (140)7 -
4. .4,.4,..4..2
forall1 <t < 7000(?”# Invoking Lemma 26 and noting that ¢ < 2, which is ensured by
A)8 2t

cy = O(c%), we obtain
1

2 (W) < (146t¢)07, (¥y) + 6tC
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—~

9)

2100c¢2¢c4(r — 1r4)?
< O_EA(‘III)_'_ 1 4( A)

mr
2(r —1r4)? N 2100c2cq(r —r4)?
3eymr mr

<1-

(h)
<1-

(r—ra)?
2cimr

mnr

where (g) is by t¢ < 1r5cjeatr—ra)® 4pq o7, (¥1) < 1;and (k) holds by ¢4 = (’)(C%) By Lemma
1

15 and the assumption 74 < %, it can be seen that o2, (®;) = 1 — 02, (¥;) > (r=ra)” holds for

2cimr
70002 k*mArir?
allt < tg< AR T A

(r—ra)®

Phase II (Linearly convergent phase). Tr(I,, — ®,d,/) <05.

, 1.e., throughout Phase 1.

This corresponds to a near-optimal regime. An immediate implication of this phase is that Tr(®;®, ) >
rqg — 0.5 > rq — 0.6. Recall that £y > 1 is the last iteration in the first phase. We assume that
Tr(®;®]) > ra — 0.6 forall t >ty + 1, and we will prove this later.

Given that the singular values of ®;®/ lie in [0, 1], we have
04 <02, (B) =07, (8@ ) < 07(®) < 1
Moreover, since 3; = o1(I,, — ®;®]) < Tr(I,, — ®,®; ) and B; < 1, it follows that
BT (@@, ) <raTr(ly, — ®®), xiTr(®®() <raxi.

In addition, it can be derived that

4
o 1Ly —®,®/]) <0l (®) Tr((I,, — B2/ )2, ®/)

< o}(®;) Tr(I,, — ®;®/)
< Tr(I,, — &:®)).

With the inequalities above, we can simplify (8) as follows:
8n 23 32
Ty~ o)) < (1- 5o T, - 28] 29)

+ 160 rax: + 277\/Tr(1m - q’tq’tT)(llAt—lHF + 2[|E¢[lF + nl[Hi[[¢)-

Recall that x; = (IIAH||+||Et|!)2+\/Tr(Ir — @2/ ) (A1 +[Ze]) and [ He[F < 2[|As—1]lF+
4||Z¢||e. Since ||As—1]| < Land ||Z;|| < 1, (29) can be written as

3

8 194
Tr(L, — 1 ®) < (1 — — b +0Pra+ — ) Tr(L, — &3]

25K2
16027 (| A ]| + (=)
o/ Tr(L, — 2®]) - (16724 (A | + [Zd]])

+ \/Tr(IrA —®,@[) - (40” + 20) ([ A1l + 2| EelF).
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(r—ra)*
975¢2Kk2m2r2r 4

Substituting n = into the inequality above, it follows that

1
Tr(L,, — &1 @) < qTr(I,, — &,®)) + m(HAt—lH + [1B]])?

1
) Tr(Ty — 28] (A + =] (30)
KA 4
1 1
T =
Tl — @@ (it o Ale + 202,
_— 4 . .
where ¢ := 1 — 8125&%{% is a constant in (3, 1).
From Lemma 9 and the RIP property of M (-) with § = w it guarantees that
property 23 g
ca(r —ra)8 T
Al < [[Arallr < m”xtfl@tﬂxt—l —Allr
ca(r —ra)t
WI!Xt_1@t_1XtT_1 - AHF;
- = ca(r —ra)°
1Bl < 1Belr < m”xt@t}(tT —Allr
4
ca(r —ra
) ke, x] - Al

= T 222
Together with ¢4 = O(%), we can rewrite inequality (30) as
Tr(L, — ®11®, )
< Ty, — 2]+ =1 (X100 X] — AR+ [XO,X] — Al

180
+ 2| X101 X[ | — Alf|X:©@: X, — Allr 31)

+ [T, — 8] (X0 101X ], — Alle + [Xi©X] — Alle)).

Denote b; := Tr(I,, — ®;®, ), a; := ||X;0,X;] — A||. Inequality (31) can be expressed as

bey1 < gby + 1180 (a7_y + a? + 2ar_1a; + V/be(ar—1 + ay)). (32)

Combining Lemma 8, Lemma 9 and the RIP property of M(-) with § = % we obtain
ar < 2/b; + %at_l. (33)
Since to + 1 is the first iteration in Phase II, we have Tr(IL, , <I>t0+1<I>t +1) < 0.5. From Lemma

13, it follows that Tr(I, <I>t0+2<I>t0+2) < 0.6. Hence, btyy1, bryto € [O 0.6].

From Lemma 27, to establish the linear convergence rate of ay, it suffices to analyze the following
equality system of {b;}¢, .1 and {@;}§;, 41:

q ~ ~ o~ z i~ .
a?_l + af + 2ar—1a¢ + \/b:(at—l + at)),

1-—
b1 = qby + — 180 (

34



WEIGHT NORMALIZATION FOR OVERPARAMETERIZED MATRIX SENSING

. =1
CLtZQ\/b:—i- 8at_1, t=1tg+2,tg+3,...,

dt0+1 = Atp+1, bt0+1 = 06, bt0+2 = 0.6.

By Lemma 8 and the RIP property of M (-) with § = ealr—ra)® "we derive

K2m3rir 4

- 3v2
b <22 /b
+ 48\/7 t()"l‘l — \/ﬁ t0+2?

where (4) is from inequality (27). From the update of a; at ¢t = o + 2, it follows that

Ggg+1 = ato+1 < 2/ byor1 + || Ay I < 3 bio+1

_ ~ 1. [~
Qtg+2 = 21/ bg2 + gato-s-l <2 bt0+2 + 3 bio+1 + so—F— 288\ﬁ bio42-

Therefore, applying Lemma 27 and Lemma 28, we arrive at

1
i - 1+ q\ "2 1= g\ es(r — )\
Ato+14+¢ < Qg1+t < 3/ bio41 (2) <3(1- 4 =3(1- M ;

for all ¢ > 0, with c3 : 0, 1). This establishes the linear convergence rate of a.

32500 2 € (

We now prove that Tr(®;®]) > 74 — 0.6 for all t > to + 1. This amounts to proving that
Tr(L,, — P )—bt<06f0rallt>t0+1

Since by,4+2 < 0.6, inequality (32) holds for ¢ = ¢y + 2. Hence,

1-
bto+3 < qbigr2 + —== 180 (a?0+1 + ag yo + 2ai0+1a10+2 + /g2 (g1 + arg12))

() 1-—
06q—|—7(9><06+9><06+18><06+6><06)

180
< L+4g x 0.6

< 0.6,

where () is from the fact that a1 < 31/biy11 = 3V/0.6, azyro < Gggr2 < 31/biyr2 = 3v/0.6.

Therefore, inequality (32) holds for ¢ = ¢y + 3. From inequality (33), we have a;,+3 < 24/by,+3 +
%atﬁ_z < 3v/0.6. By recursion, it follows that Tr(I,, — @t{)T) =b <0.6forallt >ty + 1.

To conclude, by choosing stepsizes nn = 9756(:% and 1 = 2, we have that | X;@; X, —A || <
t—t
3 (1 - %) " forall ¢ > to + 1, with high probability over the initialization. [ |

G.9. Proof of Lemma 3

Proof Let US U be the compact SVD of A, where U = [uy, ug, ..., u,,] and ¥ = diag(A1, Ao, . . .

with Ay > Ay > --- > A, > 0. Here, diag(A1, A2,..., A, ) denotes the diagonal matrix whose

diagonal entries are A1, Ao, ..., Ay ,.
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We first consider p > 1. From the Eckart—Young—Mirsky theorem, we have that the best rank — p
approximation of A under the Frobenius norm is A, = U; 21UI, where Uy = [ug,up,...,u,)
and 3 = diag(A1, A2, ..., A,), without considering the ordering of the eigenvalues.

We begin by analyzing the form of X and ®. Since rank(A ) = rank(U;) = p and range(A ) C
range(U1), it follows that range(A ) = range(U). Together with range(A ) = range(XO©X ") C
range(X), we can obtain range(U;) C range(X). Therefore, there exsits a matrix Q € R"*”, such
that U; = X Q. By the definition of U1, we derive that

U/U;=Q'X'XQ=Q'Q =1,

which implies that Q is a column-orthonormal matrix.

We extend Q to an r x r orthogonal maNtrix~Q = [Q,P]. Let Vi = XP, then [U;,V,] =
[XQ,XP] = XQ. Since Q' X'XQ = Q'Q = I, then [Uy, V1] is also a column-orthonormal
matrix, which means that

Vi =[vi,Va,..., Ve, Withvy,vo, ..., v,_, € Uf; VIVl =1,
Let Uy = [uy41,Up42,...,u,,], and then U = [Uy, U,]. By substituting U and X, we obtain
x"U-qQ [y v
1
“afy i)

where (a) is from vi,va,...,v,_, € UT.

Since Tr(XTUUTX) = p, it follows that

p=Tr(XTUUTX)
(=, 0 ][I, 0 Jat
- (Q [0 V1TU2] [0 U;Vl] @ )

=Tr I, 0
="{lo viu,ulv,

= p+ Tr(V] UyUg V).

After cancelling the term p on both sides, we obtain Tr(V{ UsUj V1) = ||[Uj V4||2 = 0. Hence,
we have that U V1 = 0, which implies that vy, va, ... W Vi_p € Ujy . Moreover, since vi, va, . . . yVi_p €
Uf as well, we conclude that vy, va, ..., v, € UL

Substituting X = [Uy, V1]Q" into X@®X T = A, we can obtain
U, V1]QTeQ[U,, V| =4,
= Updiag(A1, M2, ..., AU
= [Uy, Vi]diag(A1, A2, -+ -, Ap, 0,..., 0)[Ug, VT,
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Expanding both sides of the equation, together with vi,va,...,v,_, € U™, we can obtain
Q'eQ = diag(A\1, A2, ..., A, 0,...,0).

This implies that . .
© = Qdiag(A\1, M2,..., 2, 0,...,00Q".

To proceed, we first verify that (X, ©) := ([Uy, Vq],diag(A1, A2, ..., A, 0,...,0)) is indeed a
saddle point and then prove (X, ®) is also a saddle point.

We compute the Euclidean gradients of f., with respect to X and ® as follows:

Uy fo(X, ©) = (XOXT — A)X6O — XO? — AXO,
Vo fxo(X,0) = %XT(XG)XT —A)X = %(G) - XTAX).
By plugging the expression of (X, @) in, we obtain
Vx fro(X,0) = XO% - AXO
= [Muyg, Muy,. .. ,A%up, 0,...,0] — [Muy, Muy, ..., )\%up, o0,...,0]
=0,
- 1 -~ - .
Vo fx(X,0) = 5(0 - X'AX)
1
= 5 (diag(A1 Az, 0, 0, 0) = diag (A1 A2y, A, 0, 0))
=0.

Then, the Riemannian gradient is

(Im - XXT)VXfoo( X ) é) + g(XTvaoo(Xv é)) - vaoo(X7 (:))TX) =0.

Therefore, (f(, (:)) is a stationary point in the Riemannian sense.

We now show that (X, (:)) is neither a local minimum nor a local maximum of the objective function.
For any 0 < v < A, we will construct a pair (X, ©), such that foo(X,,0) > foo(X, 0),
1((X4,6,),(X,0)) = /X —X|B + |0, — O <vand XX, =T,.

LetX, =X = [U1, Vi) and O, = diag(A\—v, Ao, . . ., Ap,0,...,0). By construction, XIXJr =
I, andd ((X+, 0,), (X, (:))> = V12 < v hold. The value of the objective function is

~ ~ 1.~ ~ =
foo(X4,04) = 1||X+@+XI — Al
1 p TA
= Z”()\l — V)ululT + Z )xiuiul-T - Z )\zu,ulTH,Q:
=2 1=1
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1 e
= Z||1/u1u1T + Z Auu, |2
i=p+1

® 1
=1 vy [+ |XOXT — A7)

> fOO(X,e),

where (b) is by the orthogonality of {uy,us,...,u,,}.

We now try to construct a pair (X_, @_), such that foo(X_,0_) < f+(X,0),d ((X_, 0_), (X,

VIK- —X[2+6- - Oz < v and XTX_ =TI,

Since v; € Ut forany i € {1,2,...,7 — p}, it follows that v; € span{u, ,4+1,Uy,42,..., Un}.
Accordingly, we consider

X_ = Uy, kvy + SUpi1,Va,. .. ,vr_p},
©_ =diag(A1, A2, -+, A\, 10,0,...,0),

where k, s, 19 > 0, k% + s> = 1 and k, s, o will be given later. We can easily verify that X'X_ =
I, holds. The distance is

1((X,6),(X,0)) =/IX_ - X[z +]6 - O]

= Ik = 1)vi + sup |2 + 12

:\/(k—1)2+52+1/§

:1/2—2k+1/8.

Letk =1— ”4—2, s=+vV1—k?and 1y < %,thend((f(,,(:),),(f(,(:)o < % + %2 < v. The
value of the objective function is

i

7(:)*)

N

|

_O_XT A}

N, .-lk\r—t ==

o (k*viv] + ksu,pav] + ksvluzﬂ) + (vos* — \,) up+1up+1 Z Awu |2
i=p+2

~ o~ 1
(RO + K22 g v [ + K252 vral 1 [2) + (052 = X)) + foolX, ©) = A2
1 2

=% (k* + 2k%s? + s) — 51/0)\p82 + [ (X, ©),

—
3
N

where ( ) is from the orthogonality of {uj,ug,...,u,,,v1}. Let vy > 0 be sufficiently small.
Then 1 Y% (k:4 +2k%5% + 5 ) yo)\ps < 0. Th1s ensures that the perturbed pair leads to a strictly

smaller objective value, i.e., foo(X_,0_) < foo(X, O).
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Therefore, we have verified that (~)~(~, (E)) is a saddle point. Building upon this result, we now proceed
to show that (X, ®) = (XQT,QOQ") is also a saddle point.

Plugging in the expression of (X, ®), we obtain the Euclidean gradients as follows:

Vxfeo(X,0) = (XOX' - A)XO
=(XQ'QOQ QX" - A)XQ'QeqQ’
= (X2 - AX0)Q'
Vo/fx(X,0)==-X"(XeX" - A)X

~ 1oX"(XQ7Q6Q7 X" — AXQT

- 1@ -XTa%)Q’

.Ow\.—lw\wwwa O"\ —

Then, the Riemannian gradient is
T X T T
(I, — XX ') Vx feo(X,0) + E(X Vx foo(X,0) — Vx foo(X,0)  X) = 0.

Therefore, (X, @) is a stationary point in the Riemannian sense.

Let (X,,0,)=(X;Q"7,Q0.,Q"), (X_,0_)=(X_Q",QO_Q"). The distance is

1((X+.0,),(X.0)) = /X ~ X[ + |0, — O]
= JIX, - X)QT[2 + QO - ©)QT|2
= IXs =Xt +]©4 - O
- d((X+,(:)+),(X,é)).

In the same manner, we can obtain that d ((X_,0_),(X,0)) =d <(X_, e_), (X, (:))) By the
orthogonality of Q, the following three identities hold:
xox' = XQ'QOQ QX" = XOX ",
X,0,.X] =X,Q'Q6,Q'QX| =X,06,X],
X 0 X'=xXxQ'Qe_Q'ex’ =x e _x'.
Then, we have f(X,0) = f(X,0), f(X,,0,) = f(X,,0,)and f(X_,0_) = f(X_
(

Thus, we obtain the strict inequality f(X_,0_) < f(X,0) < f(X4, ®+) Therefore,
also a saddle point.

We now turn to the case p = 0, i.e., XOXT=A;=0. Consequently, ® = XTA)X =0. Let X
be expressed as X = [x1, X2, ..., Xy], Where each x; is a column vector. Since Tr(XTUUTX) =
|UTX]|2 = 0, it follows that UT X = 0. Hence, each x; lies in U~ fori € {1,2,...,7}.

.0_).
,0) is
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We compute the Euclidean gradient of the objective function f., with respect to X and ©
Vx foo(X,0) = (XOX' — A)XO = X0? - AXO =0,

Voflo(X,0) = %XT(X@XT —A)X = %(@ - X"TAX)=0.

Then, the Riemannian gradient is

X (XTVxfx(X, ©) - Vx foo (X, ©)TX) = 0.

(I = XXT)Vx foo (X, ©) +

Therefore, (X, ©) is a stationary point in the Riemannian sense.
For any 0 < v < A, ,, we construct the pair (X, @) as follows:

Xt = [kx1 + suy, X2, ..., X,
®, =diag(—11,0,...,0),

where k = 1 — %, s=+v1—k? and 0 < v; < §. We can easily verify that XIX+ = I, and the
distance is

1((X,0,),(X,0)) = /|X; ~ X[ + |0, - O]

= Ik = 1)t + swi]|? + 02

:\/(k—1)2+32+1/12
v 2

4

N
v |
+

IN A

The value of the objective function is
1
foo(X4,04) = Z||X+@+XI — Al

1 —
= Z|| -1 (k2x1x1r + 52u1u1r> - Z A |2
i=1

TA

- i“ylk?xle +uisSmu) + ) N |
i=1
D2 (K 4 ks 2mhis” + |XOXT - AJR)
> foo(X, ©),
where (d) is due to the orthogonality of {u;,us, ..., u,,,x;}. Now consider the pair (X_,©_)
defined as:
X_ = [kx1 + sup, X2, ..., X,
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©_ = diag(1»,0,...,0),

where k = 1 — ”742,3 =+v1—k2 and 0 < 1n < % It can be verified that X'X_ = I,., and the
distance is

d(X_.©.).(X.@) = /|X_ - X[} + |e_ - O|2
= Ik = 1)t + swi]|? + 13

:\/(k—1)2+32+1/22
v 2

4

IA
S

v |

+

IN

The value of the objective function is
1
JooX—,©) = 2| X_© X — Allf

1 =
= Z||V2 (k2x1x1T + szululT) — Z Awu |2
i=1

1 S
= Z||y2192x1x1T + vpsPugu| — Z Augu; |2
i=1

1
© 7 (ugk‘* +u2st — 28?4+ [ XOXT — AH%>
1
= (B +5Y) —20015%) + [ (X, ©),
where (e) is by the orthogonality of {u;, ug,...,u,,,x1}. Let vo > 0 be sufficiently small. Then
1 (V3(k* + s*) — 20pA18%) < 0. This guarantees that foo(X_,0_) < fx(X,©®). Therefore,
(X, ®) is also a saddle point when p = 0. [

G.10. Proof of Lemma 4

Proof We begin by computing the Euclidean gradients of f, and f with respect to X and ©®:

Vx foo(X,0) = (XOXT — A)XO,

Vo fxo(X,0) = %XT(XGXT - A)X,
Vxf(X,0) = M*M(XOX' - A)XO,
Ve f(X,0) = %XTM*M(XG)XT —A)X.

Then, we can obtain that the gap between population gradient and sensing gradient is

VX foo(X,©) = Vx f(X,O)|F = [(M*M - I)(XOX ' — A)XO|
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< MM = T)(XOXT — A)|F|X[ O]

(f) -
< 2 (MM - T)(XOX' — A)s
< 2y/m|(M*M — I)(XOXT - A)]

(9)

< 2vmd||XOX T — Al

< 2mi||XOX" — A

< 2md([|X[[[[Of[|X]] + [l A])
()

< 6md,
1
Ve fx(X,©) = Ve [(X, )| = 5 [IX" (M'M-T)(XOX' — A)X|
1 *
< SIXNMM = T)(XOXT — Al X]|

1
< SIM M- T)(XOXT - A)|r
1
2

IN

V| (MM —I)(XOX' — A)

N
N | —

Vmd||XOX" — Al

IN

mé|XOX " — Al

IN
NN

md ([ X[[[OIXI[ + [lAl)

IN=
N W

3
=S

where (f) is by ||X]| < 1,||®| < 2,||A| < 1; and (g) is from Lemma 24. Then, the difference
between the two Riemannian gradients can be bounded as

VR foe(X,0) = VEF(X,0)[|F = [(Tn — XX)(Vx f(X,0) — Vx (X, 0))

+ %XXT(VX]COO(X7 @)) - va(X’ 8))
S X(Vxfoe(X,0)T — Vx (X, ©))X] ¢
<L = XX ) (Vx foo (X, ©) — Vx f(X,0)) ||
4 IXXT (Vx (X, ©) — Vx [(X, ©))]
+ %Hx(vxfoo(x, ©)7 — Vxf(X,0)")X||r
< 6mi([ T~ XX 4+ S IXX] + 5 XX
(h)
< 12mé,
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where (h) is due to || I, — XX |, [|X] < 1. |

Appendix H. Other useful lemmas

Lemma 14 Given a PSD matrix A, we have that (1+ A)~! =T — A.

Proof Diagonalizing both sides and using 1/(1 + A) > 1 — A\, VA > 0 yields the result.

Lemma 15 Let X € St(m,r) and U € St(m,r4). Let U, € R™(m=74) be an orthonormal
basis for the orthogonal complement of span(U). Denote ® = UTX € R™4X" and ¥ = UIX €
RM=TA)XT It is guaranteed that o?(®) 4+ o2(®) = 1 holds fori € {1,2,...,r}.

Proof Since X lies in the Stiefel manifold, we have that

.
I,=X'X=X"L,X=X"[U,U,] [BT} X (34)
1

= ®4+0' W
Equation (34) shows that U W and &' ® commute, i.e.,
(') (T P)= (P, - D)= P> ®D'P®
=L -3 ®)(®'®) = (T 0)(d D).

The commutativity shows that the eigenspaces of ® ' ® and ¥ ¥ coincide. As a result, we have
again from (34) that 02 (®) + o2(¥) = 1 fori € {1,2,...,r}. [

Lemma 16 Suppose that P and Q are m x m diagonal matrices, with non-negative diagonal
entries. Let S € S™ be a positive definite matrix with smallest eigenvalue Ay, then we have that

Tr(PSQ) > Anin Tr(PQ).
Proof Let p; and g; be the (i, 7)-th entry of P and Q, respectively. Then we have that

Tr(PSQ) = Zpisi,i%' > Amin Zpi%' = Amin Tr(PQ),

where the last inequality comes from S being positive definite, i.e., S; ; = eiTSei > Amin. |

Lemma 17 Let A € R™*" be a matrix with full column rank and B € R"™*P be a non-zero
matrix. Let omin(-) denote the smallest non-zero singular value. Then it holds that opin(AB) >

Omin(A)omin(B).
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Proof Using the min-max principle for singular values,

Omin(AB) = min |ABx]|
|Ix||=1,x€ColSpan(B)

= min Bx
[[x]|=1,x€ColSpan(B H ||B H H H ”

(@) :

- min [Ay] - [[Bx]|
Ix[|=1,|ly||=1,x€ColSpan(B),y €ColSpan(B)

> wminJAy|-  min__[Bx|
lyll=1,y €ColSpan(B) [|x]|=1,x€ColSpan(B)

> min |Ay|-  min_[Bx|
llyll=1 [|%||=1,x€ColSpan(B)

= Umin(A)Umin<B)7

where (a) is by changing of variables, i.e., y = Bx/||Bx||. [

Lemma 18 (Theorem 2.2.1 of [12]) If Z € R™*" has entries drawn i.i.d. from Gaussian distri-
bution N'(0,1), then X = Z(Z " Z)~'/? is a random matrix uniformly distributed on St(m, 7).

Lemma 19 [42] If Z € R™ " is a matrix whose entries are independently drawn from N (0,1).
Then for every T > 0, with probability at least 1 — exp(—712/2), we have

o1(Z) < Vm+r+T.

Lemma 20 [33] If Z € R™ " is a matrix whose entries are independently drawn from N (0,1).
Suppose that m > r. Then for every T > 0, we have for two universal constants C1 > 0 and
Co > 0 that

P(0n(2) < (v — Vi = 1)) < (Crr)" "+ + exp(—Com).

Lemma 21 If U € St(m,r4) is a fixed matrix, X € St(m, r) is uniformly sampled from St(m, )
using methods described in Lemma 18, and r > r 4, then we have that with probability at least
1 —exp(—m/2) — (Cy7)" "4+ — exp(—Cyr),
T(r—ra+1)
U'x)y>—~ 24" "/
ora(U X) 2 ==

Proof Since X € St(m, r) is uniformly sampled from St(m, r) using methods described in Lemma
18, we can write X = Z(Z " Z)~ /2, where Z € R™*" has entries i.i.d. sampled from N (0,1). We
thus have

0, (UTX) = 0,,(UTZ(Z2"2)71/?).

We now consider U'Z € R"4*", Tt is clear that the entries of U Z are also i.i.d V'(0, 1) random
variables. As a consequence of Lemma 20, we have that with probability at least 1 — (Cy7)" "4+ —
exp(—Car),

0,0 (UTZ) > 7(v/r —\ra—1).
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We also have from Lemma 19 that with probability at least 1 — exp(—m/2),
01(Z"Z) = 01(Z) < (2v/m + /).
Taking union bound, we have with probability at least 1 —exp(—m/2)—(C17)" "4 —exp(—Car),

)JTA(UTZ)_T(\[—\/F) T(r—ra+1) 7(r—ra+1)
o1(Z) 2ym+r 3Vm-2yr  6ymr

where (a) comes from Lemma 17. [

(

S

o, (UTX)

\Y]

>

Lemma 22 Suppose ©®, € S". Then the update rule (7) guarantees that ©®,1 also belongs to S’

Proof From the update rule, we have that

@1 = X[ AX 1y — X[ (MM — %I)(XtHG)tXtT = A X

Since ©; € S" and A € S™, it follows that X;110,X,, ; — A € S™ and XtTHAXtH es".
By definition of M and M*, the composition M* M defines a self-adjoint operator in S™. Hence,

X[ [(MM — gI)(Xt-H@tX;-l —A)][ X1 €8

Thus, ©;y1 € S”, which completes the proof. |

Lemma 23 Let M(-) : S™ — R" be a linear mapping that is (r +1',6)-RIP with § € [0, 1). Then
for any symmetric matrix Z of rank at most v and any symmetric matrix Y of rank at most r’, we
have that

(MM =T)(Z),Y)[ < SIZ[FYlF-

Proof Denote A(Z,Y) := (M*M —I)(Z),Y) = (M(Z), M(Y)) — (Z,Y). The above
inequality trivially holds when [|Z||r = 0 or | Y||[r = 0. Without loss of generality, we assume that

|Z||r # 0 and ||Y||g # 0. Define Z := Tzl and Y := H;{HF' It then follows that

A(Z,Y) = AZ,Y) - | Z[e]| Y]|e-
Using the polarization identity, we obtain
. - 1 . .
(M(2), M(Y)) = 1(IM(Z + Y)|I* = [M(Z = Y)|*),

_ 1 - . _
(2,Y) = (IZ +Y[E-1Z-YR).
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Substituting the two equalities into the expression of A(Z, Y), we have that
|A(Z,Y)| = [(M(Z), M(Y)) — (Z,Y)|
1 .. . ..
ZI(IIM(ZJrY)II2 IM(Z = Y)IIP) = (1Z + Y[ — |Z - YI[)]
1(|||/\/l(Z+Y)||2—||Z+Y|| |+ IMZ =) = 1 Z - Y|I}])
1 F F

(@) §
< S(Z+ VIR +1Z - YIB)

0
5 (1Z1E + 1Y 117)

Q«.

where (a) is from the facts that M(-) is (r + 7', §)-RIP with constant J, rank(Z+Y) < rank(Z) +
rank(Y) < r ++/, and rank(Z —Y) < rank(Z) + rank(Y) < r + r’. Therefore, we have that

(MM =T)(Z),Y)| = |AZ,Y)| = |AZ,Y) - |Z]e| Y] < SIZIelY]lF,

which completes the proof.

Lemma 24 (Lemma 7.3 of [38]) Ler M(:) : S™ — R" be a linear mapping that is (r+ra+1,0)-
RIP with § € [0,1), then ||(M*M — I)(A)| < §||A||g for all matrices A € S™ of rank at most
T+ TA.

Proof By Lemma 23, if A € S™ has rank at most 7 + 4 and Y € S”* has rank at most 1, then it
holds that

(MM =TI)(A),Y)| < o[ AllellY]lF
Hence, it suffices to prove that there exists a matrix Y of rank 1, such that [(( M* M —TZ)(A),Y)| =

|(M*M —T)(A)]| and || Y||r < 1. Since (M*M — Z)(A) is a symmetric matrix, it follows that
[((M*M —TI)(A)|| = max u’ (M*M —I)(A)u

uf=1

= max Tr(M*M —Z)(A)uu')

llufl=1

= ”m”ax (M*M —=T)(A),uu’).
ul|=1
Let Y = qit', where 1 € arg max({(M*M — Z)(A),uu'). We then have that rank(Y) = 1,
[[uf|=1

Y €8, (MM =TI)(A),Y)| = [(MM = T)(A)], and [[Y[[r < 1. |

Lemma 25 Let A € R™™, B € R™*" be two real matrices, then the following inequality holds

AB+B'AT <2|A||B|L..
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Proof For any unit vector € R™ with ||x| = 1, we can obtain that

2 (AB+BTAT)z =2 ABz +2 B"ATz ¥ 227 ABz,

where (a) is from the fact that 22 ' BT A T is a scalar. By the Cauchy—Schwarz inequality and the
definition of the spectral norm, we have that

z" ABz| < |ABz| - lz|| < |A| - B - ||* = |A]|B].
Hence, we obtain the following inequality:
x (AB+BTAT)z <2||A||B].
Since this holds for any unit vector x, it follows that

AB+B'AT <2||A||B|L,.

Lemma 26 Lett > 1 be a positive integer. For all real numbers x, satisfying 0 < x < 1, the

t
following inequality holds:

(14 z)" <14 3tz
Proof Let f(z) := 1+ 3tz — (1 + 2)!, « € [0, 1]. Then, for all z € [0, 1], we obtain

Fla) =3t —t(1+2)"" > 36— (1 + %)H > (3—e)t > 0.

Therefore, for all = € [0,
|

2], f(z) = f(0) = 0, which means (1 4+ z)" < 1+ 3tz forallz € [0, 1].

Lemma 27 Letk € R>y, g € (3,1). Suppose that sequences {a;};2, {b:}52, C Rxq satisfy

1-—
bey1 < qbt + 5 180k2 (a%fl +a? + 2ai-1as + Vbi(a—1 + ar)), (35)
atgzkﬁJrgat_l, t=1,2..., (36)

and another pair of sequences {a;}22,, {b¢ }52, C R satisfy

. 1— ) o - )
b1 = qby + —— 13052 (03—1 + G + 2010y + \/bit(atfl +ay)), (37)
&t:2k\/b:+6&t_1, t=1,2.... (38)

If the initial conditions satisfy
ap < ag, by < bo, by < by,

then a; < d; and by < by hold for all t > 0.
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Proof We proceed by mathematical induction. From inequality (35), we obtain

1
a1 < 2kr\/by +6a0

where (a) is by initial conditions; and (b) is from equality (37). Analogously, inequality (36) implies

1-
by < gby + ——— (ag + af + 2apa1 + v/bi(ao + a1))

18042 (

1
gb1 + T80k2 (ao + a3 4 2apa; + \f (ao +ai))

where (c) is due to initial conditions and a; < @;; and (d) is by equality (38). By induction, we
conclude that a; < a; and by < b, for all t > 0, which completes the proof. |

Lemma 28 Letk € Rx1, g € (L, 1). Suppose that sequences {a}32, {0} C R satisfy:

~ 1— B B B ~ B
b1 = qby + 1802 (af,l + a7 + 2a—1ds + \/;(at—l +ay)), (39)
at:%\/b:Jrgat,l, t=1,2.... (40)

If the initial conditions satisfy

- - . 32Uk /- .
ao, a1, b, b1 € R>g,a §3k\/;§ bi,a; < 3ky\/ by,
05 a1, 00,01 € R>0, Ao Vi A 1

_ t/2
then we have that a; < 3k\/% (%) forallt > 0.

Proof We proceed by mathematical induction. We first consider the following auxiliary system:

g

be1 = max{gb; + —— 18Ok2 (a?_l + a7 + 2a1a; + \/l?t(&tfl + az)),

a; = max{2k‘ bt + gdtfb 3]{3\/;}, t=1,2,.... 42)

Let ag = ag, 130 = l~)0, and 131 = 51. It holds that ag < 3kv/ (30 < \3/\1/%\/5, and thus we have

2k /by + a0<2k\/7+ \/7<3k\/7
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From equality (42) at ¢ = 1, we obtain a; = 3k V/by. Since a ag < < 3v2k V 51 and a1 = 314:\/5 , 1t

VItq
follows that
2 22 ~ o N .
qb1 + 180k2 (ao + aj + 2apa; + 1/ b1(ao + a))
1—q , 18k2 oe 18\fk2 3V2k -
b b 9k~b by + 3kb
_q1+180k2( 1+ 1+\/7 \/71-1- 1)
1-—
< abi+ 1501 (18k2 + 9k + 18V/2k? + 3v/2k? + 3k%) b,
. 1—g-
< ghy + —1b
1 R
<1t
2
From equality (41) at ¢ = 1, we have by = Tqi) Using the same reasoning for ¢ = 2 yields

Equality (42) at t = 1 implies that do = 3k\/bs. Since a1 = 3k\/by and as = 3k+/bs, we obtain

~

1-—
qba + 18082 (a1 + a3 + 2a1a0 + \F (a1 + a2))

. 1— A A .
= gb2 + 15073 9 (9%2by + 9%2by + 18K\ byby + 3k(\/b1ba + o))
it 1—q(18k;2 5 18\/§k2+ 3v2k +3k)6

2T TR0k 14 ¢ Vitg VIt 2

. 1—
< b2 + 500z (18/8+9k2+18\fk2+3\fk2+3k2)b
< qby + —Lb,

1+gq;
< :
< — ba

Applying equality (41) att = 2, by = Tqi) is derived. Therefore, we have that a; = 3k+/ 31, a9 =
31{:\/5 ,and 53 = %52. Assume that a;_1 = 3k l;t,l, a; = 314:\/(3», and 3t+1 = 1—;“’&, we claim
that a;+1 = 3k 13t+1 and l;t+2 qu; ++1. From equality (42), we obtain

. - 1, -

agy1 = max{2k bii1 + gat, 3k bt+1}

R 1 - -
:max{Zk bt+1+§k’ bt, 3]{3 bt+1}

— ki —
:max{2k bt+1+ 9 bt+1,3k bt+1}

- 3k lA)t_A,_l.
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Analogously, equality (41) implies that

~ . o ~ . R 1+gqg-
bt+2 = maX{qu_l + —= 180]{32 (CL? + CL§+1 + 2atat+1 + bt+1(at + at+1)), qbt_H}
= max{q[;t+1 + 180/{2 (9]432815 + 9k2i)t+1 + 18]{32 \/ Z)tl;tJrl + \/ [;t+1(3k’\/g—|— 3]{}\/ lA)tJrl)),
1+4q;
5 qbt—i-l}
= b 42— )2 ()2 by1, ——b
max{gbir + =557 (1+q+ 20 ey +3k:) b1 5 bt}
1+¢q;
= bey1.

2

Therefore, we have that {Z)t}foo decreases in a linear rate and that dt = 3]4:\/@ in the system (41)
and (42), which means that a; < 3k+/by (Hq) = 3kv/bo (Hq’) forallt > 0.
YVe now prove that a; < &t,gt < Bt for all ¢ > 0. Obviously, ag < ag,a1 < dl,go < 30, and
b1 < by hold. Applying equality (39) at t = 1 and equality (40) at ¢ = 2, we obtain
- 1— ~ o - ~
by = qby + —= 15052 (ag + a% + 2apa; + 1/ bi(ao + al))
1
< gb + 180k2( + a2 4 2a0ay + \/ b1(ap + 1))

1—|—qu}

1-—-
< max{qbl + — 130k2 (ao + a2 4 2a0a; + \/ (ao + a1)),

= b,
ag = Qk\/g—i- éél
< 2k\/£+ Zas
<m X{Qk[+ a1, 3]{:\/7}

Il
Q>

Hence, as < as, 52 < 132 and recursively, we can obtain a; < ay, Bt < l;t for all¢ > 0. Consequently,
{at} o° achieves at least a linear convergence rate in the system (39) and (40), which means that

i < 31{\70 (1—;‘1) for all ¢ > 0.

Appendix I. Experimental setup

In this section, we provide experimental setup details for Section 4, Figure 2, and Appendix C .

L.1. Setup for Section 4

We apply RGD on WN and compare the convergence with vanilla GD on problem (1).
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In the “Faster convergence of WN” part, we divide our experiments into two sets. In the first set of
experiments, we consider target matrices with small condition numbers, i.e., k € {1,3,5}. Other
parameters are chosen as m = 10,7 = 5,74 = 3, and n = 1000. In the second set of experiments,
we consider target matrices with large condition numbers of x € {10, 20, 30}, on a problem instance
with m = 10,7 = 5,r4 = 3, and n = 3000.

In the “On the benefit of overparameterization” part, we also divide our experiments into two sets.
The first set tests small » € {4,5,6} with m = 10,74 = 3, and k = 1. The number of measure-
ments is fixed at n = 1000. The second set comes with m = 20,r4 = 3,k = 10, and the level of
overparameterization is chosen as r € {5, 10, 15}, and n = 3000 is leveraged.

In these experiments, the ground truth matrix A € R™*™ is formed as A = UXU', where
U € R™*"4 is a random orthonormal matrix and 3 € S’ is a diagonal matrix with entries
evenly distributed on a logarithmic scale in the interval [1/x, 1]. The independent feature matrices
{M;}"; C S™ are generated in the following manner. For each i € {1,...,n}, we sample
R; € R™*™ with i.i.d. standard Gaussian entries and define M; = ﬁ(RZ + R;r), which ensures
the symmetry of M.

We initialize RGD with X = Zo(Z] Zo)~'/? and @ = I,., where Zo € R"*" has i.i.d. standard
Gaussian entries. This initialization ensures that X lies on the manifold St(m,r) and @y € S".
For GD, we use XgD = 0.1Z as small random initialization.

In the “Faster convergence of WN” part, we set stepsizes = 0.1 and ¢ = 2 for RGD and n = 0.1
for GD. In the “On the benefit of overparameterization” part, we set n = 0.1,0.12, and 0.14 with
p = 2 for RGD, and n = 0.1,0.12, and 0.14 for GD, where 7 increases with r.

I.2. Setup for Figure 2
We apply RGD on WN and study the trajectory generated by the algorithm.

In this experiment, we set m = 300, = 10,74 = 5,k = 3, and use n = 50000 feature matrices
generated as in I.1. The ground-truth matrix A € R™>™ is constructed as A = UXU", where
U € R"™"4 is a random orthonormal matrix and ¥ € S/ is diagonal with entries generated
GZ=P

ra—1

by a power spacing scheme. Specifically, the j-th entry of X is given by 0; = K for

j=1,...,r4, where we set p = 0.6.
We initialize X = ZO(ZE]FZO)_V2 and ®¢ = 0.51,., where Zy € R™*" has i.i.d. standard Gaussian
entries. For this experiment, we set the stepsizes ton = 0.2 and p = 2.

L.3. Setup for Appendix C
L.3.1. Setup for the experiments with synthetic data

We apply RGD on WN and vanilla GD on problem (1) to reveal other interesting behaviors of WN.

We set m, 7,74, k, and n as specified in Appendix C. The ground truth matrix and feature matrices
are constructed following the procedure described in I.1.

We initialize Xy = ZO(ZJZO)_V2 and ®y = I, for RGD, where Zy € R"*" is generated with
i.i.d. standard Gaussian entries. For GD, we use X§P = 0.1Z as small random initialization. In
all experiments, we use step sizes n = 0.1, p = 2 for RGD and n = 0.1 for GD.
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1.3.2. Setup for image reconstruction experiments

For the image reconstruction experiments, we conduct two setups: one bases on recovering a CIFAR-
10 image from linear measurements and the other on direct matrix sensing of a structured image.

For the CIFAR-10 experiment, we take the first horse image from CIFAR-10 dataset, convert it to
grayscale, and vectorize it as @ € R'9%4, The ground-truth matrix is set as A = aa' € SEFOM.
The overparameterization level is set to » = 100, with n = 50000 feature matrices generated as
in I.1. RGD is initialized with Xo = Zo(ZJ Zo)~'/? and ®¢ = I,, where Zg € R™*" has i.i.d.
standard Gaussian entries. GD uses small random initialization: XOGD = 0.1Zy. We run RGD
for trgp = 100 and GD for tgp = 200 iterations. For RGD, we adopt stepsizes of = 0.01 for
updating X and p = 2 for updating ®. For GD, we apply stepsize n = 0.01 to update X.

After optimization, following the approach of [15, Section 4.1], we perform a rank-one truncated
SVD on the recovered matrix A, and the estimate of the original signal is constructed as the leading
singular vector multiplied by the square root of its corresponding singular value. The resulting
vector is then reshaped into a 32 x 32 reconstruction image.

For the structured image experiment, we generate a grayscale matrix A € Sf?s of rank r 4 = 2 using
block-wave basis functions. Specifically, we construct r 4 one-dimensional signals of length 128,
where each signal is a normalized block wave taking values in +1 with a random period. Stacking
these signals forms a matrix U € R'28%74_ The ground-truth image is defined as A = UAU,
where A is a 2 x 2 diagonal matrix with diagonal entries 1 and 0.9. This diagonal matrix assigns
geometrically decaying weights to different block-wave modes.

We again fix 7 = 100 and use n = 50000 feature matrices generated as in I.1. Both RGD and GD
are randomly initialized as above. We run RGD for tggp = 100 and GD for tgp = 200 iterations.
We adopt stepsizes of 7 = 0.03 and ¢ = 2 in RGD and a stepsize of n = 0.03 in GD.

The per-iteration computational complexity of both RGD and GD is O(nm?r), which is dominated
by the operation of sensing. Since each RGD iteration requires performing two sensing operations
while GD requires only one, we set the number of iterations as tgp = 2trgp to make the overall
runtime roughly comparable between the two methods.
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